1
|
Chakrabortty A, Bandyopadhyay S. Probing the Degree of Restriction in Solvent Dynamics at the Interface of a Protein-RNA Complex. J Phys Chem B 2025; 129:4143-4158. [PMID: 40240338 DOI: 10.1021/acs.jpcb.4c08804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Protein-RNA complexation is an important step for the regulation of numerous biological processes. Water present at the interface of a protein-RNA complex plays a critical role in guiding its structure, stability, and function. Therefore, studying the microscopic properties of interfacial water is essential to gain molecular insights into the formation of such complexes. In this study, we present results obtained from molecular dynamics (MD) simulations of poly(A)-binding protein (PABP) bound with poly(A) RNA, which is an essential regulatory step to control the deadenylation process, thereby stabilizing cellular mRNAs from degradation. Efforts have been made to explore how such complexation alters the regular dynamical and hydrogen bond properties of water present at the interface. The calculations revealed restricted water dynamics at the interface, characterized by heterogeneous time scales, with the extent of restriction being more pronounced for residues directly involved in protein-RNA binding. In particular, water molecules around the protein's linker, RRM2, and the RNA strand exhibit significantly more restricted motion compared to RRM1 upon complexation. Further, longer relaxation times of hydrogen bonds at the interface due to complex formation have been found to be correlated with increasingly restricted water motions. Notably, the kinetics of hydrogen bonds around the protein's linker, RRM2, and the RNA strand are more strongly influenced by complex formation, underscoring their critical role in mediating protein-RNA interactions.
Collapse
Affiliation(s)
- Arun Chakrabortty
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
2
|
Malik R, Stolte N, Forbert H, Chandra A, Marx D. Accurate Determination of Isotope Effects on the Dynamics of H-Bond Breaking and Making in Liquid Water. J Phys Chem Lett 2025; 16:3727-3733. [PMID: 40186566 DOI: 10.1021/acs.jpclett.5c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Isotopic substitution of light hydrogen atoms with heavier deuterium atoms in liquid water renders the resulting liquid, heavy water (D2O), poisonous to most organisms when it replaces a critical fraction of water in living organisms. The mechanisms through which heavy water disrupts biological function are challenging to disentangle experimentally. Isotopic substitution has long been known to affect the H-bond dynamics of liquid water, but experiments have yet to quantify the extent of the differences in the time scales of H-bond breaking and making processes between H2O and D2O. In this work, we analyze H-bond dynamics through extensive coupled cluster-quality path integral simulations of H2O and D2O under ambient conditions that grant access to unambiguous molecular analyses. We find substantial isotope substitution effects on the rates of H-bond formation and breaking, and H-bond lifetimes, with dynamics in D2O ∼25% slower than in H2O. The toxicity of D2O can thus be ascribed, at least in part, to the effect of slowed H-bond dynamics on biochemical reactions.
Collapse
Affiliation(s)
- Ravi Malik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nore Stolte
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Harald Forbert
- Center for Solvation Science ZEMOS, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
3
|
Yan Z, Li J, Zhang H, Zhang R. Direct Detection of Natural-Abundance Low-γ Nuclei NMR Signals of Minute Quantities of Organic Solids. Anal Chem 2025; 97:7242-7250. [PMID: 40152741 DOI: 10.1021/acs.analchem.4c06887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Low-γ nuclei signal enhancement in solid-state NMR spectroscopy is typically achieved via cross-polarization (CP) using abundant 1H polarization in organic solids. Nevertheless, direct low-γ nuclei signal detection via a single CP process is quite challenging with minute quantities of samples due to the extremely limited signal-to-noise ratio (SNR) of the acquired spectra. Herein, we demonstrated the robust performance of a multiple-contact CP experiment with multiple acquisition periods (MCP) in each transient scan, leading to several-fold SNR enhancement over a conventional single-CP experiment at fast MAS conditions with slightly increased experimental time. Spin thermodynamic analysis was further performed to achieve maximum SNR by adding the obtained Nmax CP spectra from each transient, where Nmax ∼ T1ρ/τcw. Here, T1ρ is the proton spin-lattice relaxation time in the rotating frame, and τcw is the total time of CP and a heteronuclear decoupling period. The theoretical analysis is in good agreement with experimental results, and more than 4.5-fold SNR enhancement can be achieved for the pharmaceutical danazol/vanillin cocrystals. Besides, MCP was also used for proton T1 and T1ρ measurement with high-resolution 13C detection, where both proton T1 and T1ρ can serve as the spectral-editing basis to identify different immiscible components in complex molecular systems.
Collapse
Affiliation(s)
- Zhiwei Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiangying Li
- Laboratory of Pharmaceutical Solid-State Chemistry, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Hailu Zhang
- Laboratory of Pharmaceutical Solid-State Chemistry, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
- Interdisciplinary Institute of NMR and Molecular Sciences (NMR-X), School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
4
|
Kress T, Duer MJ. Solid-State NMR Spectroscopy Investigation of Structural Changes of Mechanically Strained Mouse Tail Tendons. J Am Chem Soc 2025; 147:9220-9228. [PMID: 40056116 PMCID: PMC11926861 DOI: 10.1021/jacs.4c13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Structural tissues like tendon are subjected to repeated tensile strains in vivo and excessive strains cause irreversible changes to the tissue. Large strains affect the molecular structure and organization of the extracellular matrix, and these are the parameters that drive cell behavior, including tissue repair. Here we describe a method to perform solid-state NMR spectroscopy on in situ strained tissue samples under magic-angle spinning to achieve high-resolution NMR spectra while maintaining the tissue's native hydration state. The changes observed in the NMR spectra are interpreted using quantum mechanics molecular mechanics (QM/MM) chemical shift calculations on strained collagen triple-helix structures and consideration of changes in the distribution of molecular orientations between strained and relaxed mechanical states. We demonstrate that our tissue strain method in combination with spectral simulations can detect changes in collagen organization between tendons loaded to plastic deformation and subsequent structural relaxation in the unloaded state.
Collapse
Affiliation(s)
- Thomas Kress
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Melinda J. Duer
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
5
|
Yarava J, Orwick-Rydmark M, Ryoo D, Hofstetter A, Gumbart JC, Habeck M, van Rossum BJ, Linke D, Oschkinat H. Probing the Dynamics of Yersinia Adhesin A (YadA) in Outer Membranes Hints at Requirements for β-Barrel Membrane Insertion. J Am Chem Soc 2025; 147:8618-8628. [PMID: 40014811 PMCID: PMC11912334 DOI: 10.1021/jacs.4c17726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
The vast majority of cells are protected and functionalized by a dense surface layer of glycans, proteoglycans, and glycolipids. This surface represents an underexplored space in structural biology that is exceedingly challenging to recreate in vitro. Here, we investigate β-barrel protein dynamics within an asymmetric outer membrane environment, with the trimeric autotransporter Yersinia adhesin A (YadA) as an example. Magic-angle spinning NMR relaxation data and a model-free approach reveal increased mobility in the second half of strand β2 after the conserved G72, which is responsible for membrane insertion and autotransport, and in the subsequent loop toward β3. In contrast, the protomer-protomer interaction sites (β1i-β4i-1) are rigid. Intriguingly, the mobility in the β-strand section following G72 is substantially elevated in the outer membrane and less so in the detergent environment of microcrystals. A possible source is revealed by molecular dynamics simulations that show the formation of a salt bridge involving E79 and R76 in competition with a dynamic interplay of calcium binding by E79 and the phosphate groups of the lipids. An estimation of overall barrel motion in the outer membrane and detergent-containing crystals yields values of around 41 ns for both. The global motion of YadA in the outer membrane has a stronger rotational component orthogonal to the symmetry axis of the trimeric porin than in the detergent-containing crystal. In summary, our investigation shows that the mobility in the second half of β2 and the loop to β3 required for membrane insertion and autotransport is maintained in the final folded form of YadA.
Collapse
Affiliation(s)
- Jayasubba
Reddy Yarava
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | | | - David Ryoo
- Interdisciplinary
Bioengineering Graduate Program, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Albert Hofstetter
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| | - James C. Gumbart
- School of
Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael Habeck
- Microscopic
Image Analysis Group, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Barth-Jan van Rossum
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Dirk Linke
- Department
of Biosciences, University of Oslo, P.O.Box 1066 Blindern, 0316 Oslo, Norway
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Freie
Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
6
|
Yabukarski F. Ensemble-function relationships: From qualitative to quantitative relationships between protein structure and function. J Struct Biol 2025; 217:108152. [PMID: 39577782 DOI: 10.1016/j.jsb.2024.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Structure-function relationships are deeply rooted in modern biochemistry and structural biology and have provided the basis for our understanding of how protein structure defines function. While structure-function relationships continue to provide invaluable qualitative information, they cannot, in principle, provide the quantitative information ultimately needed to fully understand how proteins function and to make quantitative predictions about changes in activity from changes in sequence and structure. These limitations appear to arise from fundamental principles of physics, which dictate that proteins exist as interchanging ensembles of conformations, rather than as static structures that underly conventional structure-function relationships. This perspective discusses the concept of ensemble-function relationships as quantitative relationships that build on and extend traditional structure-function relationships. The concepts of free energy landscapes and conformational ensembles and their application to proteins are reviewed. The perspective summarizes a range of approaches that can provide conformational ensemble information and focuses on X-ray crystallography methods for obtaining experimental protein conformational ensembles. Focusing on enzymes as archetypes of protein function, recent literature examples are reviewed that used ensemble-function relationships to understand how protein residues contribute to function and how changes in protein sequence and structure impact activity, leading to new models and providing previously inaccessible mechanistic insights. Potential applications of conformational ensembles and ensemble-function relationships to protein design are examined. The perspective concludes with current limitations of the ensemble-function relationships and potential paths forward toward the next generation of quantitative ensemble-function models.
Collapse
Affiliation(s)
- Filip Yabukarski
- Protein Homeostasis Structural Biology Group, Bristol Myers Squibb, San Diego, CA 92121, United States.
| |
Collapse
|
7
|
Chin SY, Zhao L, Chen Y, Zhai Z, Shi X, Xue K. Nanosecond Molecular Motion in pHP1α Liquid-Liquid Phase Separation Captured by Solid-State NMR. J Phys Chem Lett 2025; 16:1150-1156. [PMID: 39846510 DOI: 10.1021/acs.jpclett.4c03331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The relationship among protein structure, function, and dynamics is fundamental to biological activity, particularly in more complex biomolecular systems. Solid-state and solution-state NMR techniques offer powerful means to probe these dynamics across various time scales. However, standard assumptions about molecular motion are often challenged in phase-separated systems like phosphorylated heterochromatin protein 1 alpha (pHP1α), which exhibit both solid- and solution-like characteristics. This study investigates the nanosecond molecular motions in pHP1α liquid-liquid phase separation (LLPS) using relaxation in hetNOE-filtered HSQC signals. By systematically analyzing motions captured by hetNOE-filtered HSQC and conventional HSQC, we characterize the global dynamics site-specifically in pHP1α LLPS. Our findings reveal ∼15 ns motion in the pHP1α LLPS system, suggesting the coexistence of different dynamic phases, and support previous observations on its role in chromatin organization. This work contributes to the expanding literature on phase-separated biomolecular behavior, with implications for understanding the molecular basis of chromatin compaction and genomic stability.
Collapse
Affiliation(s)
- Sze Yuet Chin
- Centre of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Lei Zhao
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province, P. R. China 518172
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province, P. R. China 518172
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia 119234
| | - Ziwei Zhai
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province, P. R. China 518172
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia 119234
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province, P. R. China 518172
| | - Kai Xue
- Centre of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- School of Physical and Mathematical Science, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
8
|
Saeed A, Klureza MA, Hekstra DR. Mapping Protein Conformational Landscapes from Crystallographic Drug Fragment Screens. J Chem Inf Model 2024; 64:8937-8951. [PMID: 39530154 PMCID: PMC11633654 DOI: 10.1021/acs.jcim.4c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Proteins are dynamic macromolecules. Knowledge of a protein's thermally accessible conformations is critical to determining important transitions and designing therapeutics. Accessible conformations are highly constrained by a protein's structure such that concerted structural changes due to external perturbations likely track intrinsic conformational transitions. These transitions can be thought of as paths through a conformational landscape. Crystallographic drug fragment screens are high-throughput perturbation experiments, in which thousands of crystals of a drug target are soaked with small-molecule drug precursors (fragments) and examined for fragment binding, mapping potential drug binding sites on the target protein. Here, we describe an open-source Python package, COnformational LAndscape Visualization (COLAV), to infer conformational landscapes from such large-scale crystallographic perturbation studies. We apply COLAV to drug fragment screens of two medically important systems: protein tyrosine phosphatase 1B (PTP1B), which regulates insulin signaling, and the SARS CoV-2 Main Protease (MPro). With enough fragment-bound structures, we find that such drug screens enable detailed mapping of proteins' conformational landscapes.
Collapse
Affiliation(s)
- Ammaar
A. Saeed
- Department
of Molecular & Cellular Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Margaret A. Klureza
- Department
of Chemistry & Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Doeke R. Hekstra
- Department
of Molecular & Cellular Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- School
of Engineering & Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
9
|
Banks D, Kempf JG, Du Y, Reichert P, Narasimhan C, Fang R, Kwon S, Ling J, Lay-Fortenbery A, Zhang Y, Ni QZ, Cote A, Su Y. Investigation of Protein Therapeutics in Frozen Conditions Using DNP MAS NMR: A Study on Pembrolizumab. Mol Pharm 2024. [PMID: 39555969 DOI: 10.1021/acs.molpharmaceut.4c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The success of modern biopharmaceutical products depends on enhancing the stability of protein therapeutics. Freezing and thawing, which are common thermal stresses encountered throughout the lifecycle of drug substances, spanning protein production, formulation design, manufacturing, storage, and shipping, can impact this stability. Understanding the physicochemical and molecular behaviors of components in biological drug products at temperatures relevant to manufacturing and shipping is essential for assessing stability risks and determining appropriate storage conditions. This study focuses on the stability of high-concentration monoclonal antibody (mAb) pembrolizumab, the drug substance of Keytruda (Merck & Co., Inc., Rahway, NJ, United States), and its excipients in a frozen solution. By leveraging dynamic nuclear polarization (DNP), we achieve more than 100-fold signal enhancements in solid-state NMR (ssNMR), enabling efficient low-temperature (LT) analysis of pembrolizumab without isotopic enrichment. Through both ex situ and in situ ssNMR experiments conducted across a temperature range of 297 to 77 K, we provide insights into the stability of crystalline pembrolizumab under frozen conditions. Importantly, utilizing LT magic-angle spinning (MAS) probes allows us to study molecular dynamics in pembrolizumab from room temperature down to liquid nitrogen temperatures (<100 K). Our results demonstrate that valuable insights into protein conformation and dynamics, crystallinity, and the phase transformations of excipients during the freezing of the formulation matrix can be readily obtained for biological drug products. This study underscores the potential of LT-MAS ssNMR and DNP techniques for analyzing protein therapeutics and vaccines in frozen solutions.
Collapse
Affiliation(s)
- Daniel Banks
- Bruker Biospin Corporation, Billerica, Massachusetts 01821, United States
| | - James G Kempf
- Bruker Biospin Corporation, Billerica, Massachusetts 01821, United States
| | - Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Paul Reichert
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Chakravarthy Narasimhan
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Rui Fang
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Soonbum Kwon
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jing Ling
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ashley Lay-Fortenbery
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yongqian Zhang
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Qing Zhe Ni
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Aaron Cote
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
10
|
Colburn T, Sarhangi SM, Matyushov DV. Statistics of protein electrostatics. J Chem Phys 2024; 161:175101. [PMID: 39494799 DOI: 10.1063/5.0229619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Molecular dynamics simulations of a small redox-active protein plastocyanin address two questions. (i) Do protein electrostatics equilibrate to the Gibbsian ensemble? (ii) Do the electrostatic potential and electric field inside proteins follow the Gaussian distribution? The statistics of electrostatic potential and electric field are probed by applying small charge and dipole perturbations to different sites within the protein. Nonergodic (non-Gibbsian) sampling is detectable through violations of exact statistical rules constraining the first and second statistical moments (fluctuation-dissipation relations) and the linear relation between free-energy surfaces of the collective coordinate representing the Hamiltonian electrostatic perturbation. We find weakly nonergodic statistics of the electrostatic potential (simulation time of 0.4-1.0 μs) and non-Gibbsian and non-Gaussian statistics of the electric field. A small dipolar perturbation of the protein results in structural instabilities of the protein-water interface and multi-modal distributions of the Hamiltonian energy gap. The variance of the electrostatic potential passes through a crossover at the glass transition temperature Ttr ≃ 170 K. The dipolar susceptibility, reflecting the variance of the electric field inside the protein, strongly increases, with lowering temperature, followed by a sharp drop at Ttr. The linear relation between free-energy surfaces can be directly tested by combining absorption and emission spectra of optical dyes. It was found that the statistics of the electrostatic potential perturbation are nearly Gibbsian/Gaussian, with little deviations from the prescribed statistical rules. On the contrary, the (nonergodic) statistics of dipolar perturbations are strongly non-Gibbsian/non-Gaussian due to structural instabilities of the protein hydration shell.
Collapse
Affiliation(s)
- Taylor Colburn
- Department of Physics, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, USA
| | | | - Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, USA
| |
Collapse
|
11
|
Oh M, Rosa M, Xie H, Khelashvili G. Automated collective variable discovery for MFSD2A transporter from molecular dynamics simulations. Biophys J 2024; 123:2934-2955. [PMID: 38932456 PMCID: PMC11393714 DOI: 10.1016/j.bpj.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Biomolecules often exhibit complex free energy landscapes in which long-lived metastable states are separated by large energy barriers. Overcoming these barriers to robustly sample transitions between the metastable states with classical molecular dynamics (MD) simulations presents a challenge. To circumvent this issue, collective variable (CV)-based enhanced sampling MD approaches are often employed. Traditional CV selection relies on intuition and prior knowledge of the system. This approach introduces bias, which can lead to incomplete mechanistic insights. Thus, automated CV detection is desired to gain a deeper understanding of the system/process. Analysis of MD data with various machine-learning algorithms, such as principal component analysis (PCA), support vector machine, and linear discriminant analysis (LDA) based approaches have been implemented for automated CV detection. However, their performance has not been systematically evaluated on structurally and mechanistically complex biological systems. Here, we applied these methods to MD simulations of the MFSD2A (Major Facilitator Superfamily Domain 2A) lysolipid transporter in multiple functionally relevant metastable states with the goal of identifying optimal CVs that would structurally discriminate these states. Specific emphasis was on the automated detection and interpretive power of LDA-based CVs. We found that LDA methods, which included a novel gradient descent-based multiclass harmonic variant, termed GDHLDA, we developed here, outperform PCA in class separation, exhibiting remarkable consistency in extracting CVs critical for distinguishing metastable states. Furthermore, the identified CVs included features previously associated with conformational transitions in MFSD2A. Specifically, conformational shifts in transmembrane helix 7 and in residue Y294 on this helix emerged as critical features discriminating the metastable states in MFSD2A. This highlights the effectiveness of LDA-based approaches in automatically extracting from MD trajectories CVs of functional relevance that can be used to drive biased MD simulations to efficiently sample conformational transitions in the molecular system.
Collapse
Affiliation(s)
- Myongin Oh
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Margarida Rosa
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Hengyi Xie
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
12
|
Zheng L, Zhou B, Wu B, Tan Y, Huang J, Tyagi M, García Sakai V, Yamada T, O'Neill H, Zhang Q, Hong L. Decoupling of the onset of anharmonicity between a protein and its surface water around 200 K. eLife 2024; 13:RP95665. [PMID: 39158544 PMCID: PMC11333040 DOI: 10.7554/elife.95665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
The protein dynamical transition at ~200 K, where the biomolecule transforms from a harmonic, non-functional form to an anharmonic, functional state, has been thought to be slaved to the thermal activation of dynamics in its surface hydration water. Here, by selectively probing the dynamics of protein and hydration water using elastic neutron scattering and isotopic labeling, we found that the onset of anharmonicity in the two components around 200 K is decoupled. The one in protein is an intrinsic transition, whose characteristic temperature is independent of the instrumental resolution time, but varies with the biomolecular structure and the amount of hydration, while the one of water is merely a resolution effect.
Collapse
Affiliation(s)
- Lirong Zheng
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
| | - Bingxin Zhou
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong UniversityShanghaiChina
| | - Banghao Wu
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yang Tan
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong UniversityShanghaiChina
| | - Juan Huang
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiChina
| | - Madhusudan Tyagi
- Department of Materials Science and Engineering, University of MarylandCollege ParkUnited States
- NIST Center for Neutron Research, National Institute of Standards and Technology (NIST)GaithersburgUnited States
| | - Victoria García Sakai
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Science & Technology Facilities CouncilDidcotUnited Kingdom
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and SocietyIbarakiJapan
| | - Hugh O'Neill
- Biology and Soft Matter Division, Oak Ridge National LaboratoryOak RidgeUnited States
| | - Qiu Zhang
- Biology and Soft Matter Division, Oak Ridge National LaboratoryOak RidgeUnited States
| | - Liang Hong
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong UniversityShanghaiChina
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong UniveristyShanghaiChina
- Shanghai Artificial Intelligence LaboratoryShanghaiChina
| |
Collapse
|
13
|
Saeed AA, Klureza MA, Hekstra DR. Mapping protein conformational landscapes from crystallographic drug fragment screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605395. [PMID: 39131376 PMCID: PMC11312500 DOI: 10.1101/2024.07.29.605395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Proteins are dynamic macromolecules. Knowledge of a protein's thermally accessible conformations is critical to determining important transitions and designing therapeutics. Accessible conformations are highly constrained by a protein's structure such that concerted structural changes due to external perturbations likely track intrinsic conformational transitions. These transitions can be thought of as paths through a conformational landscape. Crystallographic drug fragment screens are high-throughput perturbation experiments, in which thousands of crystals of a drug target are soaked with small-molecule drug precursors (fragments) and examined for fragment binding, mapping potential drug binding sites on the target protein. Here, we describe an open-source Python package, COLAV (COnformational LAndscape Visualization), to infer conformational landscapes from such large-scale crystallographic perturbation studies. We apply COLAV to drug fragment screens of two medically important systems: protein tyrosine phosphatase 1B (PTP-1B), which regulates insulin signaling, and the SARS CoV-2 Main Protease (MPro). With enough fragment-bound structures, we find that such drug screens also enable detailed mapping of proteins' conformational landscapes.
Collapse
Affiliation(s)
- Ammaar A. Saeed
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Margaret A. Klureza
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Doeke R. Hekstra
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138
- School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138
| |
Collapse
|
14
|
Tan H, Duan M, Xie H, Zhao Y, Liu H, Yang M, Liu M, Yang J. Fast collective motions of backbone in transmembrane α helices are critical to water transfer of aquaporin. SCIENCE ADVANCES 2024; 10:eade9520. [PMID: 38718112 PMCID: PMC11078191 DOI: 10.1126/sciadv.ade9520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Fast collective motions are widely present in biomolecules, but their functional relevance remains unclear. Herein, we reveal that fast collective motions of backbone are critical to the water transfer of aquaporin Z (AqpZ) by using solid-state nuclear magnetic resonance (ssNMR) spectroscopy and molecular dynamics (MD) simulations. A total of 212 residue site-specific dipolar order parameters and 158 15N spin relaxation rates of the backbone are measured by combining the 13C- and 1H-detected multidimensional ssNMR spectra. Analysis of these experimental data by theoretic models suggests that the small-amplitude (~10°) collective motions of the transmembrane α helices on the nanosecond-to-microsecond timescales are dominant for the dynamics of AqpZ. The MD simulations demonstrate that these collective motions are critical to the water transfer efficiency of AqpZ by facilitating the opening of the channel and accelerating the water-residue hydrogen bonds renewing in the selectivity filter region.
Collapse
Affiliation(s)
- Huan Tan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mojie Duan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Huayong Xie
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yongxiang Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Hui Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Minghui Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Maili Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
15
|
Syrén PO. Ancestral terpene cyclases: From fundamental science to applications in biosynthesis. Methods Enzymol 2024; 699:311-341. [PMID: 38942509 DOI: 10.1016/bs.mie.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Terpenes constitute one of the largest family of natural products with potent applications as renewable platform chemicals and medicines. The low activity, selectivity and stability displayed by terpene biosynthetic machineries can constitute an obstacle towards achieving expedient biosynthesis of terpenoids in processes that adhere to the 12 principles of green chemistry. Accordingly, engineering of terpene synthase enzymes is a prerequisite for industrial biotechnology applications, but obstructed by their complex catalysis that depend on reactive carbocationic intermediates that are prone to undergo bifurcation mechanisms. Rational redesign of terpene synthases can be tedious and requires high-resolution structural information, which is not always available. Furthermore, it has proven difficult to link sequence space of terpene synthase enzymes to specific product profiles. Herein, the author shows how ancestral sequence reconstruction (ASR) can favorably be used as a protein engineering tool in the redesign of terpene synthases without the need of a structure, and without excessive screening. A detailed workflow of ASR is presented along with associated limitations, with a focus on applying this methodology on terpene synthases. From selected examples of both class I and II enzymes, the author advocates that ancestral terpene cyclases constitute valuable assets to shed light on terpene-synthase catalysis and in enabling accelerated biosynthesis.
Collapse
Affiliation(s)
- Per-Olof Syrén
- School of Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden; School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
16
|
Ohler A, Taylor PE, Bledsoe JA, Iavarone AT, Gilbert NC, Offenbacher AR. Identification of the Thermal Activation Network in Human 15-Lipoxygenase-2: Divergence from Plant Orthologs and Its Relationship to Hydrogen Tunneling Activation Barriers. ACS Catal 2024; 14:5444-5457. [PMID: 38601784 PMCID: PMC11003420 DOI: 10.1021/acscatal.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The oxidation of polyunsaturated fatty acids by lipoxygenases (LOXs) is initiated by a C-H cleavage step in which the hydrogen atom is transferred quantum mechanically (i.e., via tunneling). In these reactions, protein thermal motions facilitate the conversion of ground-state enzyme-substrate complexes to tunneling-ready configurations and are thus important for transferring energy from the solvent to the active site for the activation of catalysis. In this report, we employed temperature-dependent hydrogen-deuterium exchange mass spectrometry (TDHDX-MS) to identify catalytically linked, thermally activated peptides in a representative animal LOX, human epithelial 15-LOX-2. TDHDX-MS of wild-type 15-LOX-2 was compared to two active site mutations that retain structural stability but have increased activation energies (Ea) of catalysis. The Ea value of one variant, V427L, is implicated to arise from suboptimal substrate positioning by increased active-site side chain rotamer dynamics, as determined by X-ray crystallography and ensemble refinement. The resolved thermal network from the comparative Eas of TDHDX-MS between wild-type and V426A is localized along the front face of the 15-LOX-2 catalytic domain. The network contains a clustering of isoleucine, leucine, and valine side chains within the helical peptides. This thermal network of 15-LOX-2 is different in location, area, and backbone structure compared to a model plant lipoxygenase from soybean that exhibits a low Ea value of catalysis compared to the human ortholog. The presented data provide insights into the divergence of thermally activated protein motions in plant and animal LOXs and their relationships to the enthalpic barriers for facilitating hydrogen tunneling.
Collapse
Affiliation(s)
- Amanda Ohler
- Department
of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Paris E. Taylor
- Department
of Biological Sciences, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Jasmine A. Bledsoe
- Department
of Biological Sciences, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Anthony T. Iavarone
- QB3/Chemistry
Mass Spectrometry Facility, University of
California, Berkeley, Berkeley, California 94720, United States
| | - Nathaniel C. Gilbert
- Department
of Biological Sciences, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Adam R. Offenbacher
- Department
of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
17
|
Zumpfe K, Berbon M, Habenstein B, Loquet A, Smith AA. Analytical Framework to Understand the Origins of Methyl Side-Chain Dynamics in Protein Assemblies. J Am Chem Soc 2024; 146:8164-8178. [PMID: 38476076 PMCID: PMC10979401 DOI: 10.1021/jacs.3c12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Side-chain motions play an important role in understanding protein structure, dynamics, protein-protein, and protein-ligand interactions. However, our understanding of protein side-chain dynamics is currently limited by the lack of analytical tools. Here, we present a novel analytical framework employing experimental nuclear magnetic resonance (NMR) relaxation measurements at atomic resolution combined with molecular dynamics (MD) simulation to characterize with a high level of detail the methyl side-chain dynamics in insoluble protein assemblies, using amyloid fibrils formed by the prion HET-s. We use MD simulation to interpret experimental results, where rotameric hops, including methyl group rotation and χ1/χ2 rotations, cannot be completely described with a single correlation time but rather sample a broad distribution of correlation times, resulting from continuously changing local structure in the fibril. Backbone motion similarly samples a broad range of correlation times, from ∼100 ps to μs, although resulting from mostly different dynamic processes; nonetheless, we find that the backbone is not fully decoupled from the side-chain motion, where changes in side-chain dynamics influence backbone motion and vice versa. While the complexity of side-chain motion in protein assemblies makes it very challenging to obtain perfect agreement between experiment and simulation, our analytical framework improves the interpretation of experimental dynamics measurements for complex protein assemblies.
