1
|
Drewes JL, Rifkin SB, McMann M, Glass S, Spence E, Wensel CR, Geis AL, Stevens C, Gills JJ, Wang H, Hylind LM, Mullin G, Kafonek D, Cromwell D, La Luna L, Giardiello FM, Sears CL. Epidemiology of bacterial biofilms on polyps and normal tissues in a screening colonoscopy cohort. Gut Microbes 2025; 17:2452233. [PMID: 39826103 DOI: 10.1080/19490976.2025.2452233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Invasive bacterial biofilms are implicated in colorectal cancer. However, their prevalence on histologically normal tissues and polyps is not well established, and risk factors of biofilms have not been previously investigated. Here we evaluated potential procedural and demographic risk factors associated with biofilm status using a cross-sectional observational cohort. METHODS Histologically normal colonic biopsies from 2,051 individuals undergoing screening colonoscopy were evaluated for biofilm status using fluorescence in situ hybridization with oligonucleotide probes targeting bacterial 16S rRNA. Polyp tissues from 21 individuals were also examined. Procedural, demographic, and lifestyle predictors of bacterial scores were evaluated using multivariable proportional odds regression models. RESULTS Procedural variables that negatively impacted bacterial scores and biofilm detection included smaller biopsy forcep size, physician, bowel preparation type, and shorter times from bowel preparation completion to colonoscopy. Lifestyle variables including greater alcohol and cigarette usage were associated with higher bacterial scores, while vigorous physical activity and diabetes mellitus were associated with lower bacterial scores. Bacterial scores on normal tissues were significantly higher in individuals with colorectal cancer but not polyps compared to dysplasia-free individuals. Direct examination of polyp tissues demonstrated similar bacterial burden and taxonomic composition compared to paired normal tissues, but polyps displayed enhanced bacterial invasion into crypts. Additionally, bacterial scores significantly correlated with increasing polyp size, suggesting co-evolution of polyps with bacterial invasion and biofilm status. CONCLUSIONS Colonic biofilms are highly dynamic ecosystems that associate with several other known risk factors for colorectal cancer. However, biofilm detection is impacted by multiple procedural factors.
Collapse
Affiliation(s)
- Julia L Drewes
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute of Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Care Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samara B Rifkin
- Department of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
- Division of Gastroenterology, Department of Internal Medicine, John D. Dingell VA Medical Center and Wayne State University School of Medicine, Detroit, MI, USA
| | - Madison McMann
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sara Glass
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emma Spence
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caroline R Wensel
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abby L Geis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Courtney Stevens
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joell J Gills
- Bloomberg-Kimmel Institute of Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Care Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Wang
- Department of Oncology, Sidney Kimmel Comprehensive Care Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda M Hylind
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerard Mullin
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Louis La Luna
- Digestive Disease Associates, Reading, Wyomissing, PA, USA
| | - Francis M Giardiello
- Department of Oncology, Sidney Kimmel Comprehensive Care Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute of Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Care Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Ichikawa A, Takayama T, Kojima C, Fujie S, Iemitsu M, Inoue K. Conversion Reaction of Stable-Isotope Oxygen Labeling of Carboxylic Acids for Accurate Screening LC-MS/MS Assay: Application of Behavioral Changes of Short-Chain Fatty Acids in Sports Athletes under Exercise Loading. Anal Chem 2025; 97:7765-7771. [PMID: 40183608 DOI: 10.1021/acs.analchem.4c05872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Short-chain fatty acids (SCFAs) have attracted considerable interest as potential biomarkers, therapeutic targets, and nutritional factors in athletic training. SCFAs are typically produced by the intestinal microbiome and exhibit various structural forms, including linear- and branched-chain types. In particular, branched-chain SCFAs have been associated with muscle metabolism during exercise loading. Consequently, accurate and efficient analytical methods are essential for identifying these biomarkers. Liquid chromatography-tandem mass spectrometry is a suitable and accurate technique for SCFA analysis; however, stable isotope calibrations are required for all analytes. Because of technological limitations, the available species are restricted to certain types of SCFAs. To address this issue, this study performed a simple conversion reaction involving the incorporation of 18O into the carboxyl group. Specifically, oxygen atoms in the carboxyl groups were substituted with 18O sourced from commercially available H218O. An SCFA mixture standard solution was successfully labeled under optimized conditions, and the SIL purity and amount were sufficient for isotope dilution (95.2-96.9%, 250 assays using 10 μL of H218O). Moreover, no reversion to 16O was observed during storage or analysis. Analytical validation was performed in human serum using the substituted isotopic standard mixture, achieving good accuracy (90-110%) and precision (<10% relative standard deviation) across three concentration levels. Finally, changes in SCFA patterns were examined in athletes during exercise loading.
Collapse
Affiliation(s)
- Aoi Ichikawa
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Takahiro Takayama
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Chihiro Kojima
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Shumpei Fujie
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Motoyuki Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Koichi Inoue
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
3
|
Paulina MK, Monika S, Agata RB, Andrzej K, Maria G, Barbara F. Level of intestinal permeability markers and selected aspects of diet and BMI of Polish e-sports players. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:90. [PMID: 40149005 PMCID: PMC11951726 DOI: 10.1186/s41043-025-00775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/26/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND The intestinal microbiota, also called visceral brain, exhibits high biological activity and influences health status. The aim of this study was to evaluate selected dietary determinants of the levels of intestinal permeability markers (zonulin and LPS endotoxin) in a group of e-sportsmen. MATERIALS AND METHODS The study was conducted among 174 male athletes (18-28 years old), training at the professional (n = 44) and semi-professional level (n = 130). The study included: weight and height measurements (Holtain anthropometer, Tanita TBF300), assessment of BMI, determination of zonulin and LPS levels in fecal samples (ELISA tests) and assessment of frequency of consumption of selected food groups (FFQ). Statistical analysis was performed using chi2 and Student's t tests and Spearman's rank correlation, at a significance level of p < 0.05. RESULTS The group was dominated by e-sportsmen with elevated levels of LPS endotoxin (66.67%), zonulin (85.74%) and normative BMI (59.70%), with no significant differences according to sports level. There was a positive correlation between BMI and levels of zonulin (R = 0.49; p < 0.001) and LPS (R = 0.24; p < 0.05). Zonulin levels also increased with more frequent consumption of sweet cereals (R = 0.21; p < 0.05), pork meats (R = 0.21; p < 0.05) and red meat dishes (R = 0.18; p < 0.05). CONCLUSIONS Excessive body weight and a poor health diet were shown to have a negative effect on increasing intestinal permeability, suggesting the rationale for monitoring and rationalizing diet and nutritional status to optimize the intestinal microbiota of e-sportsmen.
Collapse
Affiliation(s)
- Mazur-Kurach Paulina
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University of Physical Culture, Jana Pawła II 78, 31-571, Kraków, Poland.
| | - Szot Monika
- Department of Sports Dietetics, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, Gdansk, 80-336, Poland
| | - Rzeszutko-Bełzowska Agata
- Institute of Physical Culture Sciences, College of Medical Sciences, University of Rzeszow, Cicha 2a, Rzeszow, 35-326, Poland
| | - Klimek Andrzej
- Department of Physiology and Biochmistry, Institute of Biomedical Sciences, University of Physical Culture, Jana Pawła II 78, 31-571, Kraków, Poland
| | - Gacek Maria
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University of Physical Culture, Jana Pawła II 78, 31-571, Kraków, Poland
| | - Frączek Barbara
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University of Physical Culture, Jana Pawła II 78, 31-571, Kraków, Poland
| |
Collapse
|
4
|
Ramos C, Magistro D, Walton GE, Whitham A, Camp N, Poveda C, Gibson GR, Hough J, Kinnear W, Hunter K. Assessing the gut microbiota composition in older adults: connections to physical activity and healthy ageing. GeroScience 2025:10.1007/s11357-025-01605-w. [PMID: 40095191 DOI: 10.1007/s11357-025-01605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
The composition and functionality of the gut microbiota (GM) changes throughout the life course. As we move into older age, it starts to shift towards a less healthy one, which may lead to an imbalance in the GM community. Strategies that can reverse age-related dysbiosis are an important part of healthy aging. Little is known about the GM composition of older adults with different physical activity (PA) levels and whether it might contribute to healthy ageing. The aim of this study was to compare the GM composition of older adults with different PA levels and assess if it is associated with healthy ageing. 101 participants aged between 65-85 years undertook anthropometric measures, a 6-min walking test, wore an accelerometer for 7 days and provided a faecal sample. Faecal GM composition was analysed using 16S rRNA sequencing. We found that those who fulfilled the WHO/UK PA recommendations had higher relative abundance of several health-related bacteria such as Lactobacillus, F. prausnitzii and Roseburia intestinalis and lower abundance of disease-associated bacteria such as D.piger or Enterobacterales when compared to those who did not reach PA recommendations. These findings suggest that PA might improve the GM composition and has the potential to, at least partially, revert age-associated dysbiosis and promote healthy ageing.
Collapse
Affiliation(s)
- Catarina Ramos
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, Nottingham, UK.
| | - Daniele Magistro
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, Nottingham, UK
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, Reading, UK
| | - Anya Whitham
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, Nottingham, UK
| | - Nicola Camp
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, Nottingham, UK
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, Reading, UK
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, Reading, UK
| | - John Hough
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, Nottingham, UK
| | - Will Kinnear
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, Nottingham, UK
| | - Kirsty Hunter
- Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, Nottingham, UK
- Reynolds Contamination Control, Lincoln, UK
| |
Collapse
|
5
|
Guers JJ, Heffernan KS, Campbell SC. Getting to the Heart of the Matter: Exploring the Intersection of Cardiovascular Disease, Sex and Race and How Exercise, and Gut Microbiota Influence these Relationships. Rev Cardiovasc Med 2025; 26:26430. [PMID: 40026503 PMCID: PMC11868917 DOI: 10.31083/rcm26430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 03/05/2025] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, with physical inactivity being a known contributor to the global rates of CVD incidence. CVD incidence, however, is not uniform with recognized sex differences as well and racial and ethnic differences. Furthermore, gut microbiota have been associated with CVD, sex, and race/ethnicity. Researchers have begun to examine the interplay of these complicated yet interrelated topics. This review will present evidence that CVD (risk and development), and gut microbiota are distinct between the sexes and racial/ethnic groups, which appear to be influenced by acculturation, discrimination, stress, and lifestyle factors like exercise. Furthermore, this review will address the beneficial impacts of exercise on the cardiovascular system and will provide recommendations for future research in the field.
Collapse
Affiliation(s)
- John J. Guers
- Department of Health Sciences and Nursing, Rider University, Lawrenceville, NJ 08648, USA
| | - Kevin S. Heffernan
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY 10027, USA
| | - Sara C. Campbell
- Department of Kinesiology and Health, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Centers for Human Nutrition, Exercise, and Metabolism, Nutrition, Microbiome, and Health, and Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
6
|
Yang W, Si SC, Wang WH, Li J, Ma YX, Zhao H, Liu J. Gut dysbiosis in primary sarcopenia: potential mechanisms and implications for novel microbiome-based therapeutic strategies. Front Microbiol 2025; 16:1526764. [PMID: 39935646 PMCID: PMC11810907 DOI: 10.3389/fmicb.2025.1526764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Primary sarcopenia is characterized by a progressive loss of skeletal muscle mass, strength, and physical function that occurs with aging. Despite the related adverse or even serious health outcomes, no medications are currently available for treating primary sarcopenia. Here, we discuss recent advancements in understanding the mechanistic role of gut microbiota-muscle cross-talk in primary sarcopenia, and the therapeutic implications. The mechanistic insights encompass a causal role of gut dysbiosis in primary sarcopenia, potentially mediated through gut microbiota-derived bioactive metabolites, such as short-chain fatty acids (SCFAs), secondary bile acids, and their associated signaling pathways, which may be translated into the development of new microbiome-based treatment and diagnostic approaches. Furthermore, we identify challenges that need addressing in future studies to facilitate the translation into potential novel treatment and differential diagnosis for older individuals with sarcopenia.
Collapse
Affiliation(s)
- Wei Yang
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Zhang S, Tang S, Liu Y, Xue B, Xie Q, Zhao L, Yuan H. Protein-bound uremic toxins as therapeutic targets for cardiovascular, kidney, and metabolic disorders. Front Endocrinol (Lausanne) 2025; 16:1500336. [PMID: 39931238 PMCID: PMC11808018 DOI: 10.3389/fendo.2025.1500336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Cardiovascular-kidney-metabolic (CKM) syndrome is a systemic clinical condition characterized by pathological and physiological interactions among metabolic abnormalities, chronic kidney disease, and cardiovascular diseases, leading to multi-organ dysfunction and a higher incidence of cardiovascular endpoints. Traditional approaches to managing CKM syndrome risk are inadequate in these patients, necessitating strategies targeting specific CKM syndrome risk factors. Increasing evidence suggests that addressing uremic toxins and/or pathways induced by uremic toxins may reduce CKM syndrome risk and treat the disease. This review explores the interactions among heart, kidney, and metabolic pathways in the context of uremic toxins and underscores the significant role of uremic toxins as potential therapeutic targets in the pathophysiology of these diseases. Strategies aimed at regulating these uremic toxins offer potential avenues for reversing and managing CKM syndrome, providing new insights for its clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huijuan Yuan
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| |
Collapse
|
8
|
Alsaafeen BH, Ali BR, Elkord E. Resistance mechanisms to immune checkpoint inhibitors: updated insights. Mol Cancer 2025; 24:20. [PMID: 39815294 PMCID: PMC11734352 DOI: 10.1186/s12943-024-02212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/18/2025] Open
Abstract
The last decade has witnessed unprecedented succusses with the use of immune checkpoint inhibitors in treating cancer. Nevertheless, the proportion of patients who respond favorably to the treatment remained rather modest, partially due to treatment resistance. This has fueled a wave of research into potential mechanisms of resistance to immune checkpoint inhibitors which can be classified into primary resistance or acquired resistance after an initial response. In the current review, we summarize what is known so far about the mechanisms of resistance in terms of being tumor-intrinsic or tumor-extrinsic taking into account the multimodal crosstalk between the tumor, immune system compartment and other host-related factors.
Collapse
Affiliation(s)
- Besan H Alsaafeen
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates.
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
9
|
Yoshikawa T, Yokoyama Y, Sakai A, Kuno T, Nimura Y, Matsunami H. Impact of Fecal Organic Acid Profile Before Training on Athletic Performance Improvement After High-Intensity Interval Training. Int J Sports Physiol Perform 2025; 20:65-72. [PMID: 39532084 DOI: 10.1123/ijspp.2023-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE This study sought to investigate the efficacy of Tabata-style high-intensity interval training (T-HIIT) on athletic performance in judoka and to determine the impact of the fecal organic acid profile before training on the improvement of athletic performance. METHODS Twenty males from Aichi University Judo Club (10 high-level competitors and 10 others) were included. Physical fitness tests such as the Uchikomi shuttle run, countermovement jump, squat jump, and chin-ups using a judo uniform were performed before and after T-HIIT. Fecal samples were collected before T-HIIT to measure the fecal concentration of organic acids. The fecal characteristics were categorized using the Bristol Stool Scale. RESULTS The mean number of repetitions of the Uchikomi shuttle run test significantly increased for all judoka following T-HIIT. However, improvements in other physical fitness tests varied, with some judoka showing improvements while others did not. The changes in countermovement jump (r = -.48, P = .029) and chin-ups using a judo uniform (r = -.45, P = .045) after T-HIIT were significantly negatively correlated with the fecal concentrations of succinic acid before T-HIIT. There was a significant correlation between the Bristol Stool Scale score and fecal concentrations of succinic acid (r = .45, P = .044). Compared with other compounds, the fecal concentrations of acetic acid and propionic acid were significantly greater in high-level competitors, while succinic acid concentrations tended to be lower. CONCLUSIONS T-HIIT effectively improved the specialized endurance of the judoka. Modifying the fecal organic acid profile, especially the fecal succinic acid concentration, may enhance the efficacy of athletic performance improvements achieved by T-HITT.
Collapse
Affiliation(s)
- Tomomi Yoshikawa
- Matsunami Research Park, Sosaikouseikai Clinical Foundation, Gifu, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Akiyoshi Sakai
- Department of Clinical Laboratory, Matsunami General Hospital, Sosaikouseikai Clinical Foundation, Gifu, Japan
| | | | - Yuji Nimura
- Aichi Cancer Center, Aichi, Japan
- Nagoya University Judo Club, Aichi, Japan
- Matsunami General Hospital Judo Club, Gifu, Japan
| | - Hidetoshi Matsunami
- Matsunami Research Park, Sosaikouseikai Clinical Foundation, Gifu, Japan
- Matsunami General Hospital Judo Club, Gifu, Japan
- Department of Surgery, Matsunami General Hospital, Sosaikouseikai Clinical Foundation, Gifu, Japan
| |
Collapse
|
10
|
Karačić A, Zonjić J, Stefanov E, Radolović K, Starčević A, Renko I, Krznarić Ž, Ivančić M, Šatalić Z, Liberati Pršo AM. Short-Term Supplementation of Sauerkraut Induces Favorable Changes in the Gut Microbiota of Active Athletes: A Proof-of-Concept Study. Nutrients 2024; 16:4421. [PMID: 39771042 PMCID: PMC11677004 DOI: 10.3390/nu16244421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Since the gut microbiota is important for athlete health and performance, its optimization is increasingly gaining attention in sports nutrition, for example, with whole fermented foods. Sauerkraut is a traditional fermented food rich in pro-, pre-, and postbiotics, which has not yet been investigated in the field of sports nutrition. METHODS To determine whether sauerkraut could be used for gut microbiota optimization in sports nutrition, a proof-of-concept study was conducted. The microbiota composition of organic pasteurized sauerkraut was analyzed, and then healthy active athletes were provided with the same sauerkraut for 10 days as an intervention. The effects of sauerkraut on the athlete's gut microbiota, laboratory parameters, and bowel function were assessed. RESULTS Significant changes in the gut microbiota composition were seen on taxonomic and functional levels, independent of baseline microbiota composition, even after short-term supplementation. Most notably, there was an increase in several health-promoting genera of the family Lachnospiraceae, as well as significant alterations in metabolic pathways regarding cell wall synthesis and the metabolism of nucleotide bases. An increase in the proportion of lymphocytes and a decrease in B12 vitamin levels was observed, as well as a risk of indigestion in certain athletes, which significantly resolved after seven days of supplementation in all athletes. It is unclear whether the observed effects are attributable to the sauerkraut's own microbiome or its pre- and postbiotics since it is a whole food. CONCLUSIONS Our study has demonstrated that the concept of whole fermented foods, such as sauerkraut, could potentially be feasible and effective in sports nutrition for gut microbiota optimization.
Collapse
Affiliation(s)
- Andrija Karačić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
- The Gut Microbiome Center (CCM), Jablanska 82, 10000 Zagreb, Croatia
- Department of Internal Medicine, University Hospital “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia;
| | - Jadran Zonjić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Ena Stefanov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Katja Radolović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Antonio Starčević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Ira Renko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Željko Krznarić
- Department of Internal Medicine, Faculty of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Matija Ivančić
- Department of Internal Medicine, University Hospital “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia;
| | - Zvonimir Šatalić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Ana-Marija Liberati Pršo
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
- Department of Internal Medicine, University Hospital “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia;
| |
Collapse
|
11
|
Xia W, Li X, Han R, Liu X. Microbial Champions: The Influence of Gut Microbiota on Athletic Performance via the Gut-Brain Axis. Open Access J Sports Med 2024; 15:209-228. [PMID: 39691802 PMCID: PMC11651067 DOI: 10.2147/oajsm.s485703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
In recent years, exercise has shown a powerful ability to regulate the gut microbiota received with concern. For instance, compared with the sedentary group, high-level athletes showed a different gut microbiota composition and remarkable capability of physiological metabolism. In addition, different diet patterns (eg, high-fat diet, high carbohydrate diet et.al) have different effects on gut microbiota, which can also affect exercise performance. Furthermore, adaptations to exercise also might be influenced by the gut microbiota, due to its important role in the transformation and expenditure of energy obtained from the diet. Therefore, appropriate dietary supplementation is important during exercise. And exploring the mechanisms by which dietary supplements affect exercise performance by modulating gut microbiota is of considerable interest to athletes wishing to achieve health and athletic performance. In this narrative review, the relationship between gut microbiota, dietary supplements, training adaptations and performance is discussed as follows. (i) The effects of the three main nutritional supplements on gut microbiota and athlete fitness. (ii) Strategies for dietary supplements and how they exerted function through gut microbiota alteration based on the gut-brain axis. (iii) Why dietary supplement interventions on gut microbiota should be tailored to different types of exercise. Our work integrates these factors to elucidate how specific nutritional supplements can modulate gut microbiota composition and, consequently, influence training adaptations and performance outcomes, unlike previous literature that often focuses solely on the effects of exercise or diet independently. And provides a comprehensive framework for athletes seeking to optimize their health and performance through a microbiota-centric approach.
Collapse
Affiliation(s)
- Wenrui Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaoang Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Ruixuan Han
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People’s Republic of China
| | - Xiaoke Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
12
|
Nakhod VI, Butkova TV, Malsagova KA, Petrovskiy DV, Izotov AA, Nikolsky KS, Kaysheva AL. Sample Preparation for Metabolomic Analysis in Exercise Physiology. Biomolecules 2024; 14:1561. [PMID: 39766268 PMCID: PMC11673972 DOI: 10.3390/biom14121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolomics investigates final and intermediate metabolic products in cells. Assessment of the human metabolome relies principally on the analysis of blood, urine, saliva, sweat, and feces. Tissue biopsy is employed less frequently. Understanding the metabolite composition of biosamples from athletes can significantly improve our knowledge of molecular processes associated with the efficiency of training and recovery. Such knowledge may also lead to new management opportunities. Successful execution of metabolomic studies requires simultaneous qualitative and quantitative analyses of numerous small biomolecules in samples under test. Unlike genomics and proteomics, which do not allow for direct assessment of enzymatic activity, metabolomics focuses on biochemical phenotypes, providing unique information about health and physiological features. Crucial factors in ensuring the efficacy of metabolomic analysis are the meticulous selection and pre-treatment of samples.
Collapse
Affiliation(s)
| | | | - Kristina A. Malsagova
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (V.I.N.); (T.V.B.); (D.V.P.); (A.A.I.); (K.S.N.); (A.L.K.)
| | | | | | | | | |
Collapse
|
13
|
Myhrstad MCW, Ruud E, Gaundal L, Gjøvaag T, Rud I, Retterstøl K, Ulven SM, Holven KB, Koehler K, Telle-Hansen VH. Gut microbiota, physical activity and/or metabolic markers in healthy individuals - towards new biomarkers of health. Front Nutr 2024; 11:1438876. [PMID: 39668899 PMCID: PMC11635997 DOI: 10.3389/fnut.2024.1438876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/16/2024] [Indexed: 12/14/2024] Open
Abstract
Background The global prevalence of the metabolic disease Type 2 Diabetes (T2D) is increasing. Risk factors contributing to the development of T2D include overweight and obesity, lack of physical activity (PA), and an unhealthy diet. In addition, the gut microbiota has been shown to affect metabolic regulation. Since T2D is preventable, efforts should be put into the discovery of new biomarkers for early detection of individuals at risk of developing the disease. Objective The objective of the cross-sectional study was to explore the relationship between gut microbiota and physical activity (PA) and/or metabolic markers such as selected amino acids (AA), markers of glycaemic regulation and lipid metabolism and anthropometric measures. Design Healthy adults (18 and 65 years) with BMI between 18.5 and 27.5 kg/m2 originally recruited to a randomised controlled trial (RCT) (n = 17: six males, eleven females), were included in this exploratory cross-sectional study. Physical activity data was calculated based on a 3-days registration, and blood metabolome, gut microbiota analyses and anthropometric measures from one visit of the intervention were used in this cross-sectional study. Results Of the 47 gut bacteria analysed, there were a total of 87 significant correlations with AA, PA, body composition and/or metabolic markers. Several of the gut bacteria correlated with both PA, metabolic or anthropometric markers. Conclusion In this study, we demonstrate associations between gut bacteria and PA and/or metabolic markers including AA in healthy individuals. The results may guide future studies aiming at identifying new and early biomarkers of metabolic health and diseases.
Collapse
Affiliation(s)
- Mari C. W. Myhrstad
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Emilia Ruud
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Line Gaundal
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Terje Gjøvaag
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Ida Rud
- Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Stine M. Ulven
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kirsten B. Holven
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, Oslo, Norway
| | - Karsten Koehler
- Department of Health and Sport Sciences, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Vibeke H. Telle-Hansen
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
14
|
Lee MC, Chiu CH, Liao YC, Cheng YC, Lee CC, Ho CS, Hsu YJ, Chang HY, Lin JS, Huang CC. Gut microbiota modulation and amino acid absorption by Lactiplantibacillus plantarum TWK10 in pea protein ingestion: TWK10 boosts hut microbiota, amino acid uptake. Curr Res Food Sci 2024; 9:100917. [PMID: 39628601 PMCID: PMC11613169 DOI: 10.1016/j.crfs.2024.100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
For vegetarians or vegan athletes, improving the utilization of plant-based protein and the absorption of amino acids is crucial. This study explored the impact of combining pea protein with Lactiplantibacillus plantarum TWK10 and resistance training on amino acid absorption and exercise performance. Sixteen male and sixteen female participants were randomly assigned to either a control group (20 g of pea protein without TWK10) or a TWK10 group (20 g of pea protein combined with 1 × 1010 colony-forming units of TWK10). After 28 days of supplementation combined with resistance exercise training three times per week. All subjects underwent body composition and muscle strength performance, plasma and fecal samples were collected for microbiota analysis and blood amino acid concentrations. The TWK10 group showed a significant increase in muscle thickness and improvements were observed in 1 repetition maximum bench press, explosive, anaerobic power output compared to before the intervention, and were significantly higher than those in the control group (p < 0.05). TWK10 supplementation significantly increased the area under the curve and maximum concentration of branched-chain amino acids, essential amino acids, and total amino acids (p < 0.05). Furthermore, TWK10 supplementation effectively increased the richness of gut bacterial families. Our study demonstrated that the TWK10 significant increase in the abundance of specific bacterial families in the gut, resulting in increased pea protein amino acid absorption. Moreover, increasing muscle mass and significantly improving muscle thickness, muscle strength, power, and anaerobic capacity.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
- Center for General Education, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hui Chiu
- Graduate Institute of Health Industry and Technology, Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, 20401, Taiwan
| | - Yi-Chu Liao
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 82151, Taiwan
| | - Yi-Chen Cheng
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 82151, Taiwan
| | - Chia-Chia Lee
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 82151, Taiwan
| | - Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
| | - Hsiao-Yun Chang
- Department of Athletic Training and Health, National Taiwan Sports University, Taoyuan, 333325, Taiwan
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 82151, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
| |
Collapse
|
15
|
Li W, Sheng R, Cao M, Rui Y. Exploring the Relationship Between Gut Microbiota and Sarcopenia Based on Gut-Muscle Axis. Food Sci Nutr 2024; 12:8779-8792. [PMID: 39619957 PMCID: PMC11606894 DOI: 10.1002/fsn3.4550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 01/04/2025] Open
Abstract
Sarcopenia, as a disease characterized by progressive decline of quality, strength, and function of muscles, has posed an increasingly significant threat to the health of middle-aged and elderly individuals in recent years. With the continuous deepening of studies, the concept of gut-muscle axis has attracted widespread attention worldwide, and the occurrence and development of sarcopenia are believed to be closely related to the composition and functional alterations of gut microbiota. In this review, combined with existing literatures and clinical reports, we have summarized the role and impacts of gut microbiota on the muscle, the relevance between gut microbiota and sarcopenia, potential mechanisms of gut microbiota in the modulation of sarcopenia, potential methods to alleviate sarcopenia by modulating gut microbiota, and relevant advances and perspectives, thus contributing to adding more novel knowledge to this research direction and providing certain reference for future related studies.
Collapse
Affiliation(s)
- Wei Li
- Department of Spinal Surgery Unit 1Hanzhong Central Hospital of Shaanxi ProvinceHanzhongShaanxiChina
- Department of OrthopaedicsTianjin Hospital of NingqiangHanzhongShaanxiChina
| | - Ren‐Wang Sheng
- Department of Orthopaedics, School of Medicine, Zhongda HospitalSoutheast UniversityNanjingJiangsuChina
- School of MedicineSoutheast UniversityNanjingJiangsuChina
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda HospitalSoutheast UniversityNanjingJiangsuChina
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingJiangsuChina
| | - Mu‐Min Cao
- Department of Orthopaedics, School of Medicine, Zhongda HospitalSoutheast UniversityNanjingJiangsuChina
- School of MedicineSoutheast UniversityNanjingJiangsuChina
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda HospitalSoutheast UniversityNanjingJiangsuChina
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingJiangsuChina
| | - Yun‐Feng Rui
- Department of Orthopaedics, School of Medicine, Zhongda HospitalSoutheast UniversityNanjingJiangsuChina
- School of MedicineSoutheast UniversityNanjingJiangsuChina
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda HospitalSoutheast UniversityNanjingJiangsuChina
- Orthopaedic Trauma Institute (OTI)Southeast UniversityNanjingJiangsuChina
| |
Collapse
|
16
|
Mancini A, Vitucci D, Lasorsa VA, Lupo C, Brustio PR, Capasso M, Orrù S, Rainoldi A, Schena F, Buono P. Six months of different exercise type in sedentary primary schoolchildren: impact on physical fitness and saliva microbiota composition. Front Nutr 2024; 11:1465707. [PMID: 39512522 PMCID: PMC11542257 DOI: 10.3389/fnut.2024.1465707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Lifestyle influences microbiota composition. We previously reported a healthier microbiota composition in saliva from active schoolchildren compared to sedentary. In the present study, we evaluated the effects of 6 months of different exercise types on physical fitness and saliva microbiota composition in 8-11-years-old sedentary schoolchildren. Methods Sixty-four sedentary children from five primary schools in Turin, Italy, were divided into three groups: one continued normal curricular activity while two underwent different exercise protocols for 6 months. The Structured Exercise (Sa) group did 2 h per week of muscle activation, strength and coordination exercises supervised by a kinesiologist. The Daily Mile (Dm) group did 1 h per week of Sa plus 15 min of walking/running outdoors four times a week, supervised by a class teacher; control group (Ct) did 2 h a week of curricular exercise supervised by a class teacher. Physical fitness was evaluated before and after the intervention. Saliva samples were collected post-intervention in all participants and analyzed using PCR amplification of 16S rRNA bacterial genes. The Amplicon Sequence Variants were filtered, decontaminated, and phylogenetically classified using DADA2 software. Differential abundance analysis of microbiome taxa and pathway data was conducted using the LEfSe algorithm and PICRUSt. Results The Sa group showed better performances in lower limb power and sprint performance while both the Sa and Dm groups improved in endurance and balance at the end of the intervention; only balance resulted slightly improved in the Ct group. Among the genera differently enriched in saliva after the training intervention, we found that the Prevotella, the Dubosiella and the Family XIII AD3011 group were the most abundant in the Sa group; differently, the Neisseria and the Abiotrophia in Ct group. Four species showed significant the Prevotella melaninogenica and the Prevotella nanceiensis were more abundant in the Sa, conversely, Gemella sanguinis was enriched in Dm and Abiotrophia defectiva in Ct saliva group. Conclusion We demonstrated that Sa and Dm, not curricular exercise, improve the physical fitness components in sedentary schoolchildren correlated to health and promote an enrichment in saliva microbiota species associated to a healthier profile.
Collapse
Affiliation(s)
- Annamaria Mancini
- Department of Medicine, Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | - Daniela Vitucci
- Department of Medicine, Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | | | - Corrado Lupo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Mario Capasso
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Stefania Orrù
- Department of Medicine, Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | - Alberto Rainoldi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Pasqualina Buono
- Department of Medicine, Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| |
Collapse
|
17
|
Macura B, Kiecka A, Szczepanik M. Intestinal permeability disturbances: causes, diseases and therapy. Clin Exp Med 2024; 24:232. [PMID: 39340718 PMCID: PMC11438725 DOI: 10.1007/s10238-024-01496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Nowadays, a pathological increase in the permeability of the intestinal barrier (the so-called leaky gut) is increasingly being diagnosed. This condition can be caused by various factors, mainly from the external environment. Damage to the intestinal barrier entails a number of adverse phenomena: dysbiosis, translocation of microorganisms deep into the intestinal tissue, immune response, development of chronic inflammation. These phenomena can ultimately lead to a vicious cycle that promotes the development of inflammation and further damage to the barrier. Activated immune cells in mucosal tissues with broken barriers can migrate to other organs and negatively affect their functioning. Damaged intestinal barrier can facilitate the development of local diseases such as irritable bowel disease, inflammatory bowel disease or celiac disease, but also the development of systemic inflammatory diseases such as rheumatoid arthritis, ankylosing spondylitis, hepatitis, and lupus erythematosus, neurodegenerative or psychiatric conditions, or metabolic diseases such as diabetes or obesity. However, it must be emphasized that the causal links between a leaky gut barrier and the onset of certain diseases often remain unclear and require in-depth research. In light of recent research, it becomes crucial to prevent damage to the intestinal barrier, as well as to develop therapies for the barrier when it is damaged. This paper presents the current state of knowledge on the causes, health consequences and attempts to treat excessive permeability of the intestinal barrier.
Collapse
Affiliation(s)
- Barbara Macura
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland.
| | - Aneta Kiecka
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland
| | - Marian Szczepanik
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland
| |
Collapse
|
18
|
Li T, Yin D, Shi R. Gut-muscle axis mechanism of exercise prevention of sarcopenia. Front Nutr 2024; 11:1418778. [PMID: 39221163 PMCID: PMC11362084 DOI: 10.3389/fnut.2024.1418778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Sarcopenia refers to an age-related systemic skeletal muscle disorder, which is characterized by loss of muscle mass and weakening of muscle strength. Gut microbiota can affect skeletal muscle through a variety of mechanisms. Gut microbiota present distinct features among elderly people and sarcopenia patients, including a decrease in microbial diversity, which might be associated with the quality and function of the skeletal muscle. There might be a gut-muscle axis; where gut microbiota and skeletal muscle may affect each other bi-directionally. Skeletal muscle can affect the biodiversity of the gut microbiota, and the latter can, in turn, affect the anabolism of skeletal muscle. This review examines recent studies exploring the relationship between gut microbiota and skeletal muscle, summarizes the effects of exercise on gut microbiota, and discusses the possible mechanisms of the gut-muscle axis.
Collapse
Affiliation(s)
| | | | - Rengfei Shi
- School of Health and Exercise, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
19
|
Deli CK, Fatouros IG, Poulios A, Liakou CA, Draganidis D, Papanikolaou K, Rosvoglou A, Gatsas A, Georgakouli K, Tsimeas P, Jamurtas AZ. Gut Microbiota in the Progression of Type 2 Diabetes and the Potential Role of Exercise: A Critical Review. Life (Basel) 2024; 14:1016. [PMID: 39202758 PMCID: PMC11355287 DOI: 10.3390/life14081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Type 2 diabetes (T2D) is the predominant metabolic epidemic posing a major threat to global health. Growing evidence indicates that gut microbiota (GM) may critically influence the progression from normal glucose tolerance, to pre-diabetes, to T2D. On the other hand, regular exercise contributes to the prevention and/or treatment of the disease, and evidence suggests that a possible way regular exercise favorably affects T2D is by altering GM composition toward health-promoting bacteria. However, research regarding this potential effect of exercise-induced changes of GM on T2D and the associated mechanisms through which these effects are accomplished is limited. This review presents current data regarding the association of GM composition and T2D and the possible critical GM differentiation in the progression from normal glucose, to pre-diabetes, to T2D. Additionally, potential mechanisms through which GM may affect T2D are presented. The effect of exercise on GM composition and function on T2D progression is also discussed.
Collapse
Affiliation(s)
- Chariklia K. Deli
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Christina A. Liakou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Anastasia Rosvoglou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Gatsas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Kalliopi Georgakouli
- Department of Dietetics and Nutrition, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece;
| | - Panagiotis Tsimeas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| |
Collapse
|
20
|
Templeman I, Parish E, Rimmer J, Clarke G, Troth T, Goodson MS, Soares JW, Harding SV. 'It takes a village': deciphering the role of the gut microbiome in the health and performance of military personnel. BMJ Mil Health 2024:e002746. [PMID: 39038855 DOI: 10.1136/military-2024-002746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
The human gut microbiome can be impacted by a range of environmental and lifestyle factors including diet, antibiotics, physical fitness and acute and chronic stressors. There is also evidence to suggest that specific compositional and/or functional features of the gut microbiome are mediators of aspects of health and performance including disease susceptibility, cognitive and physical states and the immune response. Therefore, understanding microbe-to-microbe and nutrient-to-microbe interactions in the gut and how they interact with host biology (eg, via the gut-brain axis) could enable better design of interventions aimed at modulating the gut microbiome to improve the health and performance of the military. Accordingly, this review summarises a thematic session hosted at the 6th International Conference on Soldier Physical Performance which provided an overview of military-relevant research related to the gut microbiome. It articulates a timely opportunity to leverage this rapidly advancing area to improve personnel health and military performance.
Collapse
Affiliation(s)
| | - E Parish
- CBR Division, DSTL, Salisbury, UK
| | - J Rimmer
- Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham, UK
| | - G Clarke
- Department of Psychiatry and Neurobehavioural Science, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - T Troth
- Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham, UK
| | - M S Goodson
- 711th Human Performance Wing, US Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - J W Soares
- Soldier Effectiveness Directorate, US Army Combat Capabilities and Development Command Soldier Center, Natick, Massachusetts, USA
| | - S V Harding
- CBR Division, DSTL, Salisbury, UK
- Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
21
|
Wosinska L, Walsh LH, Walsh CJ, Cotter PD, Guinane CM, O’Sullivan O. Cataloging metagenome-assembled genomes and microbial genes from the athlete gut microbiome. MICROBIOME RESEARCH REPORTS 2024; 3:41. [PMID: 39741946 PMCID: PMC11684919 DOI: 10.20517/mrr.2023.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/15/2024] [Accepted: 07/03/2024] [Indexed: 01/03/2025]
Abstract
Aim: Exercise has been increasingly recognized as a potential influencer of the gut microbiome. Nevertheless, findings remain incongruous, particularly in relation to sport-specific patterns. Methods: In this study, we harness all publicly available data from athlete gut microbiome shotgun studies to explore how exercise may influence the gut microbiota through metagenomic assembly supplemented with short read-based taxonomic profiling. Through this analysis, we provide insights into exercise-associated taxa and genes, including the identification and annotation of putative novel species from the analysis of approximately 2,000 metagenome-assembled genomes (MAGs), classified as high-quality (HQ) MAGs and assembled as part of this investigation. Results: Our metagenomic analysis unveiled potential athlete-associated microbiome patterns at both the phylum and species levels, along with their associated microbial genes, across a diverse array of sports and individuals. Specifically, we identified 76 species linked to exercise, with a notable prevalence of the Firmicutes phylum. Furthermore, our analysis detected MAGs representing potential novel species across various phyla, including Bacteroidota, Candidatus Melainabacteria, Elusimicrobia, Firmicutes, Lentisphaerae, Proteobacteria, Tenericutes, and Verrucomicrobiota. Conclusion: In summary, this catalog of MAGs and their corresponding genes stands as the most extensive collection yet compiled from athletes. Our analysis has discerned patterns in genes associated with exercise. This underscores the value of employing shotgun metagenomics, specifically a MAG recovery strategy, for pinpointing sport-associated microbiome signatures. Furthermore, the identification of novel MAGs holds promise for developing probiotics and deepening our comprehension of the intricate interplay between fitness and the microbiome.
Collapse
Affiliation(s)
- Laura Wosinska
- Department of Biological Sciences, Munster Technological University, Cork Campus, Cork T12 P928, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, Cork T12 YT20, Ireland
- Authors contributed equally
| | - Liam H. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, Cork T12 YT20, Ireland
- Authors contributed equally
| | - Calum J. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, Cork T12 YT20, Ireland
- VistaMilk, Fermoy, Cork P61 C996, Ireland
| | - Caitriona M. Guinane
- Department of Biological Sciences, Munster Technological University, Cork Campus, Cork T12 P928, Ireland
| | - Orla O’Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, Cork T12 YT20, Ireland
- VistaMilk, Fermoy, Cork P61 C996, Ireland
| |
Collapse
|
22
|
Ge Y, Wang J, Wu L, Wu J. Gut microbiota: a potential new regulator of hypertension. Front Cardiovasc Med 2024; 11:1333005. [PMID: 38993521 PMCID: PMC11236727 DOI: 10.3389/fcvm.2024.1333005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/16/2024] [Indexed: 07/13/2024] Open
Abstract
Hypertension is a significant risk factor for cardiovascular and cerebrovascular diseases and has become a global public health concern. Although hypertension results from a combination of factors, the specific mechanism is still unclear. However, increasing evidence suggests that gut microbiota is closely associated with the development of hypertension. We provide a summary of the composition and physiological role of gut microbiota. We then delve into the mechanism of gut microbiota and its metabolites involved in the occurrence and development of hypertension. Finally, we review various regimens for better-controlling hypertension from the diet, exercise, drugs, antibiotics, probiotics, and fecal transplantation perspectives.
Collapse
Affiliation(s)
- Yanmin Ge
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaxin Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lincong Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
23
|
Saha B, A T R, Adhikary S, Banerjee A, Radhakrishnan AK, Duttaroy AK, Pathak S. Exploring the Relationship Between Diet, Lifestyle and Gut Microbiome in Colorectal Cancer Development: A Recent Update. Nutr Cancer 2024; 76:789-814. [PMID: 39207359 DOI: 10.1080/01635581.2024.2367266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer-related mortality worldwide. Despite advances in treatment modalities, its prevalence continues to rise, notably among younger populations. Unhealthy dietary habits, sedentary routines, and obesity have been identified as one of the key contributors to the development of colorectal cancer, apart from genetic and epigenetic modifications. Recognizing the profound impact of diet and lifestyle on the intricate gut microbiota ecosystem offers a promising avenue for understanding CRC development and its treatment. Gut dysbiosis, characterized by imbalances favoring harmful microbes over beneficial ones, has emerged as a defining feature of CRC. Changes in diet and lifestyle can profoundly alter the composition of gut microbes and the metabolites they produce, potentially contributing to CRC onset. Focusing on recent evidence, this review discussed various dietary factors, such as high consumption of red and processed meats and low fiber intake, and lifestyle factors, including obesity, lack of physical activity, smoking, and excessive alcohol consumption, that influence the gut microbiome composition and elevate CRC risk.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Rithi A T
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
24
|
Hu X, Feng J, Lu J, Pang R, Zhang A, Liu J, Gou X, Bai X, Wang J, Chang C, Yin J, Wang Y, Xiao H, Wang Q, Cheng H, Chang Y, Wang W. Effects of exoskeleton-assisted walking on bowel function in motor-complete spinal cord injury patients: involvement of the brain-gut axis, a pilot study. Front Neurosci 2024; 18:1395671. [PMID: 38952922 PMCID: PMC11215087 DOI: 10.3389/fnins.2024.1395671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Evidence has demonstrated that exoskeleton robots can improve intestinal function in patients with spinal cord injury (SCI). However, the underlying mechanisms remain unelucidated. This study investigated the effects of exoskeleton-assisted walking (EAW) on intestinal function and intestinal flora structure in T2-L1 motor complete paraplegia patients. The results showed that five participants in the EAW group and three in the conventional group reported improvements in at least one bowel management index, including an increased frequency of bowel evacuations, less time spent on bowel management per day, and less external assistance (manual digital stimulation, medication, and enema usage). After 8 weeks of training, the amount of glycerol used in the EAW group decreased significantly (p <0.05). The EAW group showed an increasing trend in the neurogenic bowel dysfunction (NBD) score after 8 weeks of training, while the conventional group showed a worsening trend. Patients who received the EAW intervention exhibited a decreased abundance of Bacteroidetes and Verrucomicrobia, while Firmicutes, Proteobacteria, and Actinobacteria were upregulated. In addition, there were decreases in the abundances of Bacteroides, Prevotella, Parabacteroides, Akkermansia, Blautia, Ruminococcus 2, and Megamonas. In contrast, Ruminococcus 1, Ruminococcaceae UCG002, Faecalibacterium, Dialister, Ralstonia, Escherichia-Shigella, and Bifidobacterium showed upregulation among the top 15 genera. The abundance of Ralstonia was significantly higher in the EAW group than in the conventional group, and Dialister increased significantly in EAW individuals at 8 weeks. This study suggests that EAW can improve intestinal function of SCI patients in a limited way, and may be associated with changes in the abundance of intestinal flora, especially an increase in beneficial bacteria. In the future, we need to further understand the changes in microbial groups caused by EAW training and all related impact mechanisms, especially intestinal flora metabolites. Clinical trial registration: https://www.chictr.org.cn/.
Collapse
Affiliation(s)
- Xiaomin Hu
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Jing Feng
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiachun Lu
- Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
| | - Rizhao Pang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiancheng Liu
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiang Gou
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Xingang Bai
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Junyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cong Chang
- Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
| | - Jie Yin
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yunyun Wang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hua Xiao
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Qian Wang
- Care Alliance Jinchen Rehabilitation Hospital of Chengdu, Chengdu, China
| | - Hong Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Youjun Chang
- Sichuan Provincial Rehabilitation Hospital, Affiliated Rehabilitation Hospital of Chengdu University of T.C.M., Chengdu, China
| | - Wenchun Wang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
25
|
Chrysant SG. The role of gut microbiota in the development of salt-sensitive hypertension and the possible preventive effect of exercise. Expert Rev Cardiovasc Ther 2024; 22:265-271. [PMID: 38823009 DOI: 10.1080/14779072.2024.2364031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION The aim of the present study is to analyze the data indicating an association between high salt intake and the gastrointestinal microbiota in the development of salt-sensitive hypertension in animals and men. It is also, to discuss the preventive effects of exercise on gut-induced hypertension by favorably modifying the composition of gut microbiota. AREAS COVERED Salt sensitivity is quite common, accounting for 30%-60% in hypertensive subjects. Recently, a novel cause for salt-sensitive hypertension has been discovered through the action of gut microbiota by the secretion of several hormones and the action of short chain fatty acids (SCFAs). In addition, recent studies indicate that exercise might favorably modify the adverse effects of gut microbiota regarding their effects on BP. To identify the role of gut microbiota on the incidence of hypertension and CVD and the beneficial effect of exercise, a Medline search of the English literature was conducted between 2018 and 2023 and 42 pertinent papers were selected. EXPERT OPINION The analysis of data from the selected papers disclosed that the gut microbiota contribute significantly to the development of salt-sensitive hypertension and that exercise modifies their gut composition and ameliorates their adverse effects on BP.
Collapse
Affiliation(s)
- Steven G Chrysant
- Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
26
|
Cui X, Zhang T, Xie T, Guo FX, Zhang YY, Deng YJ, Wang Q, Guo YX, Dong MH, Luo XT. Research Progress on the Correlation Between Hypertension and Gut Microbiota. J Multidiscip Healthc 2024; 17:2371-2387. [PMID: 38770171 PMCID: PMC11104380 DOI: 10.2147/jmdh.s463880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Among cardiovascular diseases, hypertension is the most important risk factor for morbidity and mortality worldwide, and its pathogenesis is complex, involving genetic, dietary and environmental factors. The characteristics of the gut microbiota can vary in response to increased blood pressure (BP) and influence the development and progression of hypertension. This paper describes five aspects of the relationship between hypertension and the gut microbiota, namely, the different types of gut microbiota, metabolites of the gut microbiota, sympathetic activation, gut-brain interactions, the effects of exercise and dietary patterns and the treatment of the gut microbiota through probiotics, faecal microbiota transplantation (FMT) and herbal remedies, providing new clues for the future prevention of hypertension. Diet, exercise and traditional Chinese medicine may contribute to long-term improvements in hypertension, although the effects of probiotics and FMT still need to be validated in large populations.
Collapse
Affiliation(s)
- Xiaomei Cui
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Ting Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Tao Xie
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Fang-xi Guo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yu-ying Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yuan-jia Deng
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Qi Wang
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yi-xing Guo
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Ming-hua Dong
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Xiao-ting Luo
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of General Medicine, Gannan Medical University, Ganzhou, People’s Republic of China
| |
Collapse
|
27
|
Duan R, Liu Y, Zhang Y, Shi J, Xue R, Liu R, Miao Y, Zhou X, Lv Y, Shen H, Xie X, Ai X. The impact of exercise on the gut microbiota in middle-aged amateur serious runners: a comparative study. Front Physiol 2024; 15:1343219. [PMID: 38737829 PMCID: PMC11082653 DOI: 10.3389/fphys.2024.1343219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Exercise, health, and the gut microbiota (GM) are strongly correlated. Research indicates that professional athletes, especially ultra-marathon runners, have unique GM characteristics. However, more research has focused on elite athletes, with little attention given to amateur sports enthusiasts, especially those in the middle-aged population. Therefore, this study focuses on the impact of long-term running on the composition and potential functions of the GM in middle-aged individuals. Methods We compared the GM of 25 middle-aged serious runnerswith 22 sedentary healthy controls who had minimal exercise habitsusing 16S rRNA gene sequencing. Additionally, we assessed dietary habits using a food frequency questionnaire. Results and Discussion Statistical analysis indicates that there is no significant difference in dietary patterns between the control group and serious runners. Diversity analysis results indicate that there is no significant difference in α diversity between the two groups of GM, but there is a significant difference in β diversity. Analysis of the composition of GM reveals that Ruminococcus and Coprococcus are significantly enriched in serious runners, whereas Bacteroides, Lachnoclostridium, and Lachnospira are enriched in the control group. Differential analysis of functional pathway prediction results reveals significant differences in the functional metabolism levels of GM between serious runners and the control group. Further correlation analysis results indicate that this difference may be closely related to variations in GM. In conclusion, our results suggest that long-term exercise can lead to changes in the composition of the GM. These changes have the potential to impact the overall health of the individual by influencing metabolic regulation.
