1
|
Pourahmad R, Saleki K, Zoghi S, Hajibeygi R, Ghorani H, Javanbakht A, Goodarzi S, Alijanizadeh P, Trinh K, Shastri R, Ghasemi-Rad M. Percutaneous transluminal angioplasty and stenting (PTAS) in patients with symptomatic intracranial vertebrobasilar artery stenosis (IVBS). Stroke Vasc Neurol 2025; 10:e003224. [PMID: 39168503 DOI: 10.1136/svn-2024-003224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Approximately 20% of all transient ischaemic attacks (TIAs) and ischaemic strokes occur within the posterior circulation, with vertebrobasilar stenosis identified as the cause in roughly 25% of the cases. Studies have shown that about a quarter of these patients have atherosclerotic stenosis of at least 50% of the vertebrobasilar artery. Stenosis has been shown to be associated with an increased risk of 90-day recurrent vertebrobasilar stroke, particularly in the first few weeks, which is significantly higher when compared with patients with stenosis of the anterior circulation. Therefore, aggressive treatment is important for the patient's prognosis. Stenting is emerging as a promising therapeutic strategy for persistent ischaemia events that do not respond to the best medical treatment, but it is not without complications. We systematically reviewed the literature on percutaneous transluminal angioplasty and stenting (PTAS) for intracranial vertebrobasilar artery stenosis (IVBS). METHODS PubMed, Web-of-Science and Scopus were searched upon the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to include prospective/retrospective cohort, randomised/non-randomised clinical trials and case series studies describing PTAS for IVBS. Pooled rates of intervention-related complications and outcomes were analysed with random-effect model meta-analysis using StataMP V.18.0 software. RESULTS 31 studies were found eligible which included 1928 cases. 1103 basilar artery stenosis cases were reported in 27 studies 0.65 (95% CI 0.53, 0.76), I2: 99.72%. 648 vertebral cases were reported in 18 studies 0.60 (95% CI 0.49, 0.70), I2: 97.49%. In four studies, the rate of vertebrobasilar stenosis cases calculated as a proportion of the total sample size was 0.10 (95% CI 0.05, 0. 15). Mean stenosis in 21 included studies was found to be 0.83 (95% CI 0.79, 0.88), I2: 0.00%, which shows variation of baseline stenosis between studies was minimal. 51 deaths were recorded in 24 studies. Meta-analysis of mortality showed the overall rate of mortality was 0.03 (95% CI 0.02, 0.05), I2: 44.90%. In 14 studies, symptomatic intracranial haemorrhage events were recorded at an overall rate of 0.01 (95% CI 0.00, 0.02), I2: 0.00%. Generally, a follow-up period of at least 3 months was reported in the included studies. Furthermore, procedural stroke/TIA was evaluated in seven studies, four of which reported no events (0.03 (95% CI 0.00, 0.08), I2: 20.38%). Mean time from initial symptoms to recanalisation was 23.98 (95% CI 18.56, 29.40), I2=98.8%, p=0.00 days. CONCLUSION In certain individuals with medically unresolved, severe, symptomatic and non-acute IVBS, elective vertebrobasilar PTAS appears to be both safe and effective. Various stent designs and angioplasty-assisted techniques should be taken into consideration based on the specific clinical and radiological traits of the lesions. Future randomised controlled trials are required to verify these results.
Collapse
Affiliation(s)
- Ramtin Pourahmad
- Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Science, Babol, Iran (the Islamic Republic of)
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Sina Zoghi
- Shiraz Medical School, Shiraz, Iran (the Islamic Republic of)
| | - Ramtin Hajibeygi
- Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | - Hamed Ghorani
- Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
- Advanced Diagnostic and Interventional Radiology Research Center(ADIR), Tehran University of Medical Science, Tehran, Iran
| | - Amin Javanbakht
- Abadan University of Medical Sciences, Abadan, Iran (the Islamic Republic of)
| | - Sina Goodarzi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran (the Islamic Republic of)
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Science, Babol, Iran (the Islamic Republic of)
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Kelly Trinh
- Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Ravi Shastri
- Department of radiology, Section of Vascular Interventional Radiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mohammad Ghasemi-Rad
- Department of radiology, Section of Vascular Interventional Radiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Liu Y, Li J, Xu J, Long Y, Wang Y, Liu X, Hu J, Wei Q, Luo Q, Luo F, Qin F, Yi Q, Yang Y, Dang Y, Xu J, Liu T, Yi P. m 6A-driven NAT10 translation facilitates fatty acid metabolic rewiring to suppress ferroptosis and promote ovarian tumorigenesis through enhancing ACOT7 mRNA acetylation. Oncogene 2024; 43:3498-3516. [PMID: 39390256 DOI: 10.1038/s41388-024-03185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
RNA epigenetic modifications have been implicated in cancer progression. However, the interplay between distinct RNA modifications and its role in cancer metabolism remain largely unexplored. Our study demonstrates that N-acetyltransferase 10 (NAT10) is notably upregulated in ovarian cancer (OC), correlating with poor patient prognosis. IGF2BP1 enhances the translation of NAT10 mRNA in an m6A-dependent manner in OC cells. NAT10 drives tumorigenesis by mediating N4-acetylcytidine (ac4C) modification of ACOT7 mRNA, thereby augmenting its stability and translation. This NAT10-ACOT7 axis modulates fatty acid metabolism in cancer cells and promotes tumor progression by suppressing ferroptosis. Additionally, our research identifies fludarabine as a small molecule inhibitor targeting NAT10, inhibits the ac4C modification and expression of ACOT7 mRNA. By using cell derived xenograft model and patient derived organoid model, we show that fludarabine effectively suppresses ovarian tumorigenesis. Overall, our study highlights the pivotal role of the NAT10-ACOT7 axis in the malignant cancer progression, underscoring the potential of targeting NAT10-mediated ac4C modification as a viable therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Yujiao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Jia Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
- Department of Gynecology, Guiyang Maternal and Child Health Care Hospital, Guiyang, 561000, Guizhou, China
| | - Jie Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yingfei Long
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Qinglv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Qingya Luo
- Department of Pathology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Fatao Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Fengjiang Qin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
- Department of Obstetrics and Gynecology, Chongqing University Fuling Hospital, Chongqing, 408000, China
| | - Qihua Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
- Department of Gynecology, Chongqing University Three Gorges Hospital, Chongqing, 404100, China
| | - Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| |
Collapse
|
3
|
Hu C, Zeng D, Huang Y, Deng Q, Liu S, Zhou W, Zhou W. Sodium Butyrate Ameliorates Atopic Dermatitis-Induced Inflammation by Inhibiting HDAC3-Mediated STAT1 and NF-κB Pathway. Inflammation 2024; 47:989-1001. [PMID: 38159175 DOI: 10.1007/s10753-023-01955-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
A topic dermatitis (AD) is a common chronic and recurrent skin disorder. The protective effects of sodium butyrate (NaB), a metabolite of short-chain fatty acid breakdown by the gut microbiota, have been widely reported in numerous inflammatory diseases. However, the effect of NaB treatment alone on AD has not been reported. In the current study, AD was induced in BALB/c mice with 2,4-dinitrochlorobenzene (DNCB) for 28 days with NaB (200 mg/kg) treatment by gavage. NaB attenuated AD-induced skin bleeding, scarring, dryness, abrasions and erosions. In addition, NaB inhibited inflammatory cells infiltration and attenuated the expression of inflammatory cytokines and chemokines. Mechanistically, NaB reduced histone deacetylase 3 (HDAC3) expression and NF-κB p65 nuclear translocation by increasing the lysine acetylation levels of STAT1 and NF-κB p65 in AD. Taken together, our study suggests that NaB inhibits inflammatory mediators and ameliorates AD by inhibiting HDAC3 expression, thereby upregulating STAT1 and NF-κB p65 lysine acetylation levels and reducing NF-κB p65 nuclear translocation. Therefore, this study provides a new theoretical basis for NaB in the treatment of AD.
Collapse
Affiliation(s)
- Chaoqun Hu
- Department of Gastroenterology, Chongqing General Hospital, Chongqing, 400014, China
| | - Dan Zeng
- Department of Allergy, Chongqing General Hospital, Chongqing, 400014, China
| | - Yunxia Huang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qian Deng
- Department of Gastroenterology, Chongqing General Hospital, Chongqing, 400014, China
| | - Shunan Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Weikang Zhou
- Department of Allergy, Chongqing General Hospital, Chongqing, 400014, China
| | - Wei Zhou
- Department of Allergy, Chongqing General Hospital, Chongqing, 400014, China.
| |
Collapse
|
4
|
Wu Z, Liang J, Zhu S, Liu N, Zhao M, Xiao F, Li G, Yu C, Jin C, Ma J, Sun T, Zhu P. Single-cell analysis of graft-infiltrating host cells identifies caspase-1 as a potential therapeutic target for heart transplant rejection. Front Immunol 2023; 14:1251028. [PMID: 37781362 PMCID: PMC10535112 DOI: 10.3389/fimmu.2023.1251028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Aims Understanding the cellular mechanisms underlying early allograft rejection is crucial for the development of effective immunosuppressant strategies. This study aims to investigate the cellular composition of graft-infiltrating cells during the early rejection stage at a single-cell level and identify potential therapeutic targets. Methods A heterotopic heart transplant model was established using enhanced green fluorescent protein (eGFP)-expressing mice as recipients of allogeneic or syngeneic grafts. At 3 days post-transplant, eGFP-positive cells infiltrating the grafts were sorted and subjected to single-cell RNA-seq analysis. Potential molecular targets were evaluated by assessing graft survival and functions following administration of various pharmacological inhibitors. Results A total of 27,053 cells recovered from syngrafts and allografts were classified into 20 clusters based on expression profiles and annotated with a reference dataset. Innate immune cells, including monocytes, macrophages, neutrophils, and dendritic cells, constituted the major infiltrating cell types (>90%) in the grafts. Lymphocytes, fibroblasts, and endothelial cells represented a smaller population. Allografts exhibited significantly increased proportions of monocyte-derived cells involved in antigen processing and presentation, as well as activated lymphocytes, as compared to syngrafts. Differential expression analysis revealed upregulation of interferon activation-related genes in the innate immune cells infiltrating allografts. Pro-inflammatory polarization gene signatures were also enriched in these infiltrating cells of allografts. Gene profiling and intercellular communication analysis identified natural killer cells as the primary source of interferon-γ signaling, activating inflammatory monocytes that displayed strong signals of major histocompatibility complexes and co-stimulatory molecules. The inflammatory response was also associated with promoted T cell proliferation and activation in allografts during the early transplant stages. Notably, caspase-1 exhibited specific upregulation in inflammatory monocytes in response to interferon signaling. The regulon analysis also revealed a significant enrichment of interferon-related motifs within the transcriptional regulatory network of downstream inflammatory genes including caspase-1. Remarkably, pharmacological inhibition of caspase-1 was shown to reduce immune infiltration, prevent acute graft rejection, and improve cardiac contractile function. Conclusion The single-cell transcriptional profile highlighted the crucial role of caspase-1 in interferon-mediated inflammatory monocytes infiltrating heart transplants, suggesting its potential as a therapeutic target for attenuating rejection.
Collapse
Affiliation(s)
- Zhichao Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Jialiang Liang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Nanbo Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Mingyi Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Fei Xiao
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Guanhua Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Changjiang Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Chengyu Jin
- Department of Thoracic Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Jinshan Ma
- Department of Thoracic Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Tucheng Sun
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Uruski P, Matuszewska J, Leśniewska A, Rychlewski D, Niklas A, Mikuła-Pietrasik J, Tykarski A, Książek K. An integrative review of nonobvious puzzles of cellular and molecular cardiooncology. Cell Mol Biol Lett 2023; 28:44. [PMID: 37221467 DOI: 10.1186/s11658-023-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Oncologic patients are subjected to four major treatment types: surgery, radiotherapy, chemotherapy, and immunotherapy. All nonsurgical forms of cancer management are known to potentially violate the structural and functional integrity of the cardiovascular system. The prevalence and severity of cardiotoxicity and vascular abnormalities led to the emergence of a clinical subdiscipline, called cardiooncology. This relatively new, but rapidly expanding area of knowledge, primarily focuses on clinical observations linking the adverse effects of cancer therapy with deteriorated quality of life of cancer survivors and their increased morbidity and mortality. Cellular and molecular determinants of these relations are far less understood, mainly because of several unsolved paths and contradicting findings in the literature. In this article, we provide a comprehensive view of the cellular and molecular etiology of cardiooncology. We pay particular attention to various intracellular processes that arise in cardiomyocytes, vascular endothelial cells, and smooth muscle cells treated in experimentally-controlled conditions in vitro and in vivo with ionizing radiation and drugs representing diverse modes of anti-cancer activity.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Aleksandra Leśniewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland.
| |
Collapse
|
6
|
Reolizo LM, Williams H, Wadey K, Frankow A, Li Z, Gaston K, Jayaraman PS, Johnson JL, George SJ. Inhibition of Intimal Thickening By PRH (Proline-Rich Homeodomain) in Mice. Arterioscler Thromb Vasc Biol 2023; 43:456-473. [PMID: 36700427 PMCID: PMC9944393 DOI: 10.1161/atvbaha.122.318367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Late vein graft failure is caused by intimal thickening resulting from endothelial cell (EC) damage and inflammation which promotes vascular smooth muscle cell (VSMC) dedifferentiation, migration, and proliferation. Nonphosphorylatable PRH (proline-rich homeodomain) S163C:S177C offers enhanced stability and sustained antimitotic effect. Therefore, we investigated whether adenovirus-delivered PRH S163C:S177C protein attenuates intimal thickening via VSMC phenotype modification without detrimental effects on ECs. METHODS PRH S163C:S177C was expressed in vitro (human saphenous vein-VSMCs and human saphenous vein-ECs) and in vivo (ligated mouse carotid arteries) by adenoviruses. Proliferation, migration, and apoptosis were quantified and phenotype was assessed using Western blotting for contractile filament proteins and collagen gel contraction. EC inflammation was quantified using VCAM (vascular cell adhesion protein)-1, ICAM (intercellular adhesion molecule)-1, interleukin-6, and monocyte chemotactic factor-1 measurement and monocyte adhesion. Next Generation Sequencing was utilized to identify novel downstream mediators of PRH action and these and intimal thickening were investigated in vivo. RESULTS PRH S163C:S177C inhibited proliferation, migration, and apoptosis and promoted contractile phenotype (enhanced contractile filament proteins and collagen gel contraction) compared with virus control in human saphenous vein-VSMCs. PRH S163C:S177C expression in human saphenous vein-ECs significantly reduced apoptosis, without affecting cell proliferation and migration, while reducing TNF (tumor necrosis factor)-α-induced VCAM-1 and ICAM-1 and monocyte adhesion and suppressing interleukin-6 and monocyte chemotactic factor-1 protein levels. PRH S163C:S177C expression in ligated murine carotid arteries significantly impaired carotid artery ligation-induced neointimal proliferation and thickening without reducing endothelial coverage. Next Generation Sequencing revealed STAT-1 (signal transducer and activator of transcription 1) and HDAC-9 (histone deacetylase 9) as mediators of PRH action and was supported by in vitro and in vivo analyses. CONCLUSIONS We observed PRH S163C:S177C attenuated VSMC proliferation, and migration and enhanced VSMC differentiation at least in part via STAT-1 and HDAC-9 signaling while promoting endothelial repair and anti-inflammatory properties. These findings highlight the potential for PRH S163C:S177C to preserve endothelial function whilst suppressing intimal thickening, and reducing late vein graft failure.
Collapse
Affiliation(s)
- Lien M. Reolizo
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Helen Williams
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Kerry Wadey
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Aleksandra Frankow
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Ze Li
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Kevin Gaston
- School of Medicine and Biodiscovery Institute, Faculty of Medicine & Health Sciences, University of Nottingham, UK (K.G., P.-S.J.)
| | - Padma-Sheela Jayaraman
- School of Medicine and Biodiscovery Institute, Faculty of Medicine & Health Sciences, University of Nottingham, UK (K.G., P.-S.J.)
| | - Jason L. Johnson
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Sarah J. George
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| |
Collapse
|
7
|
Jiang Y, Qian HY. Transcription factors: key regulatory targets of vascular smooth muscle cell in atherosclerosis. Mol Med 2023; 29:2. [PMID: 36604627 PMCID: PMC9817296 DOI: 10.1186/s10020-022-00586-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS), leading to gradual occlusion of the arterial lumen, refers to the accumulation of lipids and inflammatory debris in the arterial wall. Despite therapeutic advances over past decades including intervention or surgery, atherosclerosis is still the most common cause of cardiovascular diseases and the main mechanism of death and disability worldwide. Vascular smooth muscle cells (VSMCs) play an imperative role in the occurrence of atherosclerosis and throughout the whole stages. In the past, there was a lack of comprehensive understanding of VSMCs, but the development of identification technology, including in vivo single-cell sequencing technology and lineage tracing with the CreERT2-loxP system, suggests that VSMCs have remarkable plasticity and reevaluates well-established concepts about the contribution of VSMCs. Transcription factors, a kind of protein molecule that specifically recognizes and binds DNA upstream promoter regions or distal enhancer DNA elements, play a key role in the transcription initiation of the coding genes and are necessary for RNA polymerase to bind gene promoters. In this review, we highlight that, except for environmental factors, VSMC genes are transcriptionally regulated through complex interactions of multiple conserved cis-regulatory elements and transcription factors. In addition, through a series of transcription-related regulatory processes, VSMCs could undergo phenotypic transformation, proliferation, migration, calcification and apoptosis. Finally, enhancing or inhibiting transcription factors can regulate the development of atherosclerotic lesions, and the downstream molecular mechanism of transcriptional regulation has also been widely studied.
Collapse
Affiliation(s)
- Yu Jiang
- grid.506261.60000 0001 0706 7839Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037 China
| | - Hai-Yan Qian
- grid.506261.60000 0001 0706 7839Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037 China
| |
Collapse
|
8
|
Das R, Giri J, K Paul P, Froelich N, Chinnadurai R, McCoy S, Bushman W, Galipeau J. A STAT5-Smad3 dyad regulates adipogenic plasticity of visceral adipose mesenchymal stromal cells during chronic inflammation. NPJ Regen Med 2022; 7:41. [PMID: 36045134 PMCID: PMC9433418 DOI: 10.1038/s41536-022-00244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
Adipogenic differentiation of visceral adipose tissue-resident multipotent mesenchymal stromal cells (VA-MSC) into adipocytes is metabolically protective. Under chronic inflammatory stress, this neoadipogenesis process is suppressed by various pro-inflammatory cytokines and growth factors. However, the underlying mechanism(s) regulating VA-MSC plasticity remains largely unexplored. Using an adipogenic differentiation screen, we identified IFNγ and TGFβ as key inhibitors of primary human VA-MSC differentiation. Further studies using human and mouse VA-MSCs and a chronic high-fat diet-fed murine model revealed that IFNγ/JAK2-activated STAT5 transcription factor is a central regulator of VA-MSC differentiation under chronic inflammatory conditions. Furthermore, our results indicate that under such conditions, IFNγ-activated STAT5 and TGFβ-activated Smad3 physically interact via Smad4. This STAT5-Smad4-Smad3 complex plays a crucial role in preventing the early adipogenic commitment of VA-MSCs by suppressing key pro-adipogenic transcription factors, including CEBPδ, CEBPα, and PPARγ. Genetic or pharmacological disruption of IFNγ-TGFβ synergy by inhibiting either STAT5 or Smad3 rescued adipogenesis under chronic inflammatory stress. Overall, our study delineates a central mechanism of MSC plasticity regulation by the convergence of multiple inflammatory signaling pathways.
Collapse
Affiliation(s)
- Rahul Das
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jayeeta Giri
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Pradyut K Paul
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Nicole Froelich
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Raghavan Chinnadurai
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Medicine, Mercer University, Savannah, GA, 31404, USA
| | - Sara McCoy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Wade Bushman
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
9
|
La Manna S, Leone M, Mercurio FA, Florio D, Marasco D. Structure-Activity Relationship Investigations of Novel Constrained Chimeric Peptidomimetics of SOCS3 Protein Targeting JAK2. Pharmaceuticals (Basel) 2022; 15:ph15040458. [PMID: 35455455 PMCID: PMC9031227 DOI: 10.3390/ph15040458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/03/2022] Open
Abstract
SOCS3 (suppressor of cytokine signaling 3) protein suppresses cytokine-induced inflammation and its deletion in neurons or immune cells increases the pathological growth of blood vessels. Recently, we designed several SOCS3 peptidomimetics by assuming as template structures the interfacing regions of the ternary complex constituted by SOCS3, JAK2 (Janus Kinase 2) and gp130 (glycoprotein 130) proteins. A chimeric peptide named KIRCONG chim, including non-contiguous regions demonstrated able to bind to JAK2 and anti-inflammatory and antioxidant properties in VSMCs (vascular smooth muscle cells). With the aim to improve drug-like features of KIRCONG, herein we reported novel cyclic analogues bearing different linkages. In detail, in two of them hydrocarbon cycles of different lengths were inserted at positions i/i+5 and i/i+7 to improve helical conformations of mimetics. Structural features of cyclic compounds were investigated by CD (Circular Dichroism) and NMR (Nuclear Magnetic Resonance) spectroscopies while their ability to bind to catalytic domain of JAK2 was assessed through MST (MicroScale Thermophoresis) assay as well as their stability in biological serum. Overall data indicate a crucial role exerted by the length and the position of the cycle within the chimeric structure and could pave the way to the miniaturization of SOCS3 protein for therapeutic aims.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, Research Center on Bioactive Peptides (CIRPEB), University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.)
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging (CNR), 80145 Naples, Italy; (M.L.); (F.A.M.)
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging (CNR), 80145 Naples, Italy; (M.L.); (F.A.M.)
| | - Daniele Florio
- Department of Pharmacy, Research Center on Bioactive Peptides (CIRPEB), University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.)
| | - Daniela Marasco
- Department of Pharmacy, Research Center on Bioactive Peptides (CIRPEB), University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.)
- Correspondence: ; Tel.: +39-0812534607
| |
Collapse
|
10
|
La Manna S, De Benedictis I, Marasco D. Proteomimetics of Natural Regulators of JAK-STAT Pathway: Novel Therapeutic Perspectives. Front Mol Biosci 2022; 8:792546. [PMID: 35047557 PMCID: PMC8762217 DOI: 10.3389/fmolb.2021.792546] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
The JAK-STAT pathway is a crucial cellular signaling cascade, including an intricate network of Protein-protein interactions (PPIs) responsible for its regulation. It mediates the activities of several cytokines, interferons, and growth factors and transduces extracellular signals into transcriptional programs to regulate cell growth and differentiation. It is essential for the development and function of both innate and adaptive immunities, and its aberrant deregulation was highlighted in neuroinflammatory diseases and in crucial mechanisms for tumor cell recognition and tumor-induced immune escape. For its involvement in a multitude of biological processes, it can be considered a valuable target for the development of drugs even if a specific focus on possible side effects associated with its inhibition is required. Herein, we review the possibilities to target JAK-STAT by focusing on its natural inhibitors as the suppressor of cytokine signaling (SOCS) proteins. This protein family is a crucial checkpoint inhibitor in immune homeostasis and a valuable target in immunotherapeutic approaches to cancer and immune deficiency disorders.
Collapse
Affiliation(s)
| | | | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
11
|
He L, Gao K, Liu H, Wang J, Li X, He C. Smooth muscle cell-specific knockout of interferon gamma (IFN-γ) receptor attenuates intimal hyperplasia via STAT1-KLF4 activation. Life Sci 2021:119651. [PMID: 34048810 DOI: 10.1016/j.lfs.2021.119651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Intimal hyperplasia is a main contributor to in-stent restenosis. Previous researches have shown that interferon-gamma (IFN-γ), a pleiotropic pro-inflammatory factor, plays a pathological role in intimal hyperplasia. However, the specific role and molecular mechanism of vascular smooth muscle cells (VSMCs)-derived IFN-γ receptor in intimal hyperplasia remains unknown. METHODS We examined the distribution of IFN-γ receptor in human restenosis arteries. Then, the role of IFN-γ receptor in intimal hyperplasia was detected using VSMC-specific IFN-γ receptor-knock out carotid ligation injury models. We performed immunostaining, transwell assay and EdU staining to identify the role of IFN-γ in VSMCs proliferation and migration. The effect of IFN-γ on VSMCs phenotype switching was also investigated. Finally, we evaluated whether the mechanism of IFN-γ on intimal hyperplasia is STAT1-KLF4 dependent. RESULTS The distribution of IFN-γ receptor in human restenosis arteries with VSMC-rich neointima is eventually upregulated. Specific deletion of IFN-γ receptor exhibits thinner intima and lesser proliferating VSMCs. In vitro, treatment with IFN-γ promotes human aortic VSMC (HAVSMCs) proliferation and migration, whereas specifically knock out IFN-γ receptor results in the opposite effect. Deficiency of IFN-γ receptor regulates VSMCs phenotypic switching, such as upregulated contractile markers and downregulated proliferation markers. Mechanistic studies suggest that ablation of IFN-γ receptor prevents VSMCs proliferation, migration and dedifferentiation via STAT1-KLF4 activation. CONCLUSION These results reveal that knockout of VSMC-derived IFN-γ receptor potentiates neointimal hyperplasia by preventing VSMCs proliferation, migration and dedifferentiation. Our finding implies that targeting IFN-γ-STAT1-KLF4 signaling could provide a new therapeutic strategy to attenuate vessel restenosis.
Collapse
Affiliation(s)
- Lu He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Kun Gao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Hongxia Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xinwei Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Chaoyong He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
12
|
Örd T, Õunap K, Stolze LK, Aherrahrou R, Nurminen V, Toropainen A, Selvarajan I, Lönnberg T, Aavik E, Ylä-Herttuala S, Civelek M, Romanoski CE, Kaikkonen MU. Single-Cell Epigenomics and Functional Fine-Mapping of Atherosclerosis GWAS Loci. Circ Res 2021; 129:240-258. [PMID: 34024118 PMCID: PMC8260472 DOI: 10.1161/circresaha.121.318971] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Genome-wide association studies have identified hundreds of loci associated with coronary artery disease (CAD). Many of these loci are enriched in cisregulatory elements but not linked to cardiometabolic risk factors nor to candidate causal genes, complicating their functional interpretation.
Collapse
Affiliation(s)
- Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Kadri Õunap
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Lindsey K. Stolze
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona, Tucson, AZ (L.K.S., C.E.R.)
| | - Redouane Aherrahrou
- Center for Public Health Genomics (R.A., M.C.), University of Virginia, Charlottesville
| | - Valtteri Nurminen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Anu Toropainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Ilakya Selvarajan
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Finland (T.L.)
| | - Einari Aavik
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Mete Civelek
- Center for Public Health Genomics (R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (M.C.), University of Virginia, Charlottesville
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona, Tucson, AZ (L.K.S., C.E.R.)
| | - Minna U. Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| |
Collapse
|
13
|
Dell'Anno I, Martin SA, Barbarino M, Melani A, Silvestri R, Bottaro M, Paolicchi E, Corrado A, Cipollini M, Melaiu O, Giordano A, Luzzi L, Gemignani F, Landi S. Drug-repositioning screening identified fludarabine and risedronic acid as potential therapeutic compounds for malignant pleural mesothelioma. Invest New Drugs 2020; 39:644-657. [PMID: 33300108 PMCID: PMC8068714 DOI: 10.1007/s10637-020-01040-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Objectives Malignant pleural mesothelioma (MPM) is an occupational disease mainly due to asbestos exposure. Effective therapies for MPM are lacking, making this tumour type a fatal disease. Materials and Methods In order to meet this need and in view of a future "drug repositioning" approach, here we screened five MPM (Mero-14, Mero-25, IST-Mes2, NCI-H28 and MSTO-211H) and one SV40-immortalized mesothelial cell line (MeT-5A) as a non-malignant model, with a library of 1170 FDA-approved drugs. Results Among several potential compounds, we found that fludarabine (F-araA) and, to a lesser extent, risedronic acid (RIS) were cytotoxic in MPM cells, in comparison to the non-malignant Met-5A cells. In particular, F-araA reduced the proliferation and the colony formation ability of the MPM malignant cells, in comparison to the non-malignant control cells, as demonstrated by proliferation and colony formation assays, in addition to measurement of the phospho-ERK/total-ERK ratio. We have shown that the response to F-araA was not dependent upon the expression of DCK and NT5E enzymes, nor upon their functional polymorphisms (rs11544786 and rs2295890, respectively). Conclusion This drug repositioning screening approach has identified that F-araA could be therapeutically active against MPM cells, in addition to other tumour types, by inhibiting STAT1 expression and nucleic acids synthesis. Further experiments are required to fully investigate this.
Collapse
Affiliation(s)
- Irene Dell'Anno
- Department of Biology, Genetic Unit, University of Pisa, 56126, Pisa, Italy
| | - Sarah A Martin
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Alessandra Melani
- Department of Biology, Genetic Unit, University of Pisa, 56126, Pisa, Italy
| | - Roberto Silvestri
- Department of Biology, Genetic Unit, University of Pisa, 56126, Pisa, Italy
| | - Maria Bottaro
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Elisa Paolicchi
- Department of Biology, Genetic Unit, University of Pisa, 56126, Pisa, Italy
| | - Alda Corrado
- Department of Biology, Genetic Unit, University of Pisa, 56126, Pisa, Italy
| | - Monica Cipollini
- Department of Biology, Genetic Unit, University of Pisa, 56126, Pisa, Italy
| | - Ombretta Melaiu
- Department of Biology, Genetic Unit, University of Pisa, 56126, Pisa, Italy.,Immuno-Oncology Laboratory, Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165, Rome, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Luca Luzzi
- Department of Medicine, Surgery and Neurosciences, Siena University Hospital, 53100, Siena, Italy
| | - Federica Gemignani
- Department of Biology, Genetic Unit, University of Pisa, 56126, Pisa, Italy.
| | - Stefano Landi
- Department of Biology, Genetic Unit, University of Pisa, 56126, Pisa, Italy
| |
Collapse
|
14
|
La Manna S, Lopez-Sanz L, Bernal S, Jimenez-Castilla L, Prieto I, Morelli G, Gomez-Guerrero C, Marasco D. Antioxidant Effects of PS5, a Peptidomimetic of Suppressor of Cytokine Signaling 1, in Experimental Atherosclerosis. Antioxidants (Basel) 2020; 9:antiox9080754. [PMID: 32824091 PMCID: PMC7465353 DOI: 10.3390/antiox9080754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The chronic activation of the Janus kinase/signal transducer and activator of the transcription (JAK/STAT) pathway is linked to oxidative stress, inflammation and cell proliferation. Suppressors of cytokine signaling (SOCS) proteins negatively regulate the JAK/STAT, and SOCS1 possesses a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Several studies showed that KIR-SOCS1 mimetics can be considered valuable therapeutics in several disorders (e.g., diabetes, neurological disorders and atherosclerosis). Herein, we investigated the antioxidant and atheroprotective effects of PS5, a peptidomimetic of KIR-SOCS1, both in vitro (vascular smooth muscle cells and macrophages) and in vivo (atherosclerosis mouse model) by analyzing gene expression, intracellular O2•− production and atheroma plaque progression and composition. PS5 was revealed to be able to attenuate NADPH oxidase (NOX1 and NOX4) and pro-inflammatory gene expression, to upregulate antioxidant genes and to reduce atheroma plaque size, