1
|
Xia J, Peng F, Chen X, Yang F, Feng X, Niu H, Xu B, Liu X, Guo J, Zhong Y, Sui B, Ju Y, Kang S, Zhao X, Liu A, Zhao J. Statins may Decrease Aneurysm wall Enhancement of Unruptured Fusiform Intracranial Aneurysms: A high-resolution 3T MRI Study. Transl Stroke Res 2024; 15:1133-1141. [PMID: 37673834 DOI: 10.1007/s12975-023-01190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Inflammation plays an integral role in the formation, growth, and progression to rupture of unruptured intracranial aneurysms. Aneurysm wall enhancement (AWE) in high-resolution magnetic resonance imaging (HR-MRI) has emerged as a surrogate biomarker of vessel wall inflammation and unruptured intracranial aneurysm instability. We investigated the correlation between anti-inflammatory drug use and three-dimensional AWE of fusiform intracranial aneurysms (FIAs). We retrospectively analyzed consecutive patients with FIAs in our database who underwent 3T HR-MRI at three Chinese centers. FIAs were classified as fusiform-type, dolichoectatic-type, or transitional-type. AWE was objectively defined using the aneurysm-to-pituitary stalk contrast ratio in three-dimensional space by determining the contrast ratio of the average signal intensity in the aneurysmal wall and pituitary stalk on post-contrast T1-weighted images. Data on aneurysm size, morphology, and location, as well as patient demographics and comorbidities, were collected. Univariate and multivariate logistic regression analyses were performed to determine factors independently associated with AWE of FIAs on HR-MRI. In total, 127 FIAs were included. In multivariate analysis, statin use (β = -0.236, P = 0.007) was the only independent factor significantly associated with decreased AWE. In the analysis of three FIA subtypes, the fusiform and transitional types were significantly associated with statin use (rs = -0.230, P = 0.035; and rs = -0.551, P = 0.010; respectively). It establishes an incidental correlation between the use of statins daily for ≥ 6 months and decreased AWE of FIAs. The findings also indicate that the pathophysiology may differ among the three FIA subtypes.
Collapse
Affiliation(s)
- Jiaxiang Xia
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Peng
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuge Chen
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fan Yang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Feng
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao Niu
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Boya Xu
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinmin Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiahuan Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yao Zhong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Binbin Sui
- Tiantan Neuroimaging Center of Excellence, National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yi Ju
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuai Kang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Aihua Liu
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Center for Neurological Diseases, China National Clinical Research, Beijing, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China.
| |
Collapse
|
2
|
Sun D, Du Y. O304 alleviates abdominal aortic aneurysm formation via AMPK/mTOR/MMP pathway activation. Front Pharmacol 2024; 15:1457817. [PMID: 39679375 PMCID: PMC11637863 DOI: 10.3389/fphar.2024.1457817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/25/2024] [Indexed: 12/17/2024] Open
Abstract
Background Abdominal aortic aneurysm (AAA) rupture is a significant cause of mortality in the elderly population. Despite experimental models identifying promising pharmacological therapies, there is still a lack of pharmacological interventions for AAA prior to surgery. This study aims to evaluate the regulatory role of the novel adenosine monophosphate-activated protein kinase (AMPK) agonist O304 in AAA formation and explore its underlying molecular mechanisms. Methods We evaluated the expression of AMPK signaling pathway components and contractile vascular smooth muscle cell (VSMC)-related genes in AAA samples from mice using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We evaluate the TGF-β expression by western blotting and RT-qPCR and TGF-β concentration in blood by ELISA. We developed an in vitro model of transforming growth factor-β (TGF-β)-induced VSMC phenotypic switching. After treatment with O304, we analyzed the expression of contractile genes and proteins in VSMCs by immunofluorescence and Western blotting. We also evaluated the expression of AMPK signaling pathway components and matrix metalloproteinases by western blotting and immunofluorescence analysis. We established a mouse model of AAA to evaluate the impact of O304 on aneurysm diameter and blood pressure, analyzed VSMC phenotypic switching through immunofluorescence analysis, and assessed the regulatory effects of O304 on AMPK signaling in the mouse model of AAA by Western blotting. Results AMPK signaling pathway components and contractile genes in VSMCs were downregulated in mouse AAA samples, underscoring the crucial role of AMPK signaling in VSMC phenotypic switching. In the TGF-β-induced model of VSMC phenotypic switching, O304 activated AMPK signaling and prevented VSMC phenotypic switching from the contractile to the synthetic phenotype. Moreover, O304 significantly activated AMPK signaling, increased the proportion of contractile VSMCs, and reduced AAA formation and blood pressure in the mouse model of AAA. Conclusion During AAA development, VSMCs transitioned from the contractile to the proliferative phenotype, a process that has previously been associated with AMPK pathway inhibition. O304, an AMPK agonist, activated the AMPK pathway, preventing VSMC phenotypic switching and inhibiting AAA formation. These findings highlight the therapeutic potential of targeting the AMPK pathway in AAA.
Collapse
Affiliation(s)
| | - Yaming Du
- Department of Vascular Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
3
|
Bao S, Xing Z, He S, Hu X, Yang J, Zhou B. Association between psychiatric disorders and intracranial aneurysms: evidence from Mendelian randomization analysis. Front Neurol 2024; 15:1422984. [PMID: 39131049 PMCID: PMC11312739 DOI: 10.3389/fneur.2024.1422984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Several studies have explored the relationship between intracranial aneurysms and psychiatric disorders; nevertheless, the causal connection remains ambiguous. This study aimed to evaluate the causal link between intracranial aneurysms and specific psychiatric disorders. Methods A two-sample Mendelian randomization (MR) analysis was conducted utilizing aggregated genome-wide association study (GWAS) data from the International Stroke Genetics Association for Intracranial Aneurysms (IAs), unruptured Intracranial Aneurysm (uIA), and aneurysmal Subarachnoid Hemorrhage (aSAH). Psychiatric disorder data, encompassing Schizophrenia (SCZ), Bipolar Disorder (BD), and Panic Disorder (PD), were sourced from the Psychiatric Genomics Consortium (PGC), while Cognitive Impairment (CI) data, comprising Cognitive Function (CF) and Cognitive Performance (CP), were obtained from IEU OpenGWAS publications. Causal effects were evaluated using inverse variance weighted (IVW), MR-Egger, and weighted median methods, with the robustness of findings assessed via sensitivity analyses employing diverse methodological approaches. Results Our MR analysis indicated no discernible causal link between intracranial aneurysm (IA) and an elevated susceptibility to psychiatric disorders. However, among individuals with genetically predisposed unruptured intracranial aneurysms (uIA), there was a modest reduction in the risk of SCZ (IVW odds ratio [OR] = 0.95, 95% confidence interval [CI] 0.92-0.98, p = 0.0002). Similarly, IAs also exhibited a moderate reduction in SCZ risk (OR = 0.92, 95% CI 0.86-0.99, p = 0.02). Nevertheless, limited evidence was found to support a causal association between intracranial aneurysms and the risk of the other three psychiatric disorders. Conclusion Our findings furnish compelling evidence suggesting a causal influence of intracranial aneurysms on psychiatric disorders, specifically, both IAs and uIA exhibit a negative causal association with SCZ.
Collapse
Affiliation(s)
- Sichen Bao
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenqiu Xing
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengkai He
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaowei Hu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjing Yang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingqing Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Tang C, Ruan R, Pan B, Xu M, Huang J, Xiong Z, Zhang Z. The relationship between autoimmune disorders and intracranial aneurysms in East Asian and European populations: a bidirectional and multivariable two-sample Mendelian randomization study. Front Neurol 2024; 15:1412114. [PMID: 39070056 PMCID: PMC11272522 DOI: 10.3389/fneur.2024.1412114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
Background It remains unclear about the pathogenesis of intracranial aneurysms (IAs) in the setting of autoimmune disorders (ADs). However, the underlying systemic inflammatory characteristics of ADs may affect IAs through shared inflammatory pathways. Therefore, this study was conducted to explore the relationship between ADs and IAs and assess causal effects. Methods In this study, 6 common ADs were included to explore their causal relationship with IAs. Besides, a bidirectional two-sample univariable Mendelian randomization (UVMR) analysis was performed. In addition, the primary analysis was performed by the inverse variance weighted (IVW) and Bayesian weighted Mendelian randomization (BWMR) method, and a series of sensitivity analyses were performed to assess the robustness of the results. Further, the data related to ADs and IAs were collected from open genome-wide association study studies (GWASs) and the Cerebrovascular Disease Knowledge Portal (CDKP) (including 11,084 cases and 311,458 controls), respectively. These analyses were conducted based on both the East Asian and European populations. Moreover, 6 ADs were subject to grouping according to connective tissue disease, inflammatory bowel disease, and thyroid disease. On that basis, a multivariate MR (MVMR1) analysis was further performed to explore the independent causal relationship between each AD and IAs, and an MVMR 2 analysis was conducted to investigate such potential confounders as smoking, alcohol consumption, and systolic blood pressure. Finally, these results were verified based on the data from another GWAS of IAs. Results The UVMR analysis results demonstrated that systemic lupus erythematosus (SLE) was associated with a high risk of IAs in the East Asian population (IVW OR, 1.06; 95%CI, 1.02-1.11; p = 0.0065, UVMR), which was supported by the results of BWMR (OR, 1.06; 95%CI, 1.02-1.11; p = 0.0067, BWMR), MVMR1 (OR, 1.06; 95%CI, 1.01-1.10; p = 0.015, MVMR1), MVMR2 (OR, 1.05; 95%CI, 1.00-1.11; p = 0.049, MVMR2), and sensitivity analyses. The results in the validation group also suggested a causal relationship between SLE and IAs (IVW OR, 1.04; 95% CI, 1.00-1.09; p = 0.046). The reverse MR analysis results did not reveal a causal relationship between IAs and ADs. Conclusion In this MR study, SLE was validated to be a risk factor for IAs in the East Asian population. Therefore, the management of IAs in patients with SLE should be highlighted to avoid stroke events.
Collapse
Affiliation(s)
- Chao Tang
- Jinzhou Medical University, Jinzhou, China
| | | | - Bingxiao Pan
- The Second Affiliated Hospital of China Medical University, Shenyang, China
| | | | - Jing Huang
- Jinzhou Medical University, Jinzhou, China
| | - Zhaoying Xiong
- Department of Nuclear Medicine, Nanchong Central Hospital, Nanchong, China
| | - Zhenxing Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
5
|
Feng Y, Zhang H, Dai S, Li X. Aspirin treatment for unruptured intracranial aneurysms: Focusing on its anti-inflammatory role. Heliyon 2024; 10:e29119. [PMID: 38617958 PMCID: PMC11015424 DOI: 10.1016/j.heliyon.2024.e29119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024] Open
Abstract
Intracranial aneurysms (IAs), as a common cerebrovascular disease, claims a worldwide morbidity rate of 3.2%. Inflammation, pivotal in the pathogenesis of IAs, influences their formation, growth, and rupture. This review investigates aspirin's modulation of inflammatory pathways within this context. With IAs carrying significant morbidity and mortality upon IAs rupture and current interventions limited to surgical clipping and endovascular coiling, the quest for pharmacological options is imperative. Aspirin's role in cardiovascular prevention, due to its anti-inflammatory effects, presents a potential therapeutic avenue for IAs. In this review, we examine aspirin's efficacy in experimental models and clinical settings, highlighting its impact on the progression and rupture risks of unruptured IAs. The underlying mechanisms of aspirin's impact on IAs are explored, with its ability examined to attenuate endothelial dysfunction and vascular injury. This review may provide a theoretical basis for the use of aspirin, suggesting a promising strategy for IAs management. However, the optimal dosing, safety, and long-term efficacy remain to be established. The implications of aspirin therapy are significant in light of current surgical and endovascular treatments. Further research is encouraged to refine aspirin's clinical application in the management of unruptured IAs, with the ultimate aim of reducing the incidence of aneurysms rupture.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongchen Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Glavan M, Jelic A, Levard D, Frösen J, Keränen S, Franx BAA, Bras AR, Louet ER, Dénes Á, Merlini M, Vivien D, Rubio M. CNS-associated macrophages contribute to intracerebral aneurysm pathophysiology. Acta Neuropathol Commun 2024; 12:43. [PMID: 38500201 PMCID: PMC10946177 DOI: 10.1186/s40478-024-01756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Intracerebral aneurysms (IAs) are pathological dilatations of cerebral arteries whose rupture leads to subarachnoid hemorrhage, a significant cause of disability and death. Inflammation is recognized as a critical contributor to the formation, growth, and rupture of IAs; however, its precise actors have not yet been fully elucidated. Here, we report CNS-associated macrophages (CAMs), also known as border-associated macrophages, as one of the key players in IA pathogenesis, acting as critical mediators of inflammatory processes related to IA ruptures. Using a new mouse model of middle cerebral artery (MCA) aneurysms we show that CAMs accumulate in the IA walls. This finding was confirmed in a human MCA aneurysm obtained after surgical clipping, together with other pathological characteristics found in the experimental model including morphological changes and inflammatory cell infiltration. In addition, in vivo longitudinal molecular MRI studies revealed vascular inflammation strongly associated with the aneurysm area, i.e., high expression of VCAM-1 and P-selectin adhesion molecules, which precedes and predicts the bleeding extent in the case of IA rupture. Specific CAM depletion by intracerebroventricular injection of clodronate liposomes prior to IA induction reduced IA formation and rupture rate. Moreover, the absence of CAMs ameliorated the outcome severity of IA ruptures resulting in smaller hemorrhages, accompanied by reduced neutrophil infiltration. Our data shed light on the unexplored role of CAMs as main actors orchestrating the progression of IAs towards a rupture-prone state.