Collapse
Affiliation(s)
- Kai Zumpfe
- Institute
for Medical Physics and Biophysics, Leipzig
University, Härtelstraße
16-18, 04107 Leipzig, Germany
| | - Mélanie Berbon
- University
of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 33600 Pessac, France
| | - Birgit Habenstein
- University
of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 33600 Pessac, France
| | - Antoine Loquet
- University
of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 33600 Pessac, France
| | - Albert A. Smith
- Institute
for Medical Physics and Biophysics, Leipzig
University, Härtelstraße
16-18, 04107 Leipzig, Germany
| |
Collapse
|
18
|
Vugmeyster L, Ostrovsky D, Rodgers A, Gwin K, Smirnov SL, McKnight CJ, Fu R. Persistence of Methionine Side Chain Mobility at Low Temperatures in a Nine-Residue Low Complexity Peptide, as Probed by 2 H Solid-State NMR. Chemphyschem 2024; 25:e202300565. [PMID: 38175858 PMCID: PMC10922872 DOI: 10.1002/cphc.202300565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Methionine side chains are flexible entities which play important roles in defining hydrophobic interfaces. We utilize deuterium static solid-state NMR to assess rotameric inter-conversions and other dynamic modes of the methionine in the context of a nine-residue random-coil peptide (RC9) with the low-complexity sequence GGKGMGFGL. The measurements in the temperature range of 313 to 161 K demonstrate that the rotameric interconversions in the hydrated solid powder state persist to temperatures below 200 K. Removal of solvation significantly reduces the rate of the rotameric motions. We employed 2 H NMR line shape analysis, longitudinal and rotation frame relaxation, and chemical exchange saturation transfer methods and found that the combination of multiple techniques creates a significantly more refined model in comparison with a single technique. Further, we compare the most essential features of the dynamics in RC9 to two different methionine-containing systems, characterized previously. Namely, the M35 of hydrated amyloid-β1-40 in the three-fold symmetric polymorph as well as Fluorenylmethyloxycarbonyl (FMOC)-methionine amino acid with the bulky hydrophobic group. The comparison suggests that the driving force for the enhanced methionine side chain mobility in RC9 is the thermodynamic factor stemming from distributions of rotameric populations, rather than the increase in the rate constant.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO USA 80204
| | - Aryana Rodgers
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Kirsten Gwin
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Serge L. Smirnov
- Department of Chemistry, Western Washington University, Bellingham, WA 98225
| | - C. James McKnight
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL USA 32310
| |
Collapse
|
19
|
Majumdar S, Rastogi H, Chowdhury PK. Bridging Soft Interaction and Excluded Volume in Crowded Milieu through Subtle Protein Dynamics. J Phys Chem B 2024; 128:716-730. [PMID: 38226816 DOI: 10.1021/acs.jpcb.3c07266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The impact of macromolecular crowding on biological macromolecules has been elucidated through the excluded volume phenomenon and soft interactions. However, it has often been difficult to provide a clear demarcation between the two regions. Here, using temperature-dependent dynamics (local and global) of the multidomain protein human serum albumin (HSA) in the presence of commonly used synthetic crowders (Dextran 40, PEG 8, Ficoll 70, and Dextran 70), we have shown the presence of a transition that serves as a bridge between the soft and hard regimes. The bridging region is independent of the crowder identity and displays no apparent correlation with the critical overlap concentration of the polymeric crowding agents. Moreover, the dynamics of domains I and II and the protein gating motion respond differently, thereby bringing to the fore the asymmetry underlying the crowder influence on HSA. In addition, solvent-coupled and decoupled protein motions indicate the heterogeneity of the dynamic landscape in the crowded milieu. We also propose an intriguing correlation between protein stability and dynamics, with increased global stability being accompanied by eased local domain motion.
Collapse
Affiliation(s)
- Shubhangi Majumdar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
20
|
Sieme D, Rezaei-Ghaleh N. Water dynamics in eutectic solutions of sodium chloride and magnesium sulfate: implications for life in Europa's subsurface ocean and ice shell. Phys Chem Chem Phys 2023; 26:105-115. [PMID: 38054803 DOI: 10.1039/d3cp03455k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Liquid water is essential for life as we know it and the coupling between water and biomolecular dynamics is crucial for life processes. Jupiter's moon Europa is a good candidate for searching for extraterrestrial life in our outer solar system, mainly because a liquid water salty ocean in contact with a rocky seafloor underlies its ice shell. Little, however, is known about the chemical composition of the subglacial ocean of Europa or the brine pockets within its ice shell and their impacts on water dynamics. Here, we employ 1H, 17O, 23Na and 35Cl NMR spectroscopy, especially NMR spin relaxation and diffusion methods, and investigate the mobility of water molecules and ions in eutectic solutions of magnesium sulfate and sodium chloride, two salts ubiquitously present on the surface of Europa, over a range of temperatures and pressures pertinent to Europa's subglacial ocean. The NMR data demonstrate the more pronounced effect of magnesium sulfate compared with sodium chloride on the mobility of water molecules. Even at its much lower eutectic temperature, the sodium chloride solution retains a relatively large level of water mobility. Our results highlight the higher potential of a sodium chloride-rich than magnesium sulfate-rich Europa's ocean to accommodate life and support life origination within the eutectic melts of Europa's ice shell.
Collapse
Affiliation(s)
- Daniel Sieme
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Heinrich Heine University (HHU) Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Physical Biology, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
| |
Collapse
|
21
|
Oh M, da Hora GCA, Swanson JMJ. tICA-Metadynamics for Identifying Slow Dynamics in Membrane Permeation. J Chem Theory Comput 2023; 19:8886-8900. [PMID: 37943658 PMCID: PMC11282584 DOI: 10.1021/acs.jctc.3c00526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Molecular simulations are commonly used to understand the mechanism of membrane permeation of small molecules, particularly for biomedical and pharmaceutical applications. However, despite significant advances in computing power and algorithms, calculating an accurate permeation free energy profile remains elusive for many drug molecules because it can require identifying the rate-limiting degrees of freedom (i.e., appropriate reaction coordinates). To resolve this issue, researchers have developed machine learning approaches to identify slow system dynamics. In this work, we apply time-lagged independent component analysis (tICA), an unsupervised dimensionality reduction algorithm, to molecular dynamics simulations with well-tempered metadynamics to find the slowest collective degrees of freedom of the permeation process of trimethoprim through a multicomponent membrane. We show that tICA-metadynamics yields translational and orientational collective variables (CVs) that increase convergence efficiency ∼1.5 times. However, crossing the periodic boundary is shown to introduce artifacts in the translational CV that can be corrected by taking absolute values of molecular features. Additionally, we find that the convergence of the tICA CVs is reached with approximately five membrane crossings and that data reweighting is required to avoid deviations in the translational CV.
Collapse
Affiliation(s)
- Myongin Oh
- Department of Chemistry, University of Utah, 315 South 1400 East, Rm 2020, Salt Lake City, Utah 84112, United States
| | - Gabriel C A da Hora
- Department of Chemistry, University of Utah, 315 South 1400 East, Rm 2020, Salt Lake City, Utah 84112, United States
| | - Jessica M J Swanson
- Department of Chemistry, University of Utah, 315 South 1400 East, Rm 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
22
|
Borah B, Acharya GR, Grajeda D, Emerson MS, Harris MA, Milinda Abeykoon AM, Sangoro J, Baker GA, Nieuwkoop AJ, Margulis CJ. Do Ionic Liquids Slow Down in Stages? J Am Chem Soc 2023; 145:25518-25522. [PMID: 37963184 PMCID: PMC10691361 DOI: 10.1021/jacs.3c08639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
High impact recent articles have reported on the existence of a liquid-liquid (L-L) phase transition as a function of both pressure and temperature in ionic liquids (ILs) containing the popular trihexyltetradecylphosphonium cation (P666,14+), sometimes referred to as the "universal liquifier". The work presented here reports on the structural-dynamic pathway from liquid to glass of the most well-studied IL comprising the P666,14+ cation. We present experimental and computational evidence that, on cooling, the path from the room-temperature liquid to the glass state is one of separate structural-dynamic changes. The first stage involves the slowdown of the charge network, while the apolar subcomponent is fully mobile. A second, separate stage entails the slowdown of the apolar domain. Whereas it is possible that these processes may be related to the liquid-liquid and glass transitions, more research is needed to establish this conclusively.
Collapse
Affiliation(s)
- Bichitra Borah
- Department
of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Gobin Raj Acharya
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Diana Grajeda
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Matthew S. Emerson
- Department
of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Matthew A. Harris
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - AM Milinda Abeykoon
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Joshua Sangoro
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gary A. Baker
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Andrew J. Nieuwkoop
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Claudio J. Margulis
- Department
of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
23
|
Fernando LD, Pérez-Llano Y, Dickwella Widanage MC, Jacob A, Martínez-Ávila L, Lipton AS, Gunde-Cimerman N, Latgé JP, Batista-García RA, Wang T. Structural adaptation of fungal cell wall in hypersaline environment. Nat Commun 2023; 14:7082. [PMID: 37925437 PMCID: PMC10625518 DOI: 10.1038/s41467-023-42693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Halophilic fungi thrive in hypersaline habitats and face a range of extreme conditions. These fungal species have gained considerable attention due to their potential applications in harsh industrial processes, such as bioremediation and fermentation under unfavorable conditions of hypersalinity, low water activity, and extreme pH. However, the role of the cell wall in surviving these environmental conditions remains unclear. Here we employ solid-state NMR spectroscopy to compare the cell wall architecture of Aspergillus sydowii across salinity gradients. Analyses of intact cells reveal that A. sydowii cell walls contain a rigid core comprising chitin, β-glucan, and chitosan, shielded by a surface shell composed of galactomannan and galactosaminogalactan. When exposed to hypersaline conditions, A. sydowii enhances chitin biosynthesis and incorporates α-glucan to create thick, stiff, and hydrophobic cell walls. Such structural rearrangements enable the fungus to adapt to both hypersaline and salt-deprived conditions, providing a robust mechanism for withstanding external stress. These molecular principles can aid in the optimization of halophilic strains for biotechnology applications.
Collapse
Affiliation(s)
- Liyanage D Fernando
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Malitha C Dickwella Widanage
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anand Jacob
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Liliana Martínez-Ávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Andrew S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology, University of Crete, Heraklion, Greece
- Fungal Respiratory Infections Research Unit, University of Angers, Angers, France
| | | | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
24
|
Li W, Warncke K. Native and nonnative reactions in ethanolamine ammonia-lyase are actuated by different dynamics. Biophys J 2023; 122:3976-3985. [PMID: 37641402 PMCID: PMC10560697 DOI: 10.1016/j.bpj.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
We address the contribution of select classes of solvent-coupled configurational fluctuations to the complex choreography involved in configurational and chemical steps in an enzyme by comparing native and nonnative reactions conducted at different protein internal sites. The low temperature, first-order kinetics of covalent bond rearrangement of the cryotrapped substrate radical in coenzyme B12-dependent ethanolamine ammonia-lyase (EAL) from Salmonella enterica display a kink, or increase in slope, of the Arrhenius plot with decreasing temperature. The event is associated with quenching of a select class of reaction-actuating collective fluctuations in the protein hydration layer. For comparison, a nonnative, radical reaction of the protein interior cysteine sulfhydryl group with hydrogen peroxide (H2O2) is introduced by cryotrapping EAL in an aqueous H2O2 eutectic system. The low-temperature aqueous H2O2 protein hydration and mesodomain solvent phases surrounding cryotrapped EAL are characterized by using TEMPOL spin probe electron paramagnetic resonance spectroscopy, including a freezing transition of the eutectic phase that orders the protein hydration layer. Kinetics of the cysteine-H2O2 reaction in the EAL protein interior are monitored by DEPMPO spin trapping of hydroxyl radical product. In contrast to the native reaction, the linear Arrhenius relation for the nonnative cysteine-H2O2 reaction is maintained through the solvent-protein ordering transition. The nonnative reaction is coupled to the generic local, incremental fluctuations that are intrinsic to globular proteins. The comparative approach supports the proposal that select coupled solvent-protein configurational fluctuations actuate the native reaction, and suggests that select dynamical coupling contributes to the degree of catalysis in enzymes.
Collapse
Affiliation(s)
- Wei Li
- Department of Physics, Emory University, Atlanta, Georgia
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, Georgia.
| |
Collapse
|
25
|
Guevara L, Gouge M, Ohler A, Hill SG, Patel S, Offenbacher AR. Effect of solvent viscosity on the activation barrier of hydrogen tunneling in the lipoxygenase reaction. Arch Biochem Biophys 2023; 747:109740. [PMID: 37678425 DOI: 10.1016/j.abb.2023.109740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Hydrogen tunneling in enzyme reactions has played an important role in linking protein thermal motions to the chemical steps of catalysis. Lipoxygenases (LOXs) have served as model systems for such reactions, showcasing deep hydrogen tunneling mechanisms associated with enzymatic C-H bond cleavage from polyunsaturated fatty acids. Here, we examined the effect of solvent viscosity on the protein thermal motions associated with LOX catalysis using trehalose and glucose as viscogens. Kinetic analysis of the reaction of the paradigm plant orthologue, soybean lipoxygenase (SLO), with linoleic acid revealed no effect on the first-order rate constants, kcat, or activation energy, Ea. Further studies of SLO active site mutants displaying varying Eas, which have been used to probe catalytically relevant motions, likewise provided no evidence for viscogen-dependent motions. Kinetic analyses were extended to a representative fungal LOX from M. oryzae, MoLOX, and a human LOX, 15-LOX-2. While MoLOX behaved similarly to SLO, we show that viscogens inhibit 15-LOX-2 activity. The latter implicates viscogen sensitive, conformational motions in animal LOX reactions. The data provide insight into the role of water hydration layers in facilitating hydrogen (quantum) tunneling in LOX.
Collapse
Affiliation(s)
- Luis Guevara
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Melissa Gouge
- Department of Chemistry and Biochemistry, Ohio Northern University, Ada, OH, 45810, USA
| | - Amanda Ohler
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - S Gage Hill
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Soham Patel
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
26
|
Gunaga SS, Bryce DL. Modulation of Rotational Dynamics in Halogen-Bonded Cocrystalline Solids. J Am Chem Soc 2023; 145:19005-19017. [PMID: 37586107 DOI: 10.1021/jacs.3c06343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Dynamic processes are responsible for the functionality of a range of materials, biomolecules, and catalysts. We report a detailed systematic study of the modulation of methyl rotational dynamics via the direct and the indirect influence of noncovalent halogen bonds. For this purpose, a novel series of cocrystalline architectures featuring halogen bonds (XB) to tetramethylpyrazine (TMP) is designed and prepared using gas-phase, solution, and solid-state mechanochemical methods. Single-crystal X-ray diffraction reveals the capacity of molecular bromine as well as weak chloro-XB donors to act as robust directional structure-directing elements. Methyl rotational barriers (Ea) measured using variable-temperature deuterium solid-state NMR range from 3.75 ± 0.04 kJ mol-1 in 1,3,5-trichloro-2,4,6-trifluorobenzene·TMP to 7.08 ± 0.15 kJ mol-1 in 1,4-dichlorotetrafluorobenzene·TMP. Ea data for a larger series of TMP cocrystals featuring chloro-, bromo-, and iodo-XB donors are shown to be governed by a combination of steric and electronic factors. The average number of carbon-carbon close contacts to the methyl group is found to be a key steric metric capable of rationalizing the observed trends within each of the Cl, Br, and I series. Differences between each series are accounted for by considering the strength of the σ-hole on the XB donor. One possible route to modulating dynamics is therefore via designer cocrystals of variable stoichiometry, maintaining the core chemical features of interest between a given donor and acceptor while simultaneously modifying the number of carbon close contacts affecting dynamics. These principles may provide design opportunities to modulate more complex geared or cascade dynamics involving larger functional groups.
Collapse
Affiliation(s)
- Shubha S Gunaga
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, and Nexus for Quantum Technologies, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5 Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, and Nexus for Quantum Technologies, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5 Canada
| |
Collapse
|
27
|
Li W, Kohne M, Warncke K. Reactivity Tracking of an Enzyme Progress Coordinate. J Phys Chem Lett 2023; 14:7157-7164. [PMID: 37540029 PMCID: PMC10440813 DOI: 10.1021/acs.jpclett.3c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
The reactivity of individual solvent-coupled protein configurations is used to track and resolve the progress coordinate for the core reaction sequence of substrate radical rearrangement and hydrogen atom transfer in the ethanolamine ammonia-lyase (EAL) enzyme from Salmonella enterica. The first-order decay of the substrate radical intermediate is the monitored reaction. Heterogeneous confinement from sucrose hydrates in the mesophase solvent surrounding the cryotrapped protein introduces distributed kinetics in the non-native decay of the substrate radical pair capture substate, which arise from an ensemble of configurational microstates. Reaction rates increase by >103-fold across the distribution to approach that for the native enabled substate for radical rearrangement, which reacts with monotonic kinetics. The native progress coordinate thus involves a collapse of the configuration space to generate optimized reactivity. Reactivity tracking reveals fundamental features of solvent-protein-reaction configurational coupling and leads to a model that refines the ensemble paradigm of enzyme catalysis for strongly adiabatic chemical steps.
Collapse
Affiliation(s)
- Wei Li
- Department
of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Meghan Kohne
- Department
of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Kurt Warncke
- Department
of Physics, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
28
|
Oh M, da Hora GCA, Swanson JMJ. tICA-Metadynamics for Identifying Slow Dynamics in Membrane Permeation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553477. [PMID: 37645884 PMCID: PMC10462029 DOI: 10.1101/2023.08.16.553477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Molecular simulations are commonly used to understand the mechanism of membrane permeation of small molecules, particularly for biomedical and pharmaceutical applications. However, despite significant advances in computing power and algorithms, calculating an accurate permeation free energy profile remains elusive for many drug molecules because it can require identifying the rate-limiting degrees of freedom (i.e., appropriate reaction coordinates). To resolve this issue, researchers have developed machine learning approaches to identify slow system dynamics. In this work, we apply time-lagged independent component analysis (tICA), an unsupervised dimensionality reduction algorithm, to molecular dynamics simulations with well-tempered metadynamics to find the slowest collective degrees of freedom of the permeation process of trimethoprim through a multicomponent membrane. We show that tICA-metadynamics yields translational and orientational collective variables (CVs) that increase convergence efficiency ∼1.5 times. However, crossing the periodic boundary is shown to introduce artefacts in the translational CV that can be corrected by taking absolute values of molecular features. Additionally, we find that the convergence of the tICA CVs is reached with approximately five membrane crossings, and that data reweighting is required to avoid deviations in the translational CV.
Collapse
|
29
|
Akbey Ü. Site-specific protein backbone deuterium 2H α quadrupolar patterns by proton-detected quadruple-resonance 3D 2H αc αNH MAS NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2023; 125:101861. [PMID: 36989552 DOI: 10.1016/j.ssnmr.2023.101861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 06/11/2023]
Abstract
A novel deuterium-excited and proton-detected quadruple-resonance three-dimensional (3D) 2HαcαNH MAS nuclear magnetic resonance (NMR) method is presented to obtain site-specific 2Hα deuterium quadrupolar couplings from protein backbone, as an extension to the 2D version of the experiment reported earlier. Proton-detection results in high sensitivity compared to the heteronuclei detection methods. Utilizing four independent radiofrequency (RF) channels (quadruple-resonance), we managed to excite the 2Hα, then transfer deuterium polarization to its attached Cα, followed by polarization transfers to the neighboring backbone nitrogen and then to the amide proton for detection. This experiment results in an easy to interpret HSQC-like 2D 1H-15N fingerprint NMR spectrum, which contains site-specific deuterium quadrupolar patterns in the indirect third dimension. Provided that four-channel NMR probe technology is available, the setup of the 2HαcαNH experiment is relatively straightforward, by using low power deuterium excitation and polarization transfer schemes we have been developing. To our knowledge, this is the first demonstration of a quadruple-resonance MAS NMR experiment to link 2Hα quadrupolar couplings to proton-detection, extending our previous triple-resonance demonstrations. Distortion-free excitation and polarization transfer of ∼160-170 kHz 2Hα quadrupolar coupling were presented by using a deuterium RF strength of ∼20 kHz. From these 2Hα patterns, an average backbone order parameter of S = 0.92 was determined on a deuterated SH3 sample, with an average η = 0.22. These indicate that SH3 backbone represents sizable dynamics in the microsecond timescale where the 2Hα lineshape is sensitive. Moreover, site-specific 2Hα T1 relaxation times were obtained for a proof of concept. This 3D 2HαcαNH NMR experiment has the potential to determine structure and dynamics of perdeuterated proteins by utilizing deuterium as a novel reporter.
Collapse
Affiliation(s)
- Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, 15261, United States.
| |
Collapse
|
30
|
Bin M, Reiser M, Filianina M, Berkowicz S, Das S, Timmermann S, Roseker W, Bauer R, Öström J, Karina A, Amann-Winkel K, Ladd-Parada M, Westermeier F, Sprung M, Möller J, Lehmkühler F, Gutt C, Perakis F. Coherent X-ray Scattering Reveals Nanoscale Fluctuations in Hydrated Proteins. J Phys Chem B 2023. [PMID: 37209106 DOI: 10.1021/acs.jpcb.3c02492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hydrated proteins undergo a transition in the deeply supercooled regime, which is attributed to rapid changes in hydration water and protein structural dynamics. Here, we investigate the nanoscale stress-relaxation in hydrated lysozyme proteins stimulated and probed by X-ray Photon Correlation Spectroscopy (XPCS). This approach allows us to access the nanoscale dynamics in the deeply supercooled regime (T = 180 K), which is typically not accessible through equilibrium methods. The observed stimulated dynamic response is attributed to collective stress-relaxation as the system transitions from a jammed granular state to an elastically driven regime. The relaxation time constants exhibit Arrhenius temperature dependence upon cooling with a minimum in the Kohlrausch-Williams-Watts exponent at T = 227 K. The observed minimum is attributed to an increase in dynamical heterogeneity, which coincides with enhanced fluctuations observed in the two-time correlation functions and a maximum in the dynamic susceptibility quantified by the normalized variance χT. The amplification of fluctuations is consistent with previous studies of hydrated proteins, which indicate the key role of density and enthalpy fluctuations in hydration water. Our study provides new insights into X-ray stimulated stress-relaxation and the underlying mechanisms behind spatiotemporal fluctuations in biological granular materials.
Collapse
Affiliation(s)
- Maddalena Bin
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Mario Reiser
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Mariia Filianina
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Sharon Berkowicz
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Sudipta Das
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Sonja Timmermann
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Robert Bauer
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
- Freiberg Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Jonatan Öström
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Aigerim Karina
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Physics, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Marjorie Ladd-Parada
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Johannes Möller
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
31
|
Taware PP, Jain MG, Raran-Kurussi S, Agarwal V, Madhu PK, Mote KR. Measuring Dipolar Order Parameters in Nondeuterated Proteins Using Solid-State NMR at the Magic-Angle-Spinning Frequency of 100 kHz. J Phys Chem Lett 2023; 14:3627-3635. [PMID: 37026698 DOI: 10.1021/acs.jpclett.3c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Proteins are dynamic molecules, relying on conformational changes to carry out function. Measurement of these conformational changes can provide insight into how function is achieved. For proteins in the solid state, this can be done by measuring the decrease in the strength of anisotropic interactions due to motion-induced fluctuations. The measurement of one-bond heteronuclear dipole-dipole coupling at magic-angle-spinning (MAS) frequencies >60 kHz is ideal for this purpose. However, rotational-echo double resonance (REDOR), an otherwise gold-standard technique for the quantitative measurement of these couplings, is difficult to implement under these conditions, especially in nondeuterated samples. We present here a combination of strategies based on REDOR variants ϵ-REDOR and DEDOR (deferred REDOR) and simultaneously measure residue-specific 15N-1H and 13Cα-1Hα dipole-dipole couplings in nondeuterated systems at the MAS frequency of 100 kHz. These strategies open up avenues to access dipolar order parameters in a variety of systems at the increasingly fast MAS frequencies that are now available.
Collapse
Affiliation(s)
- Pravin P Taware
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Mukul G Jain
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Sreejith Raran-Kurussi
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - P K Madhu
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| |
Collapse
|
32
|
Deng H, Qin M, Liu Z, Yang Y, Wang Y, Yao L. Engineering the Active Site Lid Dynamics to Improve the Catalytic Efficiency of Yeast Cytosine Deaminase. Int J Mol Sci 2023; 24:ijms24076592. [PMID: 37047565 PMCID: PMC10095239 DOI: 10.3390/ijms24076592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Conformational dynamics is important for enzyme catalysis. However, engineering dynamics to achieve a higher catalytic efficiency is still challenging. In this work, we develop a new strategy to improve the activity of yeast cytosine deaminase (yCD) by engineering its conformational dynamics. Specifically, we increase the dynamics of the yCD C-terminal helix, an active site lid that controls the product release. The C-terminal is extended by a dynamical single α-helix (SAH), which improves the product release rate by up to ~8-fold, and the overall catalytic rate kcat by up to ~2-fold. It is also shown that the kcat increase is due to the favorable activation entropy change. The NMR H/D exchange data indicate that the conformational dynamics of the transition state analog complex increases as the helix is extended, elucidating the origin of the enhanced catalytic entropy. This study highlights a novel dynamics engineering strategy that can accelerate the overall catalysis through the entropy-driven mechanism.
Collapse
Affiliation(s)
- Hanzhong Deng
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Qin
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Zhijun Liu
- National Facility for Protein Science, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ying Yang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Yefei Wang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Lishan Yao
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| |
Collapse
|
33
|
Abyzov A, Mandelkow E, Zweckstetter M, Rezaei-Ghaleh N. Fast Motions Dominate Dynamics of Intrinsically Disordered Tau Protein at High Temperatures. Chemistry 2023; 29:e202203493. [PMID: 36579699 DOI: 10.1002/chem.202203493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Reorientational dynamics of intrinsically disordered proteins (IDPs) contain multiple motions often clustered around three motional modes: ultrafast librational motions of amide groups, fast local backbone conformational fluctuations and slow chain segmental motions. This dynamic picture is mainly based on 15 N NMR relaxation studies of IDPs at relatively low temperatures where the amide-water proton exchange rates are sufficiently small. Less is known, however, about the dynamics of IDPs at more physiological temperatures. Here, we investigate protein dynamics in a 441-residue long IDP, tau protein, in the temperature range from 0-25 °C, using 15 N NMR relaxation rates and spectral density analysis. While at these temperatures relaxation rates are still better described in terms of amide group librational motions, local backbone dynamics and chain segmental motions, the temperature-dependent trend of spectral densities suggests that the timescales of fast backbone conformational fluctuations and slower chain segmental motions might become inseparable at higher temperatures. Our data demonstrate the remarkable dynamic plasticity of this prototypical IDP and highlight the need for dynamic studies of IDPs at multiple temperatures.
Collapse
Affiliation(s)
- Anton Abyzov
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, D-37075, Göttingen, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, D-53127, Bonn, Germany
- Research Center CAESAR, Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany
| | - Markus Zweckstetter
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, D-37075, Göttingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Institute of Physical Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, D-52428, Jülich, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| |
Collapse
|
34
|
Abstract
The theory of electron transfer reactions establishes the conceptual foundation for redox solution chemistry, electrochemistry, and bioenergetics. Electron and proton transfer across the cellular membrane provide all energy of life gained through natural photosynthesis and mitochondrial respiration. Rates of biological charge transfer set kinetic bottlenecks for biological energy storage. The main system-specific parameter determining the activation barrier for a single electron-transfer hop is the reorganization energy of the medium. Both harvesting of light energy in natural and artificial photosynthesis and efficient electron transport in biological energy chains require reduction of the reorganization energy to allow fast transitions. This review article discusses mechanisms by which small values of the reorganization energy are achieved in protein electron transfer and how similar mechanisms can operate in other media, such as nonpolar and ionic liquids. One of the major mechanisms of reorganization energy reduction is through non-Gibbsian (nonergodic) sampling of the medium configurations on the reaction time. A number of alternative mechanisms, such as electrowetting of active sites of proteins, give rise to non-parabolic free energy surfaces of electron transfer. These mechanisms, and nonequilibrium population of donor-acceptor vibrations, lead to a universal phenomenology of separation between the Stokes shift and variance reorganization energies of electron transfer.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, USA.
| |
Collapse
|
35
|
Ruan Z, Li S, Grigoropoulos A, Amiri H, Hilburg SL, Chen H, Jayapurna I, Jiang T, Gu Z, Alexander-Katz A, Bustamante C, Huang H, Xu T. Population-based heteropolymer design to mimic protein mixtures. Nature 2023; 615:251-258. [PMID: 36890370 PMCID: PMC10468399 DOI: 10.1038/s41586-022-05675-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/21/2022] [Indexed: 03/10/2023]
Abstract
Biological fluids, the most complex blends, have compositions that constantly vary and cannot be molecularly defined1. Despite these uncertainties, proteins fluctuate, fold, function and evolve as programmed2-4. We propose that in addition to the known monomeric sequence requirements, protein sequences encode multi-pair interactions at the segmental level to navigate random encounters5,6; synthetic heteropolymers capable of emulating such interactions can replicate how proteins behave in biological fluids individually and collectively. Here, we extracted the chemical characteristics and sequential arrangement along a protein chain at the segmental level from natural protein libraries and used the information to design heteropolymer ensembles as mixtures of disordered, partially folded and folded proteins. For each heteropolymer ensemble, the level of segmental similarity to that of natural proteins determines its ability to replicate many functions of biological fluids including assisting protein folding during translation, preserving the viability of fetal bovine serum without refrigeration, enhancing the thermal stability of proteins and behaving like synthetic cytosol under biologically relevant conditions. Molecular studies further translated protein sequence information at the segmental level into intermolecular interactions with a defined range, degree of diversity and temporal and spatial availability. This framework provides valuable guiding principles to synthetically realize protein properties, engineer bio/abiotic hybrid materials and, ultimately, realize matter-to-life transformations.
Collapse
Affiliation(s)
- Zhiyuan Ruan
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Shuni Li
- Department of Statistics, University of California Berkeley, Berkeley, CA, USA
| | - Alexandra Grigoropoulos
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Hossein Amiri
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA, USA
| | - Shayna L Hilburg
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haotian Chen
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Ivan Jayapurna
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Tao Jiang
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Department of Chemistry, Xiamen University and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen, China
| | - Zhaoyi Gu
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Departments of Chemistry and Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carlos Bustamante
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
- Department of Physics, University of California Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Haiyan Huang
- Department of Statistics, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Ting Xu
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA.
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA.
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
36
|
Doukov T, Herschlag D, Yabukarski F. Obtaining anomalous and ensemble information from protein crystals from 220 K up to physiological temperatures. Acta Crystallogr D Struct Biol 2023; 79:212-223. [PMID: 36876431 PMCID: PMC9986799 DOI: 10.1107/s205979832300089x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
X-ray crystallography has been invaluable in delivering structural information about proteins. Previously, an approach has been developed that allows high-quality X-ray diffraction data to be obtained from protein crystals at and above room temperature. Here, this previous work is built on and extended by showing that high-quality anomalous signal can be obtained from single protein crystals using diffraction data collected at 220 K up to physiological temperatures. The anomalous signal can be used to directly determine the structure of a protein, i.e. to phase the data, as is routinely performed under cryoconditions. This ability is demonstrated by obtaining diffraction data from model lysozyme, thaumatin and proteinase K crystals, the anomalous signal from which allowed their structures to be solved experimentally at 7.1 keV X-ray energy and at room temperature with relatively low data redundancy. It is also demonstrated that the anomalous signal from diffraction data obtained at 310 K (37°C) can be used to solve the structure of proteinase K and to identify ordered ions. The method provides useful anomalous signal at temperatures down to 220 K, resulting in an extended crystal lifetime and increased data redundancy. Finally, we show that useful anomalous signal can be obtained at room temperature using X-rays of 12 keV energy as typically used for routine data collection, allowing this type of experiment to be carried out at widely accessible synchrotron beamline energies and enabling the simultaneous extraction of high-resolution data and anomalous signal. With the recent emphasis on obtaining conformational ensemble information for proteins, the high resolution of the data allows such ensembles to be built, while the anomalous signal allows the structure to be experimentally solved, ions to be identified, and water molecules and ions to be differentiated. Because bound metal-, phosphorus- and sulfur-containing ions all have anomalous signal, obtaining anomalous signal across temperatures and up to physiological temperatures will provide a more complete description of protein conformational ensembles, function and energetics.
Collapse
Affiliation(s)
- Tzanko Doukov
- SMB, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel Herschlag
- Deparment of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Filip Yabukarski
- Deparment of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Bristol-Myers Squibb, San Diego, CA 92121, USA
| |
Collapse
|
37
|
Franks WT, Tognetti J, Lewandowski JR. Slice & Dice: nested spin-lattice relaxation measurements. Phys Chem Chem Phys 2023; 25:6044-6049. [PMID: 36281524 PMCID: PMC9945929 DOI: 10.1039/d2cp03458a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spin-lattice relaxation rate (R1) measurements are commonly used to characterize protein dynamics. However, the time needed to collect the data can be quite long due to long relaxation times of the low-gamma nuclei, especially in the solid state. We present a method to collect backbone heavy atom relaxation data by nesting the collection of datasets in the solid state. This method results in a factor of 2 to 2.5 times faster data acquisition for backbone R1 relaxation data for the 13C and 15N sites of proteins.
Collapse
Affiliation(s)
- W. Trent Franks
- Department of Chemistry, University of WarwickCoventry CV4 7ALUK,Department of Physics, University of WarwickCoventry CV4 7ALUK
| | - Jacqueline Tognetti
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK. .,Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
38
|
Bertini L, Libera V, Ripanti F, Natali F, Paolantoni M, Orecchini A, Nucara A, Petrillo C, Comez L, Paciaroni A. Polymorphism and Ligand Binding Modulate Fast Dynamics of Human Telomeric G-Quadruplexes. Int J Mol Sci 2023; 24:ijms24054280. [PMID: 36901712 PMCID: PMC10001961 DOI: 10.3390/ijms24054280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Telomeric G-quadruplexes (G4s) are promising targets in the design and development of anticancer drugs. Their actual topology depends on several factors, resulting in structural polymorphism. In this study, we investigate how the fast dynamics of the telomeric sequence AG3(TTAG3)3 (Tel22) depends on the conformation. By using Fourier transform Infrared spectroscopy, we show that, in the hydrated powder state, Tel22 adopts parallel and mixed antiparallel/parallel topologies in the presence of K+ and Na+ ions, respectively. These conformational differences are reflected in the reduced mobility of Tel22 in Na+ environment in the sub-nanosecond timescale, as probed by elastic incoherent neutron scattering. These findings are consistent with the G4 antiparallel conformation being more stable than the parallel one, possibly due to the presence of ordered hydration water networks. In addition, we study the effect of Tel22 complexation with BRACO19 ligand. Despite the quite similar conformation in the complexed and uncomplexed state, the fast dynamics of Tel22-BRACO19 is enhanced compared to that of Tel22 alone, independently of the ions. We ascribe this effect to the preferential binding of water molecules to Tel22 against the ligand. The present results suggest that the effect of polymorphism and complexation on the G4 fast dynamics is mediated by hydration water.
Collapse
Affiliation(s)
- Luca Bertini
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Valeria Libera
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- CNR-IOM c/o Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Francesca Ripanti
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- Correspondence: (F.R.); (L.C.)
| | - Francesca Natali
- CNR-IOM and INSIDE@ILL c/o OGG, 71 avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
| | - Marco Paolantoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 6, 06123 Perugia, Italy
| | - Andrea Orecchini
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- CNR-IOM c/o Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Alessandro Nucara
- Department of Physics, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Caterina Petrillo
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Lucia Comez
- CNR-IOM c/o Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- Correspondence: (F.R.); (L.C.)
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| |
Collapse
|
39
|
Dutta P, Roy P, Sengupta N. Effects of External Perturbations on Protein Systems: A Microscopic View. ACS OMEGA 2022; 7:44556-44572. [PMID: 36530249 PMCID: PMC9753117 DOI: 10.1021/acsomega.2c06199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Protein folding can be viewed as the origami engineering of biology resulting from the long process of evolution. Even decades after its recognition, research efforts worldwide focus on demystifying molecular factors that underlie protein structure-function relationships; this is particularly relevant in the era of proteopathic disease. A complex co-occurrence of different physicochemical factors such as temperature, pressure, solvent, cosolvent, macromolecular crowding, confinement, and mutations that represent realistic biological environments are known to modulate the folding process and protein stability in unique ways. In the current review, we have contextually summarized the substantial efforts in unveiling individual effects of these perturbative factors, with major attention toward bottom-up approaches. Moreover, we briefly present some of the biotechnological applications of the insights derived from these studies over various applications including pharmaceuticals, biofuels, cryopreservation, and novel materials. Finally, we conclude by summarizing the challenges in studying the combined effects of multifactorial perturbations in protein folding and refer to complementary advances in experiment and computational techniques that lend insights to the emergent challenges.
Collapse
Affiliation(s)
- Pallab Dutta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| | - Priti Roy
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma74078, United States
| | - Neelanjana Sengupta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| |
Collapse
|
40
|
Bertini L, Libera V, Ripanti F, Seydel T, Paolantoni M, Orecchini A, Petrillo C, Comez L, Paciaroni A. Role of fast dynamics in the complexation of G-quadruplexes with small molecules. Phys Chem Chem Phys 2022; 24:29232-29240. [PMID: 36445842 DOI: 10.1039/d2cp03602a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G-quadruplexes (G4s) formed by the human telomeric sequence AG3 (TTAG3)3 (Tel22) play a key role in cancer and aging. We combined elastic incoherent neutron scattering (EINS) and quasielastic incoherent neutron scattering (QENS) to characterize the internal dynamics of Tel22 G4s and to assess how it is affected by complexation with two standard ligands, Berberine and BRACO19. We show that the interaction with the two ligands induces an increase of the overall mobility of Tel22 as quantified by the mean squared displacements (MSD) of hydrogen atoms. At the same time, the complexes display a lower stiffness than G4 alone. Two different types of motion characterize the G4 nanosecond timescale dynamics. Upon complexation, an increasing fraction of G4 atomic groups participate in this fast dynamics, along with an increase in the relevant characteristic length scales. We suggest that the entropic contribution to the conformational free energy of these motions might be crucial for the complexation mechanisms.
Collapse
Affiliation(s)
- Luca Bertini
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Valeria Libera
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy. .,Istituto Officina dei Materiali-IOM, National Research Council-CNR, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Francesca Ripanti
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Tilo Seydel
- Institut Max von Laue - Paul Langevin (ILL) 71 avenue des Martyrs, 38042 Grenoble, France
| | - Marco Paolantoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 6, 06123 Perugia, Italy
| | - Andrea Orecchini
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Caterina Petrillo
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Lucia Comez
- Istituto Officina dei Materiali-IOM, National Research Council-CNR, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.
| |
Collapse
|
41
|
How does it really move? Recent progress in the investigation of protein nanosecond dynamics by NMR and simulation. Curr Opin Struct Biol 2022; 77:102459. [PMID: 36148743 DOI: 10.1016/j.sbi.2022.102459] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
Nuclear magnetic resonance (NMR) spin relaxation experiments currently probe molecular motions on timescales from picoseconds to nanoseconds. The detailed interpretation of these motions in atomic detail benefits from complementarity with the results from molecular dynamics (MD) simulations. In this mini-review, we describe the recent developments in experimental techniques to study the backbone dynamics from 15N relaxation and side-chain dynamics from 13C relaxation, discuss the different analysis approaches from model-free to dynamics detectors, and highlight the many ways that NMR relaxation experiments and MD simulations can be used together to improve the interpretation and gain insights into protein dynamics.
Collapse
|
42
|
Yabukarski F, Doukov T, Pinney MM, Biel JT, Fraser JS, Herschlag D. Ensemble-function relationships to dissect mechanisms of enzyme catalysis. SCIENCE ADVANCES 2022; 8:eabn7738. [PMID: 36240280 PMCID: PMC9565801 DOI: 10.1126/sciadv.abn7738] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/30/2022] [Indexed: 05/27/2023]
Abstract
Decades of structure-function studies have established our current extensive understanding of enzymes. However, traditional structural models are snapshots of broader conformational ensembles of interchanging states. We demonstrate the need for conformational ensembles to understand function, using the enzyme ketosteroid isomerase (KSI) as an example. Comparison of prior KSI cryogenic x-ray structures suggested deleterious mutational effects from a misaligned oxyanion hole catalytic residue. However, ensemble information from room-temperature x-ray crystallography, combined with functional studies, excluded this model. Ensemble-function analyses can deconvolute effects from altering the probability of occupying a state (P-effects) and changing the reactivity of each state (k-effects); our ensemble-function analyses revealed functional effects arising from weakened oxyanion hole hydrogen bonding and substrate repositioning within the active site. Ensemble-function studies will have an integral role in understanding enzymes and in meeting the future goals of a predictive understanding of enzyme catalysis and engineering new enzymes.
Collapse
Affiliation(s)
- Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Margaux M. Pinney
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Justin T. Biel
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
43
|
Li W, Whitcomb KL, Warncke K. Confinement dependence of protein-associated solvent dynamics around different classes of proteins, from the EPR spin probe perspective. Phys Chem Chem Phys 2022; 24:23919-23928. [PMID: 36165617 PMCID: PMC10371532 DOI: 10.1039/d2cp03047k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein function is modulated by coupled solvent fluctuations, subject to the degree of confinement from the surroundings. To identify universal features of the external confinement effect, the temperature dependence of the dynamics of protein-associated solvent over 200-265 K for proteins representative of different classes and sizes is characterized by using the rotational correlation time (detection bandwidth, 10-10-10-7 s) of the electron paramagnetic resonance (EPR, X-band) spin probe, TEMPOL, which is restricted to regions vicinal to protein in frozen aqueous solution. Weak (protein surrounded by aqueous-dimethylsulfoxide cryosolvent mesodomain) and strong (no added crysolvent) conditions of ice boundary confinement are imposed. The panel of soluble proteins represents large and small oligomeric (ethanolamine ammonia-lyase, 488 kDa; streptavidin, 52.8 kDa) and monomeric (myoglobin, 16.7 kDa) globular proteins, an intrinsically disordered protein (IDP, β-casein, 24.0 kDa), an unstructured peptide (protamine, 4.38 kDa) and a small peptide with partial backbone order (amyloid-β residues 1-16, 1.96 kDa). Expanded and condensate structures of β-casein and protamine are resolved by the spin probe under weak and strong confinement, respectively. At each confinement condition, the soluble globular proteins display common T-dependences of rotational correlation times and normalized weights, for two mobility components, protein-associated domain, PAD, and surrounding mesodomain. Strong confinement induces a detectable PAD component and emulation of globular protein T-dependence by the amyloid-β peptide. Confinement uniformly impacts soluble globular protein PAD dynamics, and is therefore a generic control parameter for modulation of soluble globular protein function.
Collapse
Affiliation(s)
- Wei Li
- Department of Physics, Emory University, Atlanta, Georgia, 30322.
| | | | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, Georgia, 30322.
| |
Collapse
|
44
|
Ebrahim A, Riley BT, Kumaran D, Andi B, Fuchs MR, McSweeney S, Keedy DA. The temperature-dependent conformational ensemble of SARS-CoV-2 main protease (M pro). IUCRJ 2022; 9:682-694. [PMID: 36071812 PMCID: PMC9438506 DOI: 10.1107/s2052252522007497] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 05/12/2023]
Abstract
The COVID-19 pandemic, instigated by the SARS-CoV-2 coronavirus, continues to plague the globe. The SARS-CoV-2 main protease, or Mpro, is a promising target for the development of novel antiviral therapeutics. Previous X-ray crystal structures of Mpro were obtained at cryogenic tem-per-ature or room tem-per-ature only. Here we report a series of high-resolution crystal structures of unliganded Mpro across multiple tem-per-atures from cryogenic to physiological, and another at high humidity. We inter-rogate these data sets with parsimonious multiconformer models, multi-copy ensemble models, and isomorphous difference density maps. Our analysis reveals a perturbation-dependent conformational landscape for Mpro, including a mobile zinc ion inter-leaved between the catalytic dyad, mercurial conformational heterogeneity at various sites including a key substrate-binding loop, and a far-reaching intra-molecular network bridging the active site and dimer inter-face. Our results may inspire new strategies for antiviral drug development to aid preparation for future coronavirus pandemics.
Collapse
Affiliation(s)
- Ali Ebrahim
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, England, United Kingdom
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
| | - Blake T. Riley
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
| | - Desigan Kumaran
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Babak Andi
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA
| | - Martin R. Fuchs
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sean McSweeney
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA
- PhD Programs in Biochemistry, Biology, and Chemistry, The Graduate Center–City University of New York, New York, NY 10016, USA
| |
Collapse
|
45
|
Yabukarski F, Doukov T, Mokhtari DA, Du S, Herschlag D. Evaluating the impact of X-ray damage on conformational heterogeneity in room-temperature (277 K) and cryo-cooled protein crystals. Acta Crystallogr D Struct Biol 2022; 78:945-963. [PMID: 35916220 PMCID: PMC9344472 DOI: 10.1107/s2059798322005939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Cryo-cooling has been nearly universally adopted to mitigate X-ray damage and facilitate crystal handling in protein X-ray crystallography. However, cryo X-ray crystallographic data provide an incomplete window into the ensemble of conformations that is at the heart of protein function and energetics. Room-temperature (RT) X-ray crystallography provides accurate ensemble information, and recent developments allow conformational heterogeneity (the experimental manifestation of ensembles) to be extracted from single-crystal data. Nevertheless, high sensitivity to X-ray damage at RT raises concerns about data reliability. To systematically address this critical issue, increasingly X-ray-damaged high-resolution data sets (1.02-1.52 Å resolution) were obtained from single proteinase K, thaumatin and lysozyme crystals at RT (277 K). In each case a modest increase in conformational heterogeneity with X-ray damage was observed. Merging data with different extents of damage (as is typically carried out) had negligible effects on conformational heterogeneity until the overall diffraction intensity decayed to ∼70% of its initial value. These effects were compared with X-ray damage effects in cryo-cooled crystals by carrying out an analogous analysis of increasingly damaged proteinase K cryo data sets (0.9-1.16 Å resolution). X-ray damage-associated heterogeneity changes were found that were not observed at RT. This property renders it difficult to distinguish real from artefactual conformations and to determine the conformational response to changes in temperature. The ability to acquire reliable heterogeneity information from single crystals at RT, together with recent advances in RT data collection at accessible synchrotron beamlines, provides a strong motivation for the widespread adoption of RT X-ray crystallography to obtain conformational ensemble information.
Collapse
Affiliation(s)
- Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Tzanko Doukov
- SMB, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel A. Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Siyuan Du
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
46
|
Rahban M, Zolghadri S, Salehi N, Ahmad F, Haertlé T, Rezaei-Ghaleh N, Sawyer L, Saboury AA. Thermal stability enhancement: Fundamental concepts of protein engineering strategies to manipulate the flexible structure. Int J Biol Macromol 2022; 214:642-654. [DOI: 10.1016/j.ijbiomac.2022.06.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/28/2023]
|
47
|
Reuhl M, Vogel M. Temperature-Dependent Dynamics at Protein-Solvent Interfaces. J Chem Phys 2022; 157:074705. [DOI: 10.1063/5.0105062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We perform differential scanning calorimetry, broadband dielectric spectroscopy (BDS), and nuclear magnetic resonance (NMR) studies to ascertain the molecular dynamics in mixtures of ethylene glycol with elastin or lysozyme over broad temperature ranges. To focus on the protein-solvent interface, we use mixtures with about equal numbers of amino acids and solvent molecules. The elastin and lysozyme mixtures show similar glass transition steps, which extend over a broad temperature range of 157-185K. The BDS and NMR studies yield fully consistent results for the fastest process P1, which is caused by the structural relaxation of ethylene glycol between the protein molecules and follows an Arrhenius law with an activation energy of Ea=0.63eV. It involves quasi-isotropic reorientation and is very similar in the elastin and lysozyme matrices but different from the alpha and beta relaxations of bulk ethylene glycol. Two slower BDS processes P2 and P3 have protein-dependent time scales, but exhibit a similar Arrhenius-like temperature dependence with an activation energy of Ea~0.81eV. However, P2 and P3 do not have a clear NMR signature. In particular, the NMR results for the lysozyme mixture reveal that the protein backbone does not show isotropic alpha-like motion on the P2 and P3 time scales but only restricted beta-like reorientation. The different activation energies of the P1 and P2/P3 processes do not support an intimate coupling of protein and ethylene glycol dynamics. The present results are compared with previous findings for mixtures of proteins with water or glycerol, implying qualitatively different dynamical couplings at various protein-solvent interfaces.
Collapse
Affiliation(s)
| | - Michael Vogel
- Institute of Condensed Matter Physics, TU Darmstadt, Germany
| |
Collapse
|
48
|
Singewald K, Wilkinson JA, Hasanbasri Z, Saxena S. Beyond structure: Deciphering site-specific dynamics in proteins from double histidine-based EPR measurements. Protein Sci 2022; 31:e4359. [PMID: 35762707 PMCID: PMC9202549 DOI: 10.1002/pro.4359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/27/2022]
Abstract
Site-specific dynamics in proteins are at the heart of protein function. While electron paramagnetic resonance (EPR) has potential to measure dynamics in large protein complexes, the reliance on flexible nitroxide labels is limitating especially for the accurate measurement of site-specific β-sheet dynamics. Here, we employed EPR spectroscopy to measure site-specific dynamics across the surface of a protein, GB1. Through the use of the double Histidine (dHis) motif, which enables labeling with a Cu(II) - nitrilotriacetic acid (NTA) complex, dynamics information was obtained for both α-helical and β-sheet sites. Spectral simulations of the resulting CW-EPR report unique site-specific fluctuations across the surface of GB1. Additionally, we performed molecular dynamics (MD) simulations to complement the EPR data. The dynamics observed from MD agree with the EPR results. Furthermore, we observe small changes in gǁ values for different sites, which may be due to small differences in coordination geometry and/or local electrostatics of the site. Taken together, this work expands the utility of Cu(II)NTA-based EPR measurements to probe information beyond distance constraints.
Collapse
Affiliation(s)
- Kevin Singewald
- Department of ChemistryUniversity of PittsburghPittsburghPAUSA
| | | | | | - Sunil Saxena
- Department of ChemistryUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
49
|
Cong Y, Li M, Qi Y, Zhang JZH. A fast-slow method to treat solute dynamics in explicit solvent. Phys Chem Chem Phys 2022; 24:14498-14510. [PMID: 35665790 DOI: 10.1039/d2cp00732k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aiming to reduce the computational cost in the current explicit solvent molecular dynamics (MD) simulation, this paper proposes a fast-slow method for the fast MD simulation of biomolecules in explicit solvent. This fast-slow method divides the entire system into two parts: a core layer (typically solute or biomolecule) and a peripheral layer (typically solvent molecules). The core layer is treated using standard MD method but the peripheral layer is treated by a slower dynamics method to reduce the computational cost. We compared four different simulation models in testing calculations for several small proteins. These include gas-phase, implicit solvent, fast-slow explicit solvent and standard explicit solvent MD simulations. Our study shows that gas-phase and implicit solvent models do not provide a realistic solvent environment and fail to correctly produce reliable dynamic structures of proteins. On the other hand, the fast-slow method can essentially reproduce the same solvent effect as the standard explicit solvent model while gaining an order of magnitude in efficiency. This fast-slow method thus provides an efficient approach for accelerating the MD simulation of biomolecules in explicit solvent.
Collapse
Affiliation(s)
- Yalong Cong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, 200062, China.
| | - Mengxin Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, 200062, China.
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, 200062, China.
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, 200062, China. .,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Department of Chemistry, New York University, NY, NY 10003, USA.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
50
|
Rezaei‐Ghaleh N. Water Dynamics in Highly Concentrated Salt Solutions: A Multi‐Nuclear NMR Approach. Chemistry 2022; 11:e202200080. [PMID: 35642137 PMCID: PMC9156811 DOI: 10.1002/open.202200080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Indexed: 01/14/2023]
Abstract
Living cells often contain compartments with high concentration of charged biomolecules. A key question pertinent to the function of biomolecules is how water dynamics are affected by interaction with charged molecules. Here, we study the dynamical behavior of water in an extreme condition, that is, in saturated salt solutions, where nearly all water molecules are located within the first hydration layer of ions. To facilitate disentangling the effects of cations and anions, our study is focused on alkali chloride solutions. Following a multi‐nuclear NMR approach enabling direct monitoring of protons and the quadrupolar nuclei 7Li, 17O, 23Na, 35Cl, 87Rb and 133Cs, we investigate how the translational and rotational mobility of water molecules, chloride anion and corresponding cations are affected within the constrained environment of saturated solutions. Our results indicate that water molecules preserve a large level of mobility within saturated alkali chloride solutions that is significantly independent of adjacent ions.
Collapse
Affiliation(s)
- Nasrollah Rezaei‐Ghaleh
- Institute of Physical Biology Heinrich Heine University Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
- Institute of Biological Information Processing IBI-7: Structural Biochemistry Forschungszentrum Jülich 52428 Jülich Germany
| |
Collapse
|