1
|
Karel P, Barbora M, Hana B, Jan M, Libor J, Jiri F, Sona K, Ivana KL, Rudolf P. Human macrophage pro-inflammatory polarization in response to free cholesterol and cholesterol remnants. Physiol Rep 2025; 13:e70367. [PMID: 40405534 PMCID: PMC12098954 DOI: 10.14814/phy2.70367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/24/2025] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the blood vessels caused by elevated levels of lipoproteins. The hyperlipoproteinemia triggers a series of cellular changes, particularly the activation of the macrophages, which play a crucial role in the development and progression of atherosclerosis. The presence of free cholesterol (FC) in lipoproteins may contribute to macrophage stimulation. However, the mechanisms linking the accumulation of FC in macrophages to their pro-inflammatory activation remain poorly understood. Our research found a positive correlation between the number of pro-inflammatory macrophages (CD14 + CD16 + CD36high) in visceral adipose tissue and the levels of LDL-C and cholesterol remnant particles in 56 healthy people. In contrast, the proportion of anti-inflammatory, alternatively activated macrophages (CD14 + CD16-CD163+) correlated negatively with HDL-C. Additionally, our in vitro study demonstrated that macrophages accumulating FC promoted a pro-inflammatory response, activating the TNF-α and chemokine CCL3 genes. Furthermore, the accumulation of FC in macrophages alters the surface receptors on macrophages (CD206 and CD16) and increases cellular granularity. Notably, the CD36 surface receptor and the ACAT and CD36 genes did not show a response. These results suggest a link between excessive FC accumulation and systemic inflammation to underlie the development of atherosclerosis.
Collapse
Affiliation(s)
- Paukner Karel
- Laboratory for Atherosclerosis ResearchCentre for Experimental Medicine, Institute for Clinical and Experimental MedicinePragueCzech Republic
- Department of Physiology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Muffova Barbora
- Laboratory for Atherosclerosis ResearchCentre for Experimental Medicine, Institute for Clinical and Experimental MedicinePragueCzech Republic
- Department of Physiology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Bartuskova Hana
- Laboratory for Atherosclerosis ResearchCentre for Experimental Medicine, Institute for Clinical and Experimental MedicinePragueCzech Republic
| | - Mareš Jan
- Department of Data ScienceInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Janousek Libor
- Transplant Surgery DepartmentInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Fronek Jiri
- Transplant Surgery DepartmentInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Kauerova Sona
- Laboratory for Atherosclerosis ResearchCentre for Experimental Medicine, Institute for Clinical and Experimental MedicinePragueCzech Republic
| | - Kralova Lesna Ivana
- Laboratory for Atherosclerosis ResearchCentre for Experimental Medicine, Institute for Clinical and Experimental MedicinePragueCzech Republic
| | - Poledne Rudolf
- Laboratory for Atherosclerosis ResearchCentre for Experimental Medicine, Institute for Clinical and Experimental MedicinePragueCzech Republic
| |
Collapse
|
2
|
Stephens VR, Ameli S, Major AS, Wanjalla CN. Mouse Models of HIV-Associated Atherosclerosis. Int J Mol Sci 2025; 26:3417. [PMID: 40244289 PMCID: PMC11989901 DOI: 10.3390/ijms26073417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. Several factors are implicated in the pathogenesis of CVD, and efforts have been made to reduce traditional risks, yet CVD remains a complex burden. Notably, people living with HIV (PLWH) are twice as likely to develop CVD compared to persons without HIV (PWoH). Intensive statin therapy, the first-line treatment to prevent cardiovascular events, is effective at reducing morbidity and mortality. However, statin therapy has not reduced the overall prevalence of CVD. Despite antiretroviral therapy (ART), and new guidelines for statin use, PLWH have persistent elevation of inflammatory markers, which is suggested to be a bigger driver of future cardiovascular events than low-density lipoprotein. Herein, we have summarized the development of atherosclerosis and highlighted mouse models of atherosclerosis in the presence and absence of HIV. Since most mouse strains have several mechanisms that are atheroprotective, researchers have developed mouse models to study CVD using dietary and genetic manipulations. In evaluating the current methodologies for studying HIV-associated atherosclerosis, we have detailed the benefits of integrating multi-omics analyses, genetic manipulations, and immune cell profiling within mouse models. These advanced approaches significantly enhance our capacity to address critical gaps in understanding the immune mechanisms driving CVD, including in the context of HIV.
Collapse
Affiliation(s)
- Victoria R. Stephens
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.); (A.S.M.)
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sharareh Ameli
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.); (A.S.M.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amy S. Major
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.); (A.S.M.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Tennessee Valley Health System, Department of Veterans Affairs, Nashville, TN 37212, USA
| | - Celestine N. Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.); (A.S.M.)
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Brunham LR. Familial hypercholesterolemia-Plus: is the metabolic syndrome changing the clinical picture of familial hypercholesterolemia? Curr Opin Lipidol 2024; 35:219-221. [PMID: 38640084 DOI: 10.1097/mol.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review article was to describe recent advances in our knowledge about how diabetes and metabolic syndrome are changing the face of familial hypercholesterolemia. RECENT FINDINGS Heterozygous familial hypercholesterolemia, most commonly caused by disruption to LDL receptor function, leads to lifelong elevation of LDL cholesterol and increased risk of atherosclerotic cardiovascular disease. Familial hypercholesterolemia was originally described as a form of 'pure' hypercholesterolemia, in the sense that levels of LDL were uniquely affected. Studies of familial hypercholesterolemia among individuals of predominantly Western European descent conformed to the perception that individuals with familial hypercholesterolemia tended to be lean and otherwise metabolically healthy. More recently, as we have studied familial hypercholesterolemia in more diverse global populations, we have learned that in some regions, rates of diabetes and obesity among familial hypercholesterolemia patients are very high, mirroring the global increases in the prevalence of metabolic disease. SUMMARY When diabetes and metabolic disease coexist, they amplify the cardiovascular risk in familial hypercholesterolemia, and may require more aggressive treatment.
Collapse
Affiliation(s)
- Liam R Brunham
- Centre for Heart Lung Innovation
- Department of Medicine
- Division of Cardiology
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Skeyni A, Pradignac A, Matz RL, Terrand J, Boucher P. Cholesterol trafficking, lysosomal function, and atherosclerosis. Am J Physiol Cell Physiol 2024; 326:C473-C486. [PMID: 38145298 DOI: 10.1152/ajpcell.00415.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Despite years of study and major research advances over the past 50 years, atherosclerotic diseases continue to rank as the leading global cause of death. Accumulation of cholesterol within the vascular wall remains the main problem and represents one of the early steps in the development of atherosclerotic lesions. There is a complex relationship between vesicular cholesterol transport and atherosclerosis, and abnormalities in cholesterol trafficking can contribute to the development and progression of the lesions. The dysregulation of vesicular cholesterol transport and lysosomal function fosters the buildup of cholesterol within various intracytoplasmic compartments, including lysosomes and lipid droplets. This, in turn, promotes the hallmark formation of foam cells, a defining feature of early atherosclerosis. Multiple cellular processes, encompassing endocytosis, exocytosis, intracellular trafficking, and autophagy, play crucial roles in influencing foam cell formation and atherosclerotic plaque stability. In this review, we highlight recent advances in the understanding of the intricate mechanisms of vesicular cholesterol transport and its relationship with atherosclerosis and discuss the importance of understanding these mechanisms in developing strategies to prevent or treat this prevalent cardiovascular disease.
Collapse
Affiliation(s)
- Alaa Skeyni
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Alain Pradignac
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Rachel L Matz
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Jérôme Terrand
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
5
|
Ye Y, Takeuchi A, Kawaguchi Y, Matsuba S, Zhang N, Mijiti M, Banno A, Hiramatsu N, Okada T, Nagaoka S. Eugeniin improves cholesterol metabolism in HepG2 cells and Caco-2 cells. Biosci Biotechnol Biochem 2023; 88:97-106. [PMID: 37952102 DOI: 10.1093/bbb/zbad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023]
Abstract
Considering the absence of prior studies on the cholesterol metabolism-improving effects of eugeniin, the present investigation aimed to explore the potential impact of eugeniin on cholesterol metabolism. This study sought to elucidate the molecular mechanisms involved in this process using HepG2 and Caco-2 cells treated with 5 µm eugeniin. The intracellular cholesterol levels in HepG2 and Caco-2 cells were significantly decreased in the 24-h eugeniin-treated group. The protein and messenger ribonucleic acid (mRNA) levels of the low-density lipoprotein receptor (LDLR) were increased, while 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase protein and mRNA levels were decreased in HepG2 cells 6 h of the eugeniin-treated group. Additionally, LDLR protein and mRNA levels were increased in HepG2 cells after 24 h of eugeniin treatment. In Caco-2, the protein and mRNA levels of ATP-binding cassette transporter 1 were increased after 24 h eugeniin treatment. This novel finding indicates that eugeniin improves cholesterol metabolism in human cell cultures.
Collapse
Affiliation(s)
- Yuyang Ye
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Asahi Takeuchi
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yuya Kawaguchi
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Shoya Matsuba
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Ni Zhang
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Maihemuti Mijiti
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Arata Banno
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Naoto Hiramatsu
- Department of Research and development, Toyohakko Co., Ltd., Aichi, Japan
| | - Toshitaka Okada
- Department of Research and development, Toyohakko Co., Ltd., Aichi, Japan
| | - Satoshi Nagaoka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
6
|
Parente M, Tonini C, Segatto M, Pallottini V. Regulation of cholesterol metabolism: New players for an old physiological process. J Cell Biochem 2023; 124:1449-1465. [PMID: 37796135 DOI: 10.1002/jcb.30477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Identified more than two centuries ago, cholesterol plays a pivotal role in human physiology. Since cholesterol metabolism is a physiologically significant process, it is not surprising that its alterations are associated with several pathologies. The discovery of new molecular targets or compounds able to modulate this sophisticated metabolism has been capturing the attention of research groups worldwide since many years. Endogenous and exogenous compounds are known to regulate cellular cholesterol synthesis and uptake, or reduce cholesterol absorption at the intestinal level, thereby regulating cholesterol homeostasis. However, there is a great need of new modulators and diverse new pathways have been uncovered. Here, after illustrating cholesterol metabolism and its well-known regulators, some new players of this important physiological process are also described.
Collapse
Affiliation(s)
| | | | - Marco Segatto
- Department of Bioscience and Territory, University of Molise, Pesche, Italy
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Rome, Italy
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Via del Fosso Fiorano, Rome, Italy
| |
Collapse
|
7
|
Liu T, Tian Y, Zheng A, Cui C. Design Strategies for and Stability of mRNA-Lipid Nanoparticle COVID-19 Vaccines. Polymers (Basel) 2022; 14:4195. [PMID: 36236141 PMCID: PMC9572882 DOI: 10.3390/polym14194195] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Messenger RNA (mRNA) vaccines have shown great preventive potential in response to the novel coronavirus (COVID-19) pandemic. The lipid nanoparticle (LNP), as a non-viral vector with good safety and potency factors, is applied to mRNA delivery in the clinic. Among the recently FDA-approved SARS-CoV-2 mRNA vaccines, lipid-based nanoparticles have been shown to be well-suited to antigen presentation and enhanced immune stimulation to elicit potent humoral and cellular immune responses. However, a design strategy for optimal mRNA-LNP vaccines has not been fully elaborated. In this review, we comprehensively and systematically discuss the research strategies for mRNA-LNP vaccines against COVID-19, including antigen and lipid carrier selection, vaccine preparation, quality control, and stability. Meanwhile, we also discuss the potential development directions for mRNA-LNP vaccines in the future. We also conduct an in-depth review of those technologies and scientific insights in regard to the mRNA-LNP field.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chunying Cui
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
8
|
Sancho M, Fletcher J, Welsh DG. Inward Rectifier Potassium Channels: Membrane Lipid-Dependent Mechanosensitive Gates in Brain Vascular Cells. Front Cardiovasc Med 2022; 9:869481. [PMID: 35419431 PMCID: PMC8995785 DOI: 10.3389/fcvm.2022.869481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral arteries contain two primary and interacting cell types, smooth muscle (SMCs) and endothelial cells (ECs), which are each capable of sensing particular hemodynamic forces to set basal tone and brain perfusion. These biomechanical stimuli help confer tone within arterial networks upon which local neurovascular stimuli function. Tone development is intimately tied to arterial membrane potential (VM) and changes in intracellular [Ca2+] driven by voltage-gated Ca2+ channels (VGCCs). Arterial VM is in turn set by the dynamic interplay among ion channel species, the strongly inward rectifying K+ (Kir) channel being of special interest. Kir2 channels possess a unique biophysical signature in that they strongly rectify, display negative slope conductance, respond to elevated extracellular K+ and are blocked by micromolar Ba2+. While functional Kir2 channels are expressed in both smooth muscle and endothelium, they lack classic regulatory control, thus are often viewed as a simple background conductance. Recent literature has provided new insight, with two membrane lipids, phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol, noted to (1) stabilize Kir2 channels in a preferred open or closed state, respectively, and (2) confer, in association with the cytoskeleton, caveolin-1 (Cav1) and syntrophin, hemodynamic sensitivity. It is these aspects of vascular Kir2 channels that will be the primary focus of this review.
Collapse
Affiliation(s)
- Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
- Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Maria Sancho,
| | - Jacob Fletcher
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Donald G. Welsh
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Donald G. Welsh,
| |
Collapse
|
9
|
Paukner K, Králová Lesná I, Poledne R. Cholesterol in the Cell Membrane-An Emerging Player in Atherogenesis. Int J Mol Sci 2022; 23:533. [PMID: 35008955 PMCID: PMC8745363 DOI: 10.3390/ijms23010533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Membrane cholesterol is essential for cell membrane properties, just as serum cholesterol is important for the transport of molecules between organs. This review focuses on cholesterol transport between lipoproteins and lipid rafts on the surface of macrophages. Recent studies exploring this mechanism and recognition of the central dogma-the key role of macrophages in cardiovascular disease-have led to the notion that this transport mechanism plays a major role in the pathogenesis of atherosclerosis. The exact molecular mechanism of this transport remains unclear. Future research will improve our understanding of the molecular and cellular bases of lipid raft-associated cholesterol transport.
Collapse
Affiliation(s)
- Karel Paukner
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
- Department of Physiology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Small Animal Clinic, 612 00 Brno, Czech Republic
| | - Ivana Králová Lesná
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
- Department of Anesthesia and Intensive Medicine, First Faculty of Medicine, Charles University and University Military Hospital, 128 08 Prague, Czech Republic
| | - Rudolf Poledne
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
| |
Collapse
|
10
|
Yang Y, Zhang D, Guo D, Li J, Xu S, Wei J, Xie J, Zhou X. Osteoblasts impair cholesterol synthesis in chondrocytes via Notch1 signalling. Cell Prolif 2021; 54:e13156. [PMID: 34726809 PMCID: PMC8666287 DOI: 10.1111/cpr.13156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives Previous reports have proposed the importance of signalling and material exchange between cartilage and subchondral bone. However, the specific experimental evidence is still insufficient to support the effect of this interdependent relationship on mutual cell behaviours. In this study, we aimed to investigate cellular lipid metabolism in chondrocytes induced by osteoblasts. Methods Osteoblast‐induced chondrocytes were established in a Transwell chamber. A cholesterol detection kit was used to detect cholesterol contents. RNA sequencing and qPCR were performed to assess changes in mRNA expression. Western blot analysis was performed to detect protein expression. Immunofluorescence staining was conducted to show the cellular distribution of proteins. Results Cholesterol levels were significantly decreased in chondrocytes induced by osteoblasts. Osteoblasts reduced cholesterol synthesis in chondrocytes by reducing the expression of a series of synthetases, including Fdft1, Sqle, Lss, Cyp51, Msmo1, Nsdhl, Sc5d, Dhcr24 and Dhcr7. This modulatory process involves Notch1 signalling. The expression of ncstn and hey1, an activator and a specific downstream target of Notch signalling, respectively, were decreased in chondrocytes induced by osteoblasts. Conclusions For the first time, we elucidated that communication with osteoblasts reduces cholesterol synthesis in chondrocytes through Notch1 signalling. This result may provide a better understanding of the effect of subchondral bone signalling on chondrocytes.
Collapse
Affiliation(s)
- Yueyi Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Daimo Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiachi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Siqun Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Awan ZA, Rashidi OM, Al-Shehri BA, Jamil K, Elango R, Al-Aama JY, Hegele RA, Banaganapalli B, Shaik NA. Saudi Familial Hypercholesterolemia Patients With Rare LDLR Stop Gain Variant Showed Variable Clinical Phenotype and Resistance to Multiple Drug Regimen. Front Med (Lausanne) 2021; 8:694668. [PMID: 34249980 PMCID: PMC8267156 DOI: 10.3389/fmed.2021.694668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Familial hypercholesterolemia (FH), a well-known lipid disease caused by inherited genetic defects in cholesterol uptake and metabolism is underdiagnosed in many countries including Saudi Arabia. The present study aims to identify the molecular basis of severe clinical manifestations of FH patients from unrelated Saudi consanguineous families. Two Saudi families with multiple FH patients fulfilling the combined FH diagnostic criteria of Simon Broome Register, and the Dutch Lipid Clinic Network (DLCN) were recruited. LipidSeq, a targeted resequencing panel for monogenic dyslipidemias, was used to identify causative pathogenic mutation in these two families and in 92 unrelated FH cases. Twelve FH patients from two unrelated families were sharing a very rare, pathogenic and founder LDLR stop gain mutation i.e., c.2027delG (p.Gly676Alafs*33) in both the homozygous or heterozygous states, but not in unrelated patients. Based on the variant zygosity, a marked phenotypic heterogeneity in terms of LDL-C levels, clinical presentations and resistance to anti-lipid treatment regimen (ACE inhibitors, β-blockers, ezetimibe, statins) of the FH patients was observed. This loss-of-function mutation is predicted to alter the free energy dynamics of the transcribed RNA, leading to its instability. Protein structural mapping has predicted that this non-sense mutation eliminates key functional domains in LDLR, which are essential for the receptor recycling and LDL particle binding. In conclusion, by combining genetics and structural bioinformatics approaches, this study identified and characterized a very rare FH causative LDLR pathogenic variant determining both clinical presentation and resistance to anti-lipid drug treatment.
Collapse
Affiliation(s)
- Zuhier Ahmed Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetics, Al Borg Medical Laboratories, Jeddah, Saudi Arabia
| | - Omran M Rashidi
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bandar Ali Al-Shehri
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kaiser Jamil
- Department of Genetics, Bhagwan Mahavir Medical Research Center (BMMRC), Hyderabad, India
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Y Al-Aama
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert A Hegele
- Departments of Medicine and Biochemistry, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON, Canada
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor A Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Moriarity RJ, Zuk AM, Liberda EN, Tsuji LJS. Health measures of Eeyouch (Cree) who are eligible to participate in the on-the-land Income Security Program in Eeyou Istchee (northern Quebec, Canada). BMC Public Health 2021; 21:628. [PMID: 33789644 PMCID: PMC8011104 DOI: 10.1186/s12889-021-10654-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/18/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Participation in on-the-land programs that encourage traditional cultural activities may improve health and well-being. The Income Security Program (ISP) - a financial incentive-based on-the-land program - for Eeyouch (Cree) hunters and trappers in Eeyou Istchee was created as a result of the 1975 James Bay and Northern Quebec Agreement to help mitigate the effects of hydroelectric development on the Cree people of northern Quebec, Canada. Beyond the ISP's financial incentives, little is known about the health measures of those who are eligible to participate in the ISP (i.e. spent ≥120 days on-the-land during the previous year). Therefore, this paper's objective was to assess the health measures of northern Quebec Cree, who were eligible for participation in the ISP. METHODS Using participant data (n = 545) compiled from the Nituuchischaayihtitaau Aschii Multi-Community Environment-and-Health Study, we assessed 13 different health measures in generalized linear models with the independent variable being the eligibility to participate in the ISP. RESULTS Participants in the present study who were eligible for the ISP had significantly higher levels of vigorous and moderate activity per week, and higher concentrations of omega-3 polyunsaturated fatty acids in the blood compared to those ineligible for the ISP (i.e. spent ≤119 days on-the-land during the previous year). Encouragingly, following model adjustment for age and sex, participants eligible for the ISP did not have higher blood concentrations of mercury than those who were not eligible for the ISP. CONCLUSIONS Our results suggest that the participants eligible for participation in the ISP are likely to be healthier than those who are ineligible to participate - and are promising for on-the-land programs for Indigenous peoples beyond a financial incentive - with no apparent higher risk of increasing contaminant body burden through traditional on-the-land-activities (e.g. fish consumption).
Collapse
Affiliation(s)
- Robert J Moriarity
- Department of Physical and Environmental Sciences, SW151 University of Toronto, Toronto, ON, M1C 1A4, Canada.
| | - Aleksandra M Zuk
- Department of Physical and Environmental Sciences, SW151 University of Toronto, Toronto, ON, M1C 1A4, Canada
- School of Nursing, Queen's University, Kingston, ON, Canada
| | - Eric N Liberda
- School of Occupational and Public Health, Ryerson University, Toronto, ON, Canada
| | - Leonard J S Tsuji
- Department of Physical and Environmental Sciences, SW151 University of Toronto, Toronto, ON, M1C 1A4, Canada
| |
Collapse
|
13
|
Ke LY, Law SH, Mishra VK, Parveen F, Chan HC, Lu YH, Chu CS. Molecular and Cellular Mechanisms of Electronegative Lipoproteins in Cardiovascular Diseases. Biomedicines 2020; 8:biomedicines8120550. [PMID: 33260304 PMCID: PMC7760527 DOI: 10.3390/biomedicines8120550] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of glucose and lipid metabolism increases plasma levels of lipoproteins and triglycerides, resulting in vascular endothelial damage. Remarkably, the oxidation of lipid and lipoprotein particles generates electronegative lipoproteins that mediate cellular deterioration of atherosclerosis. In this review, we examined the core of atherosclerotic plaque, which is enriched by byproducts of lipid metabolism and lipoproteins, such as oxidized low-density lipoproteins (oxLDL) and electronegative subfraction of LDL (LDL(−)). We also summarized the chemical properties, receptors, and molecular mechanisms of LDL(−). In combination with other well-known markers of inflammation, namely metabolic diseases, we concluded that LDL(−) can be used as a novel prognostic tool for these lipid disorders. In addition, through understanding the underlying pathophysiological molecular routes for endothelial dysfunction and inflammation, we may reassess current therapeutics and might gain a new direction to treat atherosclerotic cardiovascular diseases, mainly targeting LDL(−) clearance.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
- Graduate Institute of Medicine, College of Medicine and Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Vineet Kumar Mishra
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Farzana Parveen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Ye-Hsu Lu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Correspondence: ; Tel.: +886-73121101 (ext. 2297); Fax: +886-73111996
| |
Collapse
|
14
|
Subramani C, Rajakannu A, Gaidhani S, Raju I, Kartar Singh DV. Glutathione-redox status on hydro alcoholic root bark extract of Premna integrifolia Linn in high fat diet induced atherosclerosis model. J Ayurveda Integr Med 2020; 11:376-382. [PMID: 30738624 PMCID: PMC7772499 DOI: 10.1016/j.jaim.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/20/2018] [Accepted: 03/11/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Premna integrifolia Linn. is a medicinal plant of an Ayurvedic importance and proved to have an anti-inflammatory, anti-diabetic, anti-microbial and hypo-lipidemic activity. Glutathione (GSH) redox status is an important parameter to assess the antioxidant activity of any neutraceuticals. OBJECTIVE In order to assess the anti-oxidant potential of hydro alcoholic extract (HAE) of P. integrifolia, this study was aimed to evaluate the GSH redox status in high fat diet induced experimental atherosclerosis. MATERIALS AND METHODS The present study comprises sixty Wistar rats and they were divided into six groups: the first group served as control, the second group was fed with high fat diet and the third, fourth and fifth groups were fed with high fat diet along with various concentrations of HAE of 200, 400 and 500 g/kg.b.wt respectively and the sixth group was administered high fat diet along with 10 mg/kg b.wt of atorvastatin for 30 days. GSH-dependent enzymes like GSH-peroxidase (GPx), GSH-reductase (GR) and glucose 6-phosphate dehydrogenase (G6PD) were estimated in hemolysate, kidney, heart and liver of experimental rats. RESULTS Analysis of GSH levels showed a significant decrease in hemolysate, heart and kidney (p < 0.05) and liver (p < 0.01) in high fat-fed rats when compared to control. Activities of GPx, GR and G6PD in hemolysate and heart (p < 0.001), liver and kidney (p < 0.05) in high fat-fed rats when compared to control. Dose-dependent increase was observed in rats treated with various concentrations of HAE. CONCLUSION The HAE of root bark of P. integrifolia is proved to have a protective role on antioxidant defense in high fat diet induced atherosclerosis model. As a whole P. integrifolia increases the GSH content in a dose-dependent manner and in turn altered the redox cycle.
Collapse
Affiliation(s)
- Chitra Subramani
- Department of Biochemistry, Captain Srinivasa Murthy Regional Ayurveda Drug Development Institute, Central Council for Research in Ayurvedic Sciences, M/o AYUSH, Govt. of India, A.A. Hospital Campus, Arumbakkam, Chennai, 600106, India.
| | - Arivukkodi Rajakannu
- Department of Biochemistry, Captain Srinivasa Murthy Regional Ayurveda Drug Development Institute, Central Council for Research in Ayurvedic Sciences, M/o AYUSH, Govt. of India, A.A. Hospital Campus, Arumbakkam, Chennai, 600106, India
| | - Sudesh Gaidhani
- Department of Pharmacology, Central Council for Research in Ayurvedic Sciences, M/o AYUSH, Govt. of India, New Delhi, 110058, India
| | - Ilavarasan Raju
- Department of Pharmacology, Captain Srinivasa Murthy Regional Ayurveda Drug Development Institute, Central Council for Research in Ayurvedic Sciences, M/o AYUSH, Govt. of India, A.A. Hospital Campus, Arumbakkam, Chennai, 600106, India
| | - Dhiman Vaidya Kartar Singh
- Ayurveda, Central Council for Research in Ayurvedic Sciences, M/o AYUSH, Govt. of India, New Delhi, 110058, India
| |
Collapse
|
15
|
Tu Y, Zhao L, Billadeau DD, Jia D. Endosome-to-TGN Trafficking: Organelle-Vesicle and Organelle-Organelle Interactions. Front Cell Dev Biol 2020; 8:163. [PMID: 32258039 PMCID: PMC7093645 DOI: 10.3389/fcell.2020.00163] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network (TGN) diverts proteins and lipids away from lysosomal degradation. It is essential for maintaining cellular homeostasis and signaling. In recent years, significant advancements have been made in understanding this classical pathway, revealing new insights into multiple steps of vesicular trafficking as well as critical roles of ER-endosome contacts for endosomal trafficking. In this review, we summarize up-to-date knowledge about this trafficking pathway, in particular, mechanisms of cargo recognition at endosomes and vesicle tethering at the TGN, and contributions of ER-endosome contacts.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Oppi S, Lüscher TF, Stein S. Mouse Models for Atherosclerosis Research-Which Is My Line? Front Cardiovasc Med 2019; 6:46. [PMID: 31032262 PMCID: PMC6473202 DOI: 10.3389/fcvm.2019.00046] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is one of the primary causes of cardiovascular disease and mortality. This chronic immunometabolic disease evolves during decades in humans and encompasses different organs and immune cell types, as well as local and systemic processes that promote the progression of the disease. The most frequently used animal model to study these atherogenic processes and inter-organ crosstalk in a short time frame are genetically modified mouse models. Some models have been used throughout the last decades, and some others been developed recently. These models have important differences in cholesterol and lipoprotein metabolism, reverse cholesterol transport pathway, obesity and diabetes as well as inflammatory processes. Therefore, the disease develops and progresses differently in the various mouse models. Since atherosclerosis is a multifaceted disease and many processes contribute to its progression, the choice of the right mouse model is important to study specific aspects of the disease. We will describe the different mouse models and provide a roadmap to facilitate current and future atherosclerosis researchers to choose the right model depending on their scientific question.
Collapse
Affiliation(s)
- Sara Oppi
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Thomas F. Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Heart Division, Royal Brompton & Harefield Hospitals and Imperial College, London, United Kingdom
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Mohd Nor NS, Al-Khateeb AM, Chua YA, Mohd Kasim NA, Mohd Nawawi H. Heterozygous familial hypercholesterolaemia in a pair of identical twins: a case report and updated review. BMC Pediatr 2019; 19:106. [PMID: 30975109 PMCID: PMC6458607 DOI: 10.1186/s12887-019-1474-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/28/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Familial hypercholesterolaemia (FH) is the most common inherited metabolic disease with an autosomal dominant mode of inheritance. It is characterised by raised serum levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-c), leading to premature coronary artery disease. Children with FH are subjected to early and enhanced atherosclerosis, leading to greater risk of coronary events, including premature coronary artery disease. To the best of our knowledge, this is the first report of a pair of monochorionic diamniotic identical twins with a diagnosis of heterozygous FH, resulting from mutations in both LDLR and ABCG8 genes. CASE PRESENTATION This is a rare case of a pair of 8-year-old monochorionic diamniotic identical twin, who on family cascade screening were diagnosed as definite FH, according to the Dutch Lipid Clinic Criteria (DLCC) with a score of 10. There were no lipid stigmata noted. Baseline lipid profiles revealed severe hypercholesterolaemia, (TC = 10.5 mmol/L, 10.6 mmol/L; LDL-c = 8.8 mmol/L, 8.6 mmol/L respectively). Their father is the index case who initially presented with premature CAD, and subsequently diagnosed as FH. Family cascade screening identified clinical FH in other family members including their paternal grandfather who also had premature CAD, and another elder brother, aged 10 years. Genetic analysis by targeted next-generation sequencing using MiSeq platform (Illumina) was performed to detect mutations in LDLR, APOB100, PCSK9, ABCG5, ABCG8, APOE and LDLRAP1 genes. Results revealed that the twin, their elder brother, father and grandfather are heterozygous for a missense mutation (c.530C > T) in LDLR that was previously reported as a pathogenic mutation. In addition, the twin has heterozygous ABCG8 gene mutation (c.55G > C). Their eldest brother aged 12 years and their mother both had normal lipid profiles with absence of LDLR gene mutation. CONCLUSION A rare case of Asian monochorionic diamniotic identical twin, with clinically diagnosed and molecularly confirmed heterozygous FH, due to LDLR and ABCG8 gene mutations have been reported. Childhood FH may not present with the classical physical manifestations including the pathognomonic lipid stigmata as in adults. Therefore, childhood FH can be diagnosed early using a combination of clinical criteria and molecular analyses.
Collapse
Affiliation(s)
- Noor Shafina Mohd Nor
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia.,Departments of Paediatric, Biochemistry and Chemical Pathology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000, Sungai Buloh, Selangor, Malaysia
| | - Alyaa Mahmood Al-Khateeb
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia.,Departments of Paediatric, Biochemistry and Chemical Pathology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000, Sungai Buloh, Selangor, Malaysia
| | - Yung-An Chua
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| | - Noor Alicezah Mohd Kasim
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia.,Departments of Paediatric, Biochemistry and Chemical Pathology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000, Sungai Buloh, Selangor, Malaysia
| | - Hapizah Mohd Nawawi
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia. .,Departments of Paediatric, Biochemistry and Chemical Pathology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000, Sungai Buloh, Selangor, Malaysia.
| |
Collapse
|
18
|
Zhang H, de Aguiar Vallim TQ, Martel C. Translational and Therapeutic Approaches to the Understanding and Treatment of Dyslipidemia. Arterioscler Thromb Vasc Biol 2018; 36:e56-61. [PMID: 27335468 DOI: 10.1161/atvbaha.116.307808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hanrui Zhang
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (H.Z.); Division of Cardiology, School of Medicine, University of California Los Angeles (T.Q. de A. V.); and Department of Medicine, Montreal Heart Institute Research Center, Université de Montréal, Montreal, Quebec, Canada (C.M.).
| | - Thomas Q de Aguiar Vallim
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (H.Z.); Division of Cardiology, School of Medicine, University of California Los Angeles (T.Q. de A. V.); and Department of Medicine, Montreal Heart Institute Research Center, Université de Montréal, Montreal, Quebec, Canada (C.M.).
| | - Catherine Martel
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (H.Z.); Division of Cardiology, School of Medicine, University of California Los Angeles (T.Q. de A. V.); and Department of Medicine, Montreal Heart Institute Research Center, Université de Montréal, Montreal, Quebec, Canada (C.M.).
| | | |
Collapse
|
19
|
Veljkovic N, Zaric B, Djuric I, Obradovic M, Sudar-Milovanovic E, Radak D, Isenovic ER. Genetic Markers for Coronary Artery Disease. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E36. [PMID: 30344267 PMCID: PMC6122104 DOI: 10.3390/medicina54030036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022]
Abstract
Coronary artery disease (CAD) and myocardial infarction (MI) are recognized as leading causes of mortality in developed countries. Although typically associated with behavioral risk factors, such as smoking, sedentary lifestyle, and poor dietary habits, such vascular phenotypes have also long been recognized as being related to genetic background. We review the currently available data concerning genetic markers for CAD in English and non-English articles with English abstracts published between 2003 and 2018. As genetic testing is increasingly available, it may be possible to identify adequate genetic markers representing the risk profile and to use them in a clinical setting.
Collapse
Affiliation(s)
- Nevena Veljkovic
- Centre for Multidisciplinary Research and Engineering, Institute of Nuclear Science Vinca, University of Belgrade, 11000 Belgrade, Serbia.
| | - Bozidarka Zaric
- Laboratory of Radiobiology and Molecular Genetics, Institute of Nuclear Science Vinca, University of Belgrade, 11000 Belgrade, Serbia.
| | - Ilona Djuric
- Department for Endocrinology and Immunoradiology 11080 Zemun, Institute for the Application of Nuclear Energy-INEP, University of Belgrade, 11000 Belgrade, Serbia.
| | - Milan Obradovic
- Laboratory of Radiobiology and Molecular Genetics, Institute of Nuclear Science Vinca, University of Belgrade, 11000 Belgrade, Serbia.
| | - Emina Sudar-Milovanovic
- Laboratory of Radiobiology and Molecular Genetics, Institute of Nuclear Science Vinca, University of Belgrade, 11000 Belgrade, Serbia.
| | - Djordje Radak
- School of Medicine, Dedinje Cardiovascular Institute, University of Belgrade, 11000 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia.
| | - Esma R Isenovic
- Laboratory of Radiobiology and Molecular Genetics, Institute of Nuclear Science Vinca, University of Belgrade, 11000 Belgrade, Serbia.
| |
Collapse
|
20
|
Fan W, Zhang XL, Shi P, Li J, Wang CZ, Li DF, Zhu XY. Effects of dietary alfalfa saponins on laying performance, egg cholesterol concentration, and ATP-binding cassette transporters G5 and G8 expression in laying hens. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1454323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wenna Fan
- Animal Science and Technology College, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - Xian-lei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Pengfei Shi
- Animal Science and Technology College, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - Jia Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Cheng-zhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - De-feng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Xiao-yan Zhu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| |
Collapse
|
21
|
Sanin V, Pfetsch V, Koenig W. Dyslipidemias and Cardiovascular Prevention: Tailoring Treatment According to Lipid Phenotype. Curr Cardiol Rep 2017; 19:61. [PMID: 28528455 DOI: 10.1007/s11886-017-0869-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This study aimed to present the current information on the genetic background of dyslipidemias and provide insights into the complex pathophysiological role of several plasma lipids/lipoproteins in the pathogenesis of atherosclerotic cardiovascular disease. Furthermore, we aim to summarize established therapies and describe the scientific rationale for the development of novel therapeutic strategies. RECENT FINDINGS Evidence from genetic studies suggests that besides lowering low-density lipoprotein cholesterol, pharmacological reduction of triglyceride-rich lipoproteins, or lipoprotein(a) will reduce risk for coronary heart disease. Dyslipidemia, in particular hypercholesterolemia, is a common clinical condition and represents an important determinant of atherosclerotic vascular disease. Treatment decisions are currently guided by the causative lipid phenotype and the presence of other risk factors suggesting a very high cardiovascular risk. Therefore, the identification of lipid disorders and the optimal combination of therapeutic strategies provide an outstanding opportunity for reducing the onset and burden of cardiovascular disease.
Collapse
Affiliation(s)
- Veronika Sanin
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstr. 36, 80636, Munich, Germany
| | - Vanessa Pfetsch
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstr. 36, 80636, Munich, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstr. 36, 80636, Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
22
|
PCSK-9: papel en las hipercolesterolemias y anticuerpos monoclonales específicos inhibitorios. REVISTA COLOMBIANA DE CARDIOLOGÍA 2017. [DOI: 10.1016/j.rccar.2017.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Abdul-Razak S, Rahmat R, Mohd Kasim A, Rahman TA, Muid S, Nasir NM, Ibrahim Z, Kasim S, Ismail Z, Abdul Ghani R, Sanusi AR, Rosman A, Nawawi H. Diagnostic performance of various familial hypercholesterolaemia diagnostic criteria compared to Dutch lipid clinic criteria in an Asian population. BMC Cardiovasc Disord 2017; 17:264. [PMID: 29037163 PMCID: PMC5644062 DOI: 10.1186/s12872-017-0694-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 10/06/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Familial hypercholesterolaemia (FH) is a genetic disorder with a high risk of developing premature coronary artery disease that should be diagnosed as early as possible. Several clinical diagnostic criteria for FH are available, with the Dutch Lipid Clinic Criteria (DLCC) being widely used. Information regarding diagnostic performances of the other criteria against the DLCC is scarce. We aimed to examine the diagnostic performance of the Simon-Broom (SB) Register criteria, the US Make Early Diagnosis to Prevent Early Deaths (US MEDPED) and the Japanese FH Management Criteria (JFHMC) compared to the DLCC. METHODS Seven hundered fifty five individuals from specialist clinics and community health screenings with LDL-c level ≥ 4.0 mmol/L were selected and diagnosed as FH using the DLCC, the SB Register criteria, the US MEDPED and the JFHMC. The sensitivity, specificity, efficiency, positive and negative predictive values of individuals screened with the SB register criteria, US MEDPED and JFHMC were assessed against the DLCC. RESULTS We found the SB register criteria identified more individuals with FH compared to the US MEDPED and the JFHMC (212 vs. 105 vs. 195; p < 0.001) when assessed against the DLCC. The SB Register criteria, the US MEDPED and the JFHMC had low sensitivity (51.1% vs. 25.3% vs. 47.0% respectively). The SB Register criteria showed better diagnostic performance than the other criteria with 98.8% specificity, 28.6% efficiency value, 98.1% and 62.3% for positive and negative predictive values respectively. CONCLUSION The SB Register criteria appears to be more useful in identifying positive cases leading to genetic testing compared to the JFHMC and US MEDPED in this Asian population. However, further research looking into a suitable diagnosis criterion with high likelihood of positive genetic findings is required in the Asian population including in Malaysia.
Collapse
Affiliation(s)
- Suraya Abdul-Razak
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
- Primary Care Medicine Discipline, Faculty of Medicine, University Teknologi MARA, 68100 Selayang, Selangor Malaysia
| | - Radzi Rahmat
- Pathology Discipline, Faculty of Medicine, University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
| | - Alicezah Mohd Kasim
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
- Pathology Discipline, Faculty of Medicine, University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
| | - Thuhairah Abdul Rahman
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
- Pathology Discipline, Faculty of Medicine, University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
| | - Suhaila Muid
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
- Pathology Discipline, Faculty of Medicine, University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
| | - Nadzimah Mohd Nasir
- Pathology Discipline, Faculty of Medicine, University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
| | - Zubin Ibrahim
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
- Cardiology Unit, Faculty of Medicine, University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
| | - Sazzli Kasim
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
- Cardiology Unit, Faculty of Medicine, University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
| | - Zaliha Ismail
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
- Population Health and Preventive Medicine Discipline, Faculty of Medicine, University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
| | - Rohana Abdul Ghani
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
- Endocrinology Disciplines, Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Selangor Malaysia
| | - Abdul Rais Sanusi
- National Heart Institute, No 145 Jalan Tun Razak, 50400 Kuala Lumpur, Malaysia
| | - Azhari Rosman
- National Heart Institute, No 145 Jalan Tun Razak, 50400 Kuala Lumpur, Malaysia
| | - Hapizah Nawawi
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
- Pathology Discipline, Faculty of Medicine, University Teknologi MARA, 47000 Sungai Buloh, Selangor Malaysia
| |
Collapse
|
24
|
Rabelo VWH, Romeiro NC, Abreu PA. Design strategies of oxidosqualene cyclase inhibitors: Targeting the sterol biosynthetic pathway. J Steroid Biochem Mol Biol 2017; 171:305-317. [PMID: 28479228 DOI: 10.1016/j.jsbmb.2017.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/29/2017] [Accepted: 05/04/2017] [Indexed: 01/04/2023]
Abstract
Targeting the sterol biosynthesis pathway has been explored for the development of new bioactive compounds. Among the enzymes of this pathway, oxidosqualene cyclase (OSC) which catalyzes lanosterol cyclization from 2,3-oxidosqualene has emerged as an attractive target. In this work, we reviewed the most promising OSC inhibitors from different organisms and their potential for the development of new antiparasitic, antifungal, hypocholesterolemic and anticancer drugs. Different strategies have been adopted for the discovery of new OSC inhibitors, such as structural modifications of the natural substrate or the reaction intermediates, the use of the enzyme's structural information to discover compounds with novel chemotypes, modifications of known inhibitors and the use of molecular modeling techniques such as docking and virtual screening to search for new inhibitors. This review brings new perspectives on structural insights of OSC from different organisms and reveals the broad structural diversity of OSC inhibitors which may help evidence lead compounds for further investigations with various therapeutic applications.
Collapse
Affiliation(s)
- Vitor Won-Held Rabelo
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé 27965-045, RJ, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Macaé, RJ, Brazil
| | - Nelilma Correia Romeiro
- Laboratório Integrado de Computação Científica, LICC, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, 27965-045, Brazil
| | - Paula Alvarez Abreu
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé 27965-045, RJ, Brazil.
| |
Collapse
|
25
|
Long term betaine supplementation regulates genes involved in lipid and cholesterol metabolism of two muscles from an obese pig breed. Meat Sci 2017; 124:25-33. [DOI: 10.1016/j.meatsci.2016.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/15/2022]
|
26
|
Cerqueira NMFSA, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, Ramos MJ, Fernandes PA. Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry 2016; 55:5483-5506. [PMID: 27604037 DOI: 10.1021/acs.biochem.6b00342] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cholesterol is an essential component of cell membranes and the precursor for the synthesis of steroid hormones and bile acids. The synthesis of this molecule occurs partially in a membranous world (especially the last steps), where the enzymes, substrates, and products involved tend to be extremely hydrophobic. The importance of cholesterol has increased in the past half-century because of its association with cardiovascular diseases, which are considered one of the leading causes of death worldwide. In light of the current need for new drugs capable of controlling the levels of cholesterol in the bloodstream, it is important to understand how cholesterol is synthesized in the organism and identify the main enzymes involved in this process. Taking this into account, this review presents a detailed description of several enzymes involved in the biosynthesis of cholesterol. In this regard, the structure and catalytic mechanism of the enzymes involved in cholesterol biosynthesis, from the initial two-carbon acetyl-CoA building block, will be reviewed and their current pharmacological importance discussed. We believe that this review may contribute to a deeper level of understanding of cholesterol metabolism and that it will serve as a useful resource for future studies of the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Nuno M F S A Cerqueira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Eduardo F Oliveira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Diana S Gesto
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Diogo Santos-Martins
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Cátia Moreira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Hari N Moorthy
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Maria J Ramos
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - P A Fernandes
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| |
Collapse
|
27
|
Halder A, Zhang M, Chi Q. Electroactive and biocompatible functionalization of graphene for the development of biosensing platforms. Biosens Bioelectron 2016; 87:764-771. [PMID: 27649333 DOI: 10.1016/j.bios.2016.09.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
Design and synthesis of low-cost, highly stable, electroactive and biocompatible material is one of the key steps for the advancement of electrochemical biosensing systems. To this end, we have explored a facile way for the successful synthesis of redox active and bioengineering of reduced graphene oxide (RGO) for the development of versatile biosensing platform. A highly branched polymer (PEI) is used for reduction and simultaneous derivation of graphene oxide (GO) to form a biocompatible polymeric matrix on RGO nanosheet. Ferrocene redox moieties are then wired onto RGO nanosheets through the polymer matrix. The as-prepared functional composite is electrochemically active and enables to accommodate enzymes stably. For proof-of-concept studies, two crucial redox enzymes for biosensors (i.e. cholesterol oxidase and glucose oxidase) are targeted. The enzyme integrated and RGO supported biosensing hybrid systems show high stability, excellent selectivity, good reproducibility and fast sensing response. As measured, the detection limit of the biosensors for glucose and cholesterol is 5µM and 0.5µM (S/N=3), respectively. The linear response range of the biosensor is from 0.1 to 15.5mM for glucose and from 2.5 to 25µM for cholesterol. Furthermore, this biosensing platform shows good anti-interference ability and reasonable stability. The nanohybrid biosensing materials can be combined with screen-printed electrodes, which are successfully used for measuring the glucose and cholesterol level of real human serum samples.
Collapse
Affiliation(s)
- Arnab Halder
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Minwei Zhang
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Qijin Chi
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
28
|
Cartocci V, Servadio M, Trezza V, Pallottini V. Can Cholesterol Metabolism Modulation Affect Brain Function and Behavior? J Cell Physiol 2016; 232:281-286. [DOI: 10.1002/jcp.25488] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Veronica Cartocci
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| | - Michela Servadio
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| | - Viviana Trezza
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| | - Valentina Pallottini
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| |
Collapse
|
29
|
Bender G, Schexnaydre EE, Murphy RC, Uhlson C, Newcomer ME. Membrane-dependent Activities of Human 15-LOX-2 and Its Murine Counterpart: IMPLICATIONS FOR MURINE MODELS OF ATHEROSCLEROSIS. J Biol Chem 2016; 291:19413-24. [PMID: 27435673 DOI: 10.1074/jbc.m116.741454] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 12/17/2022] Open
Abstract
The enzyme encoded by the ALOX15B gene has been linked to the development of atherosclerotic plaques in humans and in a mouse model of hypercholesterolemia. In vitro, these enzymes, which share 78% sequence identity, generate distinct products from their substrate arachidonic acid: the human enzyme, a 15-S-hydroperoxy product; and the murine enzyme, an 8-S-product. We probed the activities of these enzymes with nanodiscs as membrane mimics to determine whether they can access substrate esterified in a bilayer and characterized their activities at the membrane interface. We observed that both enzymes transform phospholipid-esterified arachidonic acid to a 15-S-product. Moreover, when expressed in transfected HEK cells, both enzymes result in significant increases in the amounts of 15-hydroxyderivatives of eicosanoids detected. In addition, we show that 15-LOX-2 is distributed at the plasma membrane when the HEK293 cells are stimulated by the addition Ca(2+) ionophore and that cellular localization is dependent upon the presence of a putative membrane insertion loop. We also report that sequence differences between the human and mouse enzymes in this loop appear to confer distinct mechanisms of enzyme-membrane interaction for the homologues.
Collapse
Affiliation(s)
- Gunes Bender
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 and
| | - Erin E Schexnaydre
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 and
| | - Robert C Murphy
- the Department of Pharmacology, University of Colorado at Denver, Aurora, Colorado 80045
| | - Charis Uhlson
- the Department of Pharmacology, University of Colorado at Denver, Aurora, Colorado 80045
| | - Marcia E Newcomer
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 and
| |
Collapse
|
30
|
Milasan A, Dallaire F, Mayer G, Martel C. Effects of LDL Receptor Modulation on Lymphatic Function. Sci Rep 2016; 6:27862. [PMID: 27279328 PMCID: PMC4899717 DOI: 10.1038/srep27862] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is driven by the accumulation of immune cells and cholesterol in the arterial wall. Although recent studies have shown that lymphatic vessels play an important role in macrophage reverse cholesterol transport, the specific underlying mechanisms of this physiological feature remain unknown. In the current report, we sought to better characterize the lymphatic dysfunction that is associated with atherosclerosis by studying the physiological and temporal origins of this impairment. First, we assessed that athero-protected Pcsk9−/− mice exhibited improved collecting lymphatic vessel function throughout age when compared to WT mice for up to six months, while displaying enhanced expression of LDLR on lymphatic endothelial cells. Lymphatic dysfunction was present before the atherosclerotic lesion formation in a mouse model that is predisposed to develop atherosclerosis (Ldlr−/−; hApoB100+/+). This dysfunction was presumably associated with a defect in the collecting lymphatic vessels in a non-specific cholesterol- but LDLR-dependent manner. Treatment with a selective VEGFR-3 agonist rescued this impairment observed early in the onset of this arterial disease. We suggest that LDLR modulation is associated with early atherosclerosis-related lymphatic dysfunction, and bring forth a pleiotropic role for PCSK9 in lymphatic function. Our study unveils new potential therapeutic targets for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Andreea Milasan
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada
| | | | - Gaétan Mayer
- Laboratory of Molecular Cell Biology, Montreal Heart Institute Research Center, Quebec, Canada.,Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Merchán A, Ruiz ÁJ, Campo R, Prada CE, Toro JM, Sánchez R, Gómez JE, Jaramillo NI, Molina DI, Vargas-Uricoechea H, Sixto S, Castro JM, Quintero AE, Coll M, Slotkus S, Ramírez A, Pachajoa H, Ávila FA, Alonso K R. Hipercolesterolemia familiar: artículo de revisión. REVISTA COLOMBIANA DE CARDIOLOGÍA 2016. [DOI: 10.1016/j.rccar.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Skočibušić M, Odžak R, Štefanić Z, Križić I, Krišto L, Jović O, Hrenar T, Primožič I, Jurašin D. Structure–property relationship of quinuclidinium surfactants—Towards multifunctional biologically active molecules. Colloids Surf B Biointerfaces 2016; 140:548-559. [DOI: 10.1016/j.colsurfb.2015.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/02/2015] [Accepted: 11/12/2015] [Indexed: 01/06/2023]
|
33
|
Maxfield FR, Iaea DB, Pipalia NH. Role of STARD4 and NPC1 in intracellular sterol transport. Biochem Cell Biol 2016; 94:499-506. [PMID: 27421092 DOI: 10.1139/bcb-2015-0154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cholesterol plays an important role in determining the biophysical properties of membranes in mammalian cells, and the concentration of cholesterol in membranes is tightly regulated. Cholesterol moves among membrane organelles by a combination of vesicular and nonvesicular transport pathways, but the details of these transport pathways are not well understood. In this review, we discuss the mechanisms for nonvesicular sterol transport with an emphasis on the role of STARD4, a small, soluble, cytoplasmic sterol transport protein. STARD4 can rapidly equilibrate sterol between membranes, especially membranes with anionic lipid headgroups. We also discuss the sterol transport in late endosomes and lysosomes, which is mediated by a soluble protein, NPC2, and a membrane protein, NPC1. Homozygous mutations in these proteins lead to a lysosomal lipid storage disorder, Niemann-Pick disease type C. Many of the disease-causing mutations in NPC1 are associated with degradation of the mutant NPC1 proteins in the endoplasmic reticulum. Several histone deacetylase inhibitors have been found to rescue the premature degradation of the mutant NPC1 proteins, and one of these is now in a small clinical trial.
Collapse
Affiliation(s)
- Frederick R Maxfield
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.,Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - David B Iaea
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.,Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Nina H Pipalia
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.,Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
34
|
Kim M, Park MS, Son J, Park I, Lee HK, Kim C, Min BH, Ryoo J, Choi KS, Lee DS, Lee HS. Perfluoroheptanoic acid affects amphibian embryogenesis by inducing the phosphorylation of ERK and JNK. Int J Mol Med 2015; 36:1693-700. [PMID: 26459765 DOI: 10.3892/ijmm.2015.2370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/01/2015] [Indexed: 11/06/2022] Open
Abstract
Perfluoroalkyl compounds (PFCs) are globally distributed synthetic compounds that are known to adversely affect human health. Developmental toxicity assessment of PFCs is important to facilitate the evaluation of their environmental impact. In the present study, we assessed the developmental toxicity and teratogenicity of PFCs with different numbers of carbon atoms on Xenopus embryogenesis. An initial frog embryo teratogenicity assay-Xenopus (FETAX) assay was performed that identified perfluorohexanoic (PFHxA) and perfluoroheptanoic (PFHpA) acids as potential teratogens and developmental toxicants. The mechanism underlying this teratogenicity was also investigated by measuring the expression of tissue-specific biomarkers such as phosphotyrosine‑binding protein, xPTB (liver); NKX2.5 (heart); and Cyl18 (intestine). Whole‑mount in situ hybridization, reverse transcriptase‑polymerase chain reaction (RT-PCR), and histologic analyses detected severe defects in the liver and heart following exposure to PFHxA or PFHpA. In addition, immunoblotting revealed that PFHpA significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), while PFHxA slightly increased these, as compared with the control. These results suggest that PFHxA and PFHpA are developmental toxicants and teratogens, with PFHpA producing more severe effects on liver and heart development through the induction of ERK and JNK phosphorylation.
Collapse
Affiliation(s)
- Miran Kim
- ABRC, CMRI, School of Life Sciences, College of Natural Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Mi Seon Park
- Aquaculture Management Division, National Fisheries Research and Development Institute, Busan 619-705, Republic of Korea
| | - Jungeun Son
- ABRC, CMRI, School of Life Sciences, College of Natural Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Inji Park
- ABRC, CMRI, School of Life Sciences, College of Natural Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Hyun-Kyung Lee
- ABRC, CMRI, School of Life Sciences, College of Natural Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Chowon Kim
- ABRC, CMRI, School of Life Sciences, College of Natural Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Byung-Hwa Min
- Aquaculture Management Division, National Fisheries Research and Development Institute, Busan 619-705, Republic of Korea
| | - Jaewoong Ryoo
- ABRC, CMRI, School of Life Sciences, College of Natural Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Kwang Shik Choi
- ABRC, CMRI, School of Life Sciences, College of Natural Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Dong-Seok Lee
- ABRC, CMRI, School of Life Sciences, College of Natural Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Hyun-Shik Lee
- ABRC, CMRI, School of Life Sciences, College of Natural Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| |
Collapse
|
35
|
Vogt A. The genetics of familial hypercholesterolemia and emerging therapies. APPLICATION OF CLINICAL GENETICS 2015; 8:27-36. [PMID: 25670911 PMCID: PMC4315461 DOI: 10.2147/tacg.s44315] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Familial hypercholesterolemia (FH) results in very high levels of atherogenic low-density lipoprotein (LDL) cholesterol from the time of birth. Mutations of the genes encoding for the LDL receptor, apolipoprotein B and proprotein convertase subtilisin/kexin type 9, are causes for this autosomal dominant inherited condition. Heterozygous FH is very common, while homozygous FH is rare. Affected individuals can experience premature cardiovascular disease; most homozygous patients experience this before the age of 20 years. Since effective LDL cholesterol lowering therapies are available, morbidity and mortality are decreased. The use of statins is the first choice in therapy; combining other lipid-lowering medications is recommended to lower LDL cholesterol sufficiently. In some cases, lipoprotein apheresis is necessary. In heterozygous FH, these measures are effective to lower LDL cholesterol, but in severe cases and in homozygous FH there remains an unmet need. Emerging therapies, such as the recently approved microsomal triglyceride transfer protein inhibitor and the apolipoprotein B antisense oligonucleotide, might offer further options for these patients with very high cardiovascular risk. Early diagnosis and early treatment are important to reduce cardiovascular events and premature death.
Collapse
Affiliation(s)
- Anja Vogt
- Medizinische Klinik und Poliklinik IV, Klinikum der Unversität München, Munich, Germany
| |
Collapse
|
36
|
Zhang L, Wang X. Mechanisms of graphyne-enabled cholesterol extraction from protein clusters. RSC Adv 2015. [DOI: 10.1039/c4ra16944a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Functionalized graphyne provides a novel vehicle for cholesterol removal from protein clusters by molecular dynamics simulations.
Collapse
Affiliation(s)
- Liuyang Zhang
- College of Engineering and NanoSEC
- University of Georgia
- Athens
- USA
| | - Xianqiao Wang
- College of Engineering and NanoSEC
- University of Georgia
- Athens
- USA
| |
Collapse
|
37
|
Chandra KS, Bansal M, Nair T, Iyengar SS, Gupta R, Manchanda SC, Mohanan PP, Rao VD, Manjunath CN, Sawhney JPS, Sinha N, Pancholia AK, Mishra S, Kasliwal RR, Kumar S, Krishnan U, Kalra S, Misra A, Shrivastava U, Gulati S. Consensus statement on management of dyslipidemia in Indian subjects. Indian Heart J 2014; 66 Suppl 3:S1-51. [PMID: 25595144 PMCID: PMC4297876 DOI: 10.1016/j.ihj.2014.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- K Sarat Chandra
- Editor, Indian Heart Journal, Sr. Cardiologist, Indo US Superspeciality Hospital, Ameerpet, Hyderabad 500016, India
| | - Manish Bansal
- Senior Consultant e Cardiology, Medanta e The Medicity, Sector 38, Gurgaon, Haryana 122001, India
| | - Tiny Nair
- Head, Department of Cardiology, PRS Hospital, Trivandrum, Akashdeep, TC 17/881, Poojapura, Trivandrum, Kerala 695012, India
| | - S S Iyengar
- Sr. Consultant & HOD, Manipal Hospital, 133, JalaVayu Towers, NGEF Layout, Indira Nagar, Bangalore 560038, India
| | - Rajeev Gupta
- Head of Medicine and Director Research, Fortis Escorts Hospital, JLN Marg, Malviya Nagar, Jaipur 302017, India
| | | | - P P Mohanan
- Westfort H. Hospital, Poonkunnanm, Thrissur 680002, India
| | - V Dayasagar Rao
- Sr. Cardiologist, Krishna Institute of Medical Science, Minister Road, Secunderabad, India
| | - C N Manjunath
- Director, Prof & HOD, Sri Jayadeva Institute of Cardiovascular Sciences & Research, Bannerghatta Road, Bangalore 560 069, India
| | - J P S Sawhney
- MD DM FACC, Chairman Department of Cardiology, Sir Ganga Ram Hospital, New Delhi, India
| | - Nakul Sinha
- Sr. Consultant & Chief Interventional Cardiologist, Sahara India Medical Institute, VirajKhand, Gomti Nagar, Lucknow, Uttar Pradesh 226010, India
| | - A K Pancholia
- Head, Department of Clinical and Preventive Cardiology and Research Centre Arihant Hospital, Indore, MP, India
| | - Sundeep Mishra
- Prof. of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ravi R Kasliwal
- Chairman, Clinical and Preventive Cardiology, Medanta e The Medicity, Sector 38, Gurgaon, Haryana 122001, India
| | - Saumitra Kumar
- Professor, Vivekanada Institute of Medical Sciences, Kolkata, India; Chief Co-ordinator, Academic Services (Cardiology), Narayana Hrudayalay, RTIICS, Kolkata, India; Consultant Cardiologist, Fortis Hospital, Kolkata, India
| | - Unni Krishnan
- Chief Endocrinologist & CEO, Chellaram Diabetes Institute, Pune 411021, India
| | - Sanjay Kalra
- Consultant Endocrinology, Bharti Hospital & BRIDE, Karnal, Haryana, India
| | - Anoop Misra
- Chairman, Fortis-C-DOC Centre of Excellence for Diabetes, Metabolic Diseases and Endocrinology, Chirag Enclave, New Delhi, India
| | - Usha Shrivastava
- Head, Public Health, National Diabetes, Obesity and Cholesterol Foundation (N-DOC), Diabetes Foundation (India), New Delhi, India
| | - Seema Gulati
- Head, Nutrition Research Group, Center for Nutrition & Metabolic Research (C-NET) & National Diabetes, Obesity and Cholesterol Foundation (N-DOC), New Delhi, India; Chief Project Officer, Diabetes Foundation (India), C-6/57, Safdarjung Development Area, New Delhi 110 016, India
| |
Collapse
|
38
|
Uversky VN. Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Front Mol Biosci 2014; 1:6. [PMID: 25988147 PMCID: PMC4428494 DOI: 10.3389/fmolb.2014.00006] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/06/2014] [Indexed: 12/14/2022] Open
Abstract
Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs) are typically related to regulation, signaling, and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida Tampa, FL, USA ; Biology Department, Faculty of Science, King Abdulaziz University Jeddah, Saudi Arabia ; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
39
|
Estronca LMBB, Filipe HAL, Salvador A, Moreno MJ, Vaz WLC. Homeostasis of free cholesterol in the blood: a preliminary evaluation and modeling of its passive transport. J Lipid Res 2014; 55:1033-43. [PMID: 24711632 DOI: 10.1194/jlr.m043067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Indexed: 01/23/2023] Open
Abstract
The rate of noncatalyzed transfer of cholesterol (Chol) among lipoproteins and cells in the blood is of fundamental importance as a baseline to assess the role of active transport mechanisms, but remains unknown. Here we address this gap by characterizing the associa-tion of the Chol analog, ergosta-5,7,9(11),22-tetraen-3β-ol (DHE), with the lipoproteins VLDL, LDL, HDL2, and HDL3 Combining these results with data for the association of DHE with liposomes, we elaborated a kinetic model for the noncatalyzed exchange of free Chol among blood compartments. The computational results are in good agreement with experimental values. The small deviations are explained by the nonequilibrium distribution of unesterified Chol in vivo, due to esterification and entry of new unesterified Chol, and eventual effects introduced by incubations at low temperatures. The kinetic profile of the homeostasis of unesterified Chol in the blood predicted by the model developed in this work is in good agreement with the observations in vivo, highlighting the importance of passive processes.
Collapse
Affiliation(s)
- Luís M B B Estronca
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal CNC - Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Hugo A L Filipe
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal Centro de Química de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Armindo Salvador
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal CNC - Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Maria João Moreno
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal Centro de Química de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Winchil L C Vaz
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal Centro de Química de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
40
|
Shi Y, Guo R, Wang X, Yuan D, Zhang S, Wang J, Yan X, Wang C. The regulation of alfalfa saponin extract on key genes involved in hepatic cholesterol metabolism in hyperlipidemic rats. PLoS One 2014; 9:e88282. [PMID: 24505463 PMCID: PMC3914959 DOI: 10.1371/journal.pone.0088282] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
To investigate the cholesterol-lowering effects of alfalfa saponin extract (ASE) and its regulation mechanism on some key genes involved in cholesterol metabolism, 40 healthy 7 weeks old male Sprague Dawley (SD) rats were randomly divided into four groups with 10 rats in each group: control group, hyperlipidemic group, ASE treatment group, ASE prevention group. The body weight gain, relative liver weight and serum lipid 1evels of rats were determined. Total cholesterol (TC) and total bile acids (TBA) levels in liver and feces were also measured. Furthermore, the activity and mRNA expressions of Hmgcr, Acat2, Cyp7a1 and Ldlr were investigated. The results showed the following: (1) The abnormal serum lipid levels in hyperlipidemic rats were ameliorated by ASE administration (both ASE prevention group and treatment group) (P<0.05). (2) Both ASE administration to hyperlipidemic rats significantly reduced liver TC and increased liver TBA level (P<0.05). TC and TBA levels in feces of hyperlipidemic rats were remarkably elevated by both ASE administration (P<0.05). (3) mRNA expressions of Hmgcr and Acat2 in the liver of hyperlipidemic rats were remarkably down-regulated (P<0.05), as well as mRNA expressions of Cyp7a1 and Ldlr were dramatically up-regulated by both ASE administration (P<0.05). The activities of these enzymes also paralleled the observed changes in mRNA levels. (4) There was no significant difference between ASE treatment and ASE prevention group for most parameters evaluated. Our present study indicated that ASE had cholesterol-lowering effects. The possible mechanism could be attributed to (1) the down-regulation of Hmgcr and Acat2, as well as up-regulation of Cyp7a1 and Ldlr in the liver of hyperlipidemic rats, which was involved in cholesterol biosynthesis, uptake, and efflux pathway; (2) the increase in excretion of cholesterol. The findings in our study suggested ASE had great potential usefulness as a natural agent for treating hyperlipidemia.
Collapse
Affiliation(s)
- Yinghua Shi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- * E-mail: (YS); (CW)
| | - Rui Guo
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xianke Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Dedi Yuan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Senhao Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jie Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xuebing Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chengzhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- * E-mail: (YS); (CW)
| |
Collapse
|
41
|
Stevens A, De Leonibus C, Hanson D, Dowsey AW, Whatmore A, Meyer S, Donn RP, Chatelain P, Banerjee I, Cosgrove KE, Clayton PE, Dunne MJ. Network analysis: a new approach to study endocrine disorders. J Mol Endocrinol 2014; 52:R79-93. [PMID: 24085748 DOI: 10.1530/jme-13-0112] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systems biology is the study of the interactions that occur between the components of individual cells - including genes, proteins, transcription factors, small molecules, and metabolites, and their relationships to complex physiological and pathological processes. The application of systems biology to medicine promises rapid advances in both our understanding of disease and the development of novel treatment options. Network biology has emerged as the primary tool for studying systems biology as it utilises the mathematical analysis of the relationships between connected objects in a biological system and allows the integration of varied 'omic' datasets (including genomics, metabolomics, proteomics, etc.). Analysis of network biology generates interactome models to infer and assess function; to understand mechanisms, and to prioritise candidates for further investigation. This review provides an overview of network methods used to support this research and an insight into current applications of network analysis applied to endocrinology. A wide spectrum of endocrine disorders are included ranging from congenital hyperinsulinism in infancy, through childhood developmental and growth disorders, to the development of metabolic diseases in early and late adulthood, such as obesity and obesity-related pathologies. In addition to providing a deeper understanding of diseases processes, network biology is also central to the development of personalised treatment strategies which will integrate pharmacogenomics with systems biology of the individual.
Collapse
Affiliation(s)
- A Stevens
- Faculty of Medical and Human Sciences, Institute of Human Development, University of Manchester, Manchester, UK Manchester Academic Health Science Centre, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, 5th Floor, Oxford Road, Manchester M13 9WL, UK Paediatric and Adolescent Oncology, The University of Manchester, Manchester M13 9WL, UK Stem Cell and Leukaemia Proteomics Laboratory, School of Cancer and Imaging Sciences, The University of Manchester, Manchester M20 4BX, UK Musculoskeletal Research Group, NIHR BRU, University of Manchester, Manchester M13 9PT, UK Department Pediatrie, Hôpital Mère-Enfant, Université Claude Bernard, 69677 Lyon, France Faculty of Life Sciences, University of Manchester, Manchester M13 9NT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Alharbi KK, Kashour TS, Al-Hussaini W, Al-Nbaheen MS, Mohamed S, Hasanato RMW, Tamimi W, Al-Naami MY, Khan IA. Association of angiotensin converting enzyme gene insertion/deletion polymorphism and familial hypercholesterolemia in the Saudi population. Lipids Health Dis 2013; 12:177. [PMID: 24289455 PMCID: PMC4220775 DOI: 10.1186/1476-511x-12-177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/18/2013] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The study of the association between genotype and phenotype is of great importance for the prediction of multiple diseases and pathophysiological conditions. The relationship between angiotensin converting enzyme (ACE) Insertion/Deletion (I/D) polymorphism and Familial Hypercholesterolemia (FH) has been not fully investigated in all the ethnicities. In this study we sought to determine the frequency of I/D polymorphism genotypes of ACE gene in Saudi patients with FH. RESULTS This is a case-control study carried out purely in Saudi population. Genomic DNA was isolated from 128 subjects who have participated in this study. ACE gene I/D polymorphism was analyzed by polymerase chain reaction in 64 FH cases and 64 healthy controls. There was no statistically significant difference between the groups with respect to genotype distribution. Furthermore, we did not find any significant difference in the frequency of ACE I/D polymorphism in FH subjects when stratified by gender (p = 0.43). CONCLUSION Our data suggest that ACE gene I/D polymorphism examined in this study has no role in predicting the occurrence and diagnosis of FH.
Collapse
Affiliation(s)
- Khalid K Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Kingdom of Saudi Arabia
| | - Tarek S Kashour
- Department of Cardiac Sciences, College of medicine, King Fahad Cardiac Center, King Saud University, P.O. Box 7805 (92), Riyadh 11472, Kingdom of Saudi Arabia
| | - Wejdan Al-Hussaini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Kingdom of Saudi Arabia
- Stem Cell Units, Anatomy Department, College of Medicine, King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia
| | - May Salem Al-Nbaheen
- Stem Cell Units, Anatomy Department, College of Medicine, King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia
- Prepratory Year-Saudi Electronic University, Riyadh, Saudi Arabia
| | - Sarar Mohamed
- Department of Pediatrics, King Khalid University Hospital, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Kingdom of Saudi Arabia
| | - Rana MW Hasanato
- Department of Pathology, College of Medicine, King Saud University, King Khalid University Hospital, P.O. Box 66533, Riyadh 11586, Kingdom of Saudi Arabia
| | - Waleed Tamimi
- Department of Pathology & Laboratory Medicine, King Fahad National Guard Hospital, King Khalid University Hospital, College of Medicine King Saud Bin Abdulaziz University for Health Sciences, P.O. Box 22490, Riyadh 11426, Saudi Arabia
| | - Mohammed Yahya Al-Naami
- Department of Surgery#37, College of Medicine, King Saud University and Affiliated Hospitals, P.O. Box-7805, Riyadh 11472, Kingdom of Saudi Arabia
| | - Imran Ali Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Kingdom of Saudi Arabia
| |
Collapse
|
43
|
Mechanism of inflammation in age-related macular degeneration: an up-to-date on genetic landmarks. Mediators Inflamm 2013; 2013:435607. [PMID: 24369445 PMCID: PMC3863457 DOI: 10.1155/2013/435607] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/28/2013] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible visual impairment among people over 50 years of age, accounting for up to 50% of all cases of legal blindness in Western countries. Although the aging represents the main determinant of AMD, it must be considered a multifaceted disease caused by interactions among environmental risk factors and genetic backgrounds. Mounting evidence and/or arguments document the crucial role of inflammation and immune-mediated processes in the pathogenesis of AMD. Proinflammatory effects secondary to chronic inflammation (e.g., alternative complement activation) and heterogeneous types of oxidative stress (e.g., impaired cholesterol homeostasis) can result in degenerative damages at the level of crucial macular structures, that is photoreceptors, retinal pigment epithelium, and Bruch's membrane. In the most recent years, the association of AMD with genes, directly or indirectly, involved in immunoinflammatory pathways is increasingly becoming an essential core for AMD knowledge. Starting from the key basic-research notions detectable at the root of AMD pathogenesis, the present up-to-date paper reviews the best-known and/or the most attractive genetic findings linked to the mechanisms of inflammation of this complex disease.
Collapse
|
44
|
Wang YL, Wang ZJ, Shen HL, Yin M, Tang KX. Effects of artesunate and ursolic acid on hyperlipidemia and its complications in rabbit. Eur J Pharm Sci 2013; 50:366-71. [PMID: 23954455 DOI: 10.1016/j.ejps.2013.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 06/13/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To find the novel hypolipidemic agents, the effects of ursolic acid and artesunate on hyperlipidemia and its complications were determined in rabbit fed with Western-type diet. METHODS AND RESULTS New Zealand rabbits fed a Western-type diet developed a hyperlipidemia. Rabbits received ursolic acid (25mg/kg) or artesunate (25mg/kg) alone, or in combination (12.5+12.5mg/kg), to prevent hyperlipidemia. Ursolic acid or artesunate alone significantly decreased the plasma cholesterol and triglyceride in rabbits. Furthermore, they both attenuated liver steatosis and reduced the area of aortic root lesions. The combination of ursolic acid and artesunate was more potent than either agent alone, which indicates a strong synergistic effect. CONCLUSION The hypolipidemic effect of artesunate is firstly reported. Its combination with ursolic acid might have the potential to further develop for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Y L Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
45
|
Abstract
The three major pathways of lipoprotein metabolism provide a superb paradigm to delineate systematically the familial dyslipoproteinemias. Such understanding leads to improved diagnosis and treatment of patients. In the exogenous (intestinal) pathway, defects in LPL, apoC-II, APOA-V, and GPIHBP1 disrupt the catabolism of chylomicrons and hepatic uptake of their remnants, producing very high TG. In the endogenous (hepatic) pathway, six disorders affect the activity of the LDLR and markedly increase LDL. These include FH, FDB, ARH, PCSK9 gain-of-function mutations, sitosterolemia and loss of 7 alpha hydroxylase. Hepatic overproduction of VLDL occurs in FCHL, hyperapoB, LDL subclass pattern B, FDH and syndrome X, often due to insulin resistance and resulting in high TG, elevated small LDL particles and low HDL-C. Defects in APOB-100 and loss-of-function mutations in PCSK9 are associated with low LDL-C, decreased CVD and longevity. An absence of MTP leads to marked reduction in chylomicrons and VLDL, causing abetalipoproteinemia. In the reverse cholesterol pathway, deletions or nonsense mutations in apoA-I or ABCA1 transporter disrupt the formation of the nascent HDL particle. Mutations in LCAT disrupt esterification of cholesterol in nascent HDL by LCAT and apoA-1, and formation of spherical HDL. Mutations in either CETP or SR-B1 and familial high HDL lead to increased large HDL particles, the effect of which on CVD is not resolved. The major goal is to prevent or ameliorate the major complications of many familial dyslipoproteinemias, namely, premature CVD or pancreatitis. Dietary and drug treatment specific for each inherited disorder is reviewed.
Collapse
Affiliation(s)
- Peter O Kwiterovich
- Lipid Research Atherosclerosis Center, Helen Taussig Center, The Johns Hopkins University School of Medicine, David Rubenstein Building, Suite 3093, 200 N Wolfe St, Baltimore, MD 21287, USA.
| |
Collapse
|
46
|
Kim M, Son J, Park MS, Ji Y, Chae S, Jun C, Bae JS, Kwon TK, Choo YS, Yoon H, Yoon D, Ryoo J, Kim SH, Park MJ, Lee HS. In vivo evaluation and comparison of developmental toxicity and teratogenicity of perfluoroalkyl compounds using Xenopus embryos. CHEMOSPHERE 2013; 93:1153-1160. [PMID: 23910242 DOI: 10.1016/j.chemosphere.2013.06.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
Perfluoroalkyl compounds (PFCs) are environmental toxicants that persistently accumulate in human blood. Their widespread detection and accumulation in the environment raise concerns about whether these chemicals might be developmental toxicants and teratogens in ecosystem. We evaluated and compared the toxicity of PFCs of containing various numbers of carbon atoms (C8-11 carbons) on vertebrate embryogenesis. We assessed the developmental toxicity and teratogenicity of various PFCs. The toxic effects on Xenopus embryos were evaluated using different methods. We measured teratogenic indices (TIs), and investigated the mechanisms underlying developmental toxicity and teratogenicity by measuring the expression of organ-specific biomarkers such as xPTB (liver), Nkx2.5 (heart), and Cyl18 (intestine). All PFCs that we tested were found to be developmental toxicants and teratogens. Their toxic effects were strengthened with increasing length of the fluorinated carbon chain. Furthermore, we produced evidence showing that perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFuDA) are more potent developmental toxicants and teratogens in an animal model compared to the other PFCs we evaluated [perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA)]. In particular, severe defects resulting from PFDA and PFuDA exposure were observed in the liver and heart, respectively, using whole mount in situ hybridization, real-time PCR, pathologic analysis of the heart, and dissection of the liver. Our studies suggest that most PFCs are developmental toxicants and teratogens, however, compounds that have higher numbers of carbons (i.e., PFDA and PFuDA) exert more potent effects.
Collapse
Affiliation(s)
- Miran Kim
- ABRC, CMRI, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lawrence GD. Dietary fats and health: dietary recommendations in the context of scientific evidence. Adv Nutr 2013; 4:294-302. [PMID: 23674795 PMCID: PMC3650498 DOI: 10.3945/an.113.003657] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although early studies showed that saturated fat diets with very low levels of PUFAs increase serum cholesterol, whereas other studies showed high serum cholesterol increased the risk of coronary artery disease (CAD), the evidence of dietary saturated fats increasing CAD or causing premature death was weak. Over the years, data revealed that dietary saturated fatty acids (SFAs) are not associated with CAD and other adverse health effects or at worst are weakly associated in some analyses when other contributing factors may be overlooked. Several recent analyses indicate that SFAs, particularly in dairy products and coconut oil, can improve health. The evidence of ω6 polyunsaturated fatty acids (PUFAs) promoting inflammation and augmenting many diseases continues to grow, whereas ω3 PUFAs seem to counter these adverse effects. The replacement of saturated fats in the diet with carbohydrates, especially sugars, has resulted in increased obesity and its associated health complications. Well-established mechanisms have been proposed for the adverse health effects of some alternative or replacement nutrients, such as simple carbohydrates and PUFAs. The focus on dietary manipulation of serum cholesterol may be moot in view of numerous other factors that increase the risk of heart disease. The adverse health effects that have been associated with saturated fats in the past are most likely due to factors other than SFAs, which are discussed here. This review calls for a rational reevaluation of existing dietary recommendations that focus on minimizing dietary SFAs, for which mechanisms for adverse health effects are lacking.
Collapse
|
48
|
Soufi M, Rust S, Walter M, Schaefer JR. A combined LDL receptor/LDL receptor adaptor protein 1 mutation as the cause for severe familial hypercholesterolemia. Gene 2013; 521:200-3. [DOI: 10.1016/j.gene.2013.03.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 12/23/2012] [Accepted: 03/07/2013] [Indexed: 01/24/2023]
|
49
|
Padilla J, Jenkins NT, Lee S, Zhang H, Cui J, Zuidema MY, Zhang C, Hill MA, Perfield JW, Ibdah JA, Booth FW, Davis JW, Laughlin MH, Rector RS. Vascular transcriptional alterations produced by juvenile obesity in Ossabaw swine. Physiol Genomics 2013; 45:434-46. [PMID: 23592636 DOI: 10.1152/physiolgenomics.00038.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We adopted a transcriptome-wide microarray analysis approach to determine the extent to which vascular gene expression is altered as a result of juvenile obesity and identify obesity-responsive mRNAs. We examined transcriptional profiles in the left anterior descending coronary artery (LAD), perivascular fat adjacent to the LAD, and descending thoracic aorta between obese (n = 5) and lean (n = 6) juvenile Ossabaw pigs (age = 22 wk). Obesity was experimentally induced by feeding the animals a high-fat/high-fructose corn syrup/high-cholesterol diet for 16 wk. We found that expression of 189 vascular cell genes in the LAD and expression of 165 genes in the thoracic aorta were altered with juvenile obesity (false discovery rate ≤ 10%) with an overlap of only 28 genes between both arteries. Notably, a number of genes found to be markedly upregulated in the LAD of obese pigs are implicated in atherosclerosis, including ACP5, LYZ, CXCL14, APOE, PLA2G7, LGALS3, SPP1, ITGB2, CYBB, and P2RY12. Furthermore, pathway analysis revealed the induction of proinflammatory and pro-oxidant pathways with obesity primarily in the LAD. Gene expression in the LAD perivascular fat was minimally altered with juvenile obesity. Together, we provide new evidence that obesity produces artery-specific changes in pretranslational regulation with a clear upregulation of proatherogenic genes in the LAD. Our data may offer potential viable drug targets and mechanistic insights regarding the molecular precursors involved in the origins of overnutrition and obesity-associated vascular disease. In particular, our results suggest that the oxidized LDL/LOX-1/NF-κB signaling axis may be involved in the early initiation of a juvenile obesity-induced proatherogenic coronary artery phenotype.
Collapse
Affiliation(s)
- Jaume Padilla
- Biomedical Sciences, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Feldmann R, Fischer C, Kodelja V, Behrens S, Haas S, Vingron M, Timmermann B, Geikowski A, Sauer S. Genome-wide analysis of LXRα activation reveals new transcriptional networks in human atherosclerotic foam cells. Nucleic Acids Res 2013; 41:3518-31. [PMID: 23393188 PMCID: PMC3616743 DOI: 10.1093/nar/gkt034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Increased physiological levels of oxysterols are major risk factors for developing atherosclerosis and cardiovascular disease. Lipid-loaded macrophages, termed foam cells, are important during the early development of atherosclerotic plaques. To pursue the hypothesis that ligand-based modulation of the nuclear receptor LXRα is crucial for cell homeostasis during atherosclerotic processes, we analysed genome-wide the action of LXRα in foam cells and macrophages. By integrating chromatin immunoprecipitation-sequencing (ChIP-seq) and gene expression profile analyses, we generated a highly stringent set of 186 LXRα target genes. Treatment with the nanomolar-binding ligand T0901317 and subsequent auto-regulatory LXRα activation resulted in sequence-dependent sharpening of the genome-binding patterns of LXRα. LXRα-binding loci that correlated with differential gene expression revealed 32 novel target genes with potential beneficial effects, which in part explained the implications of disease-associated genetic variation data. These observations identified highly integrated LXRα ligand-dependent transcriptional networks, including the APOE/C1/C4/C2-gene cluster, which contribute to the reversal of cholesterol efflux and the dampening of inflammation processes in foam cells to prevent atherogenesis.
Collapse
Affiliation(s)
- Radmila Feldmann
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|