Collapse
Affiliation(s)
- Martina Glavan
- UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), PHIND Boulevard Henri Becquerel, Normandie University, 14000, Caen Cedex, Caen, France
- Department of Neuroscience, Yale School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Ana Jelic
- UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), PHIND Boulevard Henri Becquerel, Normandie University, 14000, Caen Cedex, Caen, France
| | - Damien Levard
- UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), PHIND Boulevard Henri Becquerel, Normandie University, 14000, Caen Cedex, Caen, France
| | - Juhana Frösen
- Hemorrhagic Brain Pathology Research Group, Kuopio University Hospital and AIV Institute for Molecular Medicine, University of Eastern Finland, Kuopio, Finland
- Dept of Neurosurgery, Tampere University Hospital and Hemorrhagic Brain Pathology Research Group, Tampere University, Tampere, Finland
| | - Sara Keränen
- Hemorrhagic Brain Pathology Research Group, Kuopio University Hospital and AIV Institute for Molecular Medicine, University of Eastern Finland, Kuopio, Finland
- Dept of Neurosurgery, Tampere University Hospital and Hemorrhagic Brain Pathology Research Group, Tampere University, Tampere, Finland
| | - Bart A A Franx
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Ana-Rita Bras
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Schools of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Estelle R Louet
- UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), PHIND Boulevard Henri Becquerel, Normandie University, 14000, Caen Cedex, Caen, France
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mario Merlini
- UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), PHIND Boulevard Henri Becquerel, Normandie University, 14000, Caen Cedex, Caen, France
| | - Denis Vivien
- UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), PHIND Boulevard Henri Becquerel, Normandie University, 14000, Caen Cedex, Caen, France
- Department of Clinical Research, Caen Normandie University Hospital, Caen, France
| | - Marina Rubio
- UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), PHIND Boulevard Henri Becquerel, Normandie University, 14000, Caen Cedex, Caen, France.
| |
Collapse
|
7
|
Ozgıray E, Husemoglu B, Cınar C, Bolat E, Akınturk N, Bıceroglu H, Kızmazoglu C. The Effect of Preoperative Three Dimensional Modeling and Simulation on Outcome of Intracranial Aneursym Surgery. J Korean Neurosurg Soc 2024; 67:166-176. [PMID: 37709549 PMCID: PMC10924900 DOI: 10.3340/jkns.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
OBJECTIVE Three-dimensional (3D) printing in vascular surgery is trending and is useful for the visualisation of intracranial aneurysms for both surgeons and trainees. The 3D models give the surgeon time to practice before hand and plan the surgery accordingly. The aim of this study was to examine the effect of preoperative planning with 3D printing models of aneurysms in terms of surgical time and patient outcomes. METHODS Forty patients were prospectively enrolled in this study and divided into two groups : groups I and II. In group I, only the angiograms were studied before surgery. Solid 3D modelling was performed only for group II before the operation and was studied accordingly. All surgeries were performed by the same senior vascular neurosurgeon. Demographic data, surgical data, both preoperative and postoperative modified Rankin scale (mRS) scores, and Glasgow outcome scores (GOS) were evaluated. RESULTS The average time of surgery was shorter in group II, and the difference was statistically significant between the two groups (p<0.001). However, no major differences were found for the GOS, hospitalisation time, or mRS. CONCLUSION This study is the first prospective study of the utility of 3D aneurysm models. We show that 3D models are useful in surgery preparation. In the near future, these models will be used widely to educate trainees and pre-plan surgical options for senior surgeons.
Collapse
Affiliation(s)
- Erkin Ozgıray
- Department of Neurosurgery, Ege University School of Medicine, Izmir, Turkey
| | - Bugra Husemoglu
- Department of Biomechanics, Dokuz Eylül University Health Science Institution, Izmir, Turkey
| | - Celal Cınar
- Department of Radiology, Ege University School of Medicine, Izmir, Turkey
| | - Elif Bolat
- Department of Neurosurgery, Ege University School of Medicine, Izmir, Turkey
| | - Nevhis Akınturk
- Department of Neurosurgery, Ege University School of Medicine, Izmir, Turkey
| | - Huseyin Bıceroglu
- Department of Neurosurgery, Ege University School of Medicine, Izmir, Turkey
| | - Ceren Kızmazoglu
- Department of Neurosurgery, Dokuz Eylül University School of Medicine, Izmir, Turkey
| |
Collapse
|
8
|
Rahmanian A, Salehi A, Kamali-Sarvestani E, Ahrari I, Mohamadhoseini E, Jamali M, Ghahramani S. CD68 Antigen and Cerebral Aneurysms: A Case-Control Study. J Neurol Surg A Cent Eur Neurosurg 2024; 85:142-146. [PMID: 36828013 DOI: 10.1055/s-0043-1761944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
BACKGROUND Intracranial aneurysms are more commonly associated with inflammation as a cause of their development, progression, and rupture. Macrophages and other cells can express the CD68 antigen. The aim of this study was to assess the CD68 antigen levels in cerebral aneurysm (CA) patients compared to a control group at a referral center in Iran. METHODS A case-control investigation was undertaken on 88 individuals (44 of whom were cases and 44 were controls). Individuals with CA as the case group consisted of 28 ruptured and 16 unruptured subgroups. Clinical, radiographic, and CD68 levels were evaluated and registered. RESULTS The average age of the participants was 49 years. Males comprised 43.2% of the patients, while 56.8% were females (p = 0.002). There was a statistically significant difference in the CD68 levels between the two groups. There was no significant difference (p = 0.42) between the ruptured and unruptured subgroups (23.66 and 20.47, respectively) in this comparison. No significant correlation was seen between the patients' CD68 and Glasgow Coma Scale (GCS) levels and their aneurysm diameter (p = 0.74 and 0.45, respectively). A link between CD68 levels and age was found, but it was not statistically significant (r = 0.44 and p = 0.002). CONCLUSIONS A possible involvement of CD68 as an inflammatory agent in the development of CAs but not in aneurysm rupture has been suggested. Inflammation and CD68 were positively associated with age. The CD68 antigen should be studied further in population-based cohort studies.
Collapse
Affiliation(s)
- Abdolkarim Rahmanian
- Neurosurgery Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Salehi
- Neurosurgery Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Eskandar Kamali-Sarvestani
- Department of Immunology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Ahrari
- Neurosurgery Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Mohamadhoseini
- Neurosurgery Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Jamali
- Neurosurgery Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sulmaz Ghahramani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Yan Y, Qin X, Zheng Y, Jin T, Hu Y, An Q, Leng B. Decreased PDLIM1 expression in endothelial cells contributes to the development of intracranial aneurysm. Vasc Med 2024; 29:5-16. [PMID: 38334094 DOI: 10.1177/1358863x231218210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Intracranial aneurysm (IA) is a common vascular enlargement that occurs in the wall of cerebral vessels and frequently leads to fatal subarachnoid hemorrhage. PDZ and LIM domain protein 1 (PDLIM1) is a cytoskeletal protein that functions as a platform for multiple protein complex formation. However, whether PDLIM is involved in the pathogenesis of IA remains poorly understood. METHODS Loss-of-function and gain-of-function strategies were employed to determine the in vitro roles of PDLIM1 in vascular endothelial cells (VECs). A rat model of IA was generated to study the role of PDLIM1 in vivo. Gene expression profiling, Western blotting, and dual luciferase reporter assays were performed to uncover the underlying cellular mechanism. Clinical IA samples were used to determine the expression of PDLIM1 and its downstream signaling molecules. RESULTS PDLIM1 expression was reduced in the endothelial cells of IA and was regulated by Yes-associated protein 1 (YAP1). Genetic silencing of PDLIM1 inhibited the viability, migratory ability, and tube formation ability of VECs. Opposite results were obtained by ectopic expression of PDLIM1. Additionally, PDLIM1 overexpression mitigated IA in vivo. Mechanistic investigations revealed that PDLIM1 promoted the transcriptional activity of β-catenin and induced the expression of v-myc myelocytomatosis viral oncogene homolog (MYC) and cyclin D1 (CCND1). In clinical settings, reduced expression of PDLIM1 and β-catenin downstream target genes was observed in human IA samples. CONCLUSION Our study indicates that YAP1-dependent expression of PDLIM1 can inhibit IA development by modulating the activity of the Wnt/β-catenin signaling pathway and that PDLIM1 deficiency in VECs may represent a potential marker of aggressive disease.
Collapse
Affiliation(s)
- Yan Yan
- Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanfeng Qin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongtao Zheng
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Jin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingzhu An
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Bing Leng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Tian Z, Wu X, Zhang B, Li W, Wang C. Transcription factor CEBPB mediates intracranial aneurysm rupture by inflammatory and immune response. CNS Neurosci Ther 2024; 30:e14603. [PMID: 38332649 PMCID: PMC10853640 DOI: 10.1111/cns.14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Genetic factors play a major part in mediating intracranial aneurysm (IA) rupture. However, research on the role of transcription factors (TFs) in IA rupture is rare. AIMS Bioinformatics analysis was performed to explore the TFs and related functional pathways involved in IA rupture. RESULTS A total of 63 differentially expressed transcription factors (DETFs) were obtained. Significantly enriched biological processes of these DETFs were related to regulation of myeloid leukocyte differentiation. The top 10 DETFs were screened based on the MCC algorithm from the protein-protein interaction network. After screening and validation, it was finally determined that CEBPB may be the hub gene for aneurysm rupture. The GSEA results of CEBPB were mainly associated with the inflammatory response, which was also verified by the experimental model of cellular inflammation in vitro. CONCLUSION The inflammatory and immune response may be closely associated with aneurysm rupture. CEBPB may be the hub gene for aneurysm rupture and may have diagnostic value. Therefore, CEBPB may serve as the diagnostic signature for RIAs and a potential target for intervention.
Collapse
Affiliation(s)
- Zhongbin Tian
- Department of Interventional Radiology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Xuefang Wu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Baorui Zhang
- Department of Neurosurgery, Beijing Tongren HospitalCapital Medial UniversityBeijingChina
| | - Wei Li
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chao Wang
- Department of Neurointerventional SurgeryBinzhou Medical University HospitalBinzhouChina
| |
Collapse
|
11
|
Semin KS, Demyashkin GA, Zakharova NE, Eliava SS, Kheireddin AS, Konovalov AN, Kalaeva DB, Batalov AI, Pronin IN. [Analysis of intracranial saccular aneurysm wall: neuroimaging and histopathological correlates]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:52-58. [PMID: 38881016 DOI: 10.17116/neiro20248803152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
BACKGROUND Contrast enhancement of intracranial aneurysm wall during MRI with targeted visualization of vascular wall correlates with previous aneurysm rupture and, according to some data, may be a predictor of further rupture of unruptured aneurysms. OBJECTIVE To analyze possible causes of aneurysm contrast enhancement considering morphological data of aneurysm walls. MATERIAL AND METHODS The study included 44 patients with intracranial aneurysms who underwent preoperative MRI between November 2020 and September 2022. Each aneurysm was assessed regarding contrast enhancement pattern. Microsurgical treatment of aneurysm was accompanied by resection of its wall for subsequent histological and immunohistochemical analysis regarding thrombosis, inflammation and neovascularization. Specimens were subjected to histological and immunochemical analysis. Immunohistochemical analysis was valuable to estimate inflammatory markers CD68 and CD3, as well as neurovascularization marker SD31. RESULTS Aneurysms with contrast-enhanced walls were characterized by higher number of CD3+, CD68+, CD31+ cells and parietal clots. Intensity of contrast enhancement correlated with aneurysm wall abnormalities. CONCLUSION Contrast enhancement of aneurysm wall can characterize various morphological abnormalities.
Collapse
Affiliation(s)
- K S Semin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - G A Demyashkin
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | | | | | - D B Kalaeva
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
12
|
Ernst M, Jamous A, Bartl M, Riedel CH, Holtmannspötter M, Voit-Höhne H, Grieb D, Schlunz-Hendann M, Fiebig T, Fiorella D, Klisch J, Lobsien D. Multicenter study of the safety and effectiveness of intracranial aneurysm treatment with the p64MW-HPC flow modulation device. Interv Neuroradiol 2023:15910199231220964. [PMID: 38105527 DOI: 10.1177/15910199231220964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND AND PURPOSE The new p64 flow diverter with hydrophilic polymer coating (HPC) was designed to reduce thrombogenicity. To date, it is unclear how antithrombogenic surface modifications affect neoendothelialization and thrombus formation in patients with unruptured intracranial aneurysms. The purpose of this study was to evaluate the safety and effectiveness of the p64MW-HPC in the treatment of unruptured aneurysms of small to giant size and of both the anterior and posterior circulation. MATERIALS AND METHODS Between March 2020 and October 2022 all patients with unruptured intracranial aneurysms treated with the p64MW-HPC were included at five neurovascular centers. Demographic data, aneurysm characteristics, antiplatelet therapy, procedural complications, and clinical and angiographic outcomes were recorded. RESULTS A total of 100 patients with 100 unruptured intracranial aneurysms met the inclusion criteria. Eighty-three aneurysms were classified as saccular, 12 aneurysms were fusiform, 4 aneurysms dissecting, and 1 aneurysm was blister-like. Dual antiplatelet therapy with Clopidogrel and Aspirin was given in 68 cases, and with Ticagrelor and Aspirin in 24 cases. Technical issues with deployment were encountered in 14 cases (torsion (n = 3), foreshortening (n = 8), and incomplete opening (n = 3)). Ischemic stroke occurred in a total of seven cases. In one patient a wire perforation and subsequent severe ICH occurred. Complete aneurysm occlusion at angiographic follow-up (mean time = 7 months) was seen in 73% and adequate occlusion in 93%. CONCLUSION This study is the largest multicenter study to date documenting the safety and effectiveness of the new antithrombogenic p64MW-HPC in the treatment of unruptured intracranial aneurysms of the anterior and posterior circulation.
Collapse
Affiliation(s)
- M Ernst
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - A Jamous
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - M Bartl
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - C H Riedel
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - M Holtmannspötter
- Institute of Radiology und Neuroradiology, Paracelsus Medical University, Nuremberg, Germany
| | - H Voit-Höhne
- Institute of Radiology und Neuroradiology, Paracelsus Medical University, Nuremberg, Germany
| | - D Grieb
- Department of Radiology and Neuroradiology, Klinikum Duisburg-Sana Kliniken, Duisburg, Germany
- Department of Diagnostic and Interventional Neuroradiology, Medical School Hannover, Hannover, Germany
| | - M Schlunz-Hendann
- Department of Radiology and Neuroradiology, Klinikum Duisburg-Sana Kliniken, Duisburg, Germany
| | - T Fiebig
- Department of Radiology, Helios Klinikum Meiningen, Meiningen, Germany
| | - D Fiorella
- Cerebovascular Center, Stony Brook University, Stony Brook, NY, USA
| | - J Klisch
- Institute of Diagnostic and Interventional Neuroradiology, Helios Klinikum Erfurt, Erfurt, Germany
| | - D Lobsien
- Institute of Diagnostic and Interventional Neuroradiology, Helios Klinikum Erfurt, Erfurt, Germany
| |
Collapse
|
13
|
Godi C, Destro F, Garofalo P, Tombetti E, Ambrosi A, Iadanza A, Michelozzi C, Falini A, Anzalone N. Hemodynamic nature of black-blood enhancement in long-term coiled cerebral aneurysms. Neuroradiology 2023; 65:1685-1694. [PMID: 37555932 DOI: 10.1007/s00234-023-03192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE Vessel wall imaging (VWI) with black-blood (BB) technique can demonstrate aneurysmal enhancement preluding to growth/rupture in treatment-naive cerebral aneurysms. Interestingly, recent works showed that BB enhancement may also occur in endovascularly treated aneurysms, though its meaning is controversial. Hypothesizing a flow-related mechanism of BB enhancement, we explored its relationship with incomplete occlusion status and coil packing density at DSA. METHODS We analyzed the subjects undergoing 3T MRI between January 2017 and October 2020 for a previous aneurysmal coiling. All the MRI studies included pre- and post-contrast 3D BB sequences. The presence of intra-aneurysmal pre-contrast BB signal was assessed. BB enhancement (when present) was classified as follows: (1) enhancement at the neck, (2) intrasaccular/intra-coil enhancement, and (3) peripheral enhancement. Coil packing density and aneurysmal occlusion status (according to the modified Raymond-Roy classification, MRRC) were determined on post-treatment DSA and compared with BB findings using generalized linear mixed-effect model and ANOVA. Significant p values were <0.05. RESULTS Forty-eight aneurysms from 44 patients were eligible for analysis. Pre-contrast BB signal was observed in 50% of the aneurysms and showed a relationship with baseline aneurysmal size. BB enhancement was detectable in 31 aneurysms (65%), being significantly associated with incomplete aneurysmal occlusion and reduced coil packing density at DSA. CONCLUSION BB enhancement of coiled aneurysms is related with increasing degrees of post-coiling aneurysmal remnants and with loose coil packing density at DSA. This supports a hemodynamic interpretation of BB enhancement in long-term coiled aneurysms.
Collapse
Affiliation(s)
- Claudia Godi
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Francesco Destro
- Policlinico Universitario di Monserrato, Cagliari University, Cagliari, Italy
| | - Paolo Garofalo
- Policlinico Universitario di Monserrato, Cagliari University, Cagliari, Italy
| | - Enrico Tombetti
- Department of Biomedical and Clinical Sciences, Milan University, Milan, Italy
| | | | - Antonella Iadanza
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Caterina Michelozzi
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Andrea Falini
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Nicoletta Anzalone
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
14
|
Benndorf G. Advancing vessel wall imaging in intracranial aneurysms: a crucial step towards improved patient management? Acta Neurochir (Wien) 2023; 165:3831-3832. [PMID: 37861925 DOI: 10.1007/s00701-023-05773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 10/21/2023]
|
15
|
Jahromi BR, Zamotin V, Code C, Netti E, Lorey MB, Alitalo K, Öörni K, Laakso A, Tulamo R, Niemelä M. Immunoliposomes for detection of rupture-prone intracranial aneurysms. Acta Neurochir (Wien) 2023; 165:3353-3360. [PMID: 37749289 PMCID: PMC10624708 DOI: 10.1007/s00701-023-05770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND It is estimated that significant (3.2%) of population carries intracranial aneurysm (IA). An increasing number of imaging studies have caused that the chance of finding an incidental aneurysm is becoming more common. Since IA rupture causes subarachnoidal hemorrhage (SAH) and have significant mortality and morbidity prophylactic treatment should be considered when IA is detected. The benefit and risk of treatment of IA is based on epidemiological estimate which takes account patient and aneurysm characteristics. However we know that aneurysm rupture is biological process where inflammation of aneurysm wall is actively leading to degeneration of aneurysm wall and finally weakens it until it bursts. Until now, there have not been imaging method to detect inflammatory process of aneurysm wall METHODS: We created targeting immunoliposome for use in the imaging of aneurysm. Immunoliposome comprises antibodies against at least one vascular inflammatory marker associated with aneurysm inflammation and a label and/or a contrast agent. RESULTS Histological analysis of IAs where immunoliposome comprises antibodies against vascular inflammation with a label shows promising results for selectively detecting aneurysms inflammation. In magnetic resonance imaging (MRI) we were able to detect immunoliposomes carrying gadolinium. CONCLUSION Our work opens a new avenue for using contrast labeled immunoliposomes for detecting rupture-prone aneurysms. Immunoliposomes can cary gadolinium and selectively bind to inflammatory section of aneurysm that can be detected with MRI. Further research is needed to develop immunoliposomes to be used with MRI in humans to target treatment to those patients who benefit from it the most.
Collapse
Affiliation(s)
- Behnam Rezai Jahromi
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland.
- Neurosurgery Research Group, Biomedicum Helsinki, Helsinki, Finland.
| | - Vladimir Zamotin
- Neurosurgery Research Group, Biomedicum Helsinki, Helsinki, Finland
| | - Christian Code
- PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Odense, Denmark
| | - Eliisa Netti
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
- Neurosurgery Research Group, Biomedicum Helsinki, Helsinki, Finland
| | - Martina B Lorey
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, Finland
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, Finland
| | - Katariina Öörni
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
- Neurosurgery Research Group, Biomedicum Helsinki, Helsinki, Finland
| | - Riikka Tulamo
- Neurosurgery Research Group, Biomedicum Helsinki, Helsinki, Finland
- Department of Vascular Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
- Neurosurgery Research Group, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Dinia L, Vert C, Gramegna LL, Arikan F, Hernández D, Coscojuela P, Martinez-Saez E, Ramón Y Cajal S, Luzi M, Sarria-Estrada S, Salerno A, De Barros A, Gandara D, Quintana M, Rovira A, Tomasello A. Wall enhancement as a biomarker of intracranial aneurysm instability: a histo-radiological study. Acta Neurochir (Wien) 2023; 165:2783-2791. [PMID: 37589724 DOI: 10.1007/s00701-023-05739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/25/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND The aim of this is to explore the histological basis of vessel wall enhancement (WE) on magnetic resonance imaging (MRI), which is a strong radiological biomarker of aneurysmal prone to rupture compared to other classical risk predictors (e.g., PHASES score, size, morphology). METHODS A prospective observational study was performed including all consecutive patients presenting with a saccular intracranial aneurysm at Vall d'Hebron University Hospital between October 2017 and May 2019. The patients underwent high-resolution 3 T MRI, and their aneurysms were classified into asymptomatic, symptomatic, and ruptured. A histological and immunohistochemical study was performed in a subgroup of patients (n = 20, of which 15 presented with WE). Multiple regression analyses were performed to identify predictors of rupture and aneurysm symptoms. RESULTS A total of 132 patients were enrolled in the study. WE was present in 36.5% of aneurysms: 22.9% asymptomatic, 76.9% symptomatic, and 100% ruptured. Immunohistochemical markers associated with WE were CD3 T cell receptor (p = 0.05) and CD45 leukocyte common antigen (p = 0.05). Moreover, WE is an independent predictor of symptomatic and ruptured aneurysms (p < 0.001). CONCLUSIONS Aneurysms with WE present multiple histopathological changes that may contribute to wall disruption and represent the pathophysiological basis of radiological WE. Moreover, WE is an independent diagnostic predictor of aneurysm symptoms and rupture.
Collapse
Affiliation(s)
- Lavinia Dinia
- Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Barcelona, Spain
- Interventional Neuroradiology Section, Department of Radiology, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
| | - Carla Vert
- Section of Neuroradiology and Magnetic Resonance Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Laura Ludovica Gramegna
- Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Servicio de Radiología, Unidad de Neurorradiología., Hospital del Mar, Barcelona, Spain
| | - Fuat Arikan
- Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Barcelona, Spain
- Neurotraumatology and Neurosurgery Research Unit, Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain
| | - David Hernández
- Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Barcelona, Spain
- Interventional Neuroradiology Section, Department of Radiology, Vall d'Hebron University Hospital, Pg. Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Pilar Coscojuela
- Interventional Neuroradiology Section, Department of Radiology, Vall d'Hebron University Hospital, Pg. Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | | | | | - Michele Luzi
- Interventional Neuroradiology Section, Department of Radiology, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Torrette University Hospital, UNIVPM, Ancona, Italy
| | - Silvana Sarria-Estrada
- Section of Neuroradiology and Magnetic Resonance Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Annalaura Salerno
- Section of Neuroradiology and Magnetic Resonance Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Andrea De Barros
- Section of Neuroradiology and Magnetic Resonance Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Dario Gandara
- Neurotraumatology and Neurosurgery Research Unit, Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Manuel Quintana
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- Neurology Department, Epilepsy Unit, Vall d'Hebron Hospital, Barcelona, Spain
| | - Alex Rovira
- Section of Neuroradiology and Magnetic Resonance Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Alejandro Tomasello
- Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Barcelona, Spain.
- Interventional Neuroradiology Section, Department of Radiology, Vall d'Hebron University Hospital, Pg. Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
17
|
Cannizzaro D, Zaed I, Olei S, Fernandes B, Peschillo S, Milani D, Cardia A. Growth and rupture of an intracranial aneurysm: the role of wall aneurysmal enhancement and CD68. Front Surg 2023; 10:1228955. [PMID: 37744724 PMCID: PMC10511771 DOI: 10.3389/fsurg.2023.1228955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Intracranial aneurysms occur in 3%-5% of the general population. While the precise biological mechanisms underlying the formation, growth, and sudden rupture of intracranial aneurysms remain partially unknown, recent research has shed light on the potential role of inflammation in aneurysm development and rupture. In addition, there are ongoing investigations exploring the feasibility of employing new drug therapies for controlling the risk factors associated with aneurysms. CD68, a glycosylated glycoprotein and the human homolog of macrosialin, is prominently expressed in monocyte/macrophages within inflamed tissues and has shown potential application in oncology. An observational study was conducted with the aim of comparing the histological characteristics of aneurysm walls with preoperative MRI scans, specifically focusing on CD68 activity. Method An observational pilot study was conducted to investigate the histological characteristics of the aneurysm wall that could be potentially associated with aneurysm growth and rupture. A total of 22 patients diagnosed with ruptured and unruptured intracranial aneurysms who had undergone conventional clipping between January 2017 and December 2022 were included in the study. Results A histopathological analysis of the aneurysm wall was performed in all patients, particularly focusing on the presence of CD68. A preoperative MRI with gadolinium was conducted in 10 patients with unruptured aneurysms and six patients with ruptured aneurysms. An emergency clipping was performed in the remaining six patients. The results showed that CD68 positivity and wall enhancement were significantly associated with intracranial aneurysm wall degeneration, growth, and rupture. Conclusion The histological and radiological inflammatory findings observed in the wall of cerebral aneurysms, as well as the CD68 positivity, are significantly associated with the risk of intracranial aneurysm growth and rupture. This study highlights the crucial importance of considering clinical and medical data when making treatment decisions for intracranial aneurysms. Furthermore, it emphasizes the relevance of evaluating wall enhancement in MRI scans as part of the diagnostic and prognostic process.
Collapse
Affiliation(s)
- Delia Cannizzaro
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Ismail Zaed
- Department of Neurosurgery, Neurocenter of South Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Simone Olei
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Bethania Fernandes
- Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Simone Peschillo
- Unicamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Davide Milani
- Department of Neurosurgery, Neurocenter of South Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Andrea Cardia
- Department of Neurosurgery, Neurocenter of South Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| |
Collapse
|
18
|
Nowicki KW, Mittal AM, Abou-Al-Shaar H, Rochlin EK, Lang MJ, Gross BA, Friedlander RM. A Future Blood Test to Detect Cerebral Aneurysms. Cell Mol Neurobiol 2023; 43:2697-2711. [PMID: 37046105 PMCID: PMC11410155 DOI: 10.1007/s10571-023-01346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Intracranial aneurysms are reported to affect 2-5% of the population. Despite advances in the surgical management of this disease, diagnostic technologies have marginally improved and still rely on expensive or invasive imaging procedures. Currently, there is no blood-based test to detect cerebral aneurysm formation or quantify the risk of rupture. The aim of this review is to summarize current literature on the mechanism of aneurysm formation, specifically studies relating to inflammation, and provide a rationale and commentary on a hypothetical future blood-based test. Efforts should be focused on clinical-translational approaches to create an assay to screen for cerebral aneurysm presence and risk-stratify patients to allow for superior treatment timing and management. Cerebral Aneurysm Blood Test Considerations: There are multiple caveats to development of a putative blood test to detect cerebral aneurysm presence.
Collapse
Affiliation(s)
- Kamil W Nowicki
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Aditya M Mittal
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hussam Abou-Al-Shaar
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Emma K Rochlin
- Loyola University Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Michael J Lang
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Bradley A Gross
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert M Friedlander
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Characteristic image on cerebral angiography in ruptured blood blister-like aneurysms. Clin Neurol Neurosurg 2023; 225:107583. [PMID: 36603337 DOI: 10.1016/j.clineuro.2022.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To evaluate the static and dynamic features of blood blister-like aneurysms (BBAs) using cerebral angiography to identify characteristic features to improve the diagnosis of these uncommon aneurysms. METHODS Digital subtraction angiography (DSA) images were compared between patients with BBAs (n = 12, group A) and patients with unruptured paraclinoid aneurysms ≤ 5 mm in size treated by endovascular procedures (n = 12, group B). DSA images were assessed for irregularities in the diameter of the parent artery and delayed inflow and outflow of contrast medium in the aneurysm. Enlargement of the aneurysm and morphological changes from the first assessment were also evaluated in patients with BBAs. RESULTS Compared to the group B, group A had a higher proportion of irregular vessel diameter (p = 0.013) and the delayed contrast medium outflow (p = 0.014). As well, stagnation of contrast medium along the aneurysm wall was a characteristic finding of BBAs, even for small aneurysms. CONCLUSION Irregular morphological features of the parent artery and delayed contrast medium outflow as characteristic findings of ruptured BBAs may improve the diagnosis of these uncommon aneurysms, which remains challenging in practice.
Collapse
|
20
|
Poppenberg KE, Chien A, Santo BA, Baig AA, Monteiro A, Dmytriw AA, Burkhardt JK, Mokin M, Snyder KV, Siddiqui AH, Tutino VM. RNA Expression Signatures of Intracranial Aneurysm Growth Trajectory Identified in Circulating Whole Blood. J Pers Med 2023; 13:jpm13020266. [PMID: 36836499 PMCID: PMC9967913 DOI: 10.3390/jpm13020266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
After detection, identifying which intracranial aneurysms (IAs) will rupture is imperative. We hypothesized that RNA expression in circulating blood reflects IA growth rate as a surrogate of instability and rupture risk. To this end, we performed RNA sequencing on 66 blood samples from IA patients, for which we also calculated the predicted aneurysm trajectory (PAT), a metric quantifying an IA's future growth rate. We dichotomized dataset using the median PAT score into IAs that were either more stable and more likely to grow quickly. The dataset was then randomly divided into training (n = 46) and testing cohorts (n = 20). In training, differentially expressed protein-coding genes were identified as those with expression (TPM > 0.5) in at least 50% of the samples, a q-value < 0.05 (based on modified F-statistics with Benjamini-Hochberg correction), and an absolute fold-change ≥ 1.5. Ingenuity Pathway Analysis was used to construct networks of gene associations and to perform ontology term enrichment analysis. The MATLAB Classification Learner was then employed to assess modeling capability of the differentially expressed genes, using a 5-fold cross validation in training. Finally, the model was applied to the withheld, independent testing cohort (n = 20) to assess its predictive ability. In all, we examined transcriptomes of 66 IA patients, of which 33 IAs were "growing" (PAT ≥ 4.6) and 33 were more "stable". After dividing dataset into training and testing, we identified 39 genes in training as differentially expressed (11 with decreased expression in "growing" and 28 with increased expression). Model genes largely reflected organismal injury and abnormalities and cell to cell signaling and interaction. Preliminary modeling using a subspace discriminant ensemble model achieved a training AUC of 0.85 and a testing AUC of 0.86. In conclusion, transcriptomic expression in circulating blood indeed can distinguish "growing" and "stable" IA cases. The predictive model constructed from these differentially expressed genes could be used to assess IA stability and rupture potential.
Collapse
Affiliation(s)
- Kerry E. Poppenberg
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Aichi Chien
- Department of Radiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Briana A. Santo
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Ammad A. Baig
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Andre Monteiro
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Adam A. Dmytriw
- Neuroendovascular Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jan-Karl Burkhardt
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maxim Mokin
- Department of Neurosurgery, University of South Florida, Tampa, FL 33620, USA
| | - Kenneth V. Snyder
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Adnan H. Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Vincent M. Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Correspondence: ; Tel.: +1-716-829-5400
| |
Collapse
|
21
|
Wu G, Chen M, Fan Q, Li H, Zhao Z, Zhang C, Luo M. Transcriptome analysis of mesenteric arterioles changes and its mechanisms in cirrhotic rats with portal hypertension. BMC Genomics 2023; 24:20. [PMID: 36641445 PMCID: PMC9840839 DOI: 10.1186/s12864-023-09125-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Portal hypertension (PHT) is a major cause of liver cirrhosis. The formation of portosystemic collateral vessels and splanchnic vasodilation contribute to the development of hyperdynamic circulation, which in turn aggravates PHT and increases the risk of complications. To investigate the changes in mesenteric arterioles in PHT, cirrhotic rat models were established by ligating the common bile ducts. After 4 weeks, the cirrhotic rats suffered from severe PHT and splanchnic hyperdynamic circulation, characterized by increased portal pressure (PP), cardiac output (CO), cardiac index (CI), and superior mesenteric artery (SMA) flow. Mesenteric arterioles in cirrhotic rats displayed remarkable vasodilation, vascular remodeling, and hypocontractility. RNA sequencing was performed based on these findings. A total of 1,637 differentially expressed genes (DEGs) were detected, with 889 up-regulated and 748 down-regulated genes. Signaling pathways related to vascular changes were enriched, including the vascular endothelial growth factor (VEGF), phosphatidylinositol-3-kinase-AKT (PI3K-AKT), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling pathway, among others. Moreover, the top ten hub genes were screened according to the degree nodes in the protein-protein interaction (PPI) network. Functional enrichment analyses indicated that the hub genes were involved in cell cycle regulation, mitosis, and cellular response to oxidative stress and nitric oxide (NO). In addition, promising candidate drugs for ameliorating PHT, such as resveratrol, were predicted based on hub genes. Taken together, our study highlighted remarkable changes in the mesenteric arterioles of cirrhotic rats with PHT. Transcriptome analyses revealed the potential molecular mechanisms of vascular changes in splanchnic hyperdynamic circulation.
Collapse
Affiliation(s)
- Guangbo Wu
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Min Chen
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Qiang Fan
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Hongjie Li
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Zhifeng Zhao
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Chihao Zhang
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Meng Luo
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| |
Collapse
|
22
|
Stratilová MH, Koblížek M, Štekláčová A, Beneš V, Sameš M, Hejčl A, Zámečník J. Increased macrophage M2/M1 ratio is associated with intracranial aneurysm rupture. Acta Neurochir (Wien) 2023; 165:177-186. [PMID: 36437400 DOI: 10.1007/s00701-022-05418-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/06/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Intracranial aneurysm (IA) rupture results in one of the most severe forms of stroke, with severe neurological sequelae. Inflammation appears to drive aneurysm formation and progression with macrophages playing a key role in this process. However, less is known about their involvement in aneurysm rupture. This study is aimed at demonstrating how relationship between the M1 (pro-inflammatory) and M2 (reparative) macrophage subtypes affect an aneurysm's structure resulting in its rupture. METHODS Forty-one saccular aneurysm wall samples were collected during surgery including 13 ruptured and 28 unruptured aneurysm sacs. Structural changes were evaluated using histological staining. Macrophages in the aneurysm wall were quantified and defined as M1 and M2 using HLA-DR and CD163 antibodies. Aneurysm samples were divided into four groups according to the structural changes and the M2/1 ratio. Data were analyzed using the Mann-Whitney U test. RESULTS This study has demonstrated an association between the severity of structural changes of an aneurysm with inflammatory cell infiltration within its wall and subsequent aneurysm rupture. More severe morphological changes and a significantly higher number of inflammatory cells were observed in ruptured IAs (p < 0.001). There was a prevalence of M2 macrophage subtypes within the wall of ruptured aneurysms (p < 0.001). A subgroup of unruptured IAs with morphological and inflammatory changes similar to ruptured IAs was observed. The common feature of this subgroup was the presence of an intraluminal thrombus. CONCLUSIONS The degree of inflammatory cell infiltration associated with a shift in macrophage phenotype towards M2 macrophages could play an important role in structural changes of the aneurysm wall leading to its rupture.
Collapse
Affiliation(s)
- Mária Hundža Stratilová
- Department of Neurosurgery, J. E. Purkyne University, Masaryk Hospital, Sociální péče 3316/12A, 400 13, Ústí Nad Labem, Czech Republic
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University, and Motol University Hospital, Prague, Czech Republic
| | - Miroslav Koblížek
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University, and Motol University Hospital, Prague, Czech Republic
| | - Anna Štekláčová
- Department of Neurosurgery and Neurooncology, Military University Hospital and Charles University, First Medical Faculty, Prague, Czech Republic
| | - Vladimír Beneš
- Department of Neurosurgery and Neurooncology, Military University Hospital and Charles University, First Medical Faculty, Prague, Czech Republic
| | - Martin Sameš
- Department of Neurosurgery, J. E. Purkyne University, Masaryk Hospital, Sociální péče 3316/12A, 400 13, Ústí Nad Labem, Czech Republic
| | - Aleš Hejčl
- Department of Neurosurgery, J. E. Purkyne University, Masaryk Hospital, Sociální péče 3316/12A, 400 13, Ústí Nad Labem, Czech Republic.
- International Clinical Research Center, St. Anne's Hospital, Brno, Czech Republic.
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Josef Zámečník
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University, and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
23
|
Dong L, Liu Q, Chen X, Zhang L, Wang J, Peng Q, Li J, He H, Liu P, Lv M. Methylprednisolone is related to lower incidence of postoperative bleeding after flow diverter treatment for unruptured intracranial aneurysm. Front Aging Neurosci 2023; 15:1029515. [PMID: 37143689 PMCID: PMC10151685 DOI: 10.3389/fnagi.2023.1029515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Background and objectives Regarding the anti-inflammatory effect, methylprednisolone is a candidate to prevent patients with unruptured intracranial aneurysms (UIAs) from postoperative bleeding (PB) after flow diverter (FD) treatment. This study aimed to investigate whether methylprednisolone is related to a lower incidence of PB after FD treatment for UIAs. Methods This study retrospectively reviewed UIA patients receiving FD treatment between October 2015 and July 2021. All patients were observed until 72 h after FD treatment. The patients receiving methylprednisolone (80 mg, bid, for at least 24 h) were considered as standard methylprednisolone treatment (SMT) users, otherwise as non-SMT users. The primary endpoint indicated the occurrence of PB, including subarachnoid hemorrhage, intracerebral hemorrhage, and ventricular bleeding, within 72 h after FD treatment. This study compared the incidence of PB between SMT users and non-SMT users and investigated the protective effect of SMT on PB after FD treatment using the Cox regression model. Finally, after controlling the potential factors related to PB, we performed subgroup analysis to further confirm the protective effect of SMT on PB. Results This study finally included 262 UIA patients receiving FD treatment. PB occurred in 11 patients (4.2%), and 116 patients (44.3%) received SMT postoperatively. The median time from the end of surgery to PB was 12.3 h (range: 0.5-48.0 h). SMT users had a lower incidence of PB comparing with non-SMT users (1/116, 0.9% vs. 10/146, 6.8%, respectively; p = 0.017). The multivariate Cox analysis demonstrated that SMT users (HR, 0.12 [95%CI, 0.02-0.94], p = 0.044) had a lower risk of PB postoperatively. After controlling the potential factors related to PB (i.e., gender, irregular shape, surgical methods [FD and FD + coil] and UIA sizes), the patients receiving SMT still had a lower cumulative incidence of PB, comparing with patients receiving non-SMT (all p < 0.05). Conclusion SMT was correlated with the lower incidence of PB for patients receiving FD treatment and may be a potential method to prevent PB after the FD treatment.
Collapse
Affiliation(s)
- Linggen Dong
- Department of Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qingyuan Liu
- Department of Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiheng Chen
- Department of Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Longhui Zhang
- Department of Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jiejun Wang
- Department of Emergency, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Qichen Peng
- Department of Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jiangan Li
- Department of Emergency, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Hongwei He
- Department of Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Peng Liu
- Department of Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Peng Liu,
| | - Ming Lv
- Department of Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- *Correspondence: Ming Lv,
| |
Collapse
|
24
|
Okada A, Koseki H, Ono I, Kayahara T, Kurita H, Miyamoto S, Kataoka H, Aoki T. Identification of The Unique Subtype of Macrophages in Aneurysm Lesions at the Growth Phase. J Stroke Cerebrovasc Dis 2022; 31:106848. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
|
25
|
Louet ER, Glavan M, Orset C, Parcq J, Hanley DF, Vivien D. tPA-NMDAR Signaling Blockade Reduces the Incidence of Intracerebral Aneurysms. Transl Stroke Res 2022; 13:1005-1016. [PMID: 35307812 DOI: 10.1007/s12975-022-01004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
Abstract
Intracranial aneurysms (IAs) are pathological dilatations affecting cerebral arteries, and their ruptures lead to devasting intracranial hemorrhages. Although the mechanisms underlying the IA formation and rupture are still unclear, some factors have been identified as critical in the control of the vascular remodeling pathways associated with aneurysms. In a preclinical model, we have previously proposed the implication of the vascular serine protease, the tissue-type plasminogen activator (tPA), as one of the key players in this pathology. Here, we provide insights into the mechanism by which tPA is implicated in the formation and rupture of aneurysms. This was addressed using a murine model of IAs combined with (i) hydrodynamic transfections of various tPA mutants based on the potential implications of the different tPA domains in this pathophysiology and (ii) a pharmacological approach using a monoclonal antibody targeting tPA-dependent NMDA receptor (NMDAR) signaling and in vivo magnetic resonance brain imaging (MRI). Our results show that the endovascular tPA-NMDAR axis is implicated in IA formation and possibly their rupture. Accordingly, the use of a monoclonal antibody designed to block tPA-dependent endothelial NMDAR signaling (Glunomab®) decreases the rate of intracranial aneurysm formation and their rupture. The present study gives new insights into the IA pathophysiology by demonstrating the implication of the tPA-dependent endothelial NMDAR signaling. In addition, the present data proposes that a monoclonal antibody injected intravenously to target this process, i.e., Glunomab® could be a useful therapeutic candidate for this devastating disease.
Collapse
Affiliation(s)
- Estelle R Louet
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
- Op2Lysis SAS, GIP Cyceron, Boulevard H Becquerel, 14000, Caen, France
| | - Martina Glavan
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Cyrille Orset
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Jerome Parcq
- Op2Lysis SAS, GIP Cyceron, Boulevard H Becquerel, 14000, Caen, France
| | - Daniel F Hanley
- Division of Brain Injury Outcomes, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France.
- Department of Clinical Research, Caen-Normandie University Hospital, CHU, Avenue de la côte de Nacre, Caen, France.
| |
Collapse
|
26
|
Wu XB, Wu YT, Guo XX, Xiang C, Chen PS, Qin W, Shi ZS. Circular RNA hsa_circ_0007990 as a blood biomarker for unruptured intracranial aneurysm with aneurysm wall enhancement. Front Immunol 2022; 13:1061592. [PMID: 36466848 PMCID: PMC9714537 DOI: 10.3389/fimmu.2022.1061592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/04/2022] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) may involve the formation and rupture of intracranial aneurysms (IA). Inflammation plays a vital role in the development and progression of IA, which can be reflected by aneurysm wall enhancement (AWE) on high-resolution vessel wall magnetic resonance imaging (HR-VWI). This study aims to evaluate the role of circRNAs as the blood inflammatory biomarker for unruptured IA (UIA) patients with AWE on HR-VWI. METHODS We analyzed the circRNA expression profiles in the peripheral blood samples among subjects from saccular UIA with AWE, UIA without AWE, and healthy controls by the circRNA microarray. The differential expression of hsa_circ_0007990 was assessed. We constructed the hsa_circ_0007990-microRNA-mRNA network and the regulatory axis of hub genes associated with the AWE in UIA. RESULTS Eighteen patients harboring saccular UIAs with HR VWI and five healthy controls were included. We found 412 differentially expressed circRNAs between UIA patients and healthy controls by circRNA microarray. Two hundred thirty-one circRNAs were significantly differentially expressed in UIA patients with AWE compared with those without AWE. Twelve upregulated circRNAs were associated with AWE of UIA, including hsa_circ_0007990, hsa_circ_0114507, hsa_circ_0020460, hsa_circ_0053944, hsa_circ_0000758, hsa_circ_0000034, hsa_circ_0009127, hsa_circ_0052793, hsa_circ_0000301 and hsa_circ_0000729. The expression of hsa_circ_0007990 was increased gradually in the healthy control, UIA without AWE, and UIA with AWE confirmed by RT-PCR (P<0.001). We predicted 4 RNA binding proteins (Ago2, DGCR8, EIF4A3, PTB) and period circadian regulator 1 as an encoding protein with hsa_circ_0007990. The hsa_circ_0007990-microRNA-mRNA network containing five microRNAs (miR-4717-5p, miR-1275, miR-150-3p, miR-18a-5p, miR-18b-5p), and 97 mRNAs was constructed. The five hub genes (hypoxia-inducible factor 1 subunit alpha, estrogen receptor 1, forkhead box O1, insulin-like growth factor 1, CREB binding protein) were involved in the inflammatory response. CONCLUSION Differentially expressed blood circRNAs associated with AWE on HR-VWI may be the novel inflammatory biomarkers for assessing UIA patients. The mechanism of hsa_circRNA_0007990 for UIA progression needs to investigate further.
Collapse
Affiliation(s)
- Xiao-Bing Wu
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - You-Tao Wu
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin-Xing Guo
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chun Xiang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pei-Sheng Chen
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wang Qin
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong-Song Shi
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Chen X, Gui S, Dong L, Zhang L, Ge H, Liu P, Li Y, Lv M. Case report: Covered stent placement to treat delayed aneurysmal rupture after flow diverter-assisted coil embolization. Front Neurol 2022; 13:964733. [PMID: 36419533 PMCID: PMC9676233 DOI: 10.3389/fneur.2022.964733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/17/2022] [Indexed: 03/27/2024] Open
Abstract
INTRODUCTION Flow diverter (FD) placement is widely accepted as a treatment for large saccular intracranial aneurysms. Delayed aneurysmal rupture (DAR) after FD placement is potentially catastrophic and difficult to treat. To our knowledge, using a Willis covered stent (WCS) to treat DAR after placement of a Pipeline Flex embolization device (PFED) combined with coiling has not been previously reported. CASE PRESENTATION A 49-year-old woman with an incidental asymptomatic large right supraclinoid internal carotid artery aneurysm was treated with PFED placement and adjunctive coiling. DAR causing subarachnoid hemorrhage occurred 11 hours after the procedure. Treatment using a WCS was successful and resulted in a favorable clinical outcome (modified Rankin scale score 2). CONCLUSION DAR after FD implantation requires isolation of the aneurysm from the cerebral circulation as soon as possible. WCS placement can achieve this immediately and occlude the aneurysm. We hope our case could provide new idea for similar cases in the future.
Collapse
Affiliation(s)
- Xiheng Chen
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Interventional Neuroradiology, Beijing, China
| | - Siming Gui
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Interventional Neuroradiology, Beijing, China
| | - Linggen Dong
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Longhui Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Huijian Ge
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Interventional Neuroradiology, Beijing, China
| | - Peng Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Interventional Neuroradiology, Beijing, China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Interventional Neuroradiology, Beijing, China
| | - Ming Lv
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Interventional Neuroradiology, Beijing, China
| |
Collapse
|
28
|
Huuska N, Netti E, Lehti S, Kovanen PT, Niemelä M, Tulamo R. Lymphatic vessels are present in human saccular intracranial aneurysms. Acta Neuropathol Commun 2022; 10:130. [PMID: 36064651 PMCID: PMC9446758 DOI: 10.1186/s40478-022-01430-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
Saccular intracranial aneurysm (sIA) rupture leads to subarachnoid haemorrhage and is preceded by chronic inflammation and atherosclerotic changes of the sIA wall. Increased lymphangiogenesis has been detected in atherosclerotic extracranial arteries and in abdominal aortic aneurysms, but the presence of lymphatic vessels in sIAs has remained unexplored. Here we studied the presence of lymphatic vessels in 36 intraoperatively resected sIAs (16 unruptured and 20 ruptured), using immunohistochemical and immunofluorescence stainings for lymphatic endothelial cell (LEC) markers. Of these LEC-markers, both extracellular and intracellular LYVE-1-, podoplanin-, VEGFR-3-, and Prox1-positive stainings were detected in 83%, 94%, 100%, and 72% of the 36 sIA walls, respectively. Lymphatic vessels were identified as ring-shaped structures positive for one or more of the LEC markers. Of the sIAs, 78% contained lymphatic vessels positive for at least one LEC marker. The presence of LECs and lymphatic vessels were associated with the number of CD68+ and CD163+ cells in the sIA walls, and with the expression of inflammation indicators such as serum amyloid A, myeloperoxidase, and cyclo-oxygenase 2, with the presence of a thrombus, and with the sIA wall rupture. Large areas of VEGFR-3 and α-smooth muscle actin (αSMA) double-positive cells were detected in medial parts of the sIA walls. Also, a few podoplanin and αSMA double-positive cells were discovered. In addition, LYVE-1 and CD68 double-positive cells were detected in the sIA walls and in the thrombus revealing that certain CD68+ macrophages are capable of expressing LEC markers. This study demonstrates for the first time the presence of lymphatic vessels in human sIA walls. Further studies are needed to understand the role of lymphatic vessels in the pathogenesis of sIA.
Collapse
Affiliation(s)
- Nora Huuska
- Neurosurgery Research Group, Room B410b, Biomedicum 1, Haartmaninkatu 8, 00290, Helsinki, Finland.
| | - Eliisa Netti
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
| | - Satu Lehti
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, 40700, Jyväskylä, Finland
| | - Petri T Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Haartmaninkatu 8, Biomedicum 1, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
| | - Riikka Tulamo
- Department of Vascular Surgery, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00290, Helsinki, Finland
| |
Collapse
|
29
|
Morel S, Hostettler IC, Spinner GR, Bourcier R, Pera J, Meling TR, Alg VS, Houlden H, Bakker MK, van’t Hof F, Rinkel GJE, Foroud T, Lai D, Moomaw CJ, Worrall BB, Caroff J, Constant-dits-Beaufils P, Karakachoff M, Rimbert A, Rouchaud A, Gaal-Paavola EI, Kaukovalta H, Kivisaari R, Laakso A, Jahromi BR, Tulamo R, Friedrich CM, Dauvillier J, Hirsch S, Isidor N, Kulcsàr Z, Lövblad KO, Martin O, Machi P, Mendes Pereira V, Rüfenacht D, Schaller K, Schilling S, Slowik A, Jaaskelainen JE, von und zu Fraunberg M, Jiménez-Conde J, Cuadrado-Godia E, Soriano-Tárraga C, Millwood IY, Walters RG, Kim H, Redon R, Ko NU, Rouleau GA, Lindgren A, Niemelä M, Desal H, Woo D, Broderick JP, Werring DJ, Ruigrok YM, Bijlenga P. Intracranial Aneurysm Classifier Using Phenotypic Factors: An International Pooled Analysis. J Pers Med 2022; 12:jpm12091410. [PMID: 36143196 PMCID: PMC9501769 DOI: 10.3390/jpm12091410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Intracranial aneurysms (IAs) are usually asymptomatic with a low risk of rupture, but consequences of aneurysmal subarachnoid hemorrhage (aSAH) are severe. Identifying IAs at risk of rupture has important clinical and socio-economic consequences. The goal of this study was to assess the effect of patient and IA characteristics on the likelihood of IA being diagnosed incidentally versus ruptured. Patients were recruited at 21 international centers. Seven phenotypic patient characteristics and three IA characteristics were recorded. The analyzed cohort included 7992 patients. Multivariate analysis demonstrated that: (1) IA location is the strongest factor associated with IA rupture status at diagnosis; (2) Risk factor awareness (hypertension, smoking) increases the likelihood of being diagnosed with unruptured IA; (3) Patients with ruptured IAs in high-risk locations tend to be older, and their IAs are smaller; (4) Smokers with ruptured IAs tend to be younger, and their IAs are larger; (5) Female patients with ruptured IAs tend to be older, and their IAs are smaller; (6) IA size and age at rupture correlate. The assessment of associations regarding patient and IA characteristics with IA rupture allows us to refine IA disease models and provide data to develop risk instruments for clinicians to support personalized decision-making.
Collapse
Affiliation(s)
- Sandrine Morel
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Isabel C. Hostettler
- Stroke Research Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Neurosurgery, Canton Hospital St. Gallen, 9000 St. Gallen, Switzerland
| | - Georg R. Spinner
- ZHAW School of Life Sciences and Facility Management, 8820 Wädenswil, Switzerland
| | - Romain Bourcier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), University Hospital Centre Nantes, University of Nantes, L’institut Du Thorax, 44007 Nantes, France
- Department of Neuroradiology, University Hospital of Nantes, 44000 Nantes, France
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, ul. Botaniczna 3, 31-503 Krakow, Poland
| | - Torstein R. Meling
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Varinder S. Alg
- Stroke Research Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Henry Houlden
- Neurogenetics Laboratory, The National Hospital of Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Mark K. Bakker
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Femke van’t Hof
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Gabriel J. E. Rinkel
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Charles J. Moomaw
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Bradford B. Worrall
- Departments of Neurology and Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Jildaz Caroff
- Department of Interventional Neuroradiology—NEURI Brain Vascular Center, Bicêtre Hospital, APHP, 94270 Le Kremlin Bicêtre, France
| | - Pacôme Constant-dits-Beaufils
- Institut national de la santé et de la recherche médicale (INSERM), CIC 1413, Clinique des Données, University Hospital Centre Nantes, 44000 Nantes, France
| | - Matilde Karakachoff
- Institut national de la santé et de la recherche médicale (INSERM), CIC 1413, Clinique des Données, University Hospital Centre Nantes, 44000 Nantes, France
| | - Antoine Rimbert
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), University Hospital Centre Nantes, University of Nantes, L’institut Du Thorax, 44007 Nantes, France
| | - Aymeric Rouchaud
- Department of Neuroradiology, Dupuytren University Hospital, 87000 Limoges, France
| | - Emilia I. Gaal-Paavola
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, 00260 Helsinki, Finland
- Clinical Neurosciences, University of Helsinki, Topeliuksenkatu 5, 00260 Helsinki, Finland
| | - Hanna Kaukovalta
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, 00260 Helsinki, Finland
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, 00260 Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, 00260 Helsinki, Finland
- Neurosurgery Research Group, Biomedicum, 00290 Helsinki, Finland
| | - Behnam Rezai Jahromi
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, 00260 Helsinki, Finland
- Neurosurgery Research Group, Biomedicum, 00290 Helsinki, Finland
| | - Riikka Tulamo
- Neurosurgery Research Group, Biomedicum, 00290 Helsinki, Finland
- Department of Vascular Surgery, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Christoph M. Friedrich
- Department of Computer Science, University of Applied Science and Arts, 44139 Dortmund, Germany
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, 45147 Essen, Germany
| | | | - Sven Hirsch
- ZHAW School of Life Sciences and Facility Management, 8820 Wädenswil, Switzerland
| | - Nathalie Isidor
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Zolt Kulcsàr
- Diagnostic and Interventional, Department of Diagnostics, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Karl O. Lövblad
- Diagnostic and Interventional, Department of Diagnostics, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Olivier Martin
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Paolo Machi
- Diagnostic and Interventional, Department of Diagnostics, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Vitor Mendes Pereira
- Division of Neurosurgery, Department of Surgery, St Michael’s Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | | | - Karl Schaller
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Sabine Schilling
- ZHAW School of Life Sciences and Facility Management, 8820 Wädenswil, Switzerland
- Lucerne School of Business, Lucerne University of Applied Sciences, 6002 Lucerne, Switzerland
| | - Agnieszka Slowik
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, ul. Botaniczna 3, 31-503 Krakow, Poland
| | - Juha E. Jaaskelainen
- Neurosurgery NeuroCenter Kuopio, University Hospital Kuopio, 70210 Kuopio, Finland
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Mikael von und zu Fraunberg
- Neurosurgery NeuroCenter Kuopio, University Hospital Kuopio, 70210 Kuopio, Finland
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jordi Jiménez-Conde
- Institut Hospital del Mar d’Investigacions Biomèdiques (IMIM) and Hospital del Mar, 08003 Barcelona, Spain
| | - Elisa Cuadrado-Godia
- Institut Hospital del Mar d’Investigacions Biomèdiques (IMIM) and Hospital del Mar, 08003 Barcelona, Spain
| | - Carolina Soriano-Tárraga
- Institut Hospital del Mar d’Investigacions Biomèdiques (IMIM) and Hospital del Mar, 08003 Barcelona, Spain
| | - Iona Y. Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX1 2JD, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX1 2JD, UK
| | - Robin G. Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX1 2JD, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX1 2JD, UK
| | | | | | | | | | - Helen Kim
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA
- Department of Epidemiology and Biostatistics, Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| | - Richard Redon
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), University Hospital Centre Nantes, University of Nantes, L’institut Du Thorax, 44007 Nantes, France
| | - Nerissa U. Ko
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Guy A. Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 0G4, Canada
| | - Antti Lindgren
- Neurosurgery NeuroCenter Kuopio, University Hospital Kuopio, 70210 Kuopio, Finland
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Clinical Radiology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, 00260 Helsinki, Finland
- Neurosurgery Research Group, Biomedicum, 00290 Helsinki, Finland
| | - Hubert Desal
- Department of Neuroradiology, University Hospital of Nantes, 44000 Nantes, France
| | - Daniel Woo
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Joseph P. Broderick
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - David J. Werring
- Stroke Research Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ynte M. Ruigrok
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Philippe Bijlenga
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
- Correspondence: ; Tel.: +41-79-204-4043
| |
Collapse
|
30
|
Ling C, Yang Y, Hu X, Cai M, Wang H, Chen C. Phoenixin-14 alleviates inflammatory smooth muscle cell-induced endothelial cell dysfunction in vitro. Cytokine 2022; 157:155973. [PMID: 35907364 DOI: 10.1016/j.cyto.2022.155973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Intracranial aneurysm (IA) is cerebrovascular disorder which refers to local vessel wall damage to intracranial arteries, forming abnormal bulge. Both endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are closely associated with IA formation and rupture. Inflammatory SMCs (iSMCs) were reported to induce EC dysfunction and result in IA progression. Phoenixin-14 (PNX-14) is a recently discovered brain peptide with pleiotropic roles, which participates in reproduction, cardio protection, lipid deposition and blood glucose metabolism. PNX-14 was previously reported to protect brain endothelial cells against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced cell injury. Therefore, our study was designed to investigate the influence of PNX-14 on iSMCs-induced endothelial dysfunction. METHODS Inflammation in SMCs was induced by cyclic mechanical stretch. Human umbilical vein endothelial cells (HUVECs) were exposed to SMC- or iSMC-conditioned medium and then treated with 100 nM PNX-14 for 24 h. The levels of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) in cell supernatants were analyzed by ELISA. Cell viability, apoptosis, angiogenesis and migration were subjected to CCK-8 assay, flow cytometry analysis, tube formation assay and Transwell migration assay. The protein levels of proinflammatory cytokines and apoptosis markers (Bcl-2 and Bax) were evaluated by western blotting. RESULTS Cyclic mechanical stretch upregulated IL-1β, IL-6 and TNF-α levels in SMCs. Treatment with SMC- or iSMC-conditioned medium HUVECs inhibited cell viability, angiogenesis and migration and induced apoptosis in HUVECs. iSMC-conditioned medium has more significant effects on cell functions. However, the influence of SMC- or iSMC-conditioned medium treatment on HUVEC biological functions were reversed by PNX-14 treatment. PNX-14 exerts no significant influence on the biological functions of HUVECs treated with SMC medium. CONCLUSION PNX-14 alleviates iSMCs-induced endothelial cell dysfunction in vitro.
Collapse
Affiliation(s)
- Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Yang Yang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiling Hu
- Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Meiqin Cai
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
31
|
Fu M, Peng F, Zhang M, Chen S, Niu H, He X, Xu B, Liu A, Li R. Aneurysmal wall enhancement and hemodynamics: pixel-level correlation between spatial distribution. Quant Imaging Med Surg 2022; 12:3692-3704. [PMID: 35782262 PMCID: PMC9246729 DOI: 10.21037/qims-21-1203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/29/2022] [Indexed: 03/22/2024]
Abstract
BACKGROUND Inflammation and hemodynamics are interrelated risk factors for intracranial aneurysm rupture. This study aimed to identify the relationship between these risk factors from an individual-patient perspective using biomarkers of aneurysm wall enhancement (AWE) derived from high-resolution magnetic resonance imaging (HR-MRI) and hemodynamic parameters by four-dimensional flow MRI (4D-flow MRI). METHODS A total of 29 patients with 29 unruptured intracranial aneurysms larger than 4 mm were included in this prospective cross-sectional study. A total of 24 aneurysms had AWE and 5 did not have AWE. A three-dimensional (3D) vessel model of each individual aneurysm was generated with 3D time-of-flight magnetic resonance angiography (3D TOF-MRA). Quantification of AWE was sampled with HR-MRI. Time-averaged wall shear stress (WSS) and oscillatory shear index (OSI) were calculated from the 4D-flow MRI. The correlation between spatial distribution of AWE and hemodynamic parameters measured at pixel-level was evaluated for each aneurysm. RESULTS In aneurysms with AWE, the spatial distribution of WSS was negatively correlated with AWE in 100% (24/24) of aneurysms, though 2 had an absolute value of the correlation coefficient <0.1. The OSI was positively correlated with AWE in 91.7% (22/24) of aneurysms; the other 2 aneurysms showed a negative correlation with AWE. In aneurysms with no AWE, there was no correlation between WSS (100%, 5/5), OSI (80%, 4/5), and wall inflammation. CONCLUSIONS The spatial distribution of WSS was negatively correlated with AWE in aneurysms with AWE, and OSI was positively correlated with AWE in most aneurysms with AWE. While aneurysms that did not contain AWE showed no correlation between hemodynamics and wall inflammation.
Collapse
Affiliation(s)
- Mingzhu Fu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Fei Peng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Miaoqi Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Shuo Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Hao Niu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaoxin He
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Boya Xu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Aihua Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
32
|
Cumulative time of cigarette smoking is associated with a greater risk of aneurysmal subarachnoid haemorrhage and younger age at presentation: A nationwide observation study. World Neurosurg 2022; 164:e915-e921. [DOI: 10.1016/j.wneu.2022.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
|
33
|
Wu XB, Zhong JL, Wang SW, Su Y, Chen PS, Li ZJ, Xiang C, Cai WQ, Shi ZS. Circumferential wall enhancement with contrast ratio measurement in unruptured intracranial aneurysm for aneurysm instability. Brain Behav 2022; 12:e2568. [PMID: 35531771 PMCID: PMC9120725 DOI: 10.1002/brb3.2568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Aneurysm wall enhancement on high-resolution vessel wall imaging (HR-VWI) may represent vessel wall inflammation for unruptured intracranial aneurysms (UIAs). Further evidence for the role of circumferential aneurysm wall enhancement (CAWE) in evaluating the instability of UIAs is required, especially in small aneurysms (<7 mm). METHODS We analyzed patients with saccular UIAs who prospectively underwent HR-VWI on a 3.0 T MRI scanner in our center from September 2017 to August 2021. The presence of AWE was identified and quantitatively measured using the aneurysm-to-pituitary stalk contrast ratio (CRstalk) with maximal signal intensity value. The PHASES and ELAPSS scores were used to assess the risk of aneurysm rupture and growth. We evaluated the association of CAWE and CRstalk value with intracranial aneurysm instability. RESULTS One hundred patients with 109 saccular UIAs were included in this study. Eighty-three UIAs (76.1%) had a size smaller than 7 mm. PHASES and ELAPSS scores were significantly higher in UIAs with CAWE than in UIAs without CAWE (p < .01). The association of CAWE with PHASES and ELAPSS scores remained in small UIAs (<7 mm). The optimal cutoff value of CRstalk for CAWE was 0.5. PHASES and ELAPSS scores were significantly higher in UIAs with CRstalk ≥0.5 than in UIAs with CRstalk <0.5 (p < .01). CONCLUSIONS CAWE on HR-VWI is a valuable imaging marker for aneurysm instability in UIAs. CRstalk value ≥0.5 may be associated with a higher risk of intracranial aneurysm rupture and growth.
Collapse
Affiliation(s)
- Xiao-Bing Wu
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Lian Zhong
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sheng-Wen Wang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Su
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pei-Sheng Chen
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong-Jun Li
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chun Xiang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wang-Qing Cai
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong-Song Shi
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Morel S, Bijlenga P, Kwak BR. Intracranial aneurysm wall (in)stability-current state of knowledge and clinical perspectives. Neurosurg Rev 2022; 45:1233-1253. [PMID: 34743248 PMCID: PMC8976821 DOI: 10.1007/s10143-021-01672-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022]
Abstract
Intracranial aneurysm (IA), a local outpouching of cerebral arteries, is present in 3 to 5% of the population. Once formed, an IA can remain stable, grow, or rupture. Determining the evolution of IAs is almost impossible. Rupture of an IA leads to subarachnoid hemorrhage and affects mostly young people with heavy consequences in terms of death, disabilities, and socioeconomic burden. Even if the large majority of IAs will never rupture, it is critical to determine which IA might be at risk of rupture. IA (in)stability is dependent on the composition of its wall and on its ability to repair. The biology of the IA wall is complex and not completely understood. Nowadays, the risk of rupture of an IA is estimated in clinics by using scores based on the characteristics of the IA itself and on the anamnesis of the patient. Classification and prediction using these scores are not satisfying and decisions whether a patient should be observed or treated need to be better informed by more reliable biomarkers. In the present review, the effects of known risk factors for rupture, as well as the effects of biomechanical forces on the IA wall composition, will be summarized. Moreover, recent advances in high-resolution vessel wall magnetic resonance imaging, which are promising tools to discriminate between stable and unstable IAs, will be described. Common data elements recently defined to improve IA disease knowledge and disease management will be presented. Finally, recent findings in genetics will be introduced and future directions in the field of IA will be exposed.
Collapse
Affiliation(s)
- Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland.
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| | - Philippe Bijlenga
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| |
Collapse
|
35
|
Zheng L, Zhang X, Liu L, Pu Y. Altered Expression of Specific MicroRNAs in Plasma of Aneurysmal Subarachnoid Hemorrhage Patients. Front Neurol 2022; 13:842888. [PMID: 35242102 PMCID: PMC8886220 DOI: 10.3389/fneur.2022.842888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening condition with high disability and mortality. MicroRNAs (miRNAs) are reported to play a modulating role in aSAH. We investigated specific plasma microRNAs (miRNAs) associated with aSAH and gained comprehensive insight into its pathological mechanisms. Methods This is a prospective case–control study. We used a two-stage approach, with primary screening and ensuing two-step validation stages. Significantly differentially expressed plasma miRNAs between aSAH patients and neurologically healthy controls were initially screened by microarray analysis. These miRNAs were then validated in two groups of independent cohorts using reverse transcription quantitative real-time polymerase chain reaction assays. Functional annotation of these miRNA targets was performed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Results In the primary screening stage, 14 miRNAs were identified as differentially expressed at a significance level of P < 0.05 and fold change >2 between 5 aSAH patients and 5 neurologically healthy controls. In the two validation steps (20 patients vs. 20 control; 40 patients vs. 30 controls), miR-23b-3p, miR-590-5p, miR-20b-5p, miR-142-3p, and miR-29b-3p were found to be significantly down-regulated in patients with aSAH compared with controls. Through these 5 miRNAs, we obtained 32 overlapping target genes, including TGM2, EREG, EDN1, and COL4A1, in three databases that may affect the progression of aSAH. The results of functional annotation revealed mechanisms mainly related to inflammation, smooth muscle cell proliferation and cell adhesion, potentially contributing to the occurrence of aSAH. Conclusion We demonstrate that specific miRNAs in plasma, including miR-23b-3p, miR-590-5p, miR-20b-5p, miR-142-3p, and miR-29b-3p, are significantly down-regulated in aSAH patients and may play a modulating role in its progression.
Collapse
Affiliation(s)
- Lina Zheng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuehua Pu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Acosta JM, Cayron AF, Dupuy N, Pelli G, Foglia B, Haemmerli J, Allémann E, Bijlenga P, Kwak BR, Morel S. Effect of Aneurysm and Patient Characteristics on Intracranial Aneurysm Wall Thickness. Front Cardiovasc Med 2021; 8:775307. [PMID: 34957259 PMCID: PMC8692777 DOI: 10.3389/fcvm.2021.775307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Background: The circle of Willis is a network of arteries allowing blood supply to the brain. Bulging of these arteries leads to formation of intracranial aneurysm (IA). Subarachnoid hemorrhage (SAH) due to IA rupture is among the leading causes of disability in the western world. The formation and rupture of IAs is a complex pathological process not completely understood. In the present study, we have precisely measured aneurysmal wall thickness and its uniformity on histological sections and investigated for associations between IA wall thickness/uniformity and commonly admitted risk factors for IA rupture. Methods: Fifty-five aneurysm domes were obtained at the Geneva University Hospitals during microsurgery after clipping of the IA neck. Samples were embedded in paraffin, sectioned and stained with hematoxylin-eosin to measure IA wall thickness. The mean, minimum, and maximum wall thickness as well as thickness uniformity was measured for each IA. Clinical data related to IA characteristics (ruptured or unruptured, vascular location, maximum dome diameter, neck size, bottleneck factor, aspect and morphology), and patient characteristics [age, smoking, hypertension, sex, ethnicity, previous SAH, positive family history for IA/SAH, presence of multiple IAs and diagnosis of polycystic kidney disease (PKD)] were collected. Results: We found positive correlations between maximum dome diameter or neck size and IA wall thickness and thickness uniformity. PKD patients had thinner IA walls. No associations were found between smoking, hypertension, sex, IA multiplicity, rupture status or vascular location, and IA wall thickness. No correlation was found between patient age and IA wall thickness. The group of IAs with non-uniform wall thickness contained more ruptured IAs, women and patients harboring multiple IAs. Finally, PHASES and ELAPSS scores were positively correlated with higher IA wall heterogeneity. Conclusion: Among our patient and aneurysm characteristics of interest, maximum dome diameter, neck size and PKD were the three factors having the most significant impact on IA wall thickness and thickness uniformity. Moreover, wall thickness heterogeneity was more observed in ruptured IAs, in women and in patients with multiple IAs. Advanced medical imaging allowing in vivo measurement of IA wall thickness would certainly improve personalized management of the disease and patient care.
Collapse
Affiliation(s)
- Jason M. Acosta
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anne F. Cayron
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Nicolas Dupuy
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Graziano Pelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bernard Foglia
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Haemmerli
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Philippe Bijlenga
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- *Correspondence: Sandrine Morel
| |
Collapse
|
37
|
Scullen T, Mathkour M, Wang A, Aysenne A, Dumont AS. Commentary: Systemic Immune-Inflammation Index Predicts Delayed Cerebral Vasospasm After Aneurysmal Subarachnoid Hemorrhage. Neurosurgery 2021; 89:E304-E306. [PMID: 34676415 DOI: 10.1093/neuros/nyab370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tyler Scullen
- Department of Neurological Surgery, Tulane Medical Center, New Orleans, Louisiana, USA
| | - Mansour Mathkour
- Department of Neurological Surgery, Tulane Medical Center, New Orleans, Louisiana, USA
| | - Arthur Wang
- Department of Neurological Surgery, Tulane Medical Center, New Orleans, Louisiana, USA
| | - Aimee Aysenne
- Department of Neurological Surgery, Tulane Medical Center, New Orleans, Louisiana, USA.,Department of Neurology, Tulane Medical Center, New Orleans, Louisiana, USA
| | - Aaron S Dumont
- Department of Neurological Surgery, Tulane Medical Center, New Orleans, Louisiana, USA
| |
Collapse
|
38
|
Huuska N, Netti E, Tulamo R, Lehti S, Jahromi BR, Kovanen PT, Niemelä M. Serum Amyloid A Is Present in Human Saccular Intracranial Aneurysm Walls and Associates With Aneurysm Rupture. J Neuropathol Exp Neurol 2021; 80:966-974. [PMID: 34534311 PMCID: PMC9278718 DOI: 10.1093/jnen/nlab086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Saccular intracranial aneurysm (sIA) rupture leads to a disabling subarachnoid hemorrhage. Chronic inflammation and lipid accumulation in the sIA wall contribute to wall degenerative remodeling that precedes its rupture. A better understanding of the pathobiological process is essential for improved future treatment of patients carrying sIAs. Serum amyloid A (SAA) is an acute-phase protein produced in response to acute and chronic inflammation and tissue damage. Here, we studied the presence and the potential role of SAA in 36 intraoperatively resected sIAs (16 unruptured and 20 ruptured), that had previously been studied by histology and immunohistochemistry. SAA was present in all sIAs, but the extent of immunopositivity varied greatly. SAA immunopositivity correlated with wall degeneration (p = 0.028) and rupture (p = 0.004), with numbers of CD163-positive and CD68-positive macrophages and CD3-positive T lymphocytes (all p < 0.001), and with the expression of myeloperoxidase, matrix metalloproteinase-9, prostaglandin E-2 receptor, and cyclo-oxygenase 2 in the sIA wall. Moreover, SAA positivity correlated with the accumulation of apolipoproteins A-1 and B-100. In conclusion, SAA occurs in the sIA wall and, as an inflammation-related factor, may contribute to the development of a rupture-prone sIA.
Collapse
Affiliation(s)
- Nora Huuska
- From the Doctoral Programme in Biomedicine, Doctoral School in Health Sciences, University of Helsinki, Helsinki, Finland.,Neurosurgery Research Group, Biomedicum, Helsinki, Finland
| | - Eliisa Netti
- Neurosurgery Research Group, Biomedicum, Helsinki, Finland.,Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Riikka Tulamo
- Neurosurgery Research Group, Biomedicum, Helsinki, Finland.,Department of Vascular Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Satu Lehti
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Behnam Rezai Jahromi
- Neurosurgery Research Group, Biomedicum, Helsinki, Finland.,Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Liu Q, Yang Y, Yang J, Li M, Yang S, Wang N, Wu J, Jiang P, Wang S. Rebleeding of Ruptured Intracranial Aneurysm After Admission: A Multidimensional Nomogram Model to Risk Assessment. Front Aging Neurosci 2021; 13:692615. [PMID: 34539377 PMCID: PMC8440913 DOI: 10.3389/fnagi.2021.692615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Objective Rebleeding is recognized as the main cause of mortality after intracranial aneurysm rupture. Though timely intervention can prevent poor prognosis, there is no agreement on the surgical priority and choosing medical treatment for a short period after rupture. The aim of this study was to investigate the risk factors related to the rebleeding after admission and establish predicting models for better clinical decision-making. Methods The patients with ruptured intracranial aneurysms (RIAs) between January 2018 and September 2020 were reviewed. All patients fell to the primary and the validation cohort by January 2020. The hemodynamic parameters were determined through the computational fluid dynamics simulation. Cox regression analysis was conducted to identify the risk factors of rebleeding. Based on the independent risk factors, nomogram models were built, and their predicting accuracy was assessed by using the area under the curves (AUCs). Result A total of 577 patients with RIAs were enrolled in this present study, 86 patients of them were identified as undergoing rebleeding after admission. Thirteen parameters were identified as significantly different between stable and rebleeding aneurysms in the primary cohort. Cox regression analysis demonstrated that six parameters, including hypertension [hazard ratio (HR), 2.54; P = 0.044], bifurcation site (HR, 1.95; P = 0.013), irregular shape (HR, 4.22; P = 0.002), aspect ratio (HR, 12.91; P < 0.001), normalized wall shear stress average (HR, 0.16; P = 0.002), and oscillatory stress index (HR, 1.14; P < 0.001) were independent risk factors related to the rebleeding after admission. Two nomograms were established, the nomogram including clinical, morphological, and hemodynamic features (CMH nomogram) had the highest predicting accuracy (AUC, 0.92), followed by the nomogram including clinical and morphological features (CM nomogram; AUC, 0.83), ELAPSS score (AUC, 0.61), and PHASES score (AUC, 0.54). The calibration curve for the probability of rebleeding showed good agreement between prediction by nomograms and actual observation. In the validation cohort, the discrimination of the CMH nomogram was superior to the other models (AUC, 0.93 vs. 0.86, 0.71 and 0.48). Conclusion We presented two nomogram models, named CMH nomogram and CM nomogram, which could assist in identifying the RIAs with high risk of rebleeding.
Collapse
Affiliation(s)
- Qingyuan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junhua Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Maogui Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuzhe Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nuochuan Wang
- Department of Blood Transfusion, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pengjun Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
40
|
Swiatek VM, Neyazi B, Roa JA, Zanaty M, Samaniego EA, Ishii D, Lu Y, Sandalcioglu IE, Saalfeld S, Berg P, Hasan DM. Aneurysm Wall Enhancement Is Associated With Decreased Intrasaccular IL-10 and Morphological Features of Instability. Neurosurgery 2021; 89:664-671. [PMID: 34245147 PMCID: PMC8578742 DOI: 10.1093/neuros/nyab249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High-resolution vessel wall imaging plays an increasingly important role in assessing the risk of aneurysm rupture. OBJECTIVE To introduce an approach toward the validation of the wall enhancement as a direct surrogate parameter for aneurysm stability. METHODS A total of 19 patients harboring 22 incidental intracranial aneurysms were enrolled in this study. The aneurysms were dichotomized according to their aneurysm-to-pituitary stalk contrast ratio using a cutoff value of 0.5 (nonenhancing < 0.5; enhancing ≥ 0.5). We evaluated the association of aneurysm wall enhancement with morphological characteristics, hemodynamic features, and inflammatory chemokines directly measured inside the aneurysm. RESULTS Differences in plasma concentration of chemokines and inflammatory molecules, morphological, and hemodynamic parameters were analyzed using the Welch test or Mann-Whitney U test. The concentration ΔIL-10 in the lumen of intracranial aneurysms with low wall enhancement was significantly increased compared to aneurysms with strong aneurysm wall enhancement (P = .014). The analysis of morphological and hemodynamic parameters showed significantly increased values for aneurysm volume (P = .03), aneurysm area (P = .044), maximal diameter (P = .049), and nonsphericity index (P = .021) for intracranial aneurysms with strong aneurysm wall enhancement. None of the hemodynamic parameters reached statistical significance; however, the total viscous shear force computed over the region of low wall shear stress showed a strong tendency toward significance (P = .053). CONCLUSION Aneurysmal wall enhancement shows strong associations with decreased intrasaccular IL-10 and established morphological indicators of aneurysm instability.
Collapse
Affiliation(s)
- Vanessa M Swiatek
- Deparment of Neurosurgery, Otto-von-Guericke University, Magdeburg, Saxony Anhalt, Germany
| | - Belal Neyazi
- Deparment of Neurosurgery, Otto-von-Guericke University, Magdeburg, Saxony Anhalt, Germany
| | - Jorge A Roa
- Deparment of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Deparment of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Mario Zanaty
- Deparment of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Edgar A Samaniego
- Deparment of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Deparment of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Daizo Ishii
- Deparment of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Yongjun Lu
- Deparment of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - I Erol Sandalcioglu
- Deparment of Neurosurgery, Otto-von-Guericke University, Magdeburg, Saxony Anhalt, Germany
| | - Sylvia Saalfeld
- Deparment of Simulation and Graphics, University of Magdeburg, Magdeburg, Saxony Anhalt, Germany
- Research Campus STIMULATE, Magdeburg, Saxony Anhalt, Germany
| | - Philipp Berg
- Research Campus STIMULATE, Magdeburg, Saxony Anhalt, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Saxony Anhalt, Germany
| | - David M Hasan
- Deparment of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
41
|
Gaidzik F, Pravdivtseva M, Larsen N, Jansen O, Hövener JB, Berg P. Luminal enhancement in intracranial aneurysms: fact or feature?-A quantitative multimodal flow analysis. Int J Comput Assist Radiol Surg 2021; 16:1999-2008. [PMID: 34519953 PMCID: PMC8589743 DOI: 10.1007/s11548-021-02486-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/17/2021] [Indexed: 11/04/2022]
Abstract
Purpose Intracranial aneurysm (IA) wall enhancement on post-contrast vessel wall magnetic resonance imaging (VW-MRI) is assumed to be a biomarker for vessel wall inflammation and aneurysm instability. However, the exact factors contributing to enhancement are not yet clarified. This study investigates the relationship between luminal enhancement and intra-aneurysmal flow behaviour to assess the suitability of VW-MRI as a surrogate method for determining quantitative and qualitative flow behaviour in the aneurysm sac. Methods VW-MRI signal is measured in the lumen of three patient-specific IA flow models and compared with the intra-aneurysmal flow fields obtained using phase-contrast magnetic resonance imaging (PC-MRI) and computational fluid dynamics (CFD). The IA flow models were supplied with two different time-varying flow regimes. Results Overall, the velocity fields acquired using PC-MRI or CFD were in good agreement with the VW-MRI enhancement patterns. Generally, the regions with slow-flowing blood show higher VW-MRI signal intensities, whereas high flow leads to a suppression of the signal. For all aneurysm models, a signal value above three was associated with velocity values below three cm/s. Conclusion Regions with lower enhancements have been correlated with the slow and high flow at the same time. Thus, further factors like flow complexity and stability can contribute to flow suppression in addition to the flow magnitude. Nevertheless, VW-MRI can qualitatively assess intra-aneurysmal flow phenomena and estimate the velocity range present in the corresponding region.
Collapse
Affiliation(s)
- Franziska Gaidzik
- Laboratory of Fluid Dynamics and Technical Flows, Otto-von-Guericke University, University of Magdeburg, Forschungscampus STIMULATE, Universitätsplatz 3, 39106, Magdeburg, Germany.
| | - Mariya Pravdivtseva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Kiel University, Kiel, Germany.,Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Naomi Larsen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Kiel University, Kiel, Germany.,Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Philipp Berg
- Laboratory of Fluid Dynamics and Technical Flows, Otto-von-Guericke University, University of Magdeburg, Forschungscampus STIMULATE, Universitätsplatz 3, 39106, Magdeburg, Germany
| |
Collapse
|
42
|
Pravdivtseva MS, Gaidzik F, Berg P, Hoffman C, Rivera-Rivera LA, Medero R, Bodart L, Roldan-Alzate A, Speidel MA, Johnson KM, Wieben O, Jansen O, Hövener JB, Larsen N. Pseudo-Enhancement in Intracranial Aneurysms on Black-Blood MRI: Effects of Flow Rate, Spatial Resolution, and Additional Flow Suppression. J Magn Reson Imaging 2021; 54:888-901. [PMID: 33694334 PMCID: PMC8403769 DOI: 10.1002/jmri.27587] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Vessel-wall enhancement (VWE) on black-blood MRI (BB MRI) has been proposed as an imaging marker for a higher risk of rupture and associated with wall inflammation. Whether VWE is causally linked to inflammation or rather induced by flow phenomena has been a subject of debate. PURPOSE To study the effects of slow flow, spatial resolution, and motion-sensitized driven equilibrium (MSDE) preparation on signal intensities in BB MRI of patient-specific aneurysm flow models. STUDY TYPE Prospective. SUBJECTS/FLOW ANEURYSM MODEL/VIRTUAL VESSELS Aneurysm flow models based on 3D rotational angiography datasets of three patients with intracranial aneurysms were 3D printed and perfused at two different flow rates, with and without Gd-containing contrast agent. FIELD STRENGTH/SEQUENCE Variable refocusing flip angle 3D fast-spin echo sequence at 3 T with and without MSDE with three voxel sizes ((0.5 mm)3 , (0.7 mm)3 , and (0.9 mm)3 ); time-resolved with phase-contrast velocity-encoding 3D spoiled gradient echo sequence (4D flow MRI). ASSESSMENT Three independent observers performed a qualitative visual assessment of flow patterns and signal enhancement. Quantitative analysis included voxel-wise evaluation of signal intensities and magnitude velocity distributions in the aneurysm. STATISTICAL TESTS Kruskal-Wallis test, potential regressions. RESULTS A hyperintense signal in the lumen and adjacent to the aneurysm walls on BB MRI was colocalized with slow flow. Signal intensities increased by a factor of 2.56 ± 0.68 (P < 0.01) after administering Gd contrast. After Gd contrast administration, the signal was suppressed most in conjunction with high flows and with MSDE (2.41 ± 2.07 for slow flow without MSDE, and 0.87 ± 0.99 for high flow with MSDE). A clear result was not achieved by modifying the spatial resolution . DATA CONCLUSIONS Slow-flow phenomena contribute substantially to aneurysm enhancement and vary with MRI parameters. This should be considered in the clinical setting when assessing VWE in patients with an unruptured aneurysm. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Mariya S. Pravdivtseva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University,Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Franziska Gaidzik
- Lab. of Fluid Dynamics and Technical Flows, Forschungscampus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Philipp Berg
- Lab. of Fluid Dynamics and Technical Flows, Forschungscampus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Carson Hoffman
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Leonardo A. Rivera-Rivera
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Rafael Medero
- Department of Mechanical Engineering and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Lindsay Bodart
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Alejandro Roldan-Alzate
- Department of Mechanical Engineering and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Michael A. Speidel
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Kevin M. Johnson
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Oliver Wieben
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University
| | - Naomi Larsen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
43
|
Rantasalo V, Gunn J, Kiviniemi T, Hirvonen J, Saarenpää I, Kivelev J, Rahi M, Lassila E, Rinne J, Laukka D. Intracranial aneurysm is predicted by abdominal aortic calcification index: A retrospective case-control study. Atherosclerosis 2021; 334:30-38. [PMID: 34461392 DOI: 10.1016/j.atherosclerosis.2021.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Patients with intracranial aneurysms (IA) have excess mortality for cardiovascular diseases, but little is known on whether atherosclerotic manifestations and IA coexist. We investigated abdominal aortic calcification index (ACI) association with unruptured and ruptured IAs. METHODS This retrospective case-control study reviews all tertiary centers patients (n = 24,660) who had undergone head computed tomography angiography (CTA), magnetic resonance angiography (MRA) or digital subtraction angiography (DSA) for any reason between January 2003 and May 2018. Patients (n = 2020) with unruptured or ruptured IAs were identified, and patients with available abdominal CT were included. IA patients were matched by sex and age to controls (available abdomen CT, no IAs) in ratio of 1:3. ACI was measured from abdomen CT scans and patient records were reviewed. RESULTS 1720 patients (216 ruptured IA (rIA), 246 unruptured IA (UIA) and 1258 control) were included. Mean age was 62.9 ± 11.9 years and 58.2% were female. ACI (OR 1.02 per increment, 95%CI 1.01-1.03) and ACI>3 (OR 5.77, 95%CI 3.29-10.11) increased risk for rIA compared to matched controls. UIA patients' ACI was significantly higher but ACI did not increase odds for UIA compared to matched controls. History of coronary artery disease was less frequent in rIA patients. There was no calcification in aorta in 8.8% rIA and 13.6% UIA patients (matched controls 25.7% and 22.6% respectively, p < 0.01). CONCLUSIONS Aortic calcification is greater in rIA and UIA patients than matched controls. ACI increases risk for rIAs.
Collapse
Affiliation(s)
- Ville Rantasalo
- Department of Surgery, Turku University Hospital and University of Turku, Turku, Finland.
| | - Jarmo Gunn
- Department of Surgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Tuomas Kiviniemi
- Heart Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Jussi Hirvonen
- Department of Radiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Ilkka Saarenpää
- Clinical Neurosciences, University of Turku, Turku, Finland; Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Juri Kivelev
- Clinical Neurosciences, University of Turku, Turku, Finland; Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Melissa Rahi
- Clinical Neurosciences, University of Turku, Turku, Finland; Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Elli Lassila
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Jaakko Rinne
- Clinical Neurosciences, University of Turku, Turku, Finland; Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Dan Laukka
- Clinical Neurosciences, University of Turku, Turku, Finland; Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
44
|
Volovici V, Verploegh IS, van Doormaal PJ, van Es ACGM, Roozenbeek B, Lingsma HF, Lanzino G, Dammers R, Krisht AF. Growth of unruptured aneurysms: A meta-analysis of natural history and endovascular studies. J Clin Neurosci 2021; 91:343-349. [PMID: 34373050 DOI: 10.1016/j.jocn.2021.07.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022]
Abstract
The growth of unruptured intracranial aneurysms (UIAs) is a strong predictor of rupture. Clinical observations suggest that some UIAs might grow faster after endovascular treatment than untreated UIAs. There are no head-to-head comparisons of incidence rates of UIAs thus far. METHODS We searched PubMed, Embase and Google Scholar for relevant articles from the inception of the databases to March 2020. We pooled and compared the incidence rates for the growth of aneurysms from natural history studies and endovascular treatment studies. Generalized linear models were used for confounder adjustment for the prespecified confounders age, size and location. RESULTS Twenty-five studies (10 describing growth in natural history and 15 reporting growth after endovascular therapy) considering 6325 aneurysms were included in the meta-analysis. The median size of aneurysms was 3.7 mm in the natural history studies and 6.4 mm in endovascular treatment studies (p = 0.001). The pooled incidence rate (IR) of growth was significantly higher in endovascular treatment studies (IR 52 per 1000 person-years, with a 95% confidence interval (CI) 36-79) compared to natural history studies (IR 28 per 1000 person-years, 95% CI 17 - 46, p-value < 0.01) after adjustment for confounders. CONCLUSION Our results suggest that the incidence rate of cerebral aneurysm growth might be higher after endovascular therapy than the incidence rates reported in natural history studies. These results should be viewed in light of the risk of bias of the individual studies and the risk of ecological bias.
Collapse
Affiliation(s)
- Victor Volovici
- Department of Neurosurgery, Erasmus MC Stroke Center, Rotterdam, The Netherlands; Center for Medical Decision Making, Department of Public Health, Erasmus MC Rotterdam, The Netherlands.
| | - Iris S Verploegh
- Department of Neurosurgery, Erasmus MC Stroke Center, Rotterdam, The Netherlands; Department of Cell Biology, Erasmus MC Rotterdam, The Netherlands
| | | | - Adriaan C G M van Es
- Department of Interventional Radiology, Leiden University Medical Center, The Netherlands
| | - Bob Roozenbeek
- Department of Neurology, Erasmus MC Stroke Center, Rotterdam, The Netherlands
| | - Hester F Lingsma
- Center for Medical Decision Making, Department of Public Health, Erasmus MC Rotterdam, The Netherlands
| | | | - Ruben Dammers
- Department of Neurosurgery, Erasmus MC Stroke Center, Rotterdam, The Netherlands
| | - Ali F Krisht
- Department of Neurosurgery, Arkansas Neurosciences Institute, Little Rock AR, USA
| |
Collapse
|
45
|
Xu Y, Zhang B, Chen Y, Wang X, Li Y, Wu J, Dong H, Wang S. Simvastatin increases circulating endothelial progenitor cells and inhibits the formation of intracranial aneurysms in rats with diet-induced hyperhomocysteinemia. Neurosci Lett 2021; 760:136072. [PMID: 34147541 DOI: 10.1016/j.neulet.2021.136072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND PURPOSE Endothelial dysfunction triggers early pathological changes in artery, leading to the formation of intracranial aneurysm (ICA). Increase in plasma homocysteine (Hcy) impairs endothelium and endothelial progenitor cells (EPCs) are critical in repairing damaged endothelium. The aim of this study was to assess the impact of simvastatin on ICA formation in rats with hyperhomocysteinemia (HHcy). METHODS ICAs were induced in Male Sprague-Dawley rats after surgical induction in the presence of HHcy induced by a high L-methionine diet with or without oral simvastatin treatment. The size and media thickness of ICAs were evaluated 2 months after aneurysm induction. EPCs and serum vascular endothelial grow factor (VEGF) were measured be flow cytometry and ELISA respectively. Plasma Hcy levels and expression of VEGF, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), matrix metalloproteinase-2 (MMP-2), and MMP-9 in aneurysmal walls were examined and correlated with ICA formation. RESULTS HHcy accelerates ICA formation and rats treated with simvastatin exhibited a significant increase in media thickness and a reduction in aneurysmal size. Simvastatin increased levels of circulating EPCs and decreased iNOS, MMP-2, MMP-9 and VEGF mRNA levels, while increased eNOS mRNA in aneurysmal tissue. CONCLUSION In a rat model, HHcy reduces circulating EPCs and accelerates ICA formation. Simvastatin treatment increases circulating EPCs and inhabits the formation of ICA. We have shown a close association among circulating EPCs, biochemical markers related to vascular remodeling and the formation of ICA.
Collapse
Affiliation(s)
- Yong Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Bin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Li
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiangping Wu
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hao Dong
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
46
|
Tutino VM, Zebraski HR, Rajabzadeh-Oghaz H, Waqas M, Jarvis JN, Bach K, Mokin M, Snyder KV, Siddiqui AH, Poppenberg KE. Identification of Circulating Gene Expression Signatures of Intracranial Aneurysm in Peripheral Blood Mononuclear Cells. Diagnostics (Basel) 2021; 11:1092. [PMID: 34203780 PMCID: PMC8232768 DOI: 10.3390/diagnostics11061092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) play an important role in the inflammation that accompanies intracranial aneurysm (IA) pathophysiology. We hypothesized that PBMCs have different transcriptional profiles in patients harboring IAs as compared to IA-free controls, which could be the basis for potential blood-based biomarkers for the disease. To test this, we isolated PBMC RNA from whole blood of 52 subjects (24 with IA, 28 without) and performed next-generation RNA sequencing to obtain their transcriptomes. In a randomly assigned discovery cohort of n = 39 patients, we performed differential expression analysis to define an IA-associated signature of 54 genes (q < 0.05 and an absolute fold-change ≥ 1.3). In the withheld validation dataset, these genes could delineate patients with IAs from controls, as the majority of them still had the same direction of expression difference. Bioinformatics analyses by gene ontology enrichment analysis and Ingenuity Pathway Analysis (IPA) demonstrated enrichment of structural regulation processes, intracellular signaling function, regulation of ion transport, and cell adhesion. IPA analysis showed that these processes were likely coordinated through NF-kB, cytokine signaling, growth factors, and TNF activity. Correlation analysis with aneurysm size and risk assessment metrics showed that 4/54 genes were associated with rupture risk. These findings highlight the potential to develop predictive biomarkers from PBMCs to identify patients harboring IAs.
Collapse
Affiliation(s)
- Vincent M. Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14228, USA
| | - Haley R. Zebraski
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, USA;
| | - Hamidreza Rajabzadeh-Oghaz
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Muhammad Waqas
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - James N. Jarvis
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14203, USA;
| | - Konrad Bach
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33620, USA; (K.B.); (M.M.)
| | - Maxim Mokin
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33620, USA; (K.B.); (M.M.)
| | - Kenneth V. Snyder
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Adnan H. Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Kerry E. Poppenberg
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
47
|
Liu Q, Zhang Y, Yang J, Yang Y, Li M, Chen S, Jiang P, Wang N, Zhang Y, Liu J, Wu J, Wang S. The Relationship of Morphological-Hemodynamic Characteristics, Inflammation, and Remodeling of Aneurysm Wall in Unruptured Intracranial Aneurysms. Transl Stroke Res 2021; 13:88-99. [PMID: 34105079 DOI: 10.1007/s12975-021-00917-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022]
Abstract
Aneurysm wall remodeling (AWR) is an important pathological characteristic in aneurysm wall, which was characterized by abnormal histological structure and inflammation infiltration. In the present study, the aim is to determine the relationships of morphological-hemodynamic characteristics, inflammation, and AWR in intracranial aneurysms (IAs), as well as the pathological basis of morphological-hemodynamic predictors to achieve IA development. For this end, 113 unruptured IAs were prospectively collected from 110 cases. In addition, patient-specific computational fluid dynamics and geometry were adopted to determine hemodynamic and morphological parameters. Moreover, Hematoxylin-Eosin staining was performed to identify the AWR. By performing immunofluorescence, the inflammatory markers were detected. Masson staining was conducted to characterize the characteristics of atherosclerosis in aneurysm wall. To demonstrate the parameters regarding the AWR, a multivariate logistic analysis was conducted. Besides, correlation analyses were conducted to verify the relationship between morphological-hemodynamic and pathological characteristics. For 113 unruptured IAs, no difference was identified in baseline information. AWR was demonstrated in 92 (81.4%) IAs. To be specific, the aneurysm size (odds ratio (OR), 2.63; confidence interval (CI), 1.04-6.67; P = 0.041), size ratio (SR; OR, 1.95; CI, 1.38-2.76; P < 0.001), normalized wall shear stress average (NWSSA; OR, 0.05; CI, 0.01-0.15; P = 0.007), and relative resident time (RRT; OR, 1.28; CI, 1.07-1.53; P = 0.007) were proved as the factors of AWR. As revealed from the results of immunofluorescence, aneurysm size, SR, NWSSA, and RRT were significantly correlated with the level of inflammation in IA tissues. Furthermore, Masson staining revealed that atherosclerosis area in IA tissues and NWSSA was correlated with RRT. In this study, SR, NWSSA, and RRT were demonstrated as the risk factors of AWR. The mentioned parameters could also reflect the characteristics of inflammation and atherosclerosis in aneurysm wall as well. This study revealed that biomechanical stress and inflammation in aneurysm wall are correlated, which might suggest the pathological evidence of morphological-hemodynamic predictors for IA development.
Collapse
Affiliation(s)
- Qingyuan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yisen Zhang
- Department of Neurointervention, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China
| | - Junhua Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Maogui Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shanwen Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Pengjun Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Nuochuan Wang
- Department of Blood Transfusion, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China
| | - Yanan Zhang
- Department of Blood Transfusion, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 85411, Guangdong, China
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
48
|
Bennett P, Aguiar GBD, Silva RCD. The relationship between smoking and brain aneurysms: from formation to rupture. Rev Assoc Med Bras (1992) 2021; 67:895-899. [DOI: 10.1590/1806-9282.20210293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/02/2021] [Indexed: 11/22/2022] Open
|
49
|
Application of unruptured aneurysm scoring systems to a cohort of ruptured aneurysms: are we underestimating rupture risk? Neurosurg Rev 2021; 44:3487-3498. [PMID: 33797630 DOI: 10.1007/s10143-021-01523-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/21/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
The predictive values of current risk stratification scales such as the Unruptured Intracranial Aneurysm Treatment Score (UIATS) and the PHASES score are debatable. We evaluated these scores using a cohort of ruptured intracranial aneurysms to simulate their management recommendations had the exact same patients presented prior to rupture. A prospectively maintained database of ruptured saccular aneurysm patients presenting to our institution was used. The PHASES score was calculated for 992 consecutive patients presenting between January 2002 and December 2018, and the UIATS was calculated for 266 consecutive patients presenting between January 2013 and December 2018. A shorter period was selected for the UIATS cohort given the larger number of variables required for calculation. Clinical outcomes were compared between UIATS-recommended "observation" aneurysms and all other aneurysms. Out of 992 ruptured aneurysms, 54% had a low PHASES score (≤5). Out of the 266 ruptured aneurysms, UIATS recommendations were as follows: 68 (26%) "observation," 97 (36%) "treatment," and 101 (38%) "non-definitive." The UIATS conservative group of patients developed more SAH-related complications (78% vs. 65%, p=0.043), had a higher rate of non-home discharge (74% vs. 46%, p<0.001), and had a greater incidence of poor functional status (modified Rankin scale >2) after 12-18 months (68% vs. 51%, p=0.014). Current predictive scoring systems for unruptured aneurysms may underestimate future rupture risk and lead to more conservative management strategies in some patients. Patients that would have been recommended for conservative therapy were more likely to have a worse outcome after rupture.
Collapse
|
50
|
Raper DMS, Winkler EA, Rutledge WC, Cooke DL, Abla AA. An Update on Medications for Brain Arteriovenous Malformations. Neurosurgery 2021; 87:871-878. [PMID: 32433738 DOI: 10.1093/neuros/nyaa192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Despite a variety of treatment options for brain arteriovenous malformations (bAVMs), many lesions remain challenging to treat and present significant ongoing risk for hemorrhage. In Vitro investigations have recently led to a greater understanding of the formation, growth, and rupture of bAVMs. This has, in turn, led to the development of therapeutic targets for medications for bAVMs, some of which have begun testing in clinical trials in humans. These include bevacizumab, targeting the vascular endothelial growth factor driven angiogenic pathway; thalidomide or lenalidomide, targeting blood-brain barrier impairment; and doxycycline, targeting matrix metalloproteinase overexpression. A variety of other medications appear promising but either requires adaptation from other disease states or development from early bench studies into the clinical realm. This review aims to provide an overview of the current state of development of medications targeting bAVMs and to highlight their likely applications in the future.
Collapse
Affiliation(s)
- Daniel M S Raper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Ethan A Winkler
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - W Caleb Rutledge
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Daniel L Cooke
- Department of Radiology and Biomedical Engineering, University of California, San Francisco, San Francisco, California
| | - Adib A Abla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|