1
|
Ashmore JS, Slippers B, Duong TA, Dittrich‐Schröder G. Understanding the genetics of sex determination in insects and its relevance to genetic pest management. INSECT MOLECULAR BIOLOGY 2025; 34:363-380. [PMID: 39739940 PMCID: PMC12054349 DOI: 10.1111/imb.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
Sex determination pathways regulate male and female-specific development and differentiation and offer potential targets for genetic pest management methods. Insect sex determination pathways are comprised of primary signals, relay genes and terminal genes. Primary signals of coleopteran, dipteran, hymenopteran and lepidopteran species are highly diverse and regulate the sex-specific splicing of relay genes based on the primary signal dosage, amino acid composition or the interaction with paternally inherited genes. In coleopterans, hymenopterans and some dipterans, relay genes are Transformer orthologs from the serine-arginine protein family that regulate sex-specific splicing of the terminal genes. Alternative genes regulate the splicing of the terminal genes in dipterans that lack Transformer orthologs and lepidopterans. Doublesex and Fruitless orthologs are the terminal genes. Doublesex and Fruitless orthologs are highly conserved zinc-finger proteins that regulate the expression of downstream proteins influencing physical traits and courtship behaviours in a sex-specific manner. Genetic pest management methods can use different mechanisms to exploit or disrupt female-specific regions of different sex determination genes. Female-specific regions of sex determination genes can be exploited to produce a lethal gene only in females or disrupted to impede female development or fertility. Reducing the number of fertile females in pest populations creates a male-biased sex ratio and eventually leads to the local elimination of the pest population. Knowledge on the genetic basis of sex determination is important to enable these sex determination pathways to be exploited for genetic pest management.
Collapse
Affiliation(s)
- Jade S. Ashmore
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| | - Tuan A. Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| | - Gudrun Dittrich‐Schröder
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| |
Collapse
|
2
|
Compton A, Sharma A, Hempel M, Aryan A, Biedler JK, Potters MB, Chandrasegaran K, Vinauger C, Tu Z. Differential elimination of marked sex chromosomes enables production of nontransgenic male mosquitoes in a single strain. Proc Natl Acad Sci U S A 2025; 122:e2412149122. [PMID: 40339129 PMCID: PMC12087967 DOI: 10.1073/pnas.2412149122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/25/2025] [Indexed: 05/10/2025] Open
Abstract
Diverse genetic strategies are being pursued to control mosquito-borne infectious diseases. These strategies often rely on the release of nonbiting males to either reduce the target mosquito population or render them resistant to pathogens. Male-only releases are important as any contaminating females can bite and potentially transmit pathogens. Despite significant efforts, it remains a major bottleneck to reliably and efficiently separate males from females, especially when nontransgenic males are preferred. In the yellow fever mosquito Aedes aegypti, sex is determined by a pair of homomorphic sex chromosomes, with the dominant male-determining locus (the M locus) and its counterpart (the m locus) embedded in an M-bearing and an m-bearing chromosome 1, respectively. We utilized both naturally occurring and engineered sex-linked recessive lethal alleles (RLAs) to create sex separation strains for Ae. aegypti on the basis of differential elimination of marked sex chromosomes (DeMark). DeMark strains are self-sustaining and produce nontransgenic males that are readily separated from individuals carrying RLA- and transgene-marked m chromosomes. For example, the marked m chromosome in the heterozygous mother in some strains was only inherited by her female progeny due to RLA-mediated incompatibility with the M-bearing chromosome in the father, producing nontransgenic males and transgenic females, generation after generation. We further explore strategies to conditionally eliminate females that contain marked sex chromosomes. We also discuss DeMark designs that are applicable for efficient sex separation in organisms with well-differentiated X and Y chromosomes, such as the Anopheles mosquitoes.
Collapse
Affiliation(s)
- Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Atashi Sharma
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Melanie Hempel
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Azadeh Aryan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - James K. Biedler
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Mark B. Potters
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | | | - Clément Vinauger
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
3
|
Hempel M, Warren JD, Liang J, Hughes C, Tu Z. Mosquito sex determination: recent advances and applications. CURRENT OPINION IN INSECT SCIENCE 2025:101385. [PMID: 40368280 DOI: 10.1016/j.cois.2025.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
Mosquitoes have evolved divergent sex-determining chromosomes and they employ diverse primary signals for sex-determination. As only females feed on vertebrate blood, manipulating genes involved in sex determination can facilitate genetic control measures for mosquito-borne infectious diseases such as dengue and malaria. We highlight new advances in mosquito sex determination, describe innovative applications, and discuss relevant evolutionary insights and future directions.
Collapse
Affiliation(s)
- Melanie Hempel
- Department of Biochemistry and the Fralin Life Sciences Institute Virginia Tech, Blacksburg, VA 24061.
| | - Joseph D Warren
- Department of Biochemistry and the Fralin Life Sciences Institute Virginia Tech, Blacksburg, VA 24061
| | - Jiangtao Liang
- Department of Biochemistry and the Fralin Life Sciences Institute Virginia Tech, Blacksburg, VA 24061
| | - Christen Hughes
- Department of Biochemistry and the Fralin Life Sciences Institute Virginia Tech, Blacksburg, VA 24061
| | - Zhijian Tu
- Department of Biochemistry and the Fralin Life Sciences Institute Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
4
|
Lozada-Chávez AN, Lozada-Chávez I, Alfano N, Palatini U, Sogliani D, Elfekih S, Degefa T, Sharakhova MV, Badolo A, Sriwichai P, Casas-Martínez M, Carlos BC, Carballar-Lejarazú R, Lambrechts L, Souza-Neto JA, Bonizzoni M. Adaptive genomic signatures of globally invasive populations of the yellow fever mosquito Aedes aegypti. Nat Ecol Evol 2025; 9:652-671. [PMID: 40155778 PMCID: PMC11976285 DOI: 10.1038/s41559-025-02643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/14/2025] [Indexed: 04/01/2025]
Abstract
In the arboviral vector Aedes aegypti, adaptation to anthropogenic environments has led to a major evolutionary shift separating the domestic Aedes aegypti aegypti (Aaa) ecotype from the wild Aedes aegypti formosus (Aaf) ecotype. Aaa mosquitoes are distributed globally and have higher vectorial capacity than Aaf, which remained in Africa. Despite the evolutionary and epidemiological relevance of this separation, inconsistent morphological data and a complex population structure have hindered the identification of genomic signals distinguishing the two ecotypes. Here we assessed the correspondence between the geographic distribution, population structure and genome-wide selection of 511 Aaf and 123 Aaa specimens and report adaptive signals in 186 genes that we call Aaa molecular signatures. Our results indicate that Aaa molecular signatures arose from standing variation associated with extensive ancestral polymorphisms in Aaf populations and have been co-opted for self-domestication through genomic and functional redundancy and local adaptation. Overall, we show that the behavioural shift of Ae. aegypti mosquitoes to live in association with humans relied on the fine regulation of chemosensory, neuronal and metabolic functions, as seen in the domestication processes of rabbits and silkworms. Our results also provide a foundation for the investigation of new genic targets for the control of Ae. aegypti populations.
Collapse
Affiliation(s)
| | - Irma Lozada-Chávez
- Evo-devo, Bioinformatics and Neuromorphic Information Processing groups, Institute of Computer Science and Faculty of Mathematics and Computer Science, Leipzig University, Leipzig, Germany
| | - Niccolò Alfano
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Human Technopole, Milan, Italy
| | - Umberto Palatini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA
| | - Davide Sogliani
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Samia Elfekih
- Australian Centre for Disease Preparedness, CSIRO Australia Bio21 Institute, School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Maria V Sharakhova
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mauricio Casas-Martínez
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México
| | - Bianca C Carlos
- School of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
- Research Group on Integrated Pest Management, School of Agronomy, Crop Protection Department, São Paulo State University, Botucatu, Brazil
| | - Rebeca Carballar-Lejarazú
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Jayme A Souza-Neto
- School of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | |
Collapse
|
5
|
Zhang Q, Chen H, Li Z, Qiao J, Liu P, Zheng C, Deng Z, Li X, Zhang H. Bdyof is a Y-chromosome-specific gene required for male development in Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2025; 81:1785-1793. [PMID: 39611441 DOI: 10.1002/ps.8577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND In many organisms, the Y chromosome contains important genes associated with sex determination and male reproductive development. However, there have been few studies of Y-chromosome-specific genes in non-model species due to the incomplete information of Y chromosome genome and difficulty in sequencing. Here, we screened 90 candidate Y-specific sequences in a constructed transcriptome assembly library by using the chromosome quotient method, among which 11 were unreported sequences associated with male reproductive development, including Bactrocera dorsalis Y-specific Oligozoospermia factor (Bdyof) with the highest expression in the testis. RESULTS CRISPR/Cas9-mediated knockout of Bdyof resulted in abnormal testis development, significantly reduced sperm count, and obviously lower egg hatching rate in homozygous mutant flies. In addition, Bdyof knockout decreased the expression of dsx-M. CONCLUSION This results provides new insights into the biological processes related to male reproductive development controlled by the Y-chromosome-specific gene Bdyof, thus providing a promising molecular target for the study of agricultural pests. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiuyuan Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziniu Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiao Qiao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peipei Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenjun Zheng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhurong Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoxue Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Han Y, Champer J. A Comparative Assessment of Self-limiting Genetic Control Strategies for Population Suppression. Mol Biol Evol 2025; 42:msaf048. [PMID: 40036822 PMCID: PMC11934067 DOI: 10.1093/molbev/msaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Genetic control strategies are promising solutions for control of pest populations and invasive species. Methods utilizing repeated releases of males such as sterile insect technique (SIT), release of insects carrying a dominant lethal (RIDL), self-limiting gene drives, and gene disruptors are highly controllable methods, ensuring biosafety. Although models of these strategies have been built, detailed comparisons are lacking, particularly for some of the newer strategies. Here, we conducted a thorough comparative assessment of self-limiting genetic control strategies by individual-based simulation models. Specifically, we find that repeated releases greatly enhance suppression power of weak and self-limiting gene drives, enabling population elimination with even low efficiency and high fitness costs. Moreover, dominant female sterility further strengthens self-limiting systems that can either use gene drive or disruptors that target genes without a mechanism to bias their own inheritance. Some of these strategies are highly persistent, resulting in relatively low release ratios even when released males suffer high fitness costs. To quantitatively evaluate different strategies independent from ecological impact, we proposed constant-population genetic load, which achieves over 95% accuracy in predicting simulation outcomes for most strategies, though it is not as precise in a few frequency-dependent systems. Our results suggest that many new self-limiting strategies are safe, flexible, and more cost-effective than traditional SIT and RIDL, and thus have great potential for population suppression of insects and other pests.
Collapse
Affiliation(s)
- Yue Han
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
- CLS Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jackson Champer
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Goldman OV, DeFoe AE, Qi Y, Jiao Y, Weng SC, Houri-Zeevi L, Lakhiani P, Morita T, Razzauti J, Rosas-Villegas A, Tsitohay YN, Walker MM, Hopkins BR, Mosquito Cell Atlas Consortium, Akbari OS, Duvall LB, White-Cooper H, Sorrells TR, Sharma R, Li H, Vosshall LB, Shai N. Mosquito Cell Atlas: A single-nucleus transcriptomic atlas of the adult Aedes aegypti mosquito. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.639765. [PMID: 40060408 PMCID: PMC11888250 DOI: 10.1101/2025.02.25.639765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The female mosquito's remarkable ability to hunt humans and transmit pathogens relies on her unique biology. Here, we present the Mosquito Cell Atlas (MCA), a comprehensive single-nucleus RNA sequencing dataset of more than 367,000 nuclei from 19 dissected tissues of adult female and male Aedes aegypti, providing cellular-level resolution of mosquito biology. We identify novel cell types and expand our understanding of sensory neuron organization of chemoreceptors to all sensory tissues. Our analysis uncovers male-specific cells and sexually dimorphic gene expression in the antenna and brain. In female mosquitoes, we find that glial cells in the brain, rather than neurons, undergo the most extensive transcriptional changes following blood feeding. Our findings provide insights into the cellular basis of mosquito behavior and sexual dimorphism. The MCA aims to serve as a resource for the vector biology community, enabling systematic investigation of cell-type specific expression across all mosquito tissues.
Collapse
Affiliation(s)
- Olivia V. Goldman
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Kavli Neural Systems Institute, New York, NY 10065, USA
| | - Alexandra E. DeFoe
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yaoyu Jiao
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shih-Che Weng
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Leah Houri-Zeevi
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Priyanka Lakhiani
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Takeshi Morita
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Jacopo Razzauti
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Price Family Center for the Social Brain, The Rockefeller University, New York, NY 10065, USA
| | - Adriana Rosas-Villegas
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Yael N. Tsitohay
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Madison M. Walker
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Ben R. Hopkins
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | | | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laura B. Duvall
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Helen White-Cooper
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Trevor R. Sorrells
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, New Haven, CT 06510, USA
| | - Roshan Sharma
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Single-cell Analytics Innovation Lab, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leslie B. Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Kavli Neural Systems Institute, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Nadav Shai
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| |
Collapse
|
8
|
Nikolouli K, Compton A, Tu ZJ, Bourtzis K. Evaluation of ebony as a potential selectable marker for genetic sexing in Aedes aegypti. Parasit Vectors 2025; 18:76. [PMID: 40001184 PMCID: PMC11863432 DOI: 10.1186/s13071-025-06709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Aedes aegypti is expected to invade previously unoccupied areas, mainly due to the climate change, the increase in travel and trade activities and the continuous transformation of the rural environment into urban areas. The sterile insect technique (SIT), which relies on the mass production and release of sterile males, is an environmentally friendly approach that can be applied for population control of Ae. aegypti. SIT programs can be greatly benefited by a genetic sexing strain (GSS) and a reliable sex sorting system to minimize any accidental female release. Visually detectable or conditionally lethal selectable markers can be used for the development of new GSSs. In this study, we evaluated the suitability and competence of a mutant Ae. aegypti ebony strain for the development of a new GSS. The ebony gene is known to be involved in the pigmentation pathway of several dipteran insects, including Ae. aegypti. METHODS An ebony gene knockout was developed though CRISPR/Cas9 mutagenesis. G0 individuals with the desired phenotype were crossed, and progeny were screened in every generation. PCR and sequencing were performed using gDNA from a pulled leg to determine the mutant genotype. Quality control tests, including pupae and adult recovery rates, male sex ratio and fecundity, were applied to the ebony mutant line to determine whether the mutation confers any fitness cost. RESULTS An Ae. aegypti ebony knockout mutant carrying a 5-bp deletion was obtained, which presented darker head and siphon phenotypes at the larval stage. However, genetic analysis revealed that this ebony mutation results in incomplete penetrance and variable expressivity. The establishment of a pure ebony mutant line was not possible because of the fitness costs conferred by the mutation. CONCLUSIONS In this study, the adequacy and suitability of the ebony gene as a selectable marker for the development of a GSS in Ae. aegypti were assessed. Despite its clear phenotype early in larval development, the homozygous mutant line presented phenotypic inconsistency and loss of fertility. These drawbacks clearly indicate that this particular mutation is not suitable for the development of a new GSS. Nonetheless, it cannot be excluded that a different mutation will lead to a different expression and penetrance profile and a viable homozygous mutant line.
Collapse
Affiliation(s)
- Katerina Nikolouli
- Insect Pest Control Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA Laboratories, 2444, Seibersdorf, Austria.
| | - Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061, USA
| | - Zhijian Jake Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA Laboratories, 2444, Seibersdorf, Austria
| |
Collapse
|
9
|
Han Y, Pu Q, Fan T, Wei T, Xu Y, Zhao L, Liu S. Long non-coding RNAs as promising targets for controlling disease vector mosquitoes. INSECT SCIENCE 2025; 32:24-41. [PMID: 38783627 DOI: 10.1111/1744-7917.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Hematophagous female mosquitoes are important vectors of numerous devastating human diseases, posing a major public health threat. Effective prevention and control of mosquito-borne diseases rely considerably on progress in understanding the molecular mechanisms of various life activities, and accordingly, the molecules that regulate the various life activities of mosquitoes are potential targets for implementing future vector control strategies. Many long non-coding RNAs (lncRNAs) have been identified in mosquitoes and significant progress has been made in determining their functions. Here, we present a comprehensive overview of the research advances on mosquito lncRNAs, including their molecular identification, function, and interaction with other non-coding RNAs, as well as their synergistic regulatory roles in mosquito life activities. We also highlight the potential roles of competitive endogenous RNAs in mosquito growth and development, as well as in insecticide resistance and virus-host interactions. Insights into the biological functions and mechanisms of lncRNAs in mosquito life activities, viral replication, pathogenesis, and transmission will contribute to the development of novel drugs and safe vaccines.
Collapse
Affiliation(s)
- Yujiao Han
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Qian Pu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Yankun Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| |
Collapse
|
10
|
Amiri EE, Tenger-Trolander A, Li M, Thomas Julian A, Kasan K, Sanders SA, Blythe S, Schmidt-Ott U. Conservation of symmetry breaking at the level of chromatin accessibility between fly species with unrelated anterior determinants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632851. [PMID: 39868093 PMCID: PMC11760685 DOI: 10.1101/2025.01.13.632851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Establishing the anterior-posterior body axis is a fundamental process during embryogenesis, and the fruit fly, Drosophila melanogaster, provides one of the best-known case studies of this process. In Drosophila, localized mRNA of bicoid serves as anterior determinant (AD). Bicoid engages in a concentration-dependent competition with nucleosomes and initiates symmetry-breaking along the AP axis by promoting chromatin accessibility at the loci of transcription factor (TF) genes that are expressed in the anterior of the embryo. However, ADs of other fly species are unrelated and structurally distinct, and little is known about how they function. We addressed this question in the moth fly, Clogmia albipunctata, in which a maternally expressed transcript isoform of the pair-rule segmentation gene odd-paired is localized in the anterior egg and has been co-opted as AD. We provide a de novo assembly and annotation of the Clogmia genome and describe how knockdown of zelda and maternal odd-paired transcript affect chromatin accessibility and expression of TF-encoding loci. The results of these experiments suggest direct roles of Cal-Zld in opening and closing chromatin during nuclear cleavage cycles and show that Clogmia's maternal odd-paired activity promotes chromatin accessibility and anterior expression during the early phase of zygotic genome activation at Clogmia's homeobrain and sloppy-paired loci. We conclude that unrelated dipteran ADs initiate anterior-posterior axis-specification at the level of enhancer accessibility and that homeobrain and sloppy-paired homologs may serve a more widely conserved role in the initiation of anterior pattern formation given their early anterior expression and function in head development in other insects.
Collapse
Affiliation(s)
- Ezra E. Amiri
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Ayse Tenger-Trolander
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Muzi Li
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Alexander Thomas Julian
- Illinois Institute of Technology, Department of Biology, 3105 South Dearborn Street, Chicago, Illinois 60616, USA
| | - Koray Kasan
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Sheri A. Sanders
- Notre Dame University, 252 Galvin Life Science Center/Freimann Life Science Center, Notre Dame, Indiana 46556, USA
| | - Shelby Blythe
- Northwestern University, Department of Molecular Biosciences, 2205 Tech Drive, Evanston, Illinois 60208, USA
- Northwestern University and The University of Chicago, National Institute for Theory and Mathematics in Biology, 875 North Michigan Avenue, Suite 3500, Chicago, Illinois 60611, USA
| | - Urs Schmidt-Ott
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| |
Collapse
|
11
|
Seiler J, Beye M. Honeybees' novel complementary sex-determining system: function and origin. Trends Genet 2024; 40:969-981. [PMID: 39232877 DOI: 10.1016/j.tig.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Complementary sex determination regulates female and male development in honeybees (Apis mellifera) via heterozygous versus homo-/hemizygous genotypes of the csd (complementary sex determiner) gene involving numerous naturally occurring alleles. This lineage-specific function offers a rare opportunity to understand an undescribed regulatory mechanism and the molecular evolutionary path leading to this mechanism. We reviewed recent advances in understanding how Csd recognizes different versus identical protein variants, how these variants regulate downstream pathways and sexual differentiation, and how this mechanism has evolved and been shaped by evolutionary forces. Finally, we highlighted the shared regulatory principles of sex determination despite the diversity of primary signals and demonstrated that lineage-specific mutations are very informative for characterizing newly evolved functions.
Collapse
Affiliation(s)
- Jana Seiler
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
12
|
Zheng J, Chen X, Xie Y, Zhang Y, Huang Y, Wu P, Lv J, Qiu L. Knocking Out of UDP-Glycosyltransferase Gene UGT2B10 via CRISPR/Cas9 in Helicoverpa armigera Reveals Its Function in Detoxification of Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20862-20871. [PMID: 39269786 DOI: 10.1021/acs.jafc.4c05055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The role of insect UDP-glycosyltransferases (UGTs) in the detoxification of insecticides has rarely been reported. A UGT gene UGT2B10 was previously found overexpressed in a fenvalerate-resistant strain of Helicoverpa armigera. Herein, UGT2B10 was cloned, and its involvement in insecticide detoxification was investigated. UGT2B10 was highly expressed in the larvae, mainly in the fat body and midgut. Treatment with UGT inhibitors 5-nitrouracil and sulfinpyrazone significantly enhanced the fenvalerate toxicity. Knocking down UGT2B10 by RNAi significantly increased the larvae mortality by 17.89%. UGT2B10 was further knocked out by CRISPR/Cas9, and a homozygous strain (HD-dUGT2B10) with a C-base deletion at exon 2 was obtained. The sensitivity of HD-dUGT2B10 to fenvalerate, deltamethrin, cyantraniliprole, acetamiprid, and lufenuron increased significantly, with sensitivity index increased 2.523-, 2.544-, 2.250-, 2.473-, and 3.556-fold, respectively. These results suggested that UGT2B10 was involved in the detoxification of H. armigera to insecticides mentioned above, shedding light upon further understanding of the detoxification mechanisms of insecticides by insect UGTs.
Collapse
Affiliation(s)
- Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangguang Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yao Xie
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yun Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Peizhuo Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jingshu Lv
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Urakova N, Joseph RE, Huntsinger A, Macias VM, Jones MJ, Sigle LT, Li M, Akbari OS, Xi Z, Lymperopoulos K, Sayre RT, McGraw EA, Rasgon JL. Alpha-mannosidase-2 modulates arbovirus infection in a pathogen- and Wolbachia-specific manner in Aedes aegypti mosquitoes. INSECT MOLECULAR BIOLOGY 2024; 33:362-371. [PMID: 38450861 PMCID: PMC11233229 DOI: 10.1111/imb.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Multiple Wolbachia strains can block pathogen infection, replication and/or transmission in Aedes aegypti mosquitoes under both laboratory and field conditions. However, Wolbachia effects on pathogens can be highly variable across systems and the factors governing this variability are not well understood. It is increasingly clear that the mosquito host is not a passive player in which Wolbachia governs pathogen transmission phenotypes; rather, the genetics of the host can significantly modulate Wolbachia-mediated pathogen blocking. Specifically, previous work linked variation in Wolbachia pathogen blocking to polymorphisms in the mosquito alpha-mannosidase-2 (αMan2) gene. Here we use CRISPR-Cas9 mutagenesis to functionally test this association. We developed αMan2 knockouts and examined effects on both Wolbachia and virus levels, using dengue virus (DENV; Flaviviridae) and Mayaro virus (MAYV; Togaviridae). Wolbachia titres were significantly elevated in αMan2 knockout (KO) mosquitoes, but there were complex interactions with virus infection and replication. In Wolbachia-uninfected mosquitoes, the αMan2 KO mutation was associated with decreased DENV titres, but in a Wolbachia-infected background, the αMan2 KO mutation significantly increased virus titres. In contrast, the αMan2 KO mutation significantly increased MAYV replication in Wolbachia-uninfected mosquitoes and did not affect Wolbachia-mediated virus blocking. These results demonstrate that αMan2 modulates arbovirus infection in A. aegypti mosquitoes in a pathogen- and Wolbachia-specific manner, and that Wolbachia-mediated pathogen blocking is a complex phenotype dependent on the mosquito host genotype and the pathogen. These results have a significant impact for the design and use of Wolbachia-based strategies to control vector-borne pathogens.
Collapse
Affiliation(s)
- Nadya Urakova
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Renuka E Joseph
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Allyn Huntsinger
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Vanessa M Macias
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Matthew J Jones
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Leah T Sigle
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ming Li
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | | | - Richard T Sayre
- Pebble Labs, Little Fly Division, Los Alamos, New Mexico, USA
| | - Elizabeth A McGraw
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
14
|
Liu P, Yu S, Zheng W, Zhang Q, Qiao J, Li Z, Deng Z, Zhang H. Identification and functional verification of Y-chromosome-specific gene typo-gyf in Bactrocera dorsalis. INSECT SCIENCE 2024; 31:1270-1284. [PMID: 38189161 DOI: 10.1111/1744-7917.13311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 01/09/2024]
Abstract
Genes on the Y chromosome play important roles in male sex determination and development. The identification of Y-chromosome-specific genes not only provides a theoretical basis for the study of male reproductive development, but also offers genetic control targets for agricultural pests. However, Y-chromosome genes are rarely characterized due to their high repeatability and high heterochromatinization, especially in the oriental fruit fly. In this study, 1 011 Y-chromosome-specific candidate sequences were screened from 2 to 4 h Bactrocera dorsalis embryo datasets with the chromosome quotient method, 6 of which were identified as Y-chromosome-specific sequences by polymerase chain reaction, including typo-gyf, a 19 126-bp DNA sequence containing a 575-amino acid open reading frame. Testicular deformation and a significant reduction in sperm number were observed after typo-gyf knockdown with RNA interference in embryos. After typo-gyf knockout with clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9 in the embryonic stage, the sex ratio of the emergent adults was unbalanced, with far more females than males. A genotype analysis of these females with the Y-chromosome gene MoY revealed no sex reversal. Typo-gyf knockout led to the death of XY individuals in the embryonic stage. We conclude that typo-gyf is an essential gene for male survival, and is also involved in testicular development and spermatogenesis. The identification of typo-gyf and its functional verification provide insight into the roles of Y-chromosome genes in male development.
Collapse
Affiliation(s)
- Peipei Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuning Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenping Zheng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiuyuan Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiao Qiao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziniu Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhurong Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Liang J, Kang L, Michalak P, Sharakhov IV. Hybridization between Aedes aegypti and Aedes mascarensis mosquitoes leads to disruption of male sex determination. Commun Biol 2024; 7:886. [PMID: 39039226 PMCID: PMC11263339 DOI: 10.1038/s42003-024-06560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
Understanding the sex determination pathway and its disruptions in mosquitoes is critical for the effective control of disease vectors through genetic manipulations based on sex separation. When male hybrids of Aedes aegypti females and Ae. mascarensis males are backcrossed to Ae. aegypti females, a portion of the backcross progeny manifests as males with abnormal sexual differentiation. We discovered a significant correlation between pupal abnormalities and the feminization of subsequent adults exemplified by the relative abundance of ovarian and testicular tissues. All intersex individuals were genetic males as they expressed a male determining factor, Nix. Further, our analysis of the sex-specific splicing of doublesex and fruitless transcripts demonstrated the presence of both male and female splice variants indicating that sex determination is disrupted. A comparative transcriptomic analysis revealed similar expression levels of most female-associated genes in reproductive organs and carcasses between intersexual males and normal females. Moreover, intersexes had largely normal gene expression in testes but significant gene downregulation in male accessory glands when compared with normal males. We conclude that evolving hybrid incompatibilities between Ae. aegypti and Ae. mascarensis involve disruption of sex determination and are accompanied by changes in gene expression associated with sexual differentiation.
Collapse
Affiliation(s)
- Jiangtao Liang
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Lin Kang
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
- College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
- Center for One Health Research, VA-MD College of Veterinary Medicine, Blacksburg, VA, USA
| | - Pawel Michalak
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
- Center for One Health Research, VA-MD College of Veterinary Medicine, Blacksburg, VA, USA
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA.
- Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA.
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic and State University, Blacksburg, VA, USA.
- Department of Genetics and Cell Biology, Tomsk State University, Tomsk, Russia.
| |
Collapse
|
16
|
Pacheco S, Gallegos AS, Peláez-Aguilar ÁE, Sánchez J, Gómez I, Soberón M, Bravo A. CRISPR-Cas9 knockout of membrane-bound alkaline phosphatase or cadherin does not confer resistance to Cry toxins in Aedes aegypti. PLoS Negl Trop Dis 2024; 18:e0012256. [PMID: 38870209 PMCID: PMC11207138 DOI: 10.1371/journal.pntd.0012256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/26/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
The Aedes aegypti cadherin-like protein (Aae-Cad) and the membrane-bound alkaline phosphatase (Aae-mALP) are membrane proteins identified as putative receptors for the larvicidal Cry toxins produced by Bacillus thuringiensis subsp. israelensis bacteria. Cry toxins are the most used toxins in the control of different agricultural pest and mosquitos. Despite the relevance of Aae-Cad and Aae-mALP as possible toxin-receptors in mosquitoes, previous efforts to establish a clear functional connection among them and Cry toxins activity have been relatively limited. In this study, we used CRISPR-Cas9 to generate knockout (KO) mutations of Aae-Cad and Aae-mALP. The Aae-mALP KO was successfully generated, in contrast to the Aae-Cad KO which was obtained only in females. The female-linked genotype was due to the proximity of aae-cad gene to the sex-determining loci (M:m). Both A. aegypti KO mutant populations were viable and their insect-development was not affected, although a tendency on lower egg hatching rate was observed. Bioassays were performed to assess the effects of these KO mutations on the susceptibility of A. aegypti to Cry toxins, showing that the Aae-Cad female KO or Aae-mALP KO mutations did not significantly alter the susceptibility of A. aegypti larvae to the mosquitocidal Cry toxins, including Cry11Aa, Cry11Ba, Cry4Ba, and Cry4Aa. These findings suggest that besides the potential participation of Aae-Cad and Aae-mALP as Cry toxin receptors in A. aegypti, additional midgut membrane proteins are involved in the mode of action of these insecticidal toxins.
Collapse
Affiliation(s)
- Sabino Pacheco
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Adrián S. Gallegos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Ángel E. Peláez-Aguilar
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Jorge Sánchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Isabel Gómez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| |
Collapse
|
17
|
Pan Q, Darras H, Keller L. LncRNA gene ANTSR coordinates complementary sex determination in the Argentine ant. SCIENCE ADVANCES 2024; 10:eadp1532. [PMID: 38820161 PMCID: PMC11141628 DOI: 10.1126/sciadv.adp1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
Animals have evolved various sex determination systems. Here, we describe a newly found mechanism. A long noncoding RNA (lncRNA) transduces complementary sex determination (CSD) signal in the invasive Argentine ant. In this haplodiploid species, we identified a 5-kilobase hyper-polymorphic region underlying CSD: Heterozygous embryos become females, while homozygous and hemizygous embryos become males. Heterozygosity at the CSD locus correlates with higher expression of ANTSR, a gene that overlaps with the CSD locus and specifies an lncRNA transcript. ANTSR knockdown in CSD heterozygotes leads to male development. Comparative analyses indicated that, in Hymenoptera, ANTSR is an ancient yet rapidly evolving gene. This study reveals an lncRNA involved in genetic sex determination, alongside a previously unknown regulatory mechanism underlying sex determination based on complementarity among noncoding alleles.
Collapse
Affiliation(s)
- Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Hugo Darras
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Laurent Keller
- Social Evolution Unit, Cornuit 8, BP 855, Chesières, Switzerland
| |
Collapse
|
18
|
van’t Hof AE, Whiteford S, Yung CJ, Yoshido A, Zrzavá M, de Jong MA, Tan KL, Zhu D, Monteiro A, Brakefield PM, Marec F, Saccheri IJ. Zygosity-based sex determination in a butterfly drives hypervariability of Masculinizer. SCIENCE ADVANCES 2024; 10:eadj6979. [PMID: 38701204 PMCID: PMC11067997 DOI: 10.1126/sciadv.adj6979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Nature has devised many ways of producing males and females. Here, we report on a previously undescribed mechanism for Lepidoptera that functions without a female-specific gene. The number of alleles or allele heterozygosity in a single Z-linked gene (BaMasc) is the primary sex-determining switch in Bicyclus anynana butterflies. Embryos carrying a single BaMasc allele develop into WZ (or Z0) females, those carrying two distinct alleles develop into ZZ males, while (ZZ) homozygotes initiate female development, have mismatched dosage compensation, and die as embryos. Consequently, selection against homozygotes has favored the evolution of spectacular allelic diversity: 205 different coding sequences of BaMasc were detected in a sample of 246 females. The structural similarity of a hypervariable region (HVR) in BaMasc to the HVR in Apis mellifera csd suggests molecular convergence between deeply diverged insect lineages. Our discovery of this primary switch highlights the fascinating diversity of sex-determining mechanisms and underlying evolutionary drivers.
Collapse
Affiliation(s)
- Arjen E. van’t Hof
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
| | - Sam Whiteford
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Carl J. Yung
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Atsuo Yoshido
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
| | - Magda Zrzavá
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Maaike A. de Jong
- Netherlands eScience Center, Science Park 402, 1098 XH Amsterdam, Netherlands
| | - Kian-Long Tan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Dantong Zhu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
| | - Ilik J. Saccheri
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
19
|
Miranda LS, Rudd SR, Mena O, Hudspeth PE, Barboza-Corona JE, Park HW, Bideshi DK. The Perpetual Vector Mosquito Threat and Its Eco-Friendly Nemeses. BIOLOGY 2024; 13:182. [PMID: 38534451 DOI: 10.3390/biology13030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mosquitoes are the most notorious arthropod vectors of viral and parasitic diseases for which approximately half the world's population, ~4,000,000,000, is at risk. Integrated pest management programs (IPMPs) have achieved some success in mitigating the regional transmission and persistence of these diseases. However, as many vector-borne diseases remain pervasive, it is obvious that IPMP successes have not been absolute in eradicating the threat imposed by mosquitoes. Moreover, the expanding mosquito geographic ranges caused by factors related to climate change and globalization (travel, trade, and migration), and the evolution of resistance to synthetic pesticides, present ongoing challenges to reducing or eliminating the local and global burden of these diseases, especially in economically and medically disadvantaged societies. Abatement strategies include the control of vector populations with synthetic pesticides and eco-friendly technologies. These "green" technologies include SIT, IIT, RIDL, CRISPR/Cas9 gene drive, and biological control that specifically targets the aquatic larval stages of mosquitoes. Regarding the latter, the most effective continues to be the widespread use of Lysinibacillus sphaericus (Ls) and Bacillus thuringiensis subsp. israelensis (Bti). Here, we present a review of the health issues elicited by vector mosquitoes, control strategies, and lastly, focus on the biology of Ls and Bti, with an emphasis on the latter, to which no resistance has been observed in the field.
Collapse
Affiliation(s)
- Leticia Silva Miranda
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Sarah Renee Rudd
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Integrated Biomedical Graduate Studies, and School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Oscar Mena
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Piper Eden Hudspeth
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - José E Barboza-Corona
- Departmento de Alimentos, Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, Irapuato 36500, Guanajuato, Mexico
| | - Hyun-Woo Park
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Dennis Ken Bideshi
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| |
Collapse
|
20
|
Filipović I, Marshall JM, Rašić G. Finding divergent sequences of homomorphic sex chromosomes via diploidized nanopore-based assembly from a single male. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582759. [PMID: 38464271 PMCID: PMC10925256 DOI: 10.1101/2024.02.29.582759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Although homomorphic sex chromosomes can have non-recombining regions with elevated sequence divergence between its complements, such divergence signals can be difficult to detect bioinformatically. If found in genomes of e.g. insect pests, these sequences could be targeted by the engineered genetic sexing and control systems. Here, we report an approach that can leverage long-read nanopore sequencing of a single XY male to identify divergent regions of homomorphic sex chromosomes. Long-read data are used for de novo genome assembly that is diploidized in a way that maximizes sex-specific differences between its haploid complements. We show that the correct assembly phasing is supported by the mapping of nanopore reads from the male's haploid Y-bearing sperm cells. The approach revealed a highly divergent region (HDR) near the centromere of the homomorphic sex chromosome of Aedes aegypti, the most important arboviral vector, for which there is a great interest in creating new genetic control tools. HDR is located ~5Mb downstream of the known male-determining locus on chromosome 1 and is significantly enriched for ovary-biased genes. While recombination in HDR ceased relatively recently (~1.4 MYA), HDR gametologs have divergent exons and introns of protein coding genes, and most lncRNA genes became X-specific. Megabases of previously invisible sex-linked sequences provide new putative targets for engineering the genetic systems to control this deadly mosquito. Broadly, our approach expands the toolbox for studying cryptic structure of sex chromosomes.
Collapse
Affiliation(s)
- Igor Filipović
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia
- The University of Queensland, School of Biological Sciences, St Lucia, QLD, Australia
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Gordana Rašić
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia
| |
Collapse
|
21
|
Ryazansky SS, Chen C, Potters M, Naumenko AN, Lukyanchikova V, Masri RA, Brusentsov II, Karagodin DA, Yurchenko AA, Dos Anjos VL, Haba Y, Rose NH, Hoffman J, Guo R, Menna T, Kelley M, Ferrill E, Schultz KE, Qi Y, Sharma A, Deschamps S, Llaca V, Mao C, Murphy TD, Baricheva EM, Emrich S, Fritz ML, Benoit JB, Sharakhov IV, McBride CS, Tu Z, Sharakhova MV. The chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus uncovers patterns of genome evolution in mosquitoes. BMC Biol 2024; 22:16. [PMID: 38273363 PMCID: PMC10809549 DOI: 10.1186/s12915-024-01825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Understanding genome organization and evolution is important for species involved in transmission of human diseases, such as mosquitoes. Anophelinae and Culicinae subfamilies of mosquitoes show striking differences in genome sizes, sex chromosome arrangements, behavior, and ability to transmit pathogens. However, the genomic basis of these differences is not fully understood. METHODS In this study, we used a combination of advanced genome technologies such as Oxford Nanopore Technology sequencing, Hi-C scaffolding, Bionano, and cytogenetic mapping to develop an improved chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus. RESULTS We then used this assembly to annotate odorant receptors, odorant binding proteins, and transposable elements. A genomic region containing male-specific sequences on chromosome 1 and a polymorphic inversion on chromosome 3 were identified in the Cx. quinquefasciatus genome. In addition, the genome of Cx. quinquefasciatus was compared with the genomes of other mosquitoes such as malaria vectors An. coluzzi and An. albimanus, and the vector of arboviruses Ae. aegypti. Our work confirms significant expansion of the two chemosensory gene families in Cx. quinquefasciatus, as well as a significant increase and relocation of the transposable elements in both Cx. quinquefasciatus and Ae. aegypti relative to the Anophelines. Phylogenetic analysis clarifies the divergence time between the mosquito species. Our study provides new insights into chromosomal evolution in mosquitoes and finds that the X chromosome of Anophelinae and the sex-determining chromosome 1 of Culicinae have a significantly higher rate of evolution than autosomes. CONCLUSION The improved Cx. quinquefasciatus genome assembly uncovered new details of mosquito genome evolution and has the potential to speed up the development of novel vector control strategies.
Collapse
Affiliation(s)
- Sergei S Ryazansky
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Molecular Genetics of Cell, NRC "Kurchatov Institute", Moscow, Russia
| | - Chujia Chen
- Genetics, Bioinformatics, Computational Biology Program, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Mark Potters
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
| | - Anastasia N Naumenko
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Varvara Lukyanchikova
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Group of Genomic Mechanisms of Development, Institute of Cytology and Genetics, Novosibirsk, Russia
- Laboratory of Structural and Functional Genomics, Novosibirsk State University, Novosibirsk, Russia
| | - Reem A Masri
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Ilya I Brusentsov
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Dmitriy A Karagodin
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Andrey A Yurchenko
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Vitor L Dos Anjos
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Yuki Haba
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Noah H Rose
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Jinna Hoffman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Rong Guo
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Theresa Menna
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Emily Ferrill
- County of San Diego Vector Control Program, San Diego, CA, USA
| | - Karen E Schultz
- Mosquito and Vector Management District of Santa Barbara County, Santa Barbara, CA, USA
| | - Yumin Qi
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
| | - Atashi Sharma
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
| | | | | | - Chunhong Mao
- Biocomplexity Institute & Initiative University of Virginia, Charlottesville, VA, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Elina M Baricheva
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Scott Emrich
- Department of Electrical Engineering & Computer Science, the University of Tennessee, Knoxville, TN, USA
| | - Megan L Fritz
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Genetics and Cell Biology, Tomsk State University, Tomsk, Russia
| | - Carolyn S McBride
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zhijian Tu
- Genetics, Bioinformatics, Computational Biology Program, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
- Fralin Life Sciences Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Maria V Sharakhova
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA.
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia.
- Fralin Life Sciences Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA.
| |
Collapse
|
22
|
Biedler JK, Aryan A, Qi Y, Wang A, Martinson EO, Hartman DA, Yang F, Sharma A, Morton KS, Potters M, Chen C, Dobson SL, Ebel GD, Kading RC, Paulson S, Xue RD, Strand MR, Tu Z. On the Origin and Evolution of the Mosquito Male-determining Factor Nix. Mol Biol Evol 2024; 41:msad276. [PMID: 38128148 PMCID: PMC10798136 DOI: 10.1093/molbev/msad276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The mosquito family Culicidae is divided into 2 subfamilies named the Culicinae and Anophelinae. Nix, the dominant male-determining factor, has only been found in the culicines Aedes aegypti and Aedes albopictus, 2 important arboviral vectors that belong to the subgenus Stegomyia. Here we performed sex-specific whole-genome sequencing and RNAseq of divergent mosquito species and explored additional male-inclusive datasets to investigate the distribution of Nix. Except for the Culex genus, Nix homologs were found in all species surveyed from the Culicinae subfamily, including 12 additional species from 3 highly divergent tribes comprising 4 genera, suggesting Nix originated at least 133 to 165 million years ago (MYA). Heterologous expression of 1 of 3 divergent Nix open reading frames (ORFs) in Ae. aegypti resulted in partial masculinization of genetic females as evidenced by morphology and doublesex splicing. Phylogenetic analysis suggests Nix is related to femaleless (fle), a recently described intermediate sex-determining factor found exclusively in anopheline mosquitoes. Nix from all species has a conserved structure, including 3 RNA-recognition motifs (RRMs), as does fle. However, Nix has evolved at a much faster rate than fle. The RRM3 of both Nix and fle are distantly related to the single RRM of a widely distributed and conserved splicing factor transformer-2 (tra2). The RRM3-based phylogenetic analysis suggests this domain in Nix and fle may have evolved from tra2 or a tra2-related gene in a common ancestor of mosquitoes. Our results provide insights into the evolution of sex determination in mosquitoes and will inform broad applications of mosquito-control strategies based on manipulating sex ratios toward nonbiting males.
Collapse
Affiliation(s)
- James K Biedler
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Azadeh Aryan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yumin Qi
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Aihua Wang
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ellen O Martinson
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Daniel A Hartman
- Center for Vector-borne Infectious Diseases, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Fan Yang
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Atashi Sharma
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Katherine S Morton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark Potters
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chujia Chen
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Genetics Bioinformatics and Computational Biology PhD program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Stephen L Dobson
- Department of Entomology, University of Kentucky, Lexington, KY 40503, USA
- MosquitoMate, Inc., Lexington, KY 40502, USA
| | - Gregory D Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Rebekah C Kading
- Center for Vector-borne Infectious Diseases, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sally Paulson
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rui-De Xue
- Anastasia Mosquito Control District, St. Augustine, FL 32092, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Genetics Bioinformatics and Computational Biology PhD program, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
23
|
Weng SC, Masri RA, Akbari OS. Advances and challenges in synthetic biology for mosquito control. Trends Parasitol 2024; 40:75-88. [PMID: 38000957 PMCID: PMC11064511 DOI: 10.1016/j.pt.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Mosquito-borne illnesses represent a significant global health peril, resulting in approximately one million fatalities annually. West Nile, dengue, Zika, and malaria are continuously expanding their global reach, driven by factors that escalate mosquito populations and pathogen transmission. Innovative control measures are imperative to combat these catastrophic ailments. Conventional approaches, such as eliminating breeding sites and using insecticides, have been helpful, but they face challenges such as insecticide resistance and environmental harm. Given the mounting severity of mosquito-borne diseases, there is promise in exploring innovative approaches using synthetic biology to bolster mosquitoes' resistance to pathogens, or even eliminate the mosquito vectors, as a means of control. This review outlines current strategies, future goals, and the importance of gene editing for global health defenses against mosquito-borne diseases.
Collapse
Affiliation(s)
- Shih-Che Weng
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reem A Masri
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
24
|
Lasne C, Elkrewi M, Toups MA, Layana L, Macon A, Vicoso B. The Scorpionfly (Panorpa cognata) Genome Highlights Conserved and Derived Features of the Peculiar Dipteran X Chromosome. Mol Biol Evol 2023; 40:msad245. [PMID: 37988296 PMCID: PMC10715201 DOI: 10.1093/molbev/msad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/05/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Many insects carry an ancient X chromosome-the Drosophila Muller element F-that likely predates their origin. Interestingly, the X has undergone turnover in multiple fly species (Diptera) after being conserved for more than 450 My. The long evolutionary distance between Diptera and other sequenced insect clades makes it difficult to infer what could have contributed to this sudden increase in rate of turnover. Here, we produce the first genome and transcriptome of a long overlooked sister-order to Diptera: Mecoptera. We compare the scorpionfly Panorpa cognata X-chromosome gene content, expression, and structure to that of several dipteran species as well as more distantly related insect orders (Orthoptera and Blattodea). We find high conservation of gene content between the mecopteran X and the dipteran Muller F element, as well as several shared biological features, such as the presence of dosage compensation and a low amount of genetic diversity, consistent with a low recombination rate. However, the 2 homologous X chromosomes differ strikingly in their size and number of genes they carry. Our results therefore support a common ancestry of the mecopteran and ancestral dipteran X chromosomes, and suggest that Muller element F shrank in size and gene content after the split of Diptera and Mecoptera, which may have contributed to its turnover in dipteran insects.
Collapse
Affiliation(s)
- Clementine Lasne
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Marwan Elkrewi
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Melissa A Toups
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Lorena Layana
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Ariana Macon
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
25
|
Weng SC, Antoshechkin I, Marois E, Akbari OS. Efficient sex separation by exploiting differential alternative splicing of a dominant marker in Aedes aegypti. PLoS Genet 2023; 19:e1011065. [PMID: 38011259 PMCID: PMC10703412 DOI: 10.1371/journal.pgen.1011065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/07/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Only female mosquitoes consume blood giving them the opportunity to transmit deadly human pathogens. Therefore, it is critical to remove females before conducting releases for genetic biocontrol interventions. Here we describe a robust sex-sorting approach termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter) that exploits sex-specific alternative splicing of an innocuous reporter to ensure exclusive dominant male-specific expression. Using SEPARATOR, we demonstrate reliable sex selection from early larval and pupal stages in Aedes aegypti, and use a Complex Object Parametric Analyzer and Sorter (COPAS) to demonstrate scalable high-throughput sex-selection of first instar larvae. Additionally, we use this approach to sequence the transcriptomes of early larval males and females and find several genes that are sex-specifically expressed. SEPARATOR can simplify mass production of males for release programs and is designed to be cross-species portable and should be instrumental for genetic biocontrol interventions.
Collapse
Affiliation(s)
- Shih-Che Weng
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, United States of America
| | - Eric Marois
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, Strasbourg, France
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
26
|
Otte M, Netschitailo O, Weidtkamp-Peters S, Seidel CA, Beye M. Recognition of polymorphic Csd proteins determines sex in the honeybee. SCIENCE ADVANCES 2023; 9:eadg4239. [PMID: 37792946 PMCID: PMC10550236 DOI: 10.1126/sciadv.adg4239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Sex in honeybees, Apis mellifera, is genetically determined by heterozygous versus homo/hemizygous genotypes involving numerous alleles at the single complementary sex determination locus. The molecular mechanism of sex determination is however unknown because there are more than 4950 known possible allele combinations, but only two sexes in the species. We show how protein variants expressed from complementary sex determiner (csd) gene determine sex. In females, the amino acid differences between Csd variants at the potential-specifying domain (PSD) direct the selection of a conserved coiled-coil domain for binding and protein complexation. This recognition mechanism activates Csd proteins and, thus, the female pathway. In males, the absence of polymorphisms establishes other binding elements at PSD for binding and complexation of identical Csd proteins. This second recognition mechanism inactivates Csd proteins and commits male development via default pathway. Our results demonstrate that the recognition of different versus identical variants of a single protein is a mechanism to determine sex.
Collapse
Affiliation(s)
- Marianne Otte
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Oksana Netschitailo
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Claus A. M. Seidel
- Institut für Physikalische Chemie, Heinrich-Heine University, Düsseldorf, Germany
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
27
|
Kulkarni A, Delgadillo FM, Gayathrinathan S, Grajeda BI, Roy S. Current Status of Omics Studies Elucidating the Features of Reproductive Biology in Blood-Feeding Insects. INSECTS 2023; 14:802. [PMID: 37887814 PMCID: PMC10607566 DOI: 10.3390/insects14100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Female insects belonging to the genera Anopheles, Aedes, Glossina, and Rhodnius account for the majority of global vector-borne disease mortality. In response to mating, these female insects undergo several molecular, physiological, and behavioral changes. Studying the dynamic post-mating molecular responses in these insects that transmit human diseases can lead to the identification of potential targets for the development of novel vector control methods. With the continued advancements in bioinformatics tools, we now have the capability to delve into various physiological processes in these insects. Here, we discuss the availability of multiple datasets describing the reproductive physiology of the common blood-feeding insects at the molecular level. Additionally, we compare the male-derived triggers transferred during mating to females, examining both shared and species-specific factors. These triggers initiate post-mating genetic responses in female vectors, affecting not only their reproductive success but also disease transmission.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Frida M. Delgadillo
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Environmental Science and Engineering Ph.D. Program, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sharan Gayathrinathan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Brian I. Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Biosciences Ph.D. Program, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
28
|
Pospíšilová K, Van't Hof AE, Yoshido A, Kružíková R, Visser S, Zrzavá M, Bobryshava K, Dalíková M, Marec F. Masculinizer gene controls male sex determination in the codling moth, Cydia pomonella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 160:103991. [PMID: 37536576 DOI: 10.1016/j.ibmb.2023.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
The molecular mechanisms of sex determination in moths and butterflies (Lepidoptera) with female heterogamety (WZ/ZZ) are poorly understood, except in the silkworm Bombyx mori. However, the Masculinizer (Masc) gene that controls male development and dosage compensation in B. mori, appears to be conserved in Lepidoptera, as its masculinizing function was recently confirmed in several moth species. In this work, we investigated the role of the Masc gene in sex determination of the codling moth Cydia pomonella (Tortricidae), a globally important pest of pome fruits and walnuts. The gene structure of the C. pomonella Masc ortholog, CpMasc, is similar to B. mori Masc. However, unlike B. mori, we identified 14 splice variants of CpMasc in the available transcriptomes. Subsequent screening for sex specificity and genetic variation using publicly available data and RT-PCR revealed three male-specific splice variants. Then qPCR analysis of these variants revealed sex-biased expression showing a peak only in early male embryos. Knockdown of CpMasc by RNAi during early embryogenesis resulted in a shift from male-to female-specific splicing of the C. pomonella doublesex (Cpdsx) gene, its downstream effector, in ZZ embryos, leading to a strongly female-biased sex ratio. These data clearly demonstrate that CpMasc functions as a masculinizing gene in the sex-determining cascade of C. pomonella. Our study also showed that CpMasc transcripts are provided maternally, as they were detected in unfertilized eggs after oviposition and in mature eggs dissected from virgin females. This finding is unique, as maternal provision of mRNA has rarely been studied in Lepidoptera.
Collapse
Affiliation(s)
- Kristýna Pospíšilová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Arjen E Van't Hof
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic.
| | - Atsuo Yoshido
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic.
| | - Renata Kružíková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Sander Visser
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic; School of Science and Engineering, University of Groningen, 9700 CC, Groningen, the Netherlands.
| | - Magda Zrzavá
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Kseniya Bobryshava
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Martina Dalíková
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
29
|
Chen B, Kou Z, Jiang Y, Luo X, Li P, Sun K, Wang W, Huang Y, Wang Y. Intersex is required for female sexual development in Hermetia illucens. INSECT SCIENCE 2023; 30:901-911. [PMID: 36719198 DOI: 10.1111/1744-7917.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Sex-determination pathways are extremely diverse. Understanding the mechanism of sex determination in insects is important for genetic manipulation of the pest population and for breeding of economically valuable insects. Although sex determination has been well characterized in the model species Drosophila melanogaster, little is known about this pathway in Stratiomyidae. In the present study, we first identified the Drosophila intersex (ix) homolog in Hermetia illucens, also known as the black soldier fly, which belongs to the Stratiomyidae family and which is an important insect for the conversion of various organic wastes. Phylogenetic analyses and multiple sequence alignment revealed that Hiix is conserved compared with Drosophila. We showed that Hiix is highly expressed in internal genitalia. Disruption of the Hiix gene using CRISPR/Cas9 resulted in female-specific defects in external genitalia and abnormal and undersized ovaries. Taken together, our study furthers our understanding of sex determination in insects and could facilitate breeding of H. illucens.
Collapse
Affiliation(s)
- Bihui Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zongqing Kou
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Yuguo Jiang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Xingyu Luo
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Peili Li
- Beijing Dabeinong Technology Group Co., ltd., No. 19, Chengwan Street, Suyier Village, Sujiatuo Town, Haidian District, Beijing, China
| | - Kaiji Sun
- Beijing Dabeinong Technology Group Co., ltd., No. 19, Chengwan Street, Suyier Village, Sujiatuo Town, Haidian District, Beijing, China
| | - Weiwei Wang
- Beijing Dabeinong Technology Group Co., ltd., No. 19, Chengwan Street, Suyier Village, Sujiatuo Town, Haidian District, Beijing, China
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Yaohui Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
30
|
Weng SC, Antoshechkin I, Marois E, Akbari OS. Efficient Sex Separation by Exploiting Differential Alternative Splicing of a Dominant Marker in Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545348. [PMID: 37398094 PMCID: PMC10312783 DOI: 10.1101/2023.06.16.545348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Only female mosquitoes consume blood and transmit deadly human pathogens. Therefore, it is critical to remove females before conducting releases for genetic biocontrol interventions. Here we describe a robust sex-sorting approach termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter) that exploits sex-specific alternative splicing of an innocuous reporter to ensure exclusive dominant male-specific expression. Using SEPARATOR, we demonstrate reliable sex selection from larval and pupal stages in Aedes aegypti, and use a Complex Object Parametric Analyzer and Sorter (COPAS®) to demonstrate scalable high-throughput sex-selection of first instar larvae. Additionally, we use this approach to sequence the transcriptomes of early larval males and females and find several genes that are sex-specifically expressed in males. SEPARATOR can simplify mass production of males for release programs and is designed to be cross-species portable and should be instrumental for genetic biocontrol interventions.
Collapse
Affiliation(s)
- Shih-Che Weng
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, CA91125, USA
| | - Eric Marois
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, France
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
31
|
Foo A, Cerdeira L, Hughes GL, Heinz E. Recovery of metagenomic data from the Aedes aegypti microbiome using a reproducible snakemake pipeline: MINUUR. Wellcome Open Res 2023; 8:131. [PMID: 37577055 PMCID: PMC10412942 DOI: 10.12688/wellcomeopenres.19155.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Ongoing research of the mosquito microbiome aims to uncover novel strategies to reduce pathogen transmission. Sequencing costs, especially for metagenomics, are however still significant. A resource that is increasingly used to gain insights into host-associated microbiomes is the large amount of publicly available genomic data based on whole organisms like mosquitoes, which includes sequencing reads of the host-associated microbes and provides the opportunity to gain additional value from these initially host-focused sequencing projects. Methods: To analyse non-host reads from existing genomic data, we developed a snakemake workflow called MINUUR (Microbial INsights Using Unmapped Reads). Within MINUUR, reads derived from the host-associated microbiome were extracted and characterised using taxonomic classifications and metagenome assembly followed by binning and quality assessment. We applied this pipeline to five publicly available Aedes aegypti genomic datasets, consisting of 62 samples with a broad range of sequencing depths. Results: We demonstrate that MINUUR recovers previously identified phyla and genera and is able to extract bacterial metagenome assembled genomes (MAGs) associated to the microbiome. Of these MAGS, 42 are high-quality representatives with >90% completeness and <5% contamination. These MAGs improve the genomic representation of the mosquito microbiome and can be used to facilitate genomic investigation of key genes of interest. Furthermore, we show that samples with a high number of KRAKEN2 assigned reads produce more MAGs. Conclusions: Our metagenomics workflow, MINUUR, was applied to a range of Aedes aegypti genomic samples to characterise microbiome-associated reads. We confirm the presence of key mosquito-associated symbionts that have previously been identified in other studies and recovered high-quality bacterial MAGs. In addition, MINUUR and its associated documentation are freely available on GitHub and provide researchers with a convenient workflow to investigate microbiome data included in the sequencing data for any applicable host genome of interest.
Collapse
Affiliation(s)
- Aidan Foo
- Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Louise Cerdeira
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Grant L. Hughes
- Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Eva Heinz
- Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
32
|
Vidal JAD, Sassi FDMC, de Moraes RLR, Artoni RF, Liehr T, Cioffi MB, de Almeida MC. Giant Sex Chromosomes in Omophoita Species (Coleoptera, Chrysomelidae): Structural and Evolutionary Relationships Revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH). INSECTS 2023; 14:insects14050440. [PMID: 37233068 DOI: 10.3390/insects14050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
The beetles of the subtribe Oedionychina (Chrysomelidae, Alticinae) are the only ones that have the atypical giant and achiasmatic sex chromosomes, which are substantially larger than the autosomes. Previous cytogenetic analyses suggest a large accumulation of repetitive DNA in the sex chromosomes. In this study, we examined the similarity of X and Y chromosomes in four Omophoita species and compared genomic differentiation to better understand the evolutionary process and the giant sex chromosomes origin. Intraspecific genomic comparation using male and female genomes of O. octoguttata and interespecific analyses using genomic DNA of O. octoguttata, O. sexnotata, O. magniguttis, and O. personata were performed. In addition, whole chromosome painting (WCP) experiments were performed with X and Y chromosome probes of O. octogutatta. CGH analysis revealed great genomic similarity between the sexes and a sex-specific region on the Y chromosome, and interspecific analysis revealed a genomic divergence between species. In contrast, WCP results revealed that the sex chromosomes of O. octoguttata have high intra- and interspecific similarity with the studied species. Our data support a common origin under the canonical evolution of the sex chromosomes in this group, as they have high genomic similarity between them.
Collapse
Affiliation(s)
- Jhon A D Vidal
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos 13565-905, Brazil
- Laboratório de Genética e Evolução, Departamento de Biologia Estrutural Molecular e Genética, Universidade Estadual de Ponta Grossa (UEPG), Av. Carlos Cavalcanti, 4748, Ponta Grossa 84030-900, Brazil
| | - Francisco de M C Sassi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos 13565-905, Brazil
| | - Renata L R de Moraes
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos 13565-905, Brazil
| | - Roberto F Artoni
- Laboratório de Genética e Evolução, Departamento de Biologia Estrutural Molecular e Genética, Universidade Estadual de Ponta Grossa (UEPG), Av. Carlos Cavalcanti, 4748, Ponta Grossa 84030-900, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Marcelo B Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos 13565-905, Brazil
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Mara C de Almeida
- Laboratório de Genética e Evolução, Departamento de Biologia Estrutural Molecular e Genética, Universidade Estadual de Ponta Grossa (UEPG), Av. Carlos Cavalcanti, 4748, Ponta Grossa 84030-900, Brazil
| |
Collapse
|
33
|
Liu P, Yang W, Kong L, Zhao S, Xie Z, Zhao Y, Wu Y, Guo Y, Xie Y, Liu T, Jin B, Gu J, Tu ZJ, James AA, Chen XG. A DBHS family member regulates male determination in the filariasis vector Armigeres subalbatus. Nat Commun 2023; 14:2292. [PMID: 37085529 PMCID: PMC10121658 DOI: 10.1038/s41467-023-37983-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/10/2023] [Indexed: 04/23/2023] Open
Abstract
The initial signals governing sex determination vary widely among insects. Here we show that Armigeres subalbatus M factor (AsuMf), a male-specific duplication of an autosomal gene of the Drosophila behaviour/human splicing (DBHS) gene family, is the potential primary signal for sex determination in the human filariasis vector mosquito, Ar. subalbatus. Our results show that AsuMf satisfies two fundamental requirements of an M factor: male-specific expression and early embryonic expression. Ablations of AsuMf result in a shift from male- to female-specific splicing of doublesex and fruitless, leading to feminization of males both in morphology and general transcription profile. These data support the conclusion that AsuMf is essential for male development in Ar. subalbatus and reveal a male-determining factor that is derived from duplication and subsequent neofunctionalization of a member of the conserved DBHS family.
Collapse
Affiliation(s)
- Peiwen Liu
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wenqiang Yang
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ling Kong
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Siyu Zhao
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhensheng Xie
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yijie Zhao
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yang Wu
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yijia Guo
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yugu Xie
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Tong Liu
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Binbin Jin
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinbao Gu
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhijian Jake Tu
- Department of Biochemistry and the Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697, USA.
| | - Xiao-Guang Chen
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
34
|
Fukui T, Shoji K, Kiuchi T, Suzuki Y, Katsuma S. Masculinizer is not post-transcriptionally regulated by female-specific piRNAs during sex determination in the Asian corn borer, Ostrinia furnacalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103946. [PMID: 37075905 DOI: 10.1016/j.ibmb.2023.103946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Lepidopteran insects are heterogametic in females, although most insect species are heterogametic in males. In a lepidopteran model species, the silkworm Bombyx mori (Bombycoidea), the uppermost sex determinant Feminizer (Fem) has been identified on the female-specific W chromosome. Fem is a precursor of PIWI-interacting small RNA (piRNA). Fem piRNA forms a complex with Siwi, one of the two B. mori PIWI-clade Argonaute proteins. In female embryos, Fem piRNA-Siwi complex cleaves the mRNA of the male-determining gene Masculinizer (Masc), directing the female-determining pathway. In male embryos, Masc activates the male-determining pathway in the absence of Fem piRNA. Recently, W chromosome-derived piRNAs complementary to Masc mRNA have also been identified in the diamondback moth Plutella xylostella (Yponomeutoidea), indicating the convergent evolution of piRNA-dependent sex determination in Lepidoptera. Here, we show that this is not the case in the Asian corn borer, Ostrinia furnacalis (Pyraloidea). Although our previous studies demonstrated that O. furnacalis Masc (OfMasc) has a masculinizing function in the embryonic stage, the expression level of OfMasc was indistinguishable between the sexes at the timing of sex determination. Deep sequencing analysis identified no female-specific small RNAs mapped onto OfMasc mRNA. Embryonic knockdown of two PIWI genes did not affect the expression level of OfMasc in either sex. These results demonstrated that piRNA-dependent reduction of Masc mRNA in female embryos is not a common strategy of sex determination, which suggests the possibility of divergent evolution of sex determinants across the order Lepidoptera.
Collapse
Affiliation(s)
- Takahiro Fukui
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keisuke Shoji
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
35
|
Zulhussnain M, Zahoor MK, Ranian K, Ahmad A, Jabeen F. CRISPR Cas9 mediated knockout of sex determination pathway genes in Aedes aegypti. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:243-252. [PMID: 36259148 DOI: 10.1017/s0007485322000505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The vector role of Aedes aegypti for viral diseases including dengue and dengue hemorrhagic fever makes it imperative for its proper control. Despite various adopted control strategies, genetic control measures have been recently focused against this vector. CRISPR Cas9 system is a recent and most efficient gene editing tool to target the sex determination pathway genes in Ae. aegypti. In the present study, CRISPR Cas9 system was used to knockout Ae. aegypti doublesex (Aaedsx) and Ae. aegypti sexlethal (AaeSxl) genes in Ae. aegypti embryos. The injection mixes with Cas9 protein (333 ng ul-1) and gRNAs (each at 100 ng ul-1) were injected into eggs. Injected eggs were allowed to hatch at 26 ± 1°C, 60 ± 10% RH. The survival and mortality rate was recorded in knockout Aaedsx and AaeSxl. The results revealed that knockout produced low survival and high mortality. A significant percentage of eggs (38.33%) did not hatch as compared to control groups (P value 0.00). Highest larval mortality (11.66%) was found in the knockout of Aaedsx female isoform, whereas, the emergence of only male adults also showed that the knockout of Aaedsx (female isoform) does not produce male lethality. The survival (3.33%) of knockout for AaeSxl eggs to the normal adults suggested further study to investigate AaeSxl as an efficient upstream of Aaedsx to target for sex transformation in Ae. aegypti mosquitoes.
Collapse
Affiliation(s)
- Muhammad Zulhussnain
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Kanwal Ranian
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aftab Ahmad
- Centre of Department of Biochemistry/US-Pakistan Center for Advance Studies in Agriculture and Food Security (USPCAS-AFS), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
36
|
Nourani L, Mehrizi AA, Pirahmadi S, Pourhashem Z, Asadollahi E, Jahangiri B. CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for Plasmodium parasites, and genetic engineering of Anopheles mosquito vector. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105419. [PMID: 36842543 DOI: 10.1016/j.meegid.2023.105419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Malaria as vector-borne disease remains important health concern with over 200 million cases globally. Novel antimalarial medicines and more effective vaccines must be developed to eliminate and eradicate malaria. Appraisal of preceding genome editing approaches confirmed the CRISPR/Cas nuclease system as a novel proficient genome editing system and a tool for species-specific diagnosis, and drug resistance researches for Plasmodium species, and gene drive to control Anopheles population. CRISPR/Cas technology, as a handy tool for genome editing can be justified for the production of transgenic malaria parasites like Plasmodium transgenic lines expressing Cas9, chimeric Plasmodium transgenic lines, knockdown and knockout transgenic parasites, and transgenic parasites expressing alternative alleles, and also mutant strains of Anopheles such as only male mosquito populations, generation of wingless mosquitoes, and creation of knock-out/ knock-in mutants. Though, the incorporation of traditional methods and novel molecular techniques could noticeably enhance the quality of results. The striking development of a CRISPR/Cas-based diagnostic kit that can specifically diagnose the Plasmodium species or drug resistance markers is highly required in malaria settings with affordable cost and high-speed detection. Furthermore, the advancement of genome modifications by CRISPR/Cas technologies resolves contemporary restrictions to culturing, maintaining, and analyzing these parasites, and the aptitude to investigate parasite genome functions opens up new vistas in the better understanding of pathogenesis.
Collapse
Affiliation(s)
- Leila Nourani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Zeinab Pourhashem
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Elahe Asadollahi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Babak Jahangiri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
37
|
Overview of Aedes aegypti and Use in Laboratory Studies. Cold Spring Harb Protoc 2023; 2023:107651-pdb.top. [PMID: 36223992 DOI: 10.1101/pdb.top107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The yellow fever mosquito Aedes aegypti is a prolific disease vector. This mosquito has been the subject of scientific investigation for more than a century. Continued research into Aedes aegypti biology is crucial for understanding how to halt the suite of major arthropod-borne viral diseases this mosquito transmits. Here, we provide an introductory overview of Aedes aegypti life cycle; evolutionary history, biology, and ecology; genetics and sex differences; vector competence; and laboratory colonization and considerations for rearing this robust mosquito species for use in laboratory research.
Collapse
|
38
|
Laslo M, Just J, Angelini DR. Theme and variation in the evolution of insect sex determination. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:162-181. [PMID: 35239250 PMCID: PMC10078687 DOI: 10.1002/jez.b.23125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/24/2021] [Accepted: 01/03/2022] [Indexed: 11/07/2022]
Abstract
The development of dimorphic adult sexes is a critical process for most animals, one that is subject to intense selection. Work in vertebrate and insect model species has revealed that sex determination mechanisms vary widely among animal groups. However, this variation is not uniform, with a limited number of conserved factors. Therefore, sex determination offers an excellent context to consider themes and variations in gene network evolution. Here we review the literature describing sex determination in diverse insects. We have screened public genomic sequence databases for orthologs and duplicates of 25 genes involved in insect sex determination, identifying patterns of presence and absence. These genes and a 3.5 reference set of 43 others were used to infer phylogenies and compared to accepted organismal relationships to examine patterns of congruence and divergence. The function of candidate genes for roles in sex determination (virilizer, female-lethal-2-d, transformer-2) and sex chromosome dosage compensation (male specific lethal-1, msl-2, msl-3) were tested using RNA interference in the milkweed bug, Oncopeltus fasciatus. None of these candidate genes exhibited conserved roles in these processes. Amidst this variation we wish to highlight the following themes for the evolution of sex determination: (1) Unique features within taxa influence network evolution. (2) Their position in the network influences a component's evolution. Our analyses also suggest an inverse association of protein sequence conservation with functional conservation.
Collapse
Affiliation(s)
- Mara Laslo
- Department of Cell Biology, Curriculum Fellows ProgramHarvard Medical School25 Shattuck StBostonMassachusettsUSA
| | - Josefine Just
- Department of Organismic and Evolutionary BiologyHarvard University26 Oxford StCambridgeMassachusettsUSA
- Department of BiologyColby College5734 Mayflower Hill DrWatervilleMaineUSA
| | - David R. Angelini
- Department of BiologyColby College5734 Mayflower Hill DrWatervilleMaineUSA
| |
Collapse
|
39
|
Shirk BD, Shirk PD, Furlong RB, Scully ED, Wu K, Siegfried BD. Gene editing of the ABC Transporter/White locus using CRISPR/Cas9-mediated mutagenesis in the Indian Meal Moth. JOURNAL OF INSECT PHYSIOLOGY 2023; 145:104471. [PMID: 36539178 DOI: 10.1016/j.jinsphys.2022.104471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
ATP binding cassette (ABC) proteins are involved in transport of substrates across membranes including eye pigments. Mutations of ABC transporter white, brown and scarlet genes of Drosophila and other insects result in visible eye color phenotypes. White locus was identified in a genome assembly of Plodia interpunctella and was found to extend for 16,670 bp comprising 13 exons. We report here recovery of heritable mutants in white in the Indian meal moth, P. interpunctella, using CRISPR/Cas9-mediated mutagenesis. A white eye strain of P. interpunctella c.737delC (Piw-/-) was previously isolated in 1986. Guide RNA (sgRNA) was designed for exon 1 (sgRNA242). Microinjection of Cas9/sgRNA242 complex into Plodia wild type eggs (≤20 min post oviposition) produced 156 viable larvae of which 81 eclosed as adults. Forty-five (56 %) adults displayed wild type phenotype, while 26 females (32 %) and 10 males (12 %) showed full or partial white eye phenotype. The 26 white eye females were mated with Piw-/- males and 21 matings resulted in F1 white eye progeny. Thirteen of the Piw-242 lines were established and sequencing showed indels at the CRISPR/Cas9 242AM site. Based on RT-PCR analysis, most white mutations resulted in suppressed levels of transcript. These results demonstrate the utility of CRISPR/Cas9 gene editing in Plodia which suggests this technology can be used to characterize the role of various genetic elements including those that encode novel targets or confer insecticide resistance mechanisms.
Collapse
Affiliation(s)
- Bryce D Shirk
- Entomology & Nematology Department, PO Box 11620, University of Florida, Gainesville, FL 32611, USA
| | - Paul D Shirk
- Entomology & Nematology Department, PO Box 11620, University of Florida, Gainesville, FL 32611, USA; USDA-ARS CMAVE IBBRU, 1700 SW 23rd Drive, Gainesville, FL 32608, USA.
| | - Richard B Furlong
- USDA-ARS CMAVE IBBRU, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Erin D Scully
- USDA-ARS, CGAHR-SPIERU, 1515 College Avenue, Manhattan, KS 66502, USA
| | - Ke Wu
- Entomology & Nematology Department, PO Box 11620, University of Florida, Gainesville, FL 32611, USA
| | - Blair D Siegfried
- Entomology & Nematology Department, PO Box 11620, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
40
|
Lyu XY, Wang XL, Geng DQ, Jiang H, Zou Z. Juvenile hormone acts on male accessory gland function via regulating l-asparaginase expression and triacylglycerol mobilization in Aedes aegypti. INSECT SCIENCE 2023; 30:81-94. [PMID: 35633120 DOI: 10.1111/1744-7917.13084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Hormones control the reproductive development of Aedes aegypti mosquitoes. The adult male reproductive process and mating behavior require adequate nutrients and energy. Understanding the molecular mechanism linking hormones, energy metabolism, and reproduction in male mosquitoes is important. In this study, we found that the size of the male accessory gland, an essential part of the male reproductive system, gradually increased after eclosion. However, it was significantly reduced in male mosquitoes deficient in methoprene-tolerant (Met), the receptor of juvenile hormone. Likewise, egg hatchability of females that mated with Met-depleted males showed the same downward trend. The mRNA level of the gene encoding accessory gland protein, l-asparaginase (ASNase), was reduced in Met dsRNA-treated males. Electrophoretic mobility shift assay and quantitative reverse transcription-PCR results revealed that Met was capable of binding directly to the promoter of ASNase and activated its transcription. RNA interference of ASNase in males resulted in the reduction of egg hatchability of the females with which they mated. These results showed that Met influenced the fecundity of male mosquitoes by directly upregulating the expression of the ASNase gene. Moreover, the levels of triacylglycerol and the sizes of lipid droplets were decreased by 72-78 h after eclosion in the fat body cells, whereas both of them increased in Met-depleted male mosquitoes, indicating that Met knockdown reduced lipid catabolism. These data demonstrate that Met might influence the egg hatchability of females by regulating lipid metabolism and the development of the male accessory gland in male mosquitoes.
Collapse
Affiliation(s)
- Xiang-Yang Lyu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Li Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Qian Geng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Fusco G, Minelli A. Descriptive versus causal morphology: gynandromorphism and intersexuality. Theory Biosci 2023; 142:1-11. [PMID: 36633802 PMCID: PMC9925516 DOI: 10.1007/s12064-023-00385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
In animal species with separate sexes, abnormal individuals with a mix of phenotypically male and phenotypically female body parts are generally indicated as gynandromorphs, whereas individuals with intermediate sexual phenotypic traits are generally indicated as intersexes. However, this distinction, clear as it may seem, is neither universally agreed upon, nor free of critical issues. In consideration of the role of sex anomalies in understanding normal development, we reassess these phenomena of abnormal sexual development, taking into consideration the more recent advances in the study of sex determination and sexual differentiation. We argue that a distinction between gynandromorphism and intersexuality, although useful for descriptive purposes, is not always possible or sensible. We discuss the conceptual and terminological intricacies of the literature on this subject and provide reasons for largely, although not strictly, preferring a terminology based on descriptive rather than causal morphology, that is, on the observed phenotypic patterns rather on the causal process behind them.
Collapse
Affiliation(s)
- Giuseppe Fusco
- Department of Biology, University of Padova, Padua, Italy.
| | - Alessandro Minelli
- grid.5608.b0000 0004 1757 3470Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
42
|
Bui M, Dalla Benetta E, Dong Y, Zhao Y, Yang T, Li M, Antoshechkin IA, Buchman A, Bottino-Rojas V, James AA, Perry MW, Dimopoulos G, Akbari OS. CRISPR mediated transactivation in the human disease vector Aedes aegypti. PLoS Pathog 2023; 19:e1010842. [PMID: 36656895 PMCID: PMC9888728 DOI: 10.1371/journal.ppat.1010842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/31/2023] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
As a major insect vector of multiple arboviruses, Aedes aegypti poses a significant global health and economic burden. A number of genetic engineering tools have been exploited to understand its biology with the goal of reducing its impact. For example, current tools have focused on knocking-down RNA transcripts, inducing loss-of-function mutations, or expressing exogenous DNA. However, methods for transactivating endogenous genes have not been developed. To fill this void, here we developed a CRISPR activation (CRISPRa) system in Ae. aegypti to transactivate target gene expression. Gene expression is activated through pairing a catalytically-inactive ('dead') Cas9 (dCas9) with a highly-active tripartite activator, VP64-p65-Rta (VPR) and synthetic guide RNA (sgRNA) complementary to a user defined target-gene promoter region. As a proof of concept, we demonstrate that engineered Ae. aegypti mosquitoes harboring a binary CRISPRa system can be used to effectively overexpress two developmental genes, even-skipped (eve) and hedgehog (hh), resulting in observable morphological phenotypes. We also used this system to overexpress the positive transcriptional regulator of the Toll immune pathway known as AaRel1, which resulted in a significant suppression of dengue virus serotype 2 (DENV2) titers in the mosquito. This system provides a versatile tool for research pathways not previously possible in Ae. aegypti, such as programmed overexpression of endogenous genes, and may aid in gene characterization studies and the development of innovative vector control tools.
Collapse
Affiliation(s)
- Michelle Bui
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Elena Dalla Benetta
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yunchong Zhao
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Ting Yang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Ming Li
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Igor A. Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Anna Buchman
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Vanessa Bottino-Rojas
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Michael W. Perry
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Omar S. Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|
43
|
Saccone G. A history of the genetic and molecular identification of genes and their functions controlling insect sex determination. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103873. [PMID: 36400424 DOI: 10.1016/j.ibmb.2022.103873] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The genetics of the sex determination regulatory cascade in Drosophila melanogaster has a fascinating history, interlinked with the foundation of the Genetics discipline itself. The discovery that alternative splicing rather than differential transcription is the molecular mechanism underlying the upstream control of sex differences in the Drosophila model system was surprising. This notion is now fully integrated into the scientific canon, appearing in many genetics textbooks and online education resources. In the last three decades, it was a key reference point for starting evolutionary studies in other insect species by using homology-based approaches. This review will introduce a very brief history of Drosophila genetics. It will describe the genetic and molecular approaches applied for the identifying and cloning key genes involved in sex determination in Drosophila and in many other insect species. These comparative analyses led to supporting the idea that sex-determining pathways have evolved mainly by recruiting different upstream signals/genes while maintaining widely conserved intermediate and downstream regulatory genes. The review also provides examples of the link between technological advances and research achievements, to stimulate reflections on how science is produced. It aims to hopefully strengthen the related historical and conceptual knowledge of general readers of other disciplines and of younger geneticists, often focused on the latest technical-molecular approaches.
Collapse
Affiliation(s)
- Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy.
| |
Collapse
|
44
|
Chen C, Compton A, Nikolouli K, Wang A, Aryan A, Sharma A, Qi Y, Dellinger C, Hempel M, Potters M, Augustinos A, Severson DW, Bourtzis K, Tu Z. Marker-assisted mapping enables forward genetic analysis in Aedes aegypti, an arboviral vector with vast recombination deserts. Genetics 2022; 222:iyac140. [PMID: 36083009 PMCID: PMC9630976 DOI: 10.1093/genetics/iyac140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/29/2022] [Indexed: 11/14/2022] Open
Abstract
Aedes aegypti is a major vector of arboviruses that cause dengue, chikungunya, yellow fever, and Zika. Although recent success in reverse genetics has facilitated rapid progress in basic and applied research, integration of forward genetics with modern technologies remains challenging in this important species, as up to 47% of its chromosome is refractory to genetic mapping due to extremely low rate of recombination. Here, we report the development of a marker-assisted mapping strategy to readily screen for and genotype only the rare but informative recombinants, drastically increasing both the resolution and signal-to-noise ratio. Using marker-assisted mapping, we mapped a transgene that was inserted in a >100-Mb recombination desert and a sex-linked spontaneous red-eye (re) mutation just outside the region. We subsequently determined, by CRISPR/Cas9-mediated knockout, that cardinal is the causal gene of re, which is the first forward genetic identification of a causal gene in Ae. aegypti. The identification of the causal gene of the sex-linked re mutation provides the molecular foundation for using gene editing to develop versatile and stable genetic sexing methods. To facilitate genome-wide forward genetics in Ae. aegypti, we generated and compiled a number of lines with markers throughout the genome. Thus, by overcoming the challenges presented by the vast recombination deserts and the scarcity of markers, we have shown that effective forward genetic analysis is increasingly feasible in this important arboviral vector species.
Collapse
Affiliation(s)
- Chujia Chen
- Genetics Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Austin Compton
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Katerina Nikolouli
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria
| | - Aihua Wang
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Azadeh Aryan
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Atashi Sharma
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yumin Qi
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Camden Dellinger
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Melanie Hempel
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark Potters
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Antonios Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria
| | - David W Severson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria
| | - Zhijian Tu
- Genetics Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
45
|
Spinner SAM, Barnes ZH, Puinean AM, Gray P, Dafa’alla T, Phillips CE, Nascimento de Souza C, Frazon TF, Ercit K, Collado A, Naish N, Sulston E, Ll. Phillips GC, Greene KK, Poletto M, Sperry BD, Warner SA, Rose NR, Frandsen GK, Verza NC, Gorman KJ, Matzen KJ. New self-sexing Aedes aegypti strain eliminates barriers to scalable and sustainable vector control for governments and communities in dengue-prone environments. Front Bioeng Biotechnol 2022; 10:975786. [PMID: 36394032 PMCID: PMC9650594 DOI: 10.3389/fbioe.2022.975786] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/22/2022] [Indexed: 10/20/2023] Open
Abstract
For more than 60 years, efforts to develop mating-based mosquito control technologies have largely failed to produce solutions that are both effective and scalable, keeping them out of reach of most governments and communities in disease-impacted regions globally. High pest suppression levels in trials have yet to fully translate into broad and effective Aedes aegypti control solutions. Two primary challenges to date-the need for complex sex-sorting to prevent female releases, and cumbersome processes for rearing and releasing male adult mosquitoes-present significant barriers for existing methods. As the host range of Aedes aegypti continues to advance into new geographies due to increasing globalisation and climate change, traditional chemical-based approaches are under mounting pressure from both more stringent regulatory processes and the ongoing development of insecticide resistance. It is no exaggeration to state that new tools, which are equal parts effective and scalable, are needed now more than ever. This paper describes the development and field evaluation of a new self-sexing strain of Aedes aegypti that has been designed to combine targeted vector suppression, operational simplicity, and cost-effectiveness for use in disease-prone regions. This conditional, self-limiting trait uses the sex-determination gene doublesex linked to the tetracycline-off genetic switch to cause complete female lethality in early larval development. With no female progeny survival, sex sorting is no longer required, eliminating the need for large-scale mosquito production facilities or physical sex-separation. In deployment operations, this translates to the ability to generate multiple generations of suppression for each mosquito released, while being entirely self-limiting. To evaluate these potential benefits, a field trial was carried out in densely-populated urban, dengue-prone neighbourhoods in Brazil, wherein the strain was able to suppress wild mosquito populations by up to 96%, demonstrating the utility of this self-sexing approach for biological vector control. In doing so, it has shown that such strains offer the critical components necessary to make these tools highly accessible, and thus they harbour the potential to transition mating-based approaches to effective and sustainable vector control tools that are within reach of governments and at-risk communities who may have only limited resources.
Collapse
Affiliation(s)
| | | | | | - Pam Gray
- Oxitec Ltd., Abingdon, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Natalia C. Verza
- Oxitec Ltd., Abingdon, United Kingdom
- Oxitec do Brasil, Campinas, Brazil
| | | | | |
Collapse
|
46
|
Raban R, Gendron WAC, Akbari OS. A perspective on the expansion of the genetic technologies to support the control of neglected vector-borne diseases and conservation. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.999273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Genetic-based technologies are emerging as promising tools to support vector population control. Vectors of human malaria and dengue have been the main focus of these development efforts, but in recent years these technologies have become more flexible and adaptable and may therefore have more wide-ranging applications. Culex quinquefasciatus, for example, is the primary vector of avian malaria in Hawaii and other tropical islands. Avian malaria has led to the extinction of numerous native bird species and many native bird species continue to be threatened as climate change is expanding the range of this mosquito. Genetic-based technologies would be ideal to support avian malaria control as they would offer alternatives to interventions that are difficult to implement in natural areas, such as larval source reduction, and limit the need for chemical insecticides, which can harm beneficial species in these natural areas. This mosquito is also an important vector of human diseases, such as West Nile and Saint Louis encephalitis viruses, so genetic-based control efforts for this species could also have a direct impact on human health. This commentary will discuss the current state of development and future needs for genetic-based technologies in lesser studied, but important disease vectors, such as C. quinquefasciatus, and make comparisons to technologies available in more studied vectors. While most current genetic control focuses on human disease, we will address the impact that these technologies could have on both disease and conservation focused vector control efforts and what is needed to prepare these technologies for evaluation in the field. The versatility of genetic-based technologies may result in the development of many important tools to control a variety of vectors that impact human, animal, and ecosystem health.
Collapse
|
47
|
Malfacini M, Puggioli A, Balestrino F, Carrieri M, Dindo ML, Bellini R. Aedes albopictus Sterile Male Production: Influence of Strains, Larval Diet and Mechanical Sexing Tools. INSECTS 2022; 13:899. [PMID: 36292847 PMCID: PMC9604197 DOI: 10.3390/insects13100899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The sterile insect technique (SIT) is a biologically based method of pest control, which relies on the mass production, sterilization, and release of sterile males of the target species. Since females can transmit viruses, it is important to develop a mass rearing system to produce a large number of males with a low presence of females. We evaluated the effects of different strains, larval diets and sexing tools on male productivity and residual female presence for the application of SIT against Aedes albopictus. Strains coming from Italy, Germany, Greece, and Montenegro, with different levels of colonization, were reared with three larval diets: IAEA-BY, BLP-B and SLP-BY. Developed pupae were sexed using two different mechanical methods: sieve or Fay-Morlan separator. The results proved that adoption of the Fay-Morlan separator increased the productivity and limited the female presence. The IAEA-BY diet showed the lowest female contamination. Strains with a high number of breeding generations showed a decreased productivity and an increased female presence. Increased female presence was found only in extensively reared strains and only when the sorting operation was conducted with sieves. We hypothesize that extensive colonization may determine a size reduction which limits the sexing tool efficiency itself.
Collapse
Affiliation(s)
- Marco Malfacini
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127 Bologna, Italy
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Arianna Puggioli
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Fabrizio Balestrino
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Marco Carrieri
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Maria Luisa Dindo
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127 Bologna, Italy
| | - Romeo Bellini
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| |
Collapse
|
48
|
Xu L, Li B, Liu H, Zhang H, Liu R, Yu H, Li D. CRISPR/Cas9-Mediated Knockout Reveals the Involvement of CYP304F1 in β-Cypermethrin and Chlorpyrifos Resistance in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11192-11200. [PMID: 36043880 DOI: 10.1021/acs.jafc.2c04352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functions of insect CYP2 clan P450s in insecticide resistance are relatively less reported. In Spodoptera litura, a gene from the CYP2 clan (CYP304F1) was validated to be up-regulated significantly in a pyrethroid- and organophosphate-resistant population (QJ) than a susceptible population by RNA-Seq and qRT-PCR. Spatial-temporal expression indicated the high expression of CYP304F1 in the fourth, fifth, and sixth instar larvae and the metabolism-related tissue fat body and malpighian tubules. CYP304F1 was knocked out by CRISPR/Cas9, and a homozygous population (QJ-CYP304F1) with a G-base deletion at exon 2 was obtained after selection. Bioassay results showed that the LD50 values to β-cypermethrin and chlorpyrifos in the QJ-CYP304F1 population decreased significantly, and the resistance ratio was both 1.81-fold in the QJ population compared with that in the QJ-CYP304F1 population. The toxicity of fenvalerate, cyhalothrin, or phoxim showed no significant change. These results suggested that CYP304F1 is involved in β-cypermethrin and chlorpyrifos resistance in S. litura.
Collapse
Affiliation(s)
- Li Xu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Bo Li
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hongyu Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hongwei Zhang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Runqiang Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hao Yu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Dongzhi Li
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| |
Collapse
|
49
|
Kojin BB, Compton A, Adelman ZN, Tu Z. Selective targeting of biting females to control mosquito-borne infectious diseases. Trends Parasitol 2022; 38:791-804. [PMID: 35952630 PMCID: PMC9372635 DOI: 10.1016/j.pt.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Mosquitoes are vectors for a number of infectious diseases. Only females feed on blood to provision for their embryos and, in doing so, transmit pathogens to the associated vertebrate hosts. Therefore, sex is an important phenotype in the context of genetic control programs, both for sex separation in the rearing facilities to avoid releasing biting females and for ways to distort the sex ratio towards nonbiting males. We review recent progress in the fundamental knowledge of sex determination and sex chromosomes in mosquitoes and discuss new methods to achieve sex separation and sex ratio distortion to help control mosquito-borne infectious diseases. We conclude by suggesting a few critical areas for future research.
Collapse
Affiliation(s)
- Bianca B Kojin
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA
| | - Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA.
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
50
|
Bi H, Xu X, Li X, Wang Y, Zhou S, Huang Y. CRISPR/Cas9-mediated Serine protease 2 disruption induces male sterility in Spodoptera litura. Front Physiol 2022; 13:931824. [PMID: 35991171 PMCID: PMC9382020 DOI: 10.3389/fphys.2022.931824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Male fertility is essential for reproduction and population growth in animals. Many factors affect male fertility, such as courtship behavior, sperm quantity, and sperm motility, among others. Seminal Fluid Proteins (SFPs) are vital components of seminal fluid in the male ejaculate, which affect male fertility, sperm activation, and female ovulation. However, the knowledge of SFPs is insufficient; the function of many SFPs remains unknown, and most described functions were mainly characterized in Drosophila or other laboratory models. Here, we focus on the Serine protease 2 (Ser2) gene in the lepidopteran pest Spodoptera litura. The Ser2 gene was specifically expressed in male adults. Disruption of the Ser2 gene mediated by CRISPR/Cas9 induced male sterility but females remained fertile. PCR-based detection of the next-generation mutants showed that male sterility was stably inherited. The qRT-PCR analysis of SlSer2 mutants showed that motor protein family genes and structural protein family genes were down-regulated, while protein modification family genes were up-regulated, suggesting that SlSer2 may be involved in sperm movement and activity. These results demonstrate that Ser2 is an important component of SFPs in seminal fluid and was identified for a useful sterile gene for pest control that may lead to new control strategies for lepidopteran insect pests such as S. litura.
Collapse
Affiliation(s)
- Honglun Bi
- State Key Laboratory of Cotton Biology, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, China
| | - Xia Xu
- Institute of Sericulture and Tea Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaowei Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Shanghai, China
| | - Yaohui Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Shanghai, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Biology, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, China
- *Correspondence: Shutang Zhou, ; Yongping Huang,
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Shanghai, China
- *Correspondence: Shutang Zhou, ; Yongping Huang,
| |
Collapse
|