Collapse
Affiliation(s)
- Rui Duan
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Yu Liu
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Yonglian Zhang
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Jinrong Shi
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Rong Xue
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Ruijie Liu
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Yuanxin Miao
- Research Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, Hubei, China
| | - Xianfeng Zhou
- School of Life Sciences and Health Engineering, Hubei University of Technology, Wuhan, China
- Maintainbiotech Ltd., Wuhan, Hubei, China
| | | | - Hexiao Shen
- Maintainbiotech Ltd., Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiongwei Xie
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Xu Ai
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| |
Collapse
|
28
|
Jang YJ, Choi HS, Oh I, Chung JH, Moon JS. Effects of Limosilactobacillus reuteri ID-D01 Probiotic Supplementation on Exercise Performance and Gut Microbiota in Sprague-Dawley Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10257-9. [PMID: 38635106 DOI: 10.1007/s12602-024-10257-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
The gut microbiota composition in animals and humans has recently been found to be influenced by exercise. Although Limosilactobacillus reuteri strains have notable probiotic properties that promote human health, understanding of its effects in combination with exercise and physical activity is limited. Therefore, this study examined the effects of L. reuteri ID-D01, a human-derived probiotic, on exercise performance and fatigue in Sprague-Dawley rats. Organ weight, maximal running distance, serum biochemistry, muscle performance, microbial community composition, and short-chain fatty acid (SCFA) levels were assessed. Results indicated that ID-D01 supplementation significantly improved endurance performance. Rats in the probiotic group demonstrated a significant increase in maximal running distance compared with that in the control group (p < 0.05). Additionally, levels of fatigue markers, such as lactate and creatine phosphokinase, were significantly reduced in the ID-D01-administered groups, suggesting its potential to alleviate exercise-induced fatigue. Microbiome analysis revealed a distinct shift in gut microbiota composition in response to ID-D01 administration. The group that received ID-D01 probiotics exhibited a significant increase in the abundance of SCFA-producing bacteria, particularly Akkermansia spp., compared with that in the control groups. Furthermore, they showed elevated production of SCFAs, such as acetate and butyrate. In conclusion, this study demonstrated that ID-D01 can enhance exercise performance and reduce fatigue. Herein, we highlighted that human-derived probiotics could improve physical performance, as observed by changes in gut microbiota composition and SCFA production.
Collapse
Affiliation(s)
- Ye-Ji Jang
- YUNOVIA Co., Ltd, Hwaseong, 18449, Republic of Korea
| | - Han Sol Choi
- YUNOVIA Co., Ltd, Hwaseong, 18449, Republic of Korea
| | - Ikhoon Oh
- YUNOVIA Co., Ltd, Hwaseong, 18449, Republic of Korea
| | | | - Jin Seok Moon
- YUNOVIA Co., Ltd, Hwaseong, 18449, Republic of Korea.
- Ildong Pharmaceutical Co., Ltd, Seoul, 06752, Republic of Korea.
| |
Collapse
|
29
|
Park T, Yoon J, Yun Y, Unno T. Comparison of the fecal microbiota with high- and low performance race horses. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:425-437. [PMID: 38628692 PMCID: PMC11016738 DOI: 10.5187/jast.2023.e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/26/2023] [Accepted: 05/13/2023] [Indexed: 04/19/2024]
Abstract
Exercise plays an important role in regulating energy homeostasis, which affects the diversity of the intestinal microbial community in humans and animals. To the best of the authors' knowledge, few studies have reported the associations between horse gut microbiota along with their predicted metabolic activities and the athletic ability of Jeju horses and Thoroughbreds living in Korea. This study was conducted to investigate the association between the gut microbiota and athletic performance in horses. This study sequenced the V3 and V4 hypervariable regions of the partial 16S rRNA genes obtained from racehorse fecal samples and compared the fecal microbiota between high- and low-performance Jeju horses and Thoroughbreds. Forty-nine fecal samples were divided into four groups: high-performance Jeju horses (HJ, n = 13), low-performance Jeju horses (LJ, n = 17), high-performance Thoroughbreds (HT, n = 9), and low-performance Thoroughbreds (LT, n = 10). The high-performance horse groups had a higher diversity of the bacterial community than the low-performance horse groups. Two common functional metabolic activities of the hindgut microbiota (i.e., tryptophan and succinate syntheses) were observed between the low-performance horse groups, indicating dysbiosis of gut microbiota and fatigue from exercise. On the other hand, high-performance horse groups showed enriched production of polyamines, butyrate, and vitamin K. The racing performance may be associated with the composition of the intestinal microbiota of Jeju horses and Thoroughbreds in Korea.
Collapse
Affiliation(s)
- Taemook Park
- Equine Clinic, Jeju Racecourse, Korea
Racing Authority, Jeju 63066, Korea
| | - Jungho Yoon
- Equine Clinic, Jeju Racecourse, Korea
Racing Authority, Jeju 63066, Korea
| | - YoungMin Yun
- College of Veterinary Medicine, Jeju
National University, Jeju 63243, Korea
- Veterinary Medical Research Institute,
Jeju National University, Jeju 63243, Korea
| | - Tatsuya Unno
- Department of Microbiology, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
30
|
Wang XM, Fan L, Meng CC, Wang YJ, Deng LE, Yuan Z, Zhang JP, Li YY, Lv SC. Gut microbiota influence frailty syndrome in older adults: mechanisms and therapeutic strategies. Biogerontology 2024; 25:107-129. [PMID: 38150088 DOI: 10.1007/s10522-023-10082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Frailty syndrome denotes a decreased capacity of the body to maintain the homeostasis and stress of the internal environment, which simultaneously increases the risk of adverse health outcomes in older adults, including disability, hospitalization, falls, and death. To promote healthy aging, we should find strategies to cope with frailty. However, the pathogenesis of frailty syndrome is not yet clear. Recent studies have shown that the diversity, composition, and metabolites of gut microbiota significantly changed in older adults with frailty. In addition, several frailty symptoms were alleviated by adjusting gut microbiota with prebiotics, probiotics, and symbiosis. Therefore, we attempt to explore the pathogenesis of frailty syndrome in older people from gut microbiota and summarize the existing interventions for frailty syndrome targeting gut microbiota, with the aim of providing timely and necessary interventions and assistance for older adults with frailty.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen-Chen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun-Jiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li-E Deng
- Nephrology department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Zhuo Yuan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
| | - Jun-Ping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
| | - Yan-Yang Li
- Department of Integrated Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shi-Chao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China.
- Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
31
|
Qian H, Zuo Y, Wen S, Wang X, Liu Y, Li T. Impact of exercise training on gut microbiome imbalance in obese individuals: a study based on Mendelian randomization analysis. Front Physiol 2024; 14:1264931. [PMID: 38235382 PMCID: PMC10792044 DOI: 10.3389/fphys.2023.1264931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024] Open
Abstract
Objective: The aim of this study was to investigate the relationship between exercise and gut Microbiome and to assess its possible causality. Methods: Using Mendelian randomization (MR) research methods, we collected genetic data from different populations, including genetic variants associated with relative abundance or presence of microbial taxa as instrumental variables. At the same time, we extracted results related to obesity and gut Microbiome from existing relevant studies and used inverse variance weighting (IVW), weighted median, and MR-Egger regression to assess the causal relationship between obesity and gut Microbiome. We plotted forest plots and scatter plots of the association between obesity and gut Microbiome. Results: Gut Microbiome was positively associated with obesity, and four bacterial genera (Akkermansia, RuminococcaceaeUCG011, Holdemania, and Intestinimonas) were associated with obesity according to inverse variance-weighted estimation in at least one MR method. Inverse variance weighted estimation showed that obesity was associated with obesity in Akkermansia (OR = 0.810, 95% CI 0.608-1.079, p = 0.04), RuminococcaceaeUCG011 (OR = 1.238, 95% CI 0. 511-2.999, p = 0.04), Holdemania Intestinimonas (OR = 1.214, 95% CI 1.002-1.470, p = 0.03), and Intestinimonas (OR = 0.747, 95% CI 0.514-1.086, p = 0.01) had a relevant effect. Obesity decreased the abundance of Akkermansia, Intestinimonas microbiome and increased the abundance of RuminococcaceaeUCG011, Holdemania microbiome. Conclusion: The results of this study, conducted using a two-sample Mendelian randomization method, suggest a causal relationship between obesity and intestinal microbiome. Obesity decreased the abundance of Akkermansia, Intestinimonas microbiome and increased the abundance of RuminococcaceaeUCG011, Holdemania microbiome. More randomized controlled trials are necessary to elucidate the protective effects of exercise on gut Microbiome and its unique protective mechanisms.
Collapse
Affiliation(s)
- Haonan Qian
- Department of Physical Education, Hanyang University, Seoul, Republic of Korea
| | - Yuxin Zuo
- Department of Health and Physical Education, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Shixiong Wen
- Department of Physical Education, Hanyang University, Seoul, Republic of Korea
| | - Xilong Wang
- Department of Physical Education, Hanyang University, Seoul, Republic of Korea
| | - Yaowen Liu
- Department of Physical Education, Hanyang University, Seoul, Republic of Korea
| | - Tianwei Li
- The University of Edinburgh, Physical Activity for Health Research Center, Edinburgh, United Kingdom
| |
Collapse
|
32
|
Bradley E, Haran J. The human gut microbiome and aging. Gut Microbes 2024; 16:2359677. [PMID: 38831607 PMCID: PMC11152108 DOI: 10.1080/19490976.2024.2359677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The composition of the human gut microbiome has been observed to change over the course of an individual's life. From birth, it is shaped by mode of delivery, diet, environmental exposures, geographic location, exposures to medications, and by aging itself. Here, we present a narrative review of the gut microbiome across the lifespan with a focus on its impacts on aging and age-related diseases in humans. We will describe how it is shaped, and features of the gut microbiome that have been associated with diseases at different phases of life and how this can adversely affect healthy aging. Across the lifespan, and especially in old age, a diverse microbiome that includes organisms suspected to produce anti-inflammatory metabolites such as short-chain fatty acids, has been reported to be associated with healthy aging. These findings have been remarkably consistent across geographic regions of the world suggesting that they could be universal features of healthy aging across all cultures and genetic backgrounds. Exactly how these features of the microbiome affect biologic processes associated with aging thus promoting healthy aging will be crucial to targeting the gut microbiome for interventions that will support health and longevity.
Collapse
Affiliation(s)
- Evan Bradley
- UMass Chan Medical School, Department of Emergency Medicine and Department of Microbiology and Physiologic Systems, Program in Microbiome Dynamics, Worcester, MA, USA
| | - John Haran
- UMass Chan Medical School, Department of Emergency Medicine and Department of Microbiology and Physiologic Systems, Program in Microbiome Dynamics, Worcester, MA, USA
| |
Collapse
|
33
|
Wang Y, Chen J, Ni Y, Liu Y, Gao X, Tse MA, Panagiotou G, Xu A. Exercise-changed gut mycobiome as a potential contributor to metabolic benefits in diabetes prevention: an integrative multi-omics study. Gut Microbes 2024; 16:2416928. [PMID: 39473051 PMCID: PMC11533799 DOI: 10.1080/19490976.2024.2416928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND The importance of gut microbes in mediating the benefits of lifestyle intervention is increasingly recognized. However, compared to the bacterial microbiome, the role of intestinal fungi in exercise remains elusive. With our established randomized controlled trial of exercise intervention in Chinese males with prediabetes (n = 39, ClinicalTrials.gov:NCT03240978), we investigated the dynamics of human gut mycobiome and further interrogated their associations with exercise-elicited outcomes using multi-omics approaches. METHODS Clinical variations and biological samples were collected before and after training. Fecal fungal composition was analyzed using the internal transcribed spacer 2 (ITS2) sequencing and integrated with paired shotgun metagenomics, untargeted metabolomics, and Olink proteomics. RESULTS Twelve weeks of exercise training profoundly promoted fungal ecological diversity and intrakingdom connection. We further identified exercise-responsive genera with potential metabolic benefits, including Verticillium, Sarocladium, and Ceratocystis. Using multi-omics approaches, we elucidated comprehensive associations between changes in gut mycobiome and exercise-shaped metabolic phenotypes, bacterial microbiome, and circulating metabolomics and proteomics profiles. Furthermore, a machine-learning algorithm built using baseline microbial signatures and clinical characteristics predicted exercise responsiveness in improvements of insulin sensitivity, with an area under the receiver operating characteristic (AUROC) of 0.91 (95% CI: 0.85-0.97) in the discovery cohort and of 0.79 (95% CI: 0.74-0.86) in the independent validation cohort (n = 30). CONCLUSIONS Our findings suggest that intense exercise training significantly remodels the human fungal microbiome composition. Changes in gut fungal composition are associated with the metabolic benefits of exercise, indicating gut mycobiome is a possible molecular transducer of exercise. Moreover, baseline gut fungal signatures predict exercise responsiveness for diabetes prevention, highlighting that targeting the gut mycobiome emerges as a prospective strategy in tailoring personalized training for diabetes prevention.
Collapse
Affiliation(s)
- Yao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiarui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yueqiong Ni
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Jena, Germany
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Michael Andrew Tse
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Centre for Sports and Exercise, The University of Hong Kong, Hong Kong, China
| | - Gianni Panagiotou
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
34
|
Gao C, Wei J, Lu C, Wang L, Dong D, Sun M. A new perspective in intestinal microecology: lifting the veil of exercise regulation of cardiometabolic diseases. Gut Microbes 2024; 16:2404141. [PMID: 39305272 PMCID: PMC11418258 DOI: 10.1080/19490976.2024.2404141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Cardiometabolic diseases (CMDs), encompassing cardiovascular and metabolic dysfunctions, characterized by insulin resistance, dyslipidemia, hepatic steatosis, and inflammation, have been identified with boosting morbidity and mortality due to the dearth of efficacious therapeutic interventions. In recent years, studies have shown that variations in gut microbiota and its own metabolites can influence the occurrence of CMDs. Intriguingly, the composition and function of the gut microbiota are susceptible to exercise patterns, thus affecting inflammatory, immune, and metabolic responses within the host. In this review, we introduce the key mechanisms of intestinal microecology involved in the onset and development of CMDs, discuss the relationship between exercise and intestinal microecology, and then analyze the role of intestinal microecology in the beneficial effects of exercise on CMDs, aiming at elucidating the gut-heart axis mechanisms of exercise mediated protective effect on CMDs, building avenues for the application of exercise in the management of CMDs.
Collapse
Affiliation(s)
- Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, P. R. China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
35
|
Cullen JMA, Shahzad S, Dhillon J. A systematic review on the effects of exercise on gut microbial diversity, taxonomic composition, and microbial metabolites: identifying research gaps and future directions. Front Physiol 2023; 14:1292673. [PMID: 38187136 PMCID: PMC10770260 DOI: 10.3389/fphys.2023.1292673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/07/2023] [Indexed: 01/09/2024] Open
Abstract
The gut microbiome, hosting a diverse microbial community, plays a pivotal role in metabolism, immunity, and digestion. While the potential of exercise to influence this microbiome has been increasingly recognized, findings remain incongruous. This systematic review examined the effects of exercise on the gut microbiome of human and animal models. Databases (i.e., PubMed, Cochrane Library, Scopus, and Web of Science) were searched up to June 2022. Thirty-two exercise studies, i.e., 19 human studies, and 13 animal studies with a minimum of two groups that discussed microbiome outcomes, such as diversity, taxonomic composition, or microbial metabolites, over the intervention period, were included in the systematic review (PROSPERO registration numbers for human review: CRD42023394223). Results indicated that over 50% of studies found no significant exercise effect on human microbial diversity. When evident, exercise often augmented the Shannon index, reflecting enhanced microbial richness and evenness, irrespective of disease status. Changes in beta-diversity metrics were also documented with exercise but without clear directionality. A larger percentage of animal studies demonstrated shifts in diversity compared to human studies, but without any distinct patterns, mainly due to the varied effects of predominantly aerobic exercise on diversity metrics. In terms of taxonomic composition, in humans, exercise usually led to a decrease in the Firmicutes/Bacteroidetes ratio, and consistent increases with Bacteroides and Roseburia genera. In animal models, Coprococcus, another short chain fatty acid (SCFA) producer, consistently rose with exercise. Generally, SCFA producers were found to increase with exercise in animal models. With regard to metabolites, SCFAs emerged as the most frequently measured metabolite. However, due to limited human and animal studies examining exercise effects on microbial-produced metabolites, including SCFAs, clear patterns did not emerge. The overall risk of bias was deemed neutral. In conclusion, this comprehensive systematic review underscores that exercise can potentially impact the gut microbiome with indications of changes in taxonomic composition. The significant variability in study designs and intervention protocols demands more standardized methodologies and robust statistical models. A nuanced understanding of the exercise-microbiome relationship could guide individualized exercise programs to optimize health. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=394223, identifier CRD42023394223.
Collapse
Affiliation(s)
- John M A Cullen
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Shahim Shahzad
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Jaapna Dhillon
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
36
|
de Souza PB, de Araujo Borba L, Castro de Jesus L, Valverde AP, Gil-Mohapel J, Rodrigues ALS. Major Depressive Disorder and Gut Microbiota: Role of Physical Exercise. Int J Mol Sci 2023; 24:16870. [PMID: 38069198 PMCID: PMC10706777 DOI: 10.3390/ijms242316870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major depressive disorder (MDD) has a high prevalence and is a major contributor to the global burden of disease. This psychiatric disorder results from a complex interaction between environmental and genetic factors. In recent years, the role of the gut microbiota in brain health has received particular attention, and compelling evidence has shown that patients suffering from depression have gut dysbiosis. Several studies have reported that gut dysbiosis-induced inflammation may cause and/or contribute to the development of depression through dysregulation of the gut-brain axis. Indeed, as a consequence of gut dysbiosis, neuroinflammatory alterations caused by microglial activation together with impairments in neuroplasticity may contribute to the development of depressive symptoms. The modulation of the gut microbiota has been recognized as a potential therapeutic strategy for the management of MMD. In this regard, physical exercise has been shown to positively change microbiota composition and diversity, and this can underlie, at least in part, its antidepressant effects. Given this, the present review will explore the relationship between physical exercise, gut microbiota and depression, with an emphasis on the potential of physical exercise as a non-invasive strategy for modulating the gut microbiota and, through this, regulating the gut-brain axis and alleviating MDD-related symptoms.
Collapse
Affiliation(s)
- Pedro Borges de Souza
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Laura de Araujo Borba
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Louise Castro de Jesus
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Ana Paula Valverde
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| |
Collapse
|
37
|
Clark A, Mach N. The gut mucin-microbiota interactions: a missing key to optimizing endurance performance. Front Physiol 2023; 14:1284423. [PMID: 38074323 PMCID: PMC10703311 DOI: 10.3389/fphys.2023.1284423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/27/2023] [Indexed: 01/22/2025] Open
Abstract
Endurance athletes offer unique physiology and metabolism compared to sedentary individuals. Athletes training at high intensities for prolonged periods are at risk for gastrointestinal disturbances. An important factor in endurance performance is the integrity and function of the gut barrier, which primarily depends on heavily O-glycosylated mucins. Emerging evidence shows a complex bidirectional dialogue between glycans on mucins and gut microorganisms. This review emphasizes the importance of the crosstalk between the gut microbiome and host mucus mucins and some of the mechanisms underlying this symbiosis. The contribution of mucin glycans to the composition and functionality of the gut microbiome is discussed, as well as the persuasive impact of the gut microbiome on mucin composition, thickness, and immune and metabolic functions. Lastly, we propose natural and synthetic glycans supplements to improve intestinal mucus production and barrier function, offering new opportunities to enhance endurance athletes' performance and gut health.
Collapse
Affiliation(s)
- Allison Clark
- Universitat Oberta de Catalunya, Universitat de Catalunya, Barcelona, Spain
| | - Núria Mach
- Interactions hôtes-agents pathogènes, Université de Toulouse, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, École nationale vétérinaire de Toulouse, Toulouse, France
| |
Collapse
|
38
|
Li SX, Guo Y. Gut microbiome: New perspectives for type 2 diabetes prevention and treatment. World J Clin Cases 2023; 11:7508-7520. [DOI: 10.12998/wjcc.v11.i31.7508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), which is distinguished by increased glucose levels in the bloodstream, is a metabolic disease with a rapidly increasing incidence worldwide. Nevertheless, the etiology and characteristics of the mechanism of T2DM remain unclear. Recently, abundant evidence has indicated that the intestinal microbiota is crucially involved in the initiation and progression of T2DM. The gut microbiome, the largest microecosystem, engages in material and energy metabolism in the human body. In this review, we concentrated on the correlation between the gut flora and T2DM. Meanwhile, we summarized the pathogenesis involving the intestinal flora in T2DM, as well as therapeutic approaches aimed at modulating the gut microbiota for the management of T2DM. Through the analysis presented here, we draw attention to further exploration of these research directions.
Collapse
Affiliation(s)
- Shu-Xiao Li
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130000, Jilin Province, China
| | - Yan Guo
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130000, Jilin Province, China
| |
Collapse
|
39
|
Morimoto T, Kobayashi T, Kakiuchi T, Esaki M, Tsukamoto M, Yoshihara T, Hirata H, Yabuki S, Mawatari M. Gut-spine axis: a possible correlation between gut microbiota and spinal degenerative diseases. Front Microbiol 2023; 14:1290858. [PMID: 37965563 PMCID: PMC10641865 DOI: 10.3389/fmicb.2023.1290858] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
As society ages, the number of patients with spinal degenerative diseases (SDD) is increasing, posing a major socioeconomic problem for patients and their families. SDD refers to a generic term for degenerative diseases of spinal structures, including osteoporosis (bone), facet osteoarthritis (joint), intervertebral disk degeneration (disk), lumbar spinal canal stenosis (yellow ligament), and spinal sarcopenia (muscle). We propose the term "gut-spine axis" for the first time, given the influence of gut microbiota (GM) on the metabolic, immune, and endocrine environment in hosts through various potential mechanisms. A close cross-talk is noted between the aforementioned spinal components and degenerative diseases. This review outlines the nature and role of GM, highlighting GM abnormalities associated with the degeneration of spinal components. It also summarizes the evidence linking GM to various SDD. The gut-spine axis perspective can provide novel insights into the pathogenesis and treatment of SDD.
Collapse
Affiliation(s)
- Tadatsugu Morimoto
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Takaomi Kobayashi
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshihiko Kakiuchi
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Motohiro Esaki
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tomohito Yoshihara
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Shoji Yabuki
- Fukushima Medical University School of Health Sciences, Fukushima, Japan
| | - Masaaki Mawatari
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
40
|
Xu L, Li W, Ling L, Zhang Z, Cui Z, Ge J, Wang Y, Meng Q, Wang Y, Liu K, Zhou J, Zeng F, Wang J, Wu J. A Sedentary Lifestyle Changes the Composition and Predicted Functions of the Gut Bacterial and Fungal Microbiota of Subjects from the Same Company. Curr Microbiol 2023; 80:368. [PMID: 37831112 PMCID: PMC10575810 DOI: 10.1007/s00284-023-03480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
A sedentary lifestyle affects the diversity and composition of the gut microbiota, but previous studies have mainly focused on bacteria instead of fungi. Here, we compared both the fecal bacterial and fungal microbiota compositions and functions in sedentary persons and controls. Subjects from the China Railway Corporation, including 99 inspectors and 88 officials, were enrolled in our study. Fecal microbiota communities were analyzed using 16S rRNA gene sequencing for bacteria and ITS sequencing for fungi. We found that the diversity of the gut microbiota of the sedentary group was significantly lower than that of the control group (P < 0.05). The sedentary group had a higher abundance of Firmicutes, a lower abundance of Actinobacteria and Proteobacteria and a higher abundance of Ascomycota, and a lower abundance of Basidiomycota. Furthermore, functional prediction analysis of the fungal microbiota revealed more L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde, more phospholipid remodeling (phosphatidylethanolamine, yeast), and more L-tyrosine degradation I, as well as less pentose phosphate pathway (non-oxidative branch), less adenosine nucleotide biosynthesis and less L-valine biosynthesis in the sedentary group (P < 0.05). Thus, a sedentary lifestyle changes the composition and function of the gut microbiota. It may change the pentose phosphate pathway (non-oxidative branch), nucleic acid and amino acid biosynthesis and phospholipid metabolism in fungi.
Collapse
Affiliation(s)
- Longwei Xu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Gastroenterology, School of Clinical Medicine, Peking University Ninth, Beijing, 100038, China
| | - Wenkun Li
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lu Ling
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ziran Zhang
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zilu Cui
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jiang Ge
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yun Wang
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Qianlong Meng
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yadan Wang
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Kuiliang Liu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jun Zhou
- Department of Clinical Research Center, Dazhou Central Hospital, Sichuan, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Sichuan, China.
| | - Jing Wang
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Jing Wu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Department of Gastroenterology, School of Clinical Medicine, Peking University Ninth, Beijing, 100038, China.
- , No. 95, Yongan Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
41
|
Przewłócka K, Folwarski M, Kaczmarczyk M, Skonieczna-Żydecka K, Palma J, Bytowska ZK, Kujach S, Kaczor JJ. Combined probiotics with vitamin D 3 supplementation improved aerobic performance and gut microbiome composition in mixed martial arts athletes. Front Nutr 2023; 10:1256226. [PMID: 37885441 PMCID: PMC10599147 DOI: 10.3389/fnut.2023.1256226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Mixed Martial Arts (MMA) is characterized as an interval sport in which the training program focuses on enhancing both aerobic and anaerobic capacities. Therefore, strategies targeting the intestinal microbiome may be beneficial for MMA athletes. Moreover, vitamin D supplementation may amplify the positive effects of certain bacterial strains. We previously demonstrated that the combined of probiotics and vitamin D3 supplementation improved the lactate utilization ratio, total work, and average power achieved during anaerobic tests in MMA. Therefore, this study aimed to investigate whether combined probiotic and vitamin D3 ingestion can modify the composition of the gut microbiome and epithelial cell permeability, influence the inflammatory response, and ultimately enhance aerobic capacity. Methods A 4-week clinical trial was conducted with 23 male MMA athletes randomly assigned to either the probiotic + vitamin D3 (PRO + VIT D) group or the vitamin D3 group (VIT D). The trial employed a double-blind, placebo-controlled design and involved measurements of serum inflammatory markers, gut microbiome composition, epithelial cell permeability, and aerobic performance. Results After 4-week of supplementation, we found a significantly lower concentration of calprotectin in the PRO + VIT D group (34.79 ± 24.38 mmol/L) compared to the value before (69.50 ± 46.91) supplementation (p = 0.030), augmentation of beta diversity after the intervention in the PRO + VIT D group (p = 0.0005) and an extended time to exhaustion to 559.00 ± 68.99; compared to the value before (496.30 ± 89.98; p = 0.023) after combined probiotic and vitamin D3 supplementation in MMA athletes. No effect was observed in the VIT D group. Conclusion Our results indicate that combined treatment of probiotics and vitamin D3 may cause alterations in alpha and beta diversity and the composition of the gut microbiota in MMA athletes. We observed an improvement in epithelial cell permeability and an extended time to exhaustion during exercise in MMA athletes following a 4-week combined probiotic and vitamin D3 treatment.
Collapse
Affiliation(s)
- Katarzyna Przewłócka
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marcin Folwarski
- Department of Clinical Nutrition and Dietetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Mariusz Kaczmarczyk
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Joanna Palma
- Department of Biochemical Research, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Zofia Kinga Bytowska
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwester Kujach
- Department of Physiology, Gdansk University of Physical Education and Sport, Gdańsk, Poland
- Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdańsk, Gdańsk, Poland
| | - Jan Jacek Kaczor
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Animal and Human Physiology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
42
|
Li Y, Cheng M, Zha Y, Yang K, Tong Y, Wang S, Lu Q, Ning K. Gut microbiota and inflammation patterns for specialized athletes: a multi-cohort study across different types of sports. mSystems 2023; 8:e0025923. [PMID: 37498086 PMCID: PMC10470055 DOI: 10.1128/msystems.00259-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023] Open
Abstract
Regular high-intensity exercise can cause changes in athletes' gut microbiota, and the extent and nature of these changes may be affected by the athletes' exercise patterns. However, it is still unclear to what extent different types of athletes have distinct gut microbiome profiles and whether we can effectively monitor an athlete's inflammatory risk based on their microbiota. To address these questions, we conducted a multi-cohort study of 543 fecal samples from athletes in three different sports: aerobics (n = 316), wrestling (n = 53), and rowing (n = 174). We sought to investigate how athletes' gut microbiota was specialized for different types of sports, and its associations with inflammation, diet, anthropometrics, and anaerobic measurements. We established a microbiota catalog of multi-cohort athletes and found that athletes have specialized gut microbiota specific to the type of sport they engaged in. Using latent Dirichlet allocation, we identified 10 microbial subgroups of athletes' gut microbiota, each of which had specific correlations with inflammation, diet, and anaerobic performance in different types of athletes. Notably, most inflammation indicators were associated with Prevotella-driven subgroup 7. Finally, we found that the effects of sport types and exercise intensity on the gut microbiota were sex-dependent. These findings shed light on the complex associations between physical factors, gut microbiota, and inflammation in athletes of different sports types and could have significant implications for monitoring potential inflammation risk and developing personalized exercise programs. IMPORTANCE This study is the first multi-cohort investigation of athletes across a range of sports, including aerobics, wrestling, and rowing, with the goal of establishing a multi-sport microbiota catalog. Our findings highlight that athletes' gut microbiota is sport-specific, indicating that exercise patterns may play a significant role in shaping the microbiome. Additionally, we observed distinct associations between gut microbiota and markers of inflammation, diet, and anaerobic performance in athletes of different sports. Moreover, we expanded our analysis to include a non-athlete cohort and found that exercise intensity had varying effects on the gut microbiota of participants, depending on sex.
Collapse
Affiliation(s)
- Yuxue Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyue Cheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuguo Zha
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Yang
- Exercise Immunology Center, Wuhan Sports University, Wuhan, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Song Wang
- Exercise Immunology Center, Wuhan Sports University, Wuhan, China
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Wilson SL, Crosley-Lyons R, Junk J, Hasanaj K, Larouche ML, Hollingshead K, Gu H, Whisner C, Sears DD, Buman MP. Effects of Increased Standing and Light-Intensity Physical Activity to Improve Postprandial Glucose in Sedentary Office Workers: Protocol for a Randomized Crossover Trial. JMIR Res Protoc 2023; 12:e45133. [PMID: 37610800 PMCID: PMC10483290 DOI: 10.2196/45133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Prolonged bouts of sedentary time, independent from the time spent in engaging in physical activity, significantly increases cardiometabolic risk. Nonetheless, the modern workforce spends large, uninterrupted portions of the day seated at a desk. Previous research suggests-via improved cardiometabolic biomarkers-that this risk might be attenuated by simply disrupting sedentary time with brief breaks of standing or moving. However, this evidence is derived from acute, highly controlled laboratory experiments and thus has low external validity. OBJECTIVE This study aims to investigate if similar or prolonged cardiometabolic changes are observed after a prolonged (2-week) practice of increased brief standing and moving behaviors in real-world office settings. METHODS This randomized crossover trial, called the WorkWell Study, will compare the efficacy of two 2-week pilot intervention conditions designed to interrupt sitting time in sedentary office workers (N=15) to a control condition. The intervention conditions use a novel smartphone app to deliver real-time prompts to increase standing (STAND) or moving (MOVE) by an additional 6 minutes each hour during work. Our primary aim is to assess intervention-associated improvements to daily postprandial glucose using continuous glucose monitors. Our secondary aim is to determine whether the interventions successfully evoke substantive positional changes and light-intensity physical activity (LPA). Other outcomes include the feasibility and acceptability of the intervention conditions, fasting blood glucose concentration, femoral artery flow-mediated dilation (f-FMD), and systolic and diastolic blood pressure. RESULTS The trial is ongoing at the time of submission. CONCLUSIONS This study is a novel, randomized crossover trial designed to extend a laboratory-based controlled study design into the free-living environment. By using digital health technologies to monitor and prompt participants in real time, we will be able to rigorously test the effects of breaking up sedentary behavior over a longer period of time than is seen in traditional laboratory-based studies. Our innovative approach will leverage the strengths of highly controlled laboratory and free-living experiments to achieve maximal internal and external validity. The research team's multidisciplinary expertise allows for a broad range of biological measures to be sampled, providing robust results that will extend knowledge of both the acute and chronic real-life effects of increased standing and LPA in sedentary office workers. The WorkWell Study uses a rigorous transdisciplinary protocol that will contribute to a more comprehensive picture of the beneficial effects of breaking up sitting behavior. TRIAL REGISTRATION ClinicalTrials.gov NCT04269070; https://clinicaltrials.gov/study/NCT04269070. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/45133.
Collapse
Affiliation(s)
- Shannon L Wilson
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Rachel Crosley-Lyons
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jordan Junk
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
- College of Health Sciences, Midwestern University, Glendale, AZ, United States
| | - Kristina Hasanaj
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Miranda L Larouche
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Kevin Hollingshead
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, United States
| | - Corrie Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Matthew P Buman
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
44
|
Álvarez-Herms J, González A, Corbi F, Odriozola I, Odriozola A. Possible relationship between the gut leaky syndrome and musculoskeletal injuries: the important role of gut microbiota as indirect modulator. AIMS Public Health 2023; 10:710-738. [PMID: 37842270 PMCID: PMC10567981 DOI: 10.3934/publichealth.2023049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 10/17/2023] Open
Abstract
This article aims to examine the evidence on the relationship between gut microbiota (GM), leaky gut syndrome and musculoskeletal injuries. Musculoskeletal injuries can significantly impair athletic performance, overall health, and quality of life. Emerging evidence suggests that the state of the gut microbiota and the functional intestinal permeability may contribute to injury recovery. Since 2007, a growing field of research has supported the idea that GM exerts an essential role maintaining intestinal homeostasis and organic and systemic health. Leaky gut syndrome is an acquired condition where the intestinal permeability is impaired, and different bacteria and/or toxins enter in the bloodstream, thereby promoting systemic endotoxemia and chronic low-grade inflammation. This systemic condition could indirectly contribute to increased local musculoskeletal inflammation and chronificate injuries and pain, thereby reducing recovery-time and limiting sport performance. Different strategies, including a healthy diet and the intake of pre/probiotics, may contribute to improving and/or restoring gut health, thereby modulating both systemically as local inflammation and pain. Here, we sought to identify critical factors and potential strategies that could positively improve gut microbiota and intestinal health, and reduce the risk of musculoskeletal injuries and its recovery-time and pain. In conclusion, recent evidences indicate that improving gut health has indirect consequences on the musculoskeletal tissue homeostasis and recovery through the direct modulation of systemic inflammation, the immune response and the nociceptive pain.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
- Phymo Lab, Physiology, and Molecular laboratory, Spain
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| | - Francisco Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| |
Collapse
|
45
|
Mancini A, Cerulli C, Vitucci D, Lasorsa VA, Parente D, Di Credico A, Orrù S, Brustio PR, Lupo C, Rainoldi A, Schena F, Capasso M, Buono P. Impact of active lifestyle on the primary school children saliva microbiota composition. Front Nutr 2023; 10:1226891. [PMID: 37671197 PMCID: PMC10476528 DOI: 10.3389/fnut.2023.1226891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023] Open
Abstract
The aim of the study was to evaluate the effects of Active or Sedentary lifestyle on saliva microbiota composition in Italian schoolchildren. Methods Male (114) and female children (8-10 years) belonging to five primary schools in the neighborhoods of Turin were classified as active (A) or sedentary (S) based on PAQ-C-It questionnaire. PCR amplification of salivary DNA targeted the hypervariable V3-V4 regions of the 16S rRNA bacterial genes. DADA2 workflow was used to infer the Amplicon Sequence Variants and the taxonomic assignments; the beta-diversity was obtained by PCoA with the UniFrac method; LEfSe algorithm, threshold at 5%, and Log LDA cutoff at ±0.5 were used to identify differently abundant species in A compared to S saliva sample. Daily food intake was assessed by 3-Days food record. The metabolic potential of microbial communities was assessed by PICRUSt. Results No significant differences were found in individual's gender distribution (p = 0.411), anthropometry, BMI (p > 0.05), and all diet composition between A and S groups (p > 0.05). Eight species were differently abundant: Prevotella nigrescens (LDA score = -3.76; FDR = 1.5×10-03), Collinsella aerofaciens (LDA score = -3.17; FDR = 7.45×10-03), Simonsiella muelleri (LDA score = -2.96; FDR = 2.76×10-05), Parabacteroides merdae (LDA score = -2.43; FDR = 1.3×10-02) are enriched in the A group; Gemella parahaemolysans, Prevotella aurantiaca (LDA score = -3.9; FDR = 5.27×10-04), Prevotella pallens (LDA score = 4.23; FDR = 1.93×10-02), Neisseria mucosa (LDA score = 4.43; FDR = 1.31×10-02; LDA score = 2.94; FDR = 7.45×10-03) are enriched in the S group. A prevalence of superpathway of fatty acid biosynthesis initiation (E. coli) and catechol degradation II (meta-cleavage pathway) was found in saliva from A compared to S children. Conclusion Our results showed that active children had an enrichment of species and genera mainly associated with a healthier profile. By contrast, the genera and the species enriched in the sedentary group could be linked to human diseases.
Collapse
Affiliation(s)
- Annamaria Mancini
- Department of Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | - Claudia Cerulli
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Daniela Vitucci
- Department of Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | | | - Daniela Parente
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Andrea Di Credico
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), Chieti, Italy
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefania Orrù
- Department of Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | | | - Corrado Lupo
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Alberto Rainoldi
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Mario Capasso
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Pasqualina Buono
- Department of Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| |
Collapse
|
46
|
Akazawa N, Nakamura M, Eda N, Murakami H, Nakagata T, Nanri H, Park J, Hosomi K, Mizuguchi K, Kunisawa J, Miyachi M, Hoshikawa M. Gut microbiota alternation with training periodization and physical fitness in Japanese elite athletes. Front Sports Act Living 2023; 5:1219345. [PMID: 37521099 PMCID: PMC10382754 DOI: 10.3389/fspor.2023.1219345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The gut microbiome plays a fundamental role in host homeostasis through regulating immune functions, enzyme activity, and hormone secretion. Exercise is associated with changes in gut microbiome composition and function. However, few studies have investigated the gut microbiome during training periodization. The present study aimed to investigate the relationship between training periodization and the gut microbiome in elite athletes. Methods In total, 84 elite athletes participated in the cross-sectional study; and gut microbiome was determined during their transition or preparation season period. Further, 10 short-track speed skate athletes participated in the longitudinal study, which assessed the gut microbiome and physical fitness such as aerobic capacity and anaerobic power in the general and specific preparation phase of training periodization. The gut microbiome was analyzed using 16S rRNA sequencing. Results The cross-sectional study revealed significant differences in Prevotella, Bifidobacterium, Parabacteroides, and Alistipes genera and in enterotype distribution between transition and preparation season phase periodization. In the longitudinal study, training phase periodization altered the level of Bacteroides, Blautia, and Bifidobacterium in the microbiome. Such changes in the microbiome were significantly correlated with alternations in aerobic capacity and tended to correlate with the anaerobic power. Discussion These findings suggest that periodization alters the gut microbiome abundance related to energy metabolism and trainability of physical fitness. Athlete's condition may thus be mediated to some extent by the microbiota in the intestinal environment.
Collapse
Affiliation(s)
- Nobuhiko Akazawa
- Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Mariko Nakamura
- Department of Sports Sciences, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Nobuhiko Eda
- Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
- Department of Fundamental Education, Dokkyo Medical University, Tochigi, Japan
| | - Haruka Murakami
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Takashi Nakagata
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
- Laboratory of Gut Microbiome for Health, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hinako Nanri
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
- Laboratory of Gut Microbiome for Health, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jonguk Park
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Motohiko Miyachi
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Masako Hoshikawa
- Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
| |
Collapse
|
47
|
Santarossa S, Sitarik AR, Cassidy-Bushrow AE, Comstock SS. Prenatal physical activity and the gut microbiota of pregnant women: results from a preliminary investigation. Phys Act Nutr 2023; 27:1-7. [PMID: 37583065 PMCID: PMC10440177 DOI: 10.20463/pan.2023.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE To determine whether physical activity (PA), specifically meeting the recommended 150 minutes of moderate-intensity PA per week, is associated with gut microbiota composition in pregnant women. METHODS In an ongoing birth cohort study, questions from the Behavioral Risk Factor Surveillance System, which provides data on PA variables, were used to determine whether pregnant women met or exceeded the PA recommendations. To profile the composition of gut bacterial microbiota, 16S rRNA sequencing was performed on stool samples obtained from pregnant women. Differences in alpha diversity metrics (richness, Pielou's evenness, and Shannon's diversity) according to PA were determined using linear regression, whereas beta diversity relationships (Canberra and Bray-Curtis) were assessed using Permutational multivariate analysis of variance (PERMANOVA). Differences in relative taxon abundance were determined using DESeq2. RESULTS The complete analytical sample included 23 women that were evaluated for both PA and 16S rRNA sequencing data (median age [Q1; Q3] = 30.5 [26.6; 34.0] years; 17.4% Black), and 11 (47.8%) met or exceeded the PA recommendations. Meeting or exceeding the PA recommendations during pregnancy was not associated with gut microbiota richness, evenness, or diversity, but it was related to distinct bacterial composition using both Canberra (p = 0.005) and Bray-Curtis (p = 0.022) distances. Significantly lower abundances of Bacteroidales, Bifidobacteriaceae, Lactobacillaceae, and Streptococcaceae were observed in women who met or exceeded the PA recommendations (all false discovery rates adjusted, p < 0.02). CONCLUSION Pregnant women who met or exceeded the PA recommendations showed altered gut microbiota composition. This study forms the basis for future studies on the impact of PA on gut microbiota during pregnancy.
Collapse
Affiliation(s)
- Sara Santarossa
- Department of Public Health Sciences, Henry Ford Health System, Michigan, USA
| | | | | | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, Michigan, USA
| |
Collapse
|
48
|
Sabater C, Iglesias-Gutiérrez E, Ruiz L, Margolles A. Next-generation sequencing of the athletic gut microbiota: a systematic review. MICROBIOME RESEARCH REPORTS 2023; 2:5. [PMID: 38045609 PMCID: PMC10688803 DOI: 10.20517/mrr.2022.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 12/05/2023]
Abstract
Aim: There is growing evidence that physical activity modulates gut microbiota composition through complex interactions between diet and microbial species. On the other hand, next-generation sequencing techniques include shotgun metagenomics and 16S amplicon sequencing. These methodologies allow a comprehensive characterisation of microbial communities of athletes from different disciplines as well as non-professional players and sedentary adults exposed to training. This systematic review summarises recent applications of next-generation sequencing to characterise the athletic gut microbiome. Methods: A systematic review of microbiome research was performed to determine the association of microbiota composition profiles with sports performance. Results: Bibliographic analysis revealed the importance of a novel research trend aiming at deciphering the associations between individual microbial species and sports performance. In addition, literature review highlighted the role of butyrate-producing bacteria such as Anaerostipes hadrus, Clostridium bolteae, Faecalibacterium prausnitzii, Roseburia hominis and unidentified species belonging to Clostridiales, Lachnospiraceae and Subdoligranulum species in gut health and sports performance across several disciplines. Interestingly, metabolic activities of Prevotella copri and Veillonella atypica involved in branched amino acid and lactate metabolism may contribute to reducing muscular fatigue. Other microbial metabolic pathways of interest involved in carbohydrate metabolism showed increased proportions in athletes´ metagenomes. Conclusion: Future research will aim at developing personalised nutrition interventions to modulate key species associated with certain components of exercise.
Collapse
Affiliation(s)
- Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa 33300, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Eduardo Iglesias-Gutiérrez
- Department of Functional Biology, Area of Physiology, Universidad de Oviedo, Avda. Julián Clavería 6, Oviedo 33006, Spain
- Traslational Interventions for Health (ITS) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa 33300, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa 33300, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| |
Collapse
|
49
|
Increased Proportion of Fiber-Degrading Microbes and Enhanced Cecum Development Jointly Promote Host To Digest Appropriate High-Fiber Diets. mSystems 2023; 8:e0093722. [PMID: 36511688 PMCID: PMC9948726 DOI: 10.1128/msystems.00937-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous study found that appropriate high-fiber diet (containing 19.10% total dietary fiber [TDF], treatment II) did not reduce apparent fiber digestibility of Chinese Suhuai finishing pigs and increased the yield of short-chain fatty acids (SCFAs), but too high-fiber diet (containing 24.11% TDF, treatment IV) significantly reduced apparent fiber digestibility compared with normal diet (containing 16.70% TDF, control group). However, characteristics of microbiota at the species level and histological structure in pigs with the ability to digest appropriate high-fiber diets were still unknown. This study conducted comparative analysis of cecal physiology and microbial populations colonizing cecal mucosa. The results showed intestinal development indexes including cecum length, densities of cecal goblet cells, and renewal of cecal epithelial cells in treatment II and IV had better performance than those in the control. Paludibacter jiangxiensis, Coprobacter fastidiosus, Bacteroides coprocola CAG:162, Bacteroides barnesiae, and Parabacteroides merdae enriched in treatment II expressed large number of glycoside hydrolase (GH)-encoding genes and had the largest number of GH families. In addition, pathogenic bacteria (Shigella sonnei, Mannheimia haemolytica, and Helicobacter felis) were enriched in treatment IV. Correlation analysis revealed that the intestinal development index positively correlated with the relative abundance of cecal mucosal microbiota and the amount of digested fiber. These results indicated that increased proportions of fiber-degrading microbes and enhanced intestinal development jointly promote the host to digest an appropriate high-fiber diet. However, although too-high fiber levels in diet could maintain the adaptive development of cecal epithelium, the proportions of pathogenic bacteria increased, which might lead to a decrease of fiber digestion in pigs. IMPORTANCE Although studies about the effects of dietary fiber on fiber digestion and intestinal microbiota of pigs were widely in progress, few studies have been conducted on the dynamic response of intestinal microbiota to dietary fiber levels, and the characteristics of intestinal microbiota and intestinal epithelial development adapted to high-fiber diet s were still unclear. Appropriate high fiber promoted the thickness of large intestine wall, increased the density of cecal goblet cells, and promoted the renewal of cecal epithelial cells. In addition, appropriate high fiber improves the microbial abundance with fiber-digesting potential. However, excessive dietary fiber caused an increase in the abundance of pathogenic bacteria. These results indicated that an increased proportion of fiber-degrading microbes and enhanced intestinal development jointly promote host to digest appropriate high-fiber diets. However, although too-high fiber levels in diet could maintain the adaptive development of cecal epithelium, the proportions of pathogenic bacteria increased, which might lead to a decrease of fiber digestion in pigs. Our data provided a theoretical basis for rational and efficient utilization of unconventional feed resources in pig production.
Collapse
|
50
|
Chen Y, Lai Y, Zheng J, Liu Z, Nong D, Liang J, Li Y, Huang Z. Seasonal variations in the gut microbiota of white-headed black langur (Trachypithecus leucocephalus) in a limestone forest in Southwest Guangxi, China. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1126243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Investigating gut microbiota is important for understanding the physiological adaptation of animals to food availability changes in fragmented habitats and consequently providing new ideas for the conservation of endangered wild animals. In this study, we explored the gut microbiota of the endangered white-headed black langur (Trachypithecus leucocephalus), which is endemic to the limestone forests of Southwest Guangxi, China, to understand its adaptation strategies to seasonal changes in habitat using 16S rRNA sequencing. Our results revealed significant seasonal variations in the gut microbiota of white-headed black langurs. In particular, the alpha diversity was higher in the rainy season than in the dry season, and the beta diversity was significantly different between the two seasons. At the phylum level, the relative abundance of Firmicutes, Actinobacteriota, and Proteobacteria was higher in the dry season than that in the rainy season, whereas that of Bacteroidetes, Spirochaetota, and Cyanobacteria was significantly higher in the rainy season than that in the dry season. At the family level, Oscillospiraceae and Eggerthellaceae were more abundant in the dry season than in the rainy season, whereas Lachnospiraceae, Ruminococcaceae, and Monoglobaceae were more abundant in the rainy season than in the dry season. These results could have been obtained due to seasonal changes in the diet of langurs in response to food plant phenology. In addition, the neutral community model revealed that the gut microbiota assembly of these langurs was dominated by deterministic processes and was more significantly affected by ecological factors in the dry season than in the rainy season, which could be linked to the higher dependence of these langurs on mature leaves in the dry season. We concluded that the seasonal variations in the gut microbiota of white-headed black langurs occurred in response to food plant phenology in their habitat, highlighting the importance of microbiota in responding to fluctuating ecological factors and adapting to seasonal dietary changes.
Collapse
|