1
|
Dorian CC, Taxidis J, Arac A, Golshani P. Behavioral timescale synaptic plasticity in the hippocampus creates non-spatial representations during learning and is modulated by entorhinal inputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.27.609983. [PMID: 39253411 PMCID: PMC11383060 DOI: 10.1101/2024.08.27.609983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Behavioral timescale synaptic plasticity (BTSP) is a form of synaptic potentiation where a single plateau potential in hippocampal neurons forms a place field during spatial learning. We asked whether BTSP can also form non-spatial responses in the hippocampus and what roles the medial and lateral entorhinal cortex (MEC and LEC) play in driving non-spatial BTSP. Two-photon calcium imaging of dorsal CA1 neurons while mice performed an odor-cued working memory task revealed plateau-like events which formed stable odor-specific responses. These BTSP-like events were much more frequent during the first day of task learning, suggesting that BTSP may be important for early learning. Strong single-neuron stimulation through holographic optogenetics induced plateau-like events and subsequent odor-fields, causally linking BTSP with non-spatial representations. MEC chemogenetic inhibition reduced the frequency of plateau-like events, whereas LEC inhibition reduced potentiation and field-induction probability. Calcium imaging of LEC and MEC temporammonic CA1 projections revealed that MEC axons were more strongly activated by odor presentations, while LEC axons were more odor-selective, further confirming the role of MEC in driving plateau-like events and LEC in relaying odor-specific information. Altogether, odor-specific information from LEC and strong odor-timed activity from MEC are crucial for driving BTSP in CA1, which is a synaptic plasticity mechanism for generation of both spatial and non-spatial responses in the hippocampus.
Collapse
Affiliation(s)
- Conor C. Dorian
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jiannis Taxidis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ahmet Arac
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Greater Los Angeles Veteran Affairs Medical Center, Los Angeles, CA, USA
- Intellectual and Developmental Disabilities Research Center, University of California Los Angeles, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Dorian CC, Taxidis J, Buonomano D, Golshani P. Hippocampal sequences represent working memory and implicit timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643736. [PMID: 40166270 PMCID: PMC11956965 DOI: 10.1101/2025.03.17.643736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Working memory (WM) and timing are considered distinct cognitive functions, yet the neural signatures underlying both can be similar. To address the hypothesis that WM and timing may be multiplexed we developed a novel rodent task where 1st odor identity predicts the delay duration. We found that WM performance decreased when delay expectations were violated. Performance was worse for unexpected long delays than for unexpected short delays, suggesting that WM may be tuned to expire in a delay-dependent manner. Calcium imaging of dorsal CA1 neurons revealed odor-specific sequential activity tiling the short and long delays. Neural sequence structure also reflected expectation of the timing of the 2nd odor-i.e., of the expected delay. Consistent with the hypothesis that WM and timing may be multiplexed, our findings suggest that neural sequences in dorsal CA1 may encode cues and cue-specific elapsed time during the delay period of a WM task.
Collapse
Affiliation(s)
- Conor C. Dorian
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jiannis Taxidis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Dean Buonomano
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Greater Los Angeles Veteran Affairs Medical Center, Los Angeles, CA, USA
- Intellectual and Developmental Disabilities Research Center, University of California Los Angeles, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Ranjbar-Slamloo Y, Chong HR, Kamigaki T. Aging disrupts the link between network centrality and functional properties of prefrontal neurons during memory-guided behavior. Commun Biol 2025; 8:62. [PMID: 39820515 PMCID: PMC11739477 DOI: 10.1038/s42003-025-07498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
The prefrontal cortex (PFC) is vital for higher cognitive functions and displays neuronal heterogeneity, with neuronal activity varying significantly across individual neurons. Using calcium imaging in the medial PFC (mPFC) of mice, we investigate whether differences in degree centrality-a measure of connectivity strength within local circuits-could explain this neuronal diversity and its functional implications. In young adults, neurons with high degree centrality, inferred from resting-state activity, exhibit reliable and stable action-plan selectivity during memory-guided tasks, suggesting that connectivity strength is closely linked to functional heterogeneity. This relationship, however, deteriorates in middle-aged and older mice. A computational model simulating age-related declines in synaptic plasticity reproduces these results. In young adults, degree centrality also predicts cross-modal action-plan selectivity, but this predictive power diminishes with age. Furthermore, neurons with high action-plan selectivity are spatially clustered, a pattern that fades with aging. These findings reveal the significant aging impact on the network properties in parallel with the functional and spatial organization of the mPFC.
Collapse
Affiliation(s)
- Yadollah Ranjbar-Slamloo
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Huee Ru Chong
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tsukasa Kamigaki
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| |
Collapse
|
4
|
Burns JN, Jenkins AK, Xue X, Petersen KA, Ketchesin KD, Perez MS, Vadnie CA, Scott MR, Seney ML, Tseng GC, McClung CA. Comparative transcriptomic rhythms in the mouse and human prefrontal cortex. Front Neurosci 2025; 18:1524615. [PMID: 39872996 PMCID: PMC11769989 DOI: 10.3389/fnins.2024.1524615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Alterations in multiple subregions of the human prefrontal cortex (PFC) have been heavily implicated in psychiatric diseases. Moreover, emerging evidence suggests that circadian rhythms in gene expression are present across the brain, including in the PFC, and that these rhythms are altered in disease. However, investigation into the potential circadian mechanisms underlying these diseases in animal models must contend with the fact that the human PFC is highly evolved and specialized relative to that of rodents. Methods Here, we use RNA sequencing to lay the groundwork for translational studies of molecular rhythms through a sex-specific, cross species comparison of transcriptomic rhythms between the mouse medial PFC (mPFC) and two subregions of the human PFC, the anterior cingulate cortex (ACC) and the dorsolateral PFC (DLPFC). Results We find that while circadian rhythm signaling is conserved across species and subregions, there is a phase shift in the expression of core clock genes between the mouse mPFC and human PFC subregions that differs by sex. Furthermore, we find that the identity of rhythmic transcripts is largely unique between the mouse mPFC and human PFC subregions, with the most overlap (20%, 236 transcripts) between the mouse mPFC and the human ACC in females. Nevertheless, we find that basic biological processes are enriched for rhythmic transcripts across species, with key differences between regions and sexes. Discussion Together, this work highlights both the evolutionary conservation of transcriptomic rhythms and the advancement of the human PFC, underscoring the importance of considering cross-species differences when using animal models.
Collapse
Affiliation(s)
- Jennifer N. Burns
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aaron K. Jenkins
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kaitlyn A. Petersen
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kyle D. Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Megan S. Perez
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chelsea A. Vadnie
- David O. Robbins Neuroscience Program, Department of Psychology, Ohio Wesleyan University, Delaware, OH, United States
| | - Madeline R. Scott
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Ren Z, Wang X, Angelov M, De Zeeuw CI, Gao Z. Neuronal dynamics of cerebellum and medial prefrontal cortex in adaptive motor timing. Nat Commun 2025; 16:612. [PMID: 39800729 PMCID: PMC11725584 DOI: 10.1038/s41467-025-55884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Precise temporal control of sensorimotor coordination and adaptation is a fundamental basis of animal behavior. How different brain regions are involved in regulating the flexible temporal adaptation remains elusive. Here, we investigated the neuronal dynamics of the cerebellar interposed nucleus (IpN) and the medial prefrontal cortex (mPFC) neurons during temporal adaptation between delay eyeblink conditioning (DEC) and trace eyeblink conditioning (TEC). When mice were trained for either DEC or TEC and subsequently subjected to a new paradigm, their conditioned responses (CRs) adapted virtually instantaneously. Changes in the activity of the IpN neurons related to CR timing were prominent during DEC-to-TEC adaptation, but less so during TEC-to-DEC adaptation. In contrast, mPFC neurons could rapidly alter their modulation patterns during both adaptation paradigms. Accordingly, silencing the mPFC completely blocked the adaptation of CR timing. These results illustrate how cerebral and cerebellar mechanisms may play different roles during adaptive control of associative motor timing.
Collapse
Affiliation(s)
- Zhong Ren
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands
| | - Milen Angelov
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, 1105 BA, Amsterdam, the Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.
- Department of Neurosurgery, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Chase J, Xia L, Tai LH, Lin WC, Collins AGE, Wilbrecht L. Adolescent and adult mice use both incremental reinforcement learning and short term memory when learning concurrent stimulus-action associations. PLoS Comput Biol 2024; 20:e1012667. [PMID: 39715285 PMCID: PMC11706416 DOI: 10.1371/journal.pcbi.1012667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 01/07/2025] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Computational modeling has revealed that human research participants use both rapid working memory (WM) and incremental reinforcement learning (RL) (RL+WM) to solve a simple instrumental learning task, relying on WM when the number of stimuli is small and supplementing with RL when the number of stimuli exceeds WM capacity. Inspired by this work, we examined which learning systems and strategies are used by adolescent and adult mice when they first acquire a conditional associative learning task. In a version of the human RL+WM task translated for rodents, mice were required to associate odor stimuli (from a set of 2 or 4 odors) with a left or right port to receive reward. Using logistic regression and computational models to analyze the first 200 trials per odor, we determined that mice used both incremental RL and stimulus-insensitive, one-back strategies to solve the task. While these one-back strategies may be a simple form of short-term or working memory, they did not approximate the boost to learning performance that has been observed in human participants using WM in a comparable task. Adolescent and adult mice also showed comparable performance, with no change in learning rate or softmax beta parameters with adolescent development and task experience. However, reliance on a one-back perseverative, win-stay strategy increased with development in males in both odor set sizes, but was not dependent on gonadal hormones. Our findings advance a simple conditional associative learning task and new models to enable the isolation and quantification of reinforcement learning alongside other strategies mice use while learning to associate stimuli with rewards within a single behavioral session. These data and methods can inform and aid comparative study of reinforcement learning across species.
Collapse
Affiliation(s)
- Juliana Chase
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Neuroscience, University of California, Berkeley, Berkeley, California, United States of America
| | - Liyu Xia
- Department of Mathematics, University of California, Berkeley, Berkeley, California, United States of America
| | - Lung-Hao Tai
- Department of Neuroscience, University of California, Berkeley, Berkeley, California, United States of America
| | - Wan Chen Lin
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Neuroscience, University of California, Berkeley, Berkeley, California, United States of America
| | - Anne G. E. Collins
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Neuroscience, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
7
|
Burns JN, Jenkins AK, Xue X, Petersen KA, Ketchesin KD, Perez MS, Vadnie CA, Scott MR, Seney ML, Tseng GC, McClung CA. Comparative transcriptomic rhythms in the mouse and human prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615154. [PMID: 39386590 PMCID: PMC11463408 DOI: 10.1101/2024.09.26.615154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Alterations in multiple subregions of the human prefrontal cortex (PFC) have been heavily implicated in psychiatric diseases. Moreover, emerging evidence suggests that circadian rhythms in gene expression are present across the brain, including in the PFC, and that these rhythms are altered in disease. However, investigation into the potential circadian mechanisms underlying these diseases in animal models must contend with the fact that the human PFC is highly evolved and specialized relative to that of rodents. Here, we use RNA sequencing to lay the groundwork for translational studies of molecular rhythms through a sex-specific, cross species comparison of transcriptomic rhythms between the mouse medial PFC (mPFC) and two subregions of the human PFC, the anterior cingulate cortex (ACC) and the dorsolateral PFC (DLPFC). We find that while circadian rhythm signaling is conserved across species and subregions, there is a phase shift in the expression of core clock genes between the mouse mPFC and human PFC subregions that differs by sex. Furthermore, we find that the identity of rhythmic transcripts is largely unique between the mouse mPFC and human PFC subregions, with the most overlap (20%, 236 transcripts) between the mouse mPFC and the human ACC in females. Nevertheless, we find that basic biological processes are enriched for rhythmic transcripts across species, with key differences between regions and sexes. Together, this work highlights both the evolutionary conservation of transcriptomic rhythms and the advancement of the human PFC, underscoring the importance of considering cross-species differences when using animal models.
Collapse
Affiliation(s)
- Jennifer N. Burns
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Aaron K. Jenkins
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kaitlyn A. Petersen
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kyle D. Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Megan S. Perez
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261
| | - Chelsea A. Vadnie
- David O. Robbins Neuroscience Program, Department of Psychology, Ohio Wesleyan University, Delaware, OH 43015
| | - Madeline R. Scott
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
8
|
Zhao H, Sun J, Zhang R, Jiang Y, Zhang Y, Feng T, Feng P. The functional connectivity between right insula and anterior cingulate cortex underlying the association between future self-continuity and delay discounting. Cereb Cortex 2024; 34:bhae296. [PMID: 39042032 DOI: 10.1093/cercor/bhae296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
Delay discounting refers to the tendency of individuals to devalue future rewards as the delay in their receipt increases over time. Previous studies have indicated that future self-continuity correlates with delay discounting rates. However, the neural basis underlying the relationship between future self-continuity and delay discounting is not clear. To address this question, we used voxel-based morphometry and resting-state functional connectivity analyses to investigate the neural basis underlying the association between future self-continuity and delay discounting. Behavioral result showed that future self-continuity was positively associated with delay discounting. Voxel-based morphometry analysis result indicated that gray matter volume in the right dorsal anterior insula was positively correlated with future self-continuity. Resting-state functional connectivity analysis found that functional connectivity between the right dorsal anterior insula and anterior cingulate cortex was positively associated with future self-continuity. Mediation analysis showed that the right dorsal anterior insula-right anterior cingulate cortex functional connectivity partially mediated the relationship between future self-continuity and delay discounting. These results suggested that right dorsal anterior insula-right anterior cingulate cortex functional connectivity could be the neural basis underlying the association between future self-continuity and delay discounting. In summary, the study provided novel insights into how future self-continuity affected delay discounting and offers new explanations from a neural perspective.
Collapse
Affiliation(s)
- Hengyue Zhao
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Jingjing Sun
- Zhenjiang Mental Health Center, No. 199, Tuanshan Road, Runzhou, Jiangsu, 212000, China
| | - Rong Zhang
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Yumeng Jiang
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Yuetong Zhang
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Pan Feng
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, China
| |
Collapse
|
9
|
Santos TB, de Oliveira Coelho CA, Kramer-Soares JC, Frankland PW, Oliveira MGM. Reactivation of encoding ensembles in the prelimbic cortex supports temporal associations. Neuropsychopharmacology 2024; 49:1296-1308. [PMID: 38454052 PMCID: PMC11224261 DOI: 10.1038/s41386-024-01825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/14/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024]
Abstract
Fear conditioning is encoded by strengthening synaptic connections between the neurons activated by a conditioned stimulus (CS) and those activated by an unconditioned stimulus (US), forming a memory engram, which is reactivated during memory retrieval. In temporal associations, activity within the prelimbic cortex (PL) plays a role in sustaining a short-term, transient memory of the CS, which is associated with the US after a temporal gap. However, it is unknown whether the PL has only a temporary role, transiently representing the CS, or is part of the neuronal ensembles that support the retrieval, i.e., whether PL neurons support both transient, short-term memories and stable, long-term memories. We investigated neuronal ensembles underlying temporal associations using fear conditioning with a 5-s interval between the CS and US (CFC-5s). Controls were trained in contextual fear conditioning (CFC), in which the CS-US overlaps. We used Robust Activity Marking (RAM) to selectively manipulate PL neurons activated by CFC-5s learning and Targeted Recombination in Active Populations (TRAP2) mice to label neurons activated by CFC-5s learning and reactivated by memory retrieval in the amygdala, medial prefrontal cortex, hippocampus, perirhinal cortices (PER) and subiculum. We also computed their co-reactivation to generate correlation-based networks. The optogenetic reactivation or silencing of PL encoding ensembles either promoted or impaired the retrieval of CFC-5s but not CFC. CFC-5s retrieval reactivated encoding ensembles in the PL, PER, and basolateral amygdala. The engram network of CFC-5s had higher amygdala and PER centralities and interconnectivity. The same PL neurons support learning and stable associative memories.
Collapse
Affiliation(s)
- Thays Brenner Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-062, Brazil.
| | | | - Juliana Carlota Kramer-Soares
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-062, Brazil
- Universidade Cruzeiro do Sul - UNICSUL, São Paulo, 08060-070, Brazil
| | - Paul W Frankland
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5G 1X8, Canada
- Department of Psychology, University of Toronto, Toronto, ON, M5G 1X8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5G 1X8, Canada
- Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
| | | |
Collapse
|
10
|
Zhou S, Cui X, Chen J, Luo M, Ouyang W, Tong J, Xie Z, Le Y. Single exposure to anesthesia/surgery in neonatal mice induces cognitive impairment in young adult mice. Free Radic Biol Med 2024; 214:184-192. [PMID: 38369077 DOI: 10.1016/j.freeradbiomed.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND The effects of a solitary neonatal exposure to anesthesia plus surgery (anesthesia/surgery) on cognitive function and the underlying mechanism in developing brains remains largely undetermined. We, therefore, set out to investigate the impact of single exposure to anesthesia/surgery in neonatal mice. METHODS Six-day-old male and female mice received abdominal surgery under 3% sevoflurane plus 50% oxygen for 2 h. The new object recognition (NOR) and Morris water maze (MWM) were used to evaluate cognitive function in young adult mice. Western blot, ELISA and RT-PCR were used to measure levels of NR2B and IL-6 in medial prefrontal cortex and IL-6 in blood of the mice. We employed NR2B siRNA and IL-6 antibody in the interaction studies. RESULTS The anesthesia/surgery decreased the ratio of novel time to novel plus familiar time in NOR and the number of platform crossings, but not escape latency, in MWM compared to sham condition. The mice in anesthesia/surgery group had increased NR2B expression in medial prefrontal cortex, and IL-6 amounts in blood and medial prefrontal cortex. Local injection of NR2B siRNA in medial prefrontal cortex alleviated the anesthesia/surgery-induced cognitive impairment. IL-6 antibody mitigated the anesthesia/surgery-induced upregulation of NR2B and cognitive impairment in young adult mice. CONCLUSIONS These results suggest that a single neonatal exposure to anesthesia/surgery causes impairment of memory, but not learning, in young adult mice through IL-6-regulated increases in NR2B concentrations in medial prefrontal cortex, highlighting the need for further research on the underlying mechanisms of anesthesia/surgery's impact on cognitive function in developing brains.
Collapse
Affiliation(s)
- Songhua Zhou
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Xiaoyu Cui
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Jie Chen
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Manli Luo
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Wen Ouyang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Jianbin Tong
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA, 02129-2060
| | - Yuan Le
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China.
| |
Collapse
|
11
|
Kidder K, Gillis R, Miles J, Mizumori SJY. The medial prefrontal cortex during flexible decisions: Evidence for its role in distinct working memory processes. Hippocampus 2024; 34:141-155. [PMID: 38095152 DOI: 10.1002/hipo.23594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/31/2023] [Accepted: 11/25/2023] [Indexed: 02/20/2024]
Abstract
During decisions that involve working memory, task-related information must be encoded, maintained across delays, and retrieved. Few studies have attempted to causally disambiguate how different brain structures contribute to each of these components of working memory. In the present study, we used transient optogenetic disruptions of rat medial prefrontal cortex (mPFC) during a serial spatial reversal learning (SSRL) task to test its role in these specific working memory processes. By analyzing numerous performance metrics, we found: (1) mPFC disruption impaired performance during only the choice epoch of initial discrimination learning of the SSRL task; (2) mPFC disruption impaired performance in dissociable ways across all task epochs (delay, choice, return) during flexible decision-making; (3) mPFC disruption resulted in a reduction of the typical vicarious-trial-and-error rate modulation that was related to changes in task demands. Taken together, these findings suggest that the mPFC plays an outsized role in working memory retrieval, becomes involved in encoding and maintenance when recent memories conflict with task demands, and enables animals to flexibly utilize working memory to update behavior as environments change.
Collapse
Affiliation(s)
- Kevan Kidder
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Ryan Gillis
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Jesse Miles
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, USA
| | - Sheri J Y Mizumori
- Department of Psychology, University of Washington, Seattle, Washington, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Yao J, Hou R, Fan H, Liu J, Chen Z, Hou J, Cheng Q, Li CT. Prefrontal projections modulate recurrent circuitry in the insular cortex to support short-term memory. Cell Rep 2024; 43:113756. [PMID: 38358886 DOI: 10.1016/j.celrep.2024.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Short-term memory (STM) maintains information during a short delay period. How long-range and local connections interact to support STM encoding remains elusive. Here, we tackle the problem focusing on long-range projections from the medial prefrontal cortex (mPFC) to the anterior agranular insular cortex (aAIC) in head-fixed mice performing an olfactory delayed-response task. Optogenetic and electrophysiological experiments reveal the behavioral importance of the two regions in encoding STM information. Spike-correlogram analysis reveals strong local and cross-region functional coupling (FC) between memory neurons encoding the same information. Optogenetic suppression of mPFC-aAIC projections during the delay period reduces behavioral performance, the proportion of memory neurons, and memory-specific FC within the aAIC, whereas optogenetic excitation enhances all of them. mPFC-aAIC projections also bidirectionally modulate the efficacy of STM-information transfer, measured by the contribution of FC spiking pairs to the memory-coding ability of following neurons. Thus, prefrontal projections modulate insular neurons' functional connectivity and memory-coding ability to support STM.
Collapse
Affiliation(s)
- Jian Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Lingang Laboratory, Shanghai 200031, China
| | - Ruiqing Hou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongmei Fan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiawei Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqin Chen
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China
| | - Jincan Hou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Lingang Laboratory, Shanghai 200031, China
| | - Qi Cheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Lingang Laboratory, Shanghai 200031, China
| | - Chengyu T Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Lingang Laboratory, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China.
| |
Collapse
|
13
|
Bai W, Liu Y, Liu A, Xu X, Zheng X, Tian X, Liu T. Hippocampal-prefrontal high-gamma flow during performance of a spatial working memory. Brain Res Bull 2024; 207:110887. [PMID: 38280642 DOI: 10.1016/j.brainresbull.2024.110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Working memory refers to a system that provides temporary storage and manipulation of the information necessary for complex cognitive tasks. The prefrontal cortex (PFC) and hippocampus (HPC) are major structures contributing to working memory. Accumulating evidence suggests that the HPC-PFC interactions are critical for the successful execution of working memory tasks. Nevertheless, the directional information transmission within the HPC-PFC pathway remains unclear. Using simultaneous multi-electrode recordings, we recorded local field potentials (LFPs) from the medial prefrontal cortex (mPFC) and ventral hippocampus (vHPC) while the rats performed a spatial working memory task in a Y-maze. The directionality of functional interactions between mPFC and vHPC was assessed using the phase-slope index (PSI). Our findings revealed a frequency-specific oscillatory synchrony in the two regions during the spatial working memory task. Furthermore, an increased high-gamma flow from vHPC to mPFC manifested exclusively during correctly performed trials, not observed during incorrect ones. This suggests that the enhanced high-gamma flow reflects behavioral performance in working memory. Consequently, our results indicate an major role of directional frequency-specific communication in the hippocampal-frontal circuit during spatial working memory, providing a potential mechanism for working memory.
Collapse
Affiliation(s)
- Wenwen Bai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Yinglong Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Aili Liu
- School of Basic Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Xinyu Xu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xin Tian
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
14
|
Ding X, Froudist-Walsh S, Jaramillo J, Jiang J, Wang XJ. Cell type-specific connectome predicts distributed working memory activity in the mouse brain. eLife 2024; 13:e85442. [PMID: 38174734 PMCID: PMC10807864 DOI: 10.7554/elife.85442] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Recent advances in connectomics and neurophysiology make it possible to probe whole-brain mechanisms of cognition and behavior. We developed a large-scale model of the multiregional mouse brain for a cardinal cognitive function called working memory, the brain's ability to internally hold and process information without sensory input. The model is built on mesoscopic connectome data for interareal cortical connections and endowed with a macroscopic gradient of measured parvalbumin-expressing interneuron density. We found that working memory coding is distributed yet exhibits modularity; the spatial pattern of mnemonic representation is determined by long-range cell type-specific targeting and density of cell classes. Cell type-specific graph measures predict the activity patterns and a core subnetwork for memory maintenance. The model shows numerous attractor states, which are self-sustained internal states (each engaging a distinct subset of areas). This work provides a framework to interpret large-scale recordings of brain activity during cognition, while highlighting the need for cell type-specific connectomics.
Collapse
Affiliation(s)
- Xingyu Ding
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Sean Froudist-Walsh
- Center for Neural Science, New York UniversityNew YorkUnited States
- Bristol Computational Neuroscience Unit, School of Engineering Mathematics and Technology, University of BristolBristolUnited Kingdom
| | - Jorge Jaramillo
- Center for Neural Science, New York UniversityNew YorkUnited States
- Campus Institute for Dynamics of Biological Networks, University of GöttingenGöttingenGermany
| | - Junjie Jiang
- Center for Neural Science, New York UniversityNew YorkUnited States
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,Institute of Health and Rehabilitation Science,School of Life Science and Technology, Research Center for Brain-inspired Intelligence, Xi’an Jiaotong UniversityXi'anChina
| | - Xiao-Jing Wang
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
15
|
Do J, Jung MW, Lee D. Automating licking bias correction in a two-choice delayed match-to-sample task to accelerate learning. Sci Rep 2023; 13:22768. [PMID: 38123637 PMCID: PMC10733387 DOI: 10.1038/s41598-023-49862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Animals often display choice bias, or a preference for one option over the others, which can significantly impede learning new tasks. Delayed match-to-sample (DMS) tasks with two-alternative choices of lickports on the left and right have been widely used to study sensory processing, working memory, and associative memory in head-fixed animals. However, extensive training time, primarily due to the animals' biased licking responses, limits their practical utility. Here, we present the implementation of an automated side bias correction system in an olfactory DMS task, where the lickport positions and the ratio of left- and right-rewarded trials are dynamically adjusted to counterbalance mouse's biased licking responses during training. The correction algorithm moves the preferred lickport farther away from the mouse's mouth and the non-preferred lickport closer, while also increasing the proportion of non-preferred side trials when biased licking occurs. We found that adjusting lickport distances and the proportions of left- versus right-rewarded trials effectively reduces the mouse's side bias. Further analyses reveal that these adjustments also correlate with subsequent improvements in behavioral performance. Our findings suggest that the automated side bias correction system is a valuable tool for enhancing the applicability of behavioral tasks involving two-alternative lickport choices.
Collapse
Affiliation(s)
- Jongrok Do
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Min Whan Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, 34141, Republic of Korea.
| | - Doyun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
16
|
Chong HR, Ranjbar-Slamloo Y, Ho MZH, Ouyang X, Kamigaki T. Functional alterations of the prefrontal circuit underlying cognitive aging in mice. Nat Commun 2023; 14:7254. [PMID: 37945561 PMCID: PMC10636129 DOI: 10.1038/s41467-023-43142-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Executive function is susceptible to aging. How aging impacts the circuit-level computations underlying executive function remains unclear. Using calcium imaging and optogenetic manipulation during memory-guided behavior, we show that working-memory coding and the relevant recurrent connectivity in the mouse medial prefrontal cortex (mPFC) are altered as early as middle age. Population activity in the young adult mPFC exhibits dissociable yet overlapping patterns between tactile and auditory modalities, enabling crossmodal memory coding concurrent with modality-dependent coding. In middle age, however, crossmodal coding remarkably diminishes while modality-dependent coding persists, and both types of coding decay in advanced age. Resting-state functional connectivity, especially among memory-coding neurons, decreases already in middle age, suggesting deteriorated recurrent circuits for memory maintenance. Optogenetic inactivation reveals that the middle-aged mPFC exhibits heightened vulnerability to perturbations. These findings elucidate functional alterations of the prefrontal circuit that unfold in middle age and deteriorate further as a hallmark of cognitive aging.
Collapse
Affiliation(s)
- Huee Ru Chong
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yadollah Ranjbar-Slamloo
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Malcolm Zheng Hao Ho
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- IGP-Neuroscience, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 308232, Singapore
| | - Xuan Ouyang
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tsukasa Kamigaki
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| |
Collapse
|
17
|
Wilhelm M, Sych Y, Fomins A, Alatorre Warren JL, Lewis C, Serratosa Capdevila L, Boehringer R, Amadei EA, Grewe B, O'Connor EC, Hall BJ, Helmchen F. Striatum-projecting prefrontal cortex neurons support working memory maintenance. Nat Commun 2023; 14:7016. [PMID: 37919287 PMCID: PMC10622437 DOI: 10.1038/s41467-023-42777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
Neurons in the medial prefrontal cortex (mPFC) are functionally linked to working memory (WM) but how distinct projection pathways contribute to WM remains unclear. Based on optical recordings, optogenetic perturbations, and pharmacological interventions in male mice, we report here that dorsomedial striatum (dmStr)-projecting mPFC neurons are essential for WM maintenance, but not encoding or retrieval, in a T-maze spatial memory task. Fiber photometry of GCaMP6m-labeled mPFC→dmStr neurons revealed strongest activity during the maintenance period, and optogenetic inhibition of these neurons impaired performance only when applied during this period. Conversely, enhancing mPFC→dmStr pathway activity-via pharmacological suppression of HCN1 or by optogenetic activation during the maintenance period-alleviated WM impairment induced by NMDA receptor blockade. Moreover, cellular-resolution miniscope imaging revealed that >50% of mPFC→dmStr neurons are active during WM maintenance and that this subpopulation is distinct from neurons active during encoding and retrieval. In all task periods, neuronal sequences were evident. Striatum-projecting mPFC neurons thus critically contribute to spatial WM maintenance.
Collapse
Affiliation(s)
- Maria Wilhelm
- Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
- Institute for Neuroscience, ETH Zurich, 8057, Zurich, Switzerland
| | - Yaroslav Sych
- Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland
- Institute of Cellular and Integrative Neuroscience, CNRS, University of Strasbourg, Strasbourg, France
| | - Aleksejs Fomins
- Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
| | - José Luis Alatorre Warren
- Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, 0317, Norway
| | - Christopher Lewis
- Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland
| | | | - Roman Boehringer
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
| | - Elizabeth A Amadei
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
| | - Benjamin Grewe
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - Eoin C O'Connor
- Neuroscience & Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Benjamin J Hall
- Neuroscience & Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
- Circuit Biology Department, H. Lundbeck A/S, Valby, Denmark
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland.
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Chia XW, Tan JK, Ang LF, Kamigaki T, Makino H. Emergence of cortical network motifs for short-term memory during learning. Nat Commun 2023; 14:6869. [PMID: 37898638 PMCID: PMC10613236 DOI: 10.1038/s41467-023-42609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
Learning of adaptive behaviors requires the refinement of coordinated activity across multiple brain regions. However, how neural communications develop during learning remains poorly understood. Here, using two-photon calcium imaging, we simultaneously recorded the activity of layer 2/3 excitatory neurons in eight regions of the mouse dorsal cortex during learning of a delayed-response task. Across learning, while global functional connectivity became sparser, there emerged a subnetwork comprising of neurons in the anterior lateral motor cortex (ALM) and posterior parietal cortex (PPC). Neurons in this subnetwork shared a similar choice code during action preparation and formed recurrent functional connectivity across learning. Suppression of PPC activity disrupted choice selectivity in ALM and impaired task performance. Recurrent neural networks reconstructed from ALM activity revealed that PPC-ALM interactions rendered choice-related attractor dynamics more stable. Thus, learning constructs cortical network motifs by recruiting specific inter-areal communication channels to promote efficient and robust sensorimotor transformation.
Collapse
Affiliation(s)
- Xin Wei Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Jian Kwang Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Lee Fang Ang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tsukasa Kamigaki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Hiroshi Makino
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| |
Collapse
|
19
|
Jiang LX, Huang GD, Tian YL, Cong RX, Meng X, Wang HL, Zhang C, Yu X. Diminished activation of excitatory neurons in the prelimbic cortex leads to impaired working memory capacity in mice. BMC Biol 2023; 21:171. [PMID: 37568146 PMCID: PMC10416384 DOI: 10.1186/s12915-023-01674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Working memory capacity impairment is an early sign of Alzheimer's disease, but the underlying mechanisms remain unclear. Clarifying how working memory capacity is affected will help us better understand the pathological mechanism of Alzheimer's disease. We used the olfactory working memory capacity paradigm to evaluate memory capacity in 3-month-old 5XFAD (an animal model of Alzheimer's disease) mice. Immunofluorescence staining of the prefrontal cortex was performed to detect the number of FOS-positive neurons, calmodulin-dependent protein kinase II-positive neurons, and glutamate decarboxylase-positive neurons in the prelimbic cortex and infralimbic cortex. A chemogenetic method was then used to modulate the inhibition and activation of excitatory neurons in the prelimbic cortex of wild-type and 5XFAD mice and to measure the memory capacity of mice. RESULTS Working memory capacity was significantly diminished in 5XFAD mice compared to littermate wild-type mice. Neuronal activation of the prelimbic cortex, but not the infralimbic cortex, was attenuated in 5XFAD mice performing the olfactory working memory capacity task. Subsequently, the FOS-positive neurons were co-localized with both calmodulin-dependent protein kinase II-positive neurons and glutamate decarboxylase-positive neurons. The results showed that the activation of excitatory neurons in the prelimbic cortex was correlated with working memory capacity in mice. Our results further demonstrate that the chemogenetic inhibition of prelimbic cortex excitatory neurons resulted in reduced working memory capacity in wild-type mice, while the chemogenetic activation of prelimbic cortex excitatory neurons improved the working memory capacity of 5XFAD mice. CONCLUSION The diminished activation of prelimbic cortex excitatory neurons in 5XFAD mice during task performance is associated with reduced working memory capacity, and activation modulation of excitatory neurons by chemogenetic methods can improve memory capacity impairment in 5XFAD mice. These findings may provide a new direction for exploring Alzheimer's disease therapeutic approaches.
Collapse
Affiliation(s)
- Li-Xin Jiang
- Peking University Institute of Mental Health (Sixth Hospital), No.51 Huayuanbei Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China
- Beijing Municipal Key Laboratory for Translational Research On Diagnosis and Treatment of Dementia, Beijing, 100191, China
| | - Geng-Di Huang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, No.77 Zhenbi Road, Pingshan District, Shenzhen, 518118, China
- Affiliated Mental Health Center, Southern University of Science and Technology, No.1088 Xueyuan Avenue, Fuguang Community, Taoyuan Street, Nanshan District, Shenzhen, 518118, China
| | - Yong-Lu Tian
- School of Psychological and Cognitive Sciences, Peking University, No.5 Summer Palace Road, Haidian District, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Ri-Xu Cong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xue Meng
- National Center of Gerontology, Beijing Hospital, No.1 Dahua Road, Dongdan, Dongcheng District, Beijing, 100005, China
| | - Hua-Li Wang
- Peking University Institute of Mental Health (Sixth Hospital), No.51 Huayuanbei Road, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.
- Beijing Municipal Key Laboratory for Translational Research On Diagnosis and Treatment of Dementia, Beijing, 100191, China.
| | - Chen Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, You'anmenwai, Fengtai District, Beijing, 100069, China.
| | - Xin Yu
- Peking University Institute of Mental Health (Sixth Hospital), No.51 Huayuanbei Road, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.
- Beijing Municipal Key Laboratory for Translational Research On Diagnosis and Treatment of Dementia, Beijing, 100191, China.
| |
Collapse
|
20
|
Wang ZY, Liu L, Liu Y. A multi-source behavioral and physiological recording system for cognitive assessment. Sci Rep 2023; 13:8149. [PMID: 37208418 DOI: 10.1038/s41598-023-35289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Cognitive assessment has a broad application prospect, including estimate of childhood neuro development and maturation, diagnosis of neurodegenerative diseases, and selection for special profession. With the development of computer technique and behavioral recording sensors, the method of cognitive assessment has been replaced from paper scale test to human-computer interaction. We can not only obtain the results of tasks, but also make it possible to acquire multiple behavioral and physiological data during the task. However, there is still a strong challenge of recording multi-source data synchronously during multi-dimensional cognitive assessments. Therefore, we built a multi-source cognitive assessment system can record multi-pattern behavioral and physiological data and feedback at different spatiotemporal levels. Under this system, we developed a multi-source diagnostic toolset for cognitive assessment, including eye tracking, hand movement, EEG and human-computer interaction data during the cognitive task. 238 participants with different mental disorders were assessed using this system. The results showed that our diagnostic toolset can be used to study the behavioral abnormalities of patients with mental disorders through the characteristics of multi-source data. Furthermore, this system can provide some objective diagnostic criteria such as behavioral characters and EEG features for diagnosis of mental disorders.
Collapse
Affiliation(s)
- Zi-Yang Wang
- State Key Laboratory of Multimodal Artificial Intelligence Systems, The Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Li Liu
- State Key Laboratory of Multimodal Artificial Intelligence Systems, The Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yu Liu
- State Key Laboratory of Multimodal Artificial Intelligence Systems, The Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Lepreux G, Shinn GE, Wei G, Suko A, Concepcion G, Sirohi S, Soon Go B, Bruchas MR, Walker BM. Recapitulating phenotypes of alcohol dependence via overexpression of Oprk1 in the ventral tegmental area of non-dependent TH::Cre rats. Neuropharmacology 2023; 228:109457. [PMID: 36764577 PMCID: PMC10034863 DOI: 10.1016/j.neuropharm.2023.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The dynorphin (DYN)/kappa-opioid receptor (KOR) system is involved in dysphoria and negative emotional states. Dysregulation of KOR function promotes maladaptive behavioral regulation during withdrawal associated with alcohol dependence. Mesolimbic dopaminergic (DA) projections from the ventral tegmental area (VTA) innervate the extended amygdala circuitry and presynaptic KORs attenuate DA in these regions leading to an excessive alcohol consumption and negative affective-like behavior, whereas mesocortical KOR-regulated DA projections have been implicated in executive function and decision-making. Thus, the neuroadaptations occurring in DYN/KOR systems are important aspects to consider for the development of personalized therapeutic solutions. Herein, we study the contribution of the VTA DA neuron Oprk1 (KOR gene) in excessive alcohol consumption, negative emotional state, and executive function. To do so, Oprk1 mRNA expression and KOR function were characterized to confirm alcohol dependence-induced dysregulation in the VTA. Then, a transgenic Cre-Lox rat model (male and female TH::Cre rats) was used to allow for conditional and inducible overexpression of Oprk1 in VTA DA neurons. The effect of this overexpression was evaluated on operant alcohol self-administration, negative emotional states, and executive function. We found that VTA Oprk1 overexpression recapitulates some phenotypes of alcohol dependence including escalated alcohol self-administration and depressive-like behavior. However, working memory performance was not impacted following VTA Oprk1 overexpression in TH::Cre rats. This supports the hypothesis that dysregulated KOR signaling within the mesolimbic DA system is an important contributor to symptoms of alcohol dependence and shows that understanding Oprk1-mediated contributions to alcohol use disorder (AUD) should be an important future goal.
Collapse
Affiliation(s)
- Gaetan Lepreux
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychiatry and Behavioral Neurosciences, Tampa, FL, USA
| | - Grace E Shinn
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Gengze Wei
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychiatry and Behavioral Neurosciences, Tampa, FL, USA
| | - Azra Suko
- Department of Anesthesiology and Pain Medicine, Seattle, WA, USA
| | - George Concepcion
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychiatry and Behavioral Neurosciences, Tampa, FL, USA
| | - Sunil Sirohi
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, USA
| | - Bok Soon Go
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, Seattle, WA, USA; Department of Pharmacology, Seattle, WA, USA; Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
| | - Brendan M Walker
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychiatry and Behavioral Neurosciences, Tampa, FL, USA; Department of Molecular Medicine, Tampa, FL, USA; USF Health Neuroscience Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
22
|
Taxidis J, Madruga B, Melin MD, Lin MZ, Golshani P. Voltage imaging reveals that hippocampal interneurons tune memory-encoding pyramidal sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538286. [PMID: 37163029 PMCID: PMC10168205 DOI: 10.1101/2023.04.25.538286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hippocampal spiking sequences encode and link behavioral information across time. How inhibition sculpts these sequences remains unknown. We performed longitudinal voltage imaging of CA1 parvalbumin- and somatostatin-expressing interneurons in mice during an odor-cued working memory task, before and after training. During this task, pyramidal odor-specific sequences encode the cue throughout a delay period. In contrast, most interneurons encoded odor delivery, but not odor identity, nor delay time. Population inhibition was stable across days, with constant field turnover, though some cells retained odor-responses for days. At odor onset, a brief, synchronous burst of parvalbumin cells was followed by widespread membrane hyperpolarization and then rebound theta-paced spiking, synchronized across cells. Two-photon calcium imaging revealed that most pyramidal cells were suppressed throughout the odor. Positive pyramidal odor-responses coincided with interneuronal rebound spiking; otherwise, they had weak odor-selectivity. Therefore, inhibition increases the signal-to-noise ratio of cue representations, which is crucial for entraining downstream targets.
Collapse
|
23
|
Pan L, Liu J, Zhan C, Zhang X, Cui M, Su X, Wang Z, Zhao L, Liu J, Song Y. Effects of indoor exposure to low level toluene on neural network alterations during working memory encoding. CHEMOSPHERE 2023; 321:138153. [PMID: 36804498 DOI: 10.1016/j.chemosphere.2023.138153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE While high concentrations of toluene are known to affect multiple human organ systems, research concerning the influence of immediate, short-term exposure to toluene indoors and at low concentrations is scarce. Here, we studied effects of indoor toluene exposure on neural network alterations during working memory (WM) encoding. METHODS A total of 23 healthy college students were recruited. All participants were situated in a closed environmental chamber with a full fresh air system. Each participant was subjected to four exposure experiments with different toluene concentrations (0, 17.5, 35, and 70 ppb, named Group A, B, C and D, respectively), with at least one week between each experiment. WM Behavioral and 19-channel electroencephalogram (EEG) recordings in a pre-set environmental chamber were conducted simultaneously during each toluene exposure experiment. Neural networks relevant to WM encoding were visualized analyzing the obtained data. RESULTS 1. No significant difference in WM behavioral performance among the four groups was found. However, a significant increase in whole brain neural network functional connectivity was noted, especially in the frontal region. 2. An outflow directional transfer function (DTFoutflow) revealed higher frontal region values among Group D (the 70 ppb group) as compared to Group A, B and C (the0, 17.5 ppb and 35 ppb groups, respectively), although no differences in frontal region DTFinflow values among the four groups were noted. 3. The DTFFZ-F7, DTFFZ-T5, DTFFZ-P4, DTFFZ-P3, DTFFP2-O2, DTFP3-T4, DTFP3-F4, DTFP4-CZ and DTFP4-T4 values of Group D were found to be higher as compared to those of Group A and B. Furthermore, DTFFZ-F7 and DTFP4-T4 values of Group C were higher as compared to those of Group A. The DTFFZ-F7 values of Group D were higher as compared to those of the Group C. CONCLUSION Short-term toluene exposure significantly influences neural networks during cognitive processes such as WM encoding, even at low concentration.
Collapse
Affiliation(s)
- Liping Pan
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jie Liu
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Medical University, Tianjin, 300070, China
| | - Changqing Zhan
- Department of Neurology, Wuhu No.2 People's Hospital, Wuhu, Anhui, 241000, China
| | - Xin Zhang
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Medical University, Tianjin, 300070, China
| | - Mingrui Cui
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Medical University, Tianjin, 300070, China
| | - Xiao Su
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Medical University, Tianjin, 300070, China
| | - Zukun Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300000, China
| | - Lei Zhao
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300000, China
| | - Junjie Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300000, China.
| | - Yijun Song
- General Practice Center & Emergency Department, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300000, China; General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
24
|
Fang M, Li Y, Liao Z, Wang G, Cao Q, Li Y, Duan Y, Han Y, Deng X, Wu F, Kamau PM, Lu Q, Lai R. Lipopolysaccharide-binding protein expression is increased by stress and inhibits monoamine synthesis to promote depressive symptoms. Immunity 2023; 56:620-634.e11. [PMID: 36854305 DOI: 10.1016/j.immuni.2023.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/11/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
Monoamine insufficiency is suggested to be associated with depressive features such as sadness, anhedonia, insomnia, and cognitive dysfunction, but the mechanisms that cause it are unclear. We found that the acute-phase protein lipopolysaccharide-binding protein (LBP) inhibits monoamine biosynthesis by acting as an endogenous inhibitor of dopamine-β-hydroxylase (DBH) and aromatic-L-amino-acid-decarboxylase (DDC). LBP expression was increased in individuals with depression and by diverse stress challenges in mice. LBP antibodies and LBP knockdown inhibited monoamine insufficiency and depression-like features in mice, which worsened with LBP overexpression or administration. Monoamine insufficiency and depression-like symptoms were not induced by stressful stimuli in LBP-deficient mice, further highlighting a role for LBP in stress-induced depression, and a peptide we designed that blocks LBP-DBH and LBP-DDC interactions showed anti-depression effects in mice. This study reveals an important role for LBP in regulating monoamine biosynthesis and suggests that targeting LBP may have potential as a treatment for some individuals with depression.
Collapse
Affiliation(s)
- Mingqian Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; College of Life Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhiyi Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiqi Cao
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ya Li
- First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yong Duan
- First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yanbing Han
- First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Xinyi Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Feilong Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
25
|
Sheynikhovich D, Otani S, Bai J, Arleo A. Long-term memory, synaptic plasticity and dopamine in rodent medial prefrontal cortex: Role in executive functions. Front Behav Neurosci 2023; 16:1068271. [PMID: 36710953 PMCID: PMC9875091 DOI: 10.3389/fnbeh.2022.1068271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Abstract
Mnemonic functions, supporting rodent behavior in complex tasks, include both long-term and (short-term) working memory components. While working memory is thought to rely on persistent activity states in an active neural network, long-term memory and synaptic plasticity contribute to the formation of the underlying synaptic structure, determining the range of possible states. Whereas, the implication of working memory in executive functions, mediated by the prefrontal cortex (PFC) in primates and rodents, has been extensively studied, the contribution of long-term memory component to these tasks received little attention. This review summarizes available experimental data and theoretical work concerning cellular mechanisms of synaptic plasticity in the medial region of rodent PFC and the link between plasticity, memory and behavior in PFC-dependent tasks. A special attention is devoted to unique properties of dopaminergic modulation of prefrontal synaptic plasticity and its contribution to executive functions.
Collapse
Affiliation(s)
- Denis Sheynikhovich
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France,*Correspondence: Denis Sheynikhovich ✉
| | - Satoru Otani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jing Bai
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
26
|
Witztum J, Singh A, Zhang R, Johnson M, Liston C. An automated platform for Assessing Working Memory and prefrontal circuit function. Neurobiol Stress 2023; 24:100518. [PMID: 36970451 PMCID: PMC10033752 DOI: 10.1016/j.ynstr.2023.100518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/02/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Working memory is a process for actively maintaining and updating task-relevant information, despite interference from competing inputs, and is supported in part by sustained activity in prefrontal cortical pyramidal neurons and coordinated interactions with inhibitory interneurons, which may serve to regulate interference. Chronic stress has potent effects on working memory performance, possibly by interfering with these interactions or by disrupting long-range inputs from key upstream brain regions. Still, the mechanisms by which chronic stress disrupts working memory are not well understood, due in part to a need for scalable, easy-to-implement behavioral assays that are compatible with two-photon calcium imaging and other tools for recording from large populations of neurons. Here, we describe the development and validation of a platform that was designed specifically for automated, high-throughput assessments of working memory and simultaneous two-photon imaging in chronic stress studies. This platform is relatively inexpensive and easy to build; fully automated and scalable such that one investigator can test relatively large cohorts of animals concurrently; fully compatible with two-photon imaging, yet also designed to mitigate head-fixation stress; and can be easily adapted for other behavioral paradigms. Our validation data confirm that mice could be trained to perform a delayed response working memory task with relatively high-fidelity over the course of ∼15 days. Two-photon imaging data validate the feasibility of recording from large populations of cells during working memory tasks performance and characterizing their functional properties. Activity patterns in >70% of medial prefrontal cortical neurons were modulated by at least one task feature, and a majority of cells were engaged by multiple task features. We conclude with a brief literature review of the circuit mechanisms supporting working memory and their disruption in chronic stress states-highlighting directions for future research enabled by this platform.
Collapse
|
27
|
Zhao YN, Jiang JB, Tao SY, Zhang Y, Chen ZK, Qu WM, Huang ZL, Yang SR. GABAergic neurons in the rostromedial tegmental nucleus are essential for rapid eye movement sleep suppression. Nat Commun 2022; 13:7552. [PMID: 36477665 PMCID: PMC9729601 DOI: 10.1038/s41467-022-35299-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Rapid eye movement (REM) sleep disturbances are prevalent in various psychiatric disorders. However, the neural circuits that regulate REM sleep remain poorly understood. Here, we found that in male mice, optogenetic activation of rostromedial tegmental nucleus (RMTg) GABAergic neurons immediately converted REM sleep to arousal and then initiated non-REM (NREM) sleep. Conversely, laser-mediated inactivation completely converted NREM to REM sleep and prolonged REM sleep duration. The activity of RMTg GABAergic neurons increased to a high discharge level at the termination of REM sleep. RMTg GABAergic neurons directly converted REM sleep to wakefulness and NREM sleep via inhibitory projections to the laterodorsal tegmentum (LDT) and lateral hypothalamus (LH), respectively. Furthermore, LDT glutamatergic neurons were responsible for the REM sleep-wake transitions following photostimulation of the RMTgGABA-LDT circuit. Thus, RMTg GABAergic neurons are essential for suppressing the induction and maintenance of REM sleep.
Collapse
Affiliation(s)
- Ya-Nan Zhao
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Jian-Bo Jiang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Shi-Yuan Tao
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Yang Zhang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Ze-Ka Chen
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Wei-Min Qu
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Zhi-Li Huang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Su-Rong Yang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| |
Collapse
|
28
|
Hazra D, Yoshinaga S, Yoshida K, Takata N, Tanaka KF, Kubo KI, Nakajima K. Rhythmic activation of excitatory neurons in the mouse frontal cortex improves the prefrontal cortex-mediated cognitive function. Cereb Cortex 2022; 32:5243-5258. [PMID: 35136976 DOI: 10.1093/cercor/bhac011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/27/2022] Open
Abstract
The prefrontal cortex (PFC) plays essential roles in cognitive processes. Previous studies have suggested the layer and the cell type-specific activation for cognitive enhancement. However, the mechanism by which a temporal pattern of activation affects cognitive function remains to be elucidated. Here, we investigated whether the specific activation of excitatory neurons in the superficial layers mainly in the PFC according to a rhythmic or nonrhythmic pattern could modulate the cognitive functions of normal mice. We used a C128S mutant of channelrhodopsin 2, a step function opsin, and administered two light illumination patterns: (i) alternating pulses of blue and yellow light for rhythmic activation or (ii) pulsed blue light only for nonrhythmic activation. Behavioral analyses were performed to compare the behavioral consequences of these two neural activation patterns. The alternating blue and yellow light pulses, but not the pulsed blue light only, significantly improved spatial working memory and social recognition without affecting motor activity or the anxiety level. These results suggest that the rhythmic, but not the nonrhythmic, activation could enhance cognitive functions. This study indicates that not only the population of neurons that are activated but also the pattern of activation plays a crucial role in the cognitive enhancement.
Collapse
Affiliation(s)
- Debabrata Hazra
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoshi Yoshinaga
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan.,Department of Anatomy, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Keitaro Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Norio Takata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan.,Department of Anatomy, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
29
|
Fang D, Yang B, Wang P, Mo T, Gan Y, Liang G, Huang R, Zeng H. Role of SNAP-25 MnlI variant in impaired working memory and brain functions in attention deficit/hyperactivity disorder. Brain Behav 2022; 12:e2758. [PMID: 36068994 PMCID: PMC9575616 DOI: 10.1002/brb3.2758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Attention deficit/hyperactivity disorder (ADHD) is a hereditary neurodevelopmental disorder characterized by working memory (WM) deficits. The MnlI variant (rs3746544) of the synaptosomal-associated protein 25 (SNAP-25) gene is associated with ADHD. In this study, we investigated the role and underlying mechanism of SNAP-25 MnlI variant in cognitive impairment and brain functions in boys with ADHD. METHOD We performed WM capacity tests using the fourth version of the Wechsler Intelligence Scale for Children (WISC-IV) and regional homogeneity (ReHo) analysis for the resting-state functional magnetic resonance imaging data of 56 boys with ADHD divided into two genotypic groups (TT homozygotes and G-allele carriers). Next, Spearman's rank correlation analysis between the obtained ReHo values and the WM index (WMI) calculated for each participant. RESULTS Compared with G-allele carrier group, there were higher ReHo values for the left medial prefrontal cortex (mPFC) and higher WM capacity in TT homozygote group. Contrary to TT homozygote group, the WM capacity was negatively correlated with the peak ReHo value for the left mPFC in G-allele carrier group. CONCLUSION These findings suggest that SNAP-25 MnlI variant may underlie cognitive and brain function impairments in boys with ADHD, thus suggesting its potential as a new target for ADHD treatment.
Collapse
Affiliation(s)
- Diangang Fang
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Binrang Yang
- Development and Behavior Specialty, Shenzhen Children's Hospital, Shenzhen, China
| | - Peng Wang
- Cardiac Rehabilitation Center, Fuwai Hospital CAMS&PUMC, Beijing, China
| | - Tong Mo
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yungen Gan
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Guohua Liang
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Rong Huang
- Department of Radiology, Peking University Shenzhen hospital, Shenzhen, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
30
|
Farrokhi A, Tafakori S, Daliri MR. Dynamic theta-modulated high frequency oscillations in rat medial prefrontal cortex during spatial working memory task. Physiol Behav 2022; 254:113912. [PMID: 35835179 DOI: 10.1016/j.physbeh.2022.113912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/14/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022]
Abstract
Interaction of oscillatory rhythms at different frequencies is considered to provide a neuronal mechanism for information processing and transmission. These interactions have been suggested to have a vital role in cognitive functions such as working memory and decision-making. Here, we investigated the medial prefrontal cortex (mPFC), which is known to have a critical role in successful execution of spatial working memory tasks. We recorded local field potential oscillations from mPFC while rats performed a delayed-non-match-to-place (DNMTP) task. In the DNMTP task, the rat needed to decide actively about the pathway based on the information remembered in the first phase of each trial. Our analysis revealed a dynamic phase-amplitude coupling (PAC) between theta and high frequency oscillations (HFOs). This dynamic coupling emerged near the turning point and diminished afterward. Further, theta activity during the delay period, which is thought of as the maintenance phase, in the absence of the coupling, can predict task completion time. We previously reported diminished rat performance in the DNMTP task in response to electromagnetic radiation. Here, we report an increase in the theta rhythm during delay activity besides diminishing the coupling after electromagnetic radiation. These findings suggest that the different roles of the mPFC in working memory could be supported by separate mechanisms: Theta activity during the delay period for information maintenance and theta-HFOs phase-amplitude coupling relating to the decision-making procedure.
Collapse
Affiliation(s)
- Ashkan Farrokhi
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114 Iran
| | - Shiva Tafakori
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114 Iran
| | - Mohammad Reza Daliri
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114 Iran.
| |
Collapse
|
31
|
Insulin-like growth factor 1 regulates excitatory synaptic transmission in pyramidal neurons from adult prefrontal cortex. Neuropharmacology 2022; 217:109204. [PMID: 35931212 DOI: 10.1016/j.neuropharm.2022.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
Abstract
Insulin-like growth factor 1 (IGF1) influences synaptic function in addition to its role in brain development and aging. Although the expression levels of IGF1 and IGF1 receptor (IGF1R) peak during development and decline with age, the adult brain has abundant IGF1 or IGF1R expression. Studies reveal that IGF1 regulates the synaptic transmission in neurons from young animals. However, the action of IGF1 on neurons in the adult brain is still unclear. Here, we used prefrontal cortical (PFC) slices from adult mice (∼8 weeks old) to characterize the role of IGF1 on excitatory synaptic transmission in pyramidal neurons and the underlying molecular mechanisms. We first validated IGF1R expression in pyramidal neurons using translating ribosomal affinity purification assay. Then, using whole-cell patch-clamp recording, we found that IGF1 attenuated the amplitude of evoked excitatory postsynaptic current (EPSC) without affecting the frequency and amplitude of miniature EPSC. Furthermore, this decrease in excitatory neurotransmission was blocked by pharmacological inhibition of IGF1R or conditionally knockdown of IGF1R in PFC pyramidal neurons. In addition, we determined that IGF1-induced decrease of EPSC amplitude was due to postsynaptic effect (internalization of a-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid receptors [AMPAR]) rather than presynaptic glutamate release. Finally, we found that inhibition of metabotropic glutamate receptor subtype-1 (mGluR1) abolished IGF1-induced attenuation of evoked EPSC amplitude and decrease of AMPAR expression at synaptic membrane, suggesting mGluR1-mediated endocytosis of AMPAR was involved. Taken together, these data provide the first evidence that IGF1 regulates excitatory synaptic transmission in adult PFC via the interaction between IGF1R-dependent signaling pathway and mGluR1-mediated AMPAR endocytosis.
Collapse
|
32
|
Jiang J, Sheng C, Chen G, Liu C, Jin S, Li L, Jiang X, Han Y. Glucose metabolism patterns: A potential index to characterize brain ageing and predict high conversion risk into cognitive impairment. GeroScience 2022; 44:2319-2336. [PMID: 35581512 PMCID: PMC9616982 DOI: 10.1007/s11357-022-00588-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/07/2022] [Indexed: 12/28/2022] Open
Abstract
Exploring individual hallmarks of brain ageing is important. Here, we propose the age-related glucose metabolism pattern (ARGMP) as a potential index to characterize brain ageing in cognitively normal (CN) elderly people. We collected 18F-fluorodeoxyglucose (18F-FDG) PET brain images from two independent cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI, N = 127) and the Xuanwu Hospital of Capital Medical University, Beijing, China (N = 84). During follow-up (mean 80.60 months), 23 participants in the ADNI cohort converted to cognitive impairment. ARGMPs were identified using the scaled subprofile model/principal component analysis method, and cross-validations were conducted in both independent cohorts. A survival analysis was further conducted to calculate the predictive effect of conversion risk by using ARGMPs. The results showed that ARGMPs were characterized by hypometabolism with increasing age primarily in the bilateral medial superior frontal gyrus, anterior cingulate and paracingulate gyri, caudate nucleus, and left supplementary motor area and hypermetabolism in part of the left inferior cerebellum. The expression network scores of ARGMPs were significantly associated with chronological age (R = 0.808, p < 0.001), which was validated in both the ADNI and Xuanwu cohorts. Individuals with higher network scores exhibited a better predictive effect (HR: 0.30, 95% CI: 0.1340 ~ 0.6904, p = 0.0068). These findings indicate that ARGMPs derived from CN participants may represent a novel index for characterizing brain ageing and predicting high conversion risk into cognitive impairment.
Collapse
Affiliation(s)
- Jiehui Jiang
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China.
| | - Can Sheng
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Guanqun Chen
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Chunhua Liu
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China
| | - Shichen Jin
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China
| | - Lanlan Li
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China
| | - Xueyan Jiang
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
- German Centre for Neurodegenerative Disease, Clinical Research Group, Venusberg Campus 1, 53121, Bonn, Germany
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
- Centre of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Clinical Research Centre for Geriatric Disorders, Beijing, 100053, China.
| |
Collapse
|
33
|
Mair RG, Francoeur MJ, Krell EM, Gibson BM. Where Actions Meet Outcomes: Medial Prefrontal Cortex, Central Thalamus, and the Basal Ganglia. Front Behav Neurosci 2022; 16:928610. [PMID: 35864847 PMCID: PMC9294389 DOI: 10.3389/fnbeh.2022.928610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Medial prefrontal cortex (mPFC) interacts with distributed networks that give rise to goal-directed behavior through afferent and efferent connections with multiple thalamic nuclei and recurrent basal ganglia-thalamocortical circuits. Recent studies have revealed individual roles for different thalamic nuclei: mediodorsal (MD) regulation of signaling properties in mPFC neurons, intralaminar control of cortico-basal ganglia networks, ventral medial facilitation of integrative motor function, and hippocampal functions supported by ventral midline and anterior nuclei. Large scale mapping studies have identified functionally distinct cortico-basal ganglia-thalamocortical subnetworks that provide a structural basis for understanding information processing and functional heterogeneity within the basal ganglia. Behavioral analyses comparing functional deficits produced by lesions or inactivation of specific thalamic nuclei or subregions of mPFC or the basal ganglia have elucidated the interdependent roles of these areas in adaptive goal-directed behavior. Electrophysiological recordings of mPFC neurons in rats performing delayed non-matching-to position (DNMTP) and other complex decision making tasks have revealed populations of neurons with activity related to actions and outcomes that underlie these behaviors. These include responses related to motor preparation, instrumental actions, movement, anticipation and delivery of action outcomes, memory delay, and spatial context. Comparison of results for mPFC, MD, and ventral pallidum (VP) suggest critical roles for mPFC in prospective processes that precede actions, MD for reinforcing task-relevant responses in mPFC, and VP for providing feedback about action outcomes. Synthesis of electrophysiological and behavioral results indicates that different networks connecting mPFC with thalamus and the basal ganglia are organized to support distinct functions that allow organisms to act efficiently to obtain intended outcomes.
Collapse
Affiliation(s)
- Robert G. Mair
- Department of Psychology, The University of New Hampshire, Durham, NH, United States
| | - Miranda J. Francoeur
- Neural Engineering and Translation Labs, University of California, San Diego, San Diego, CA, United States
| | - Erin M. Krell
- Department of Psychology, The University of New Hampshire, Durham, NH, United States
| | - Brett M. Gibson
- Department of Psychology, The University of New Hampshire, Durham, NH, United States
| |
Collapse
|
34
|
Nakayama H, Gerkin RC, Rinberg D. A behavioral paradigm for measuring perceptual distances in mice. CELL REPORTS METHODS 2022; 2:100233. [PMID: 35784646 PMCID: PMC9243525 DOI: 10.1016/j.crmeth.2022.100233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/20/2022] [Accepted: 05/17/2022] [Indexed: 01/22/2023]
Abstract
Perceptual similarities between a specific stimulus and other stimuli of the same modality provide valuable information about the structure and geometry of sensory spaces. While typically assessed in human behavioral experiments, perceptual similarities-or distances-are rarely measured in other species. However, understanding the neural computations responsible for sensory representations requires the monitoring and often manipulation of neural activity, which is more readily achieved in non-human experimental models. Here, we develop a behavioral paradigm that enables the quantification of perceptual similarity between sensory stimuli using mouse olfaction as a model system.
Collapse
Affiliation(s)
| | - Richard C. Gerkin
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Dmitry Rinberg
- Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
- Department of Physics, New York University, New York, NY 10003, USA
| |
Collapse
|
35
|
Cardoso-Cruz H, Laranjeira I, Monteiro C, Galhardo V. Altered prefrontal-striatal theta-band oscillatory dynamics underlie working memory deficits in neuropathic pain rats. Eur J Pain 2022; 26:1546-1568. [PMID: 35603472 DOI: 10.1002/ejp.1982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prelimbic medial prefrontal cortex (PL-mPFC) and nucleus accumbens core region (NAcc) play an important role in supporting several executive cognitive mechanisms, such as spatial working-memory (WM). Recently, this circuit has been also associated with both sensory and affective components of pain. However, it is still unclear whether this circuit is endogenously engaged in neuropathic pain-related cognitive dysfunctions. METHODS To answer this question, we induced the expression of halorhodopsin in local PL-mPFC neurons projecting to NAcc, and then selectively inhibited the terminals of these neurons in the NAcc while recording neural activity during the performance of a delayed non-match to sample (DNMS) spatial WM task. Within-subject behavioral performance and PL-mPFC to NAcc circuit neural activity was assessed after the onset of a persistent rodent neuropathic pain model - spared nerve injury (SNI). RESULTS Our results revealed that the induction of the neuropathy reduced WM performance, and altered the interplay between PL-mPFC and NAcc neurons namely in increasing the functional connectivity from NAcc to PL-mPFC, particularly in the theta-band spontaneous oscillations; in addition, these behavioral and functional perturbations were partially reversed by selective optogenetic inhibition of PL-mPFC neuron terminals into the NAcc during the DNMS task delay-period, without significant antinociceptive effects. CONCLUSIONS Altogether, these results strongly suggest that the PL-mPFC excitatory output into the NAcc plays an important role in the deregulation of WM under pain conditions. SIGNIFICANCE Selective optogenetic inhibition of prefrontal-striatal microcircuit reverses pain-related working memory deficits, but has no significant impact on pain responses. Neuropathic pain underlies an increase of functional connectivity between the nucleus accumbens core area and the prelimbic medial prefrontal cortex mediated by theta-band activity.
Collapse
Affiliation(s)
- Helder Cardoso-Cruz
- Instituto de Investigação e Inovação em Saúde (i3S), Pain Neurobiology Group; Universidade do Porto, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135, Porto, Portugal.,Faculdade de Medicina (FMUP), Departamento de Biomedicina - Unidade de Biologia Experimental; Universidade do Porto, 4200-319, Porto, Portugal
| | - Inês Laranjeira
- Instituto de Investigação e Inovação em Saúde (i3S), Pain Neurobiology Group; Universidade do Porto, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135, Porto, Portugal.,Faculdade de Medicina (FMUP), Departamento de Biomedicina - Unidade de Biologia Experimental; Universidade do Porto, 4200-319, Porto, Portugal.,Mestrado em Neurobiologia da Faculdade de Medicina da Universidade do Porto. 4200-319, Porto, Portugal
| | - Clara Monteiro
- Instituto de Investigação e Inovação em Saúde (i3S), Pain Neurobiology Group; Universidade do Porto, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135, Porto, Portugal.,Faculdade de Medicina (FMUP), Departamento de Biomedicina - Unidade de Biologia Experimental; Universidade do Porto, 4200-319, Porto, Portugal
| | - Vasco Galhardo
- Instituto de Investigação e Inovação em Saúde (i3S), Pain Neurobiology Group; Universidade do Porto, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135, Porto, Portugal.,Faculdade de Medicina (FMUP), Departamento de Biomedicina - Unidade de Biologia Experimental; Universidade do Porto, 4200-319, Porto, Portugal
| |
Collapse
|
36
|
Xing D, Li J, Zhang T, Xu B. A Brain-Inspired Approach for Collision-Free Movement Planning in the Small Operational Space. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:2094-2105. [PMID: 34520379 DOI: 10.1109/tnnls.2021.3111051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In a small operational space, e.g., mesoscale or microscale, we need to control movements carefully because of fragile objects. This article proposes a novel structure based on spiking neural networks to imitate the joint function of multiple brain regions in visual guiding in the small operational space and offers two channels to achieve collision-free movements. For the state sensation, we simulate the primary visual cortex to directly extract features from multiple input images and the high-level visual cortex to obtain the object distance, which is indirectly measurable, in the Cartesian coordinates. Our approach emulates the prefrontal cortex from two aspects: multiple liquid state machines to predict distances of the next several steps based on the preceding trajectory and a block-based excitation-inhibition feedforward network to plan movements considering the target and prediction. Responding to "too close" states needs rich temporal information, and we leverage a cerebellar network for the subconscious reaction. From the viewpoint of the inner pathway, they also form two channels. One channel starts from state extraction to attraction movement planning, both in the camera coordinates, behaving visual-servo control. The other is the collision-avoidance channel, which calculates distances, predicts trajectories, and reacts to the repulsion, all in the Cartesian coordinates. We provide appropriate supervised signals for coarse training and apply reinforcement learning to modify synapses in accordance with reality. Simulation and experiment results validate the proposed method.
Collapse
|
37
|
Activation of TGR5 Ameliorates Streptozotocin-Induced Cognitive Impairment by Modulating Apoptosis, Neurogenesis, and Neuronal Firing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3716609. [PMID: 35464765 PMCID: PMC9033389 DOI: 10.1155/2022/3716609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022]
Abstract
Takeda G protein-coupled receptor 5 (TGR5) is the first known G protein-coupled receptor specific for bile acids and is recognized as a new and critical target for type 2 diabetes and metabolic syndrome. It is expressed in many brain regions associated with memory such as the hippocampus and frontal cortex. Here, we hypothesize that activation of TGR5 may ameliorate streptozotocin- (STZ-) induced cognitive impairment. The mouse model of cognitive impairment was established by a single intracerebroventricular (ICV) injection of STZ (3.0 mg/kg), and we found that TGR5 activation by its agonist INT-777 (1.5 or 3.0 μg/mouse, ICV injection) ameliorated spatial memory impairment in the Morris water maze and Y-maze tests. Importantly, INT-777 reversed STZ-induced downregulation of TGR5 and glucose usage deficits. Our results further showed that INT-777 suppressed neuronal apoptosis and improved neurogenesis which were involved in tau phosphorylation and CREB-BDNF signaling. Moreover, INT-777 increased action potential firing of excitatory pyramidal neurons in the hippocampal CA3 and medial prefrontal cortex of ICV-STZ groups. Taken together, these findings reveal that activation of TGR5 has a neuroprotective effect against STZ-induced cognitive impairment by modulating apoptosis, neurogenesis, and neuronal firing in the brain and TGR5 might be a novel and potential target for Alzheimer's disease.
Collapse
|
38
|
Gao L, Liu S, Gou L, Hu Y, Liu Y, Deng L, Ma D, Wang H, Yang Q, Chen Z, Liu D, Qiu S, Wang X, Wang D, Wang X, Ren B, Liu Q, Chen T, Shi X, Yao H, Xu C, Li CT, Sun Y, Li A, Luo Q, Gong H, Xu N, Yan J. Single-neuron projectome of mouse prefrontal cortex. Nat Neurosci 2022; 25:515-529. [PMID: 35361973 DOI: 10.1038/s41593-022-01041-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022]
Abstract
Prefrontal cortex (PFC) is the cognitive center that integrates and regulates global brain activity. However, the whole-brain organization of PFC axon projections remains poorly understood. Using single-neuron reconstruction of 6,357 mouse PFC projection neurons, we identified 64 projectome-defined subtypes. Each of four previously known major cortico-cortical subnetworks was targeted by a distinct group of PFC subtypes defined by their first-order axon collaterals. Further analysis unraveled topographic rules of soma distribution within PFC, first-order collateral branch point-dependent target selection and terminal arbor distribution-dependent target subdivision. Furthermore, we obtained a high-precision hierarchical map within PFC and three distinct functionally related PFC modules, each enriched with internal recurrent connectivity. Finally, we showed that each transcriptome subtype corresponds to multiple projectome subtypes found in different PFC subregions. Thus, whole-brain single-neuron projectome analysis reveals organization principles of axon projections within and outside PFC and provides the essential basis for elucidating neuronal connectivity underlying diverse PFC functions.
Collapse
Affiliation(s)
- Le Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Sang Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Lingfeng Gou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yachuang Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Yanhe Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Li Deng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Danyi Ma
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Haifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qiaoqiao Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoqin Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Dechen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shou Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaofei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Danying Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinran Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Biyu Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qingxu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tianzhi Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxue Shi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chun Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu T Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yangang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China.,School of Biomedical Engineering, Hainan University, Haikou, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China. .,HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China.
| | - Ninglong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
39
|
Lin C, Oh MM, Disterhoft JF. Aging-Related Alterations to Persistent Firing in the Lateral Entorhinal Cortex Contribute to Deficits in Temporal Associative Memory. Front Aging Neurosci 2022; 14:838513. [PMID: 35360205 PMCID: PMC8963507 DOI: 10.3389/fnagi.2022.838513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
With aging comes a myriad of different disorders, and cognitive decline is one of them. Studies have consistently shown a decline amongst aged subjects in their ability to acquire and maintain temporal associative memory. Defined as the memory of the association between two objects that are separated in time, temporal associative memory is dependent on neocortical structures such as the prefrontal cortex and temporal lobe structures. For this memory to be acquired, a mental trace of the first stimulus is necessary to bridge the temporal gap so the two stimuli can be properly associated. Persistent firing, the ability of the neuron to continue to fire action potentials even after the termination of a triggering stimulus, is one mechanism that is posited to support this mental trace. A recent study demonstrated a decline in persistent firing ability in pyramidal neurons of layer III of the lateral entorhinal cortex with aging, contributing to learning impairments in temporal associative memory acquisition. In this work, we explore the potential ways persistent firing in lateral entorhinal cortex (LEC) III supports temporal associative memory, and how aging may disrupt this mechanism within the temporal lobe system, resulting in impairment in this crucial behavior.
Collapse
|
40
|
Wei G, Sirohi S, Walker BM. Dysregulated kappa-opioid receptors in the medial prefrontal cortex contribute to working memory deficits in alcohol dependence. Addict Biol 2022; 27:e13138. [PMID: 35138672 PMCID: PMC8829053 DOI: 10.1111/adb.13138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 01/14/2023]
Abstract
Impaired working memory is one symptom contributing to compromised executive function in alcohol use disorder (AUD). Dysregulation of cortical dynorphin (DYN) and κ-opioid receptors (KORs) has been implicated in alcohol dependence-induced impairment in executive function. The present experiments test the hypothesis that dysregulated medial prefrontal cortex (mPFC) KORs contribute to impaired working memory in alcohol dependence. Alcohol dependence was induced in male Wistar rats via 4 months of intermittent ethanol vapor exposure prior to training/testing in an mPFC-dependent working memory task (delayed nonmatching-to-sample task; DNMST). mPFC KOR function in alcohol-naïve rats was compared with that of alcohol-dependent and nondependent rats using a DYN A-stimulated [35S ]GTPγS coupling assay. A functional role for mPFC KORs in the regulation of working memory was assessed via intra-mPFC infusions of a KOR agonist prior to assessment in the DNMST, and the contribution of mPFC KORs to compromised working memory in dependence was assessed via mPFC infusions of the KOR antagonist norbinaltorphimine (nor-BNI). In alcohol-dependent rats, impaired performance in the DNMST confirmed compromised working memory. Furthermore, DYN A-stimulated mPFC KOR function was pathologically increased in alcohol-dependent rats compared with nondependent and alcohol-naïve rats. Additionally, mPFC KOR involvement in working memory was functionally confirmed by intra-mPFC KOR agonist-induced deficits in DNMST performance. Importantly, alcohol dependence-induced impairment in the DNMST was ameliorated by intra-mPFC KOR antagonism. Regulation of working memory by mPFC KORs and alcohol dependence-induced dysregulation of mPFC KOR function identify a novel therapeutic target to treat AUD-related symptoms of working memory impairment.
Collapse
Affiliation(s)
- Gengze Wei
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Sunil Sirohi
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA
| | - Brendan M Walker
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL.,Correspondence: Brendan M. Walker, Ph.D., Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychiatry & Behavioral Neurosciences, University of South Florida, 3515 E. Fletcher, Tampa, FL 33613, 813-974-3715 (office),
| |
Collapse
|
41
|
You 游文愷 WK, Mysore SP. Dynamics of Visual Perceptual Decision-Making in Freely Behaving Mice. eNeuro 2022; 9:ENEURO.0161-21.2022. [PMID: 35228308 DOI: 10.1101/2020.02.20.958652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 05/25/2023] Open
Abstract
The temporal dynamics of perceptual decisions offer a key window into the cognitive processes contributing to decision-making. Investigating perceptual dynamics in a genetically tractable animal model can facilitate the subsequent unpacking of the underlying neural mechanisms. Here, we investigated the time course as well as fundamental psychophysical constants governing visual perceptual decision-making in freely behaving mice. We did so by analyzing response accuracy against reaction time (RT), i.e., conditional accuracy, in a series of two-alternative forced choice (2-AFC) orientation discrimination tasks in which we varied target size, luminance, duration, and presence of a foil. Our results quantified two distinct stages in the time course of mouse visual decision-making: a "sensory encoding" stage in which conditional accuracy exhibits a classic trade-off with response speed, and a subsequent "short-term memory (STM)-dependent" stage in which conditional accuracy exhibits a classic asymptotic decay following stimulus offset. We estimated the duration of visual sensory encoding as 200-320 ms across tasks, the lower bound of the duration of STM as ∼1700 ms, and the briefest duration of visual stimulus input that is informative as ≤50 ms. Separately, by varying stimulus onset delay, we demonstrated that the conditional accuracy function (CAF) and RT distribution can be independently modulated, and found that the duration for which mice naturally withhold from responding is a quantitative metric of impulsivity. Taken together, our results establish a quantitative foundation for investigating the neural circuit bases of visual decision dynamics in mice.
Collapse
Affiliation(s)
- Wen-Kai You 游文愷
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205
| | - Shreesh P Mysore
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
42
|
Dynamics of Visual Perceptual Decision-Making in Freely Behaving Mice. eNeuro 2022; 9:ENEURO.0161-21.2022. [PMID: 35228308 PMCID: PMC8925649 DOI: 10.1523/eneuro.0161-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/21/2022] Open
Abstract
The temporal dynamics of perceptual decisions offer a key window into the cognitive processes contributing to decision-making. Investigating perceptual dynamics in a genetically tractable animal model can facilitate the subsequent unpacking of the underlying neural mechanisms. Here, we investigated the time course as well as fundamental psychophysical constants governing visual perceptual decision-making in freely behaving mice. We did so by analyzing response accuracy against reaction time (RT), i.e., conditional accuracy, in a series of two-alternative forced choice (2-AFC) orientation discrimination tasks in which we varied target size, luminance, duration, and presence of a foil. Our results quantified two distinct stages in the time course of mouse visual decision-making: a “sensory encoding” stage in which conditional accuracy exhibits a classic trade-off with response speed, and a subsequent “short-term memory (STM)-dependent” stage in which conditional accuracy exhibits a classic asymptotic decay following stimulus offset. We estimated the duration of visual sensory encoding as 200–320 ms across tasks, the lower bound of the duration of STM as ∼1700 ms, and the briefest duration of visual stimulus input that is informative as ≤50 ms. Separately, by varying stimulus onset delay, we demonstrated that the conditional accuracy function (CAF) and RT distribution can be independently modulated, and found that the duration for which mice naturally withhold from responding is a quantitative metric of impulsivity. Taken together, our results establish a quantitative foundation for investigating the neural circuit bases of visual decision dynamics in mice.
Collapse
|
43
|
Acetylcholine deficiency disrupts extratelencephalic projection neurons in the prefrontal cortex in a mouse model of Alzheimer's disease. Nat Commun 2022; 13:998. [PMID: 35194025 PMCID: PMC8863829 DOI: 10.1038/s41467-022-28493-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Short-term memory deficits have been associated with prefrontal cortex (PFC) dysfunction in Alzheimer’s disease (AD) and AD mouse models. Extratelencephalic projection (ET) neurons in the PFC play a key role in short-term working memory, but the mechanism between ET neuronal dysfunction in the PFC and short-term memory impairment in AD is not well understood. Here, using fiber photometry and optogenetics, we found reduced neural activity in the ET neurons in the medial prefrontal cortex (mPFC) of the 5×FAD mouse model led to object recognition memory (ORM) deficits. Activation of ET neurons in the mPFC of 5×FAD mice rescued ORM impairment, and inhibition of ET neurons in the mPFC of wild type mice impaired ORM expression. ET neurons in the mPFC that project to supramammillary nucleus were necessary for ORM expression. Viral tracing and in vivo recording revealed that mPFC ET neurons received fewer cholinergic inputs from the basal forebrain in 5×FAD mice. Furthermore, activation of cholinergic fibers in the mPFC rescued ORM deficits in 5×FAD mice, while acetylcholine deficiency reduced the response of ET neurons in the mPFC to familiar objects. Taken together, our results revealed a neural mechanism behind ORM impairment in 5×FAD mice. Short-term memory deficits are associated with prefrontal cortex dysfunction in Alzheimer’s disease. Here, the authors assessed extratelencephalic projection (ET) neurons and found reduced ET neural activity in the medial prefrontal cortex (mPFC) and showed ET neurons received fewer cholinergic inputs from the basal forebrain in 5×FAD mice which led to object recognition memory deficits.
Collapse
|
44
|
Wang F, Wang Q, Wang L, Ren J, Song X, Tian Y, Zheng C, Yang J, Ming D. Low-Intensity Focused Ultrasound Stimulation Ameliorates Working Memory Dysfunctions in Vascular Dementia Rats via Improving Neuronal Environment. Front Aging Neurosci 2022; 14:814560. [PMID: 35264943 PMCID: PMC8899543 DOI: 10.3389/fnagi.2022.814560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Working memory impairment is one of the remarkable cognitive dysfunctions induced by vascular dementia (VD), and it is necessary to explore an effective treatment. Recently, low-intensity focused ultrasound stimulation (LIFUS) has been found notable neuroprotective effects on some neurological diseases, including VD. However, whether it could ameliorate VD-induced working memory impairment was still not been clarified. The purpose of this study was to address this issue and the underlying mechanism. We established VD rat model using the bilateral common carotid artery occlusion (BCCAO) and applied the LIFUS (center frequency = 0.5 MHz; Ispta = 500 mW/cm2, 10 mins/day) to bilateral medial prefrontal cortex (mPFC) for 2 weeks since 2 weeks after the surgery. The main results showed that the LIFUS could significantly improve the performance of VD rats in the specific working memory tasks (delayed nonmatch-to-sample task and step-down task), which might be associated with the improved synaptic function. We also found the improvement in the cerebral blood flow (CBF) and reduced neuroinflammation in mPFC after LIFUS treatment indicated by the inhibition of Toll-like receptor (TLR4)/nuclear factor kappa B (NF-κB) pathway and the decrease of proinflammatory cytokines. The amelioration of CBF and neuroinflammation may promote the living environment of the neurons in VD which then contribute to the survival of neurons and the improvement in synaptic function. Taken together, our findings indicate that LIFUS targeted mPFC can effectively ameliorate reward-based spatial working memory and fear working memory dysfunctions induced by VD via restoring the living environment, survivability, and synaptic functions of the neurons in mPFC of VD rats. This study adds to the evidence that LIFUS could become a promising and non-invasive treatment strategy for the clinical treatment of central nervous system diseases related to cognitive impairments in the future.
Collapse
Affiliation(s)
- Faqi Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qian Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ling Wang
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Jing Ren
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xizi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Yutao Tian
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Chenguang Zheng
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Jiajia Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- *Correspondence: Jiajia Yang,
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Dong Ming,
| |
Collapse
|
45
|
Wang L, Ge C, Wang F, Guo Z, Hong W, Jiang C, Ji B, Wang M, Li C, Sun B, Liu J. Dense Packed Drivable Optrode Array for Precise Optical Stimulation and Neural Recording in Multiple-Brain Regions. ACS Sens 2021; 6:4126-4135. [PMID: 34779610 DOI: 10.1021/acssensors.1c01650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The input-output function of neural networks is complicated due to the huge number of neurons and synapses, and some high-density implantable electrophysiology recording tools with a plane structure have been developed for neural circuit studies in recent years. However, traditional plane probes are limited by the record-only function and inability to monitor multiple-brain regions simultaneously, and the complete cognition of neural networks still has a long way away. Herein, we develop a three-dimensional (3D) high-density drivable optrode array for multiple-brain recording and precise optical stimulation simultaneously. The optrode array contains four-layer probes with 1024 microelectrodes and two thinned optical fibers assembled into a 3D-printed drivable module. The recording performance of microelectrodes is optimized by electrochemical modification, and precise implantation depth control of drivable optrodes is verified in agar. Moreover, in vivo experiments indicate neural activities from CA1 and dentate gyrus regions are monitored, and a tracking of the neuron firing for 2 weeks is achieved. The suppression of neuron firing by blue light has been realized through high-density optrodes during optogenetics experiments. With the feature of large-scale recording, optoelectronic integration, and 3D assembly, the high-density drivable optrode array possesses an important value in the research of brain diseases and neural networks.
Collapse
Affiliation(s)
- Longchun Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaofan Ge
- Institute of Neuroscience and Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fang Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200020, China
| | - Zhejun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen Hong
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunpeng Jiang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bowen Ji
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
| | - Minghao Wang
- College of Electronics and Information Hangzhou Dianzi University, Hangzhou 310018, China
| | - Chengyu Li
- Institute of Neuroscience and Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200020, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
46
|
Wang Y, Yin X, Zhang Z, Li J, Zhao W, Guo ZV. A cortico-basal ganglia-thalamo-cortical channel underlying short-term memory. Neuron 2021; 109:3486-3499.e7. [PMID: 34469773 DOI: 10.1016/j.neuron.2021.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/26/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022]
Abstract
Persistent activity underlying short-term memory encodes sensory information or instructs specific future movement and, consequently, has a crucial role in cognition. Despite extensive study, how the same set of neurons respond differentially to form selective persistent activity remains unknown. Here, we report that the cortico-basal ganglia-thalamo-cortical (CBTC) circuit supports the formation of selective persistent activity in mice. Optogenetic activation or inactivation of the basal ganglia output nucleus substantia nigra pars reticulata (SNr)-to-thalamus pathway biased future licking choice, without affecting licking execution. This perturbation differentially affected persistent activity in the frontal cortex and selectively modulated neural trajectory that encodes one choice but not the other. Recording showed that SNr neurons had selective persistent activity distributed across SNr, but with a hotspot in the mediolateral region. Optogenetic inactivation of the frontal cortex also differentially affected persistent activity in the SNr. Together, these results reveal a CBTC channel functioning to produce selective persistent activity underlying short-term memory.
Collapse
Affiliation(s)
- Yu Wang
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, Beijing, China 100084; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China 100084
| | - Xinxin Yin
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, Beijing, China 100084; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China 100084
| | - Zhouzhou Zhang
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, Beijing, China 100084; School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Jiejue Li
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, Beijing, China 100084; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China 100084
| | - Wenyu Zhao
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, Beijing, China 100084; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China 100084
| | - Zengcai V Guo
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, Beijing, China 100084; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China 100084.
| |
Collapse
|
47
|
Entrainment of Astrocytic and Neuronal Ca 2+ Population Dynamics During Information Processing of Working Memory in Mice. Neurosci Bull 2021; 38:474-488. [PMID: 34699030 PMCID: PMC9106780 DOI: 10.1007/s12264-021-00782-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022] Open
Abstract
Astrocytes are increasingly recognized to play an active role in learning and memory, but whether neural inputs can trigger event-specific astrocytic Ca2+ dynamics in real time to participate in working memory remains unclear due to the difficulties in directly monitoring astrocytic Ca2+ dynamics in animals performing tasks. Here, using fiber photometry, we showed that population astrocytic Ca2+ dynamics in the hippocampus were gated by sensory inputs (centered at the turning point of the T-maze) and modified by the reward delivery during the encoding and retrieval phases. Notably, there was a strong inter-locked and antagonistic relationship between the astrocytic and neuronal Ca2+ dynamics with a 3-s phase difference. Furthermore, there was a robust synchronization of astrocytic Ca2+ at the population level among the hippocampus, medial prefrontal cortex, and striatum. The inter-locked, bidirectional communication between astrocytes and neurons at the population level may contribute to the modulation of information processing in working memory.
Collapse
|
48
|
Guo B, Fan Y, Wang M, Cheng Y, Ji B, Chen Y, Wang G. Flexible Neural Probes with Electrochemical Modified Microelectrodes for Artifact-Free Optogenetic Applications. Int J Mol Sci 2021; 22:ijms222111528. [PMID: 34768957 PMCID: PMC8584107 DOI: 10.3390/ijms222111528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
With the rapid increase in the use of optogenetics to investigate nervous systems, there is high demand for neural interfaces that can simultaneously perform optical stimulation and electrophysiological recording. However, high-magnitude stimulation artifacts have prevented experiments from being conducted at a desirably high temporal resolution. Here, a flexible polyimide-based neural probe with polyethylene glycol (PEG) packaged optical fiber and Pt-Black/PEDOT-GO (graphene oxide doped poly(3,4-ethylene-dioxythiophene)) modified microelectrodes was developed to reduce the stimulation artifacts that are induced by photoelectrochemical (PEC) and photovoltaic (PV) effects. The advantages of this design include quick and accurate implantation and high-resolution recording capacities. Firstly, electrochemical performance of the modified microelectrodes is significantly improved due to the large specific surface area of the GO layer. Secondly, good mechanical and electrochemical stability of the modified microelectrodes is obtained by using Pt-Black as bonding layer. Lastly, bench noise recordings revealed that PEC noise amplitude of the modified neural probes could be reduced to less than 50 µV and no PV noise was detected when compared to silicon-based neural probes. The results indicate that this device is a promising optogenetic tool for studying local neural circuits.
Collapse
Affiliation(s)
- Bangbang Guo
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China; (B.G.); (Y.F.); (Y.C.)
- MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ye Fan
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China; (B.G.); (Y.F.); (Y.C.)
- MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Minghao Wang
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China; (B.G.); (Y.F.); (Y.C.)
- MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Correspondence: (M.W.); (G.W.)
| | - Yuhua Cheng
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China; (B.G.); (Y.F.); (Y.C.)
- MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Bowen Ji
- The Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710060, China;
| | - Ying Chen
- The Institute of Flexible Electronics Technology of THU, Jiaxing 314000, China;
| | - Gaofeng Wang
- MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Correspondence: (M.W.); (G.W.)
| |
Collapse
|
49
|
Morningstar MD, Barnett WH, Goodlett CR, Kuznetsov A, Lapish CC. Understanding ethanol's acute effects on medial prefrontal cortex neural activity using state-space approaches. Neuropharmacology 2021; 198:108780. [PMID: 34480911 PMCID: PMC8488975 DOI: 10.1016/j.neuropharm.2021.108780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/10/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022]
Abstract
Acute ethanol (EtOH) intoxication results in several maladaptive behaviors that may be attributable, in part, to the effects of EtOH on neural activity in medial prefrontal cortex (mPFC). The acute effects of EtOH on mPFC function have been largely described as inhibitory. However, translating these observations on function into a mechanism capable of delineating acute EtOH's effects on behavior has proven difficult. This review highlights the role of acute EtOH on electrophysiological measurements of mPFC function and proposes that interpreting these changes through the lens of dynamical systems theory is critical to understand the mechanisms that mediate the effects of EtOH intoxication on behavior. Specifically, the present review posits that the effects of EtOH on mPFC N-methyl-d-aspartate (NMDA) receptors are critical for the expression of impaired behavior following EtOH consumption. This hypothesis is based on the observation that recurrent activity in cortical networks is supported by NMDA receptors, and, when disrupted, may lead to impairments in cognitive function. To evaluate this hypothesis, we discuss the representation of mPFC neural activity in low-dimensional, dynamic state spaces. This approach has proven useful for identifying the underlying computations necessary for the production of behavior. Ultimately, we hypothesize that EtOH-related alterations to NMDA receptor function produces alterations that can be effectively conceptualized as impairments in attractor dynamics and provides insight into how acute EtOH disrupts forms of cognition that rely on mPFC function. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
| | - William H Barnett
- Indiana University-Purdue University Indianapolis, Department of Psychology, USA
| | - Charles R Goodlett
- Indiana University-Purdue University Indianapolis, Department of Psychology, USA; Indiana University School of Medicine, Stark Neurosciences, USA
| | - Alexey Kuznetsov
- Indiana University-Purdue University Indianapolis, Department of Mathematics, USA; Indiana University School of Medicine, Stark Neurosciences, USA
| | - Christopher C Lapish
- Indiana University-Purdue University Indianapolis, Department of Psychology, USA; Indiana University School of Medicine, Stark Neurosciences, USA
| |
Collapse
|
50
|
Bae JW, Jeong H, Yoon YJ, Bae CM, Lee H, Paik SB, Jung MW. Parallel processing of working memory and temporal information by distinct types of cortical projection neurons. Nat Commun 2021; 12:4352. [PMID: 34272368 PMCID: PMC8285375 DOI: 10.1038/s41467-021-24565-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
It is unclear how different types of cortical projection neurons work together to support diverse cortical functions. We examined the discharge characteristics and inactivation effects of intratelencephalic (IT) and pyramidal tract (PT) neurons-two major types of cortical excitatory neurons that project to cortical and subcortical structures, respectively-in the deep layer of the medial prefrontal cortex in mice performing a delayed response task. We found stronger target-dependent firing of IT than PT neurons during the delay period. We also found the inactivation of IT neurons, but not PT neurons, impairs behavioral performance. In contrast, PT neurons carry more temporal information than IT neurons during the delay period. Our results indicate a division of labor between IT and PT projection neurons in the prefrontal cortex for the maintenance of working memory and for tracking the passage of time, respectively.
Collapse
Affiliation(s)
- Jung Won Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Huijeong Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
| | - Young Ju Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Chan Mee Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
| | - Hyeonsu Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Min Whan Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea.
| |
Collapse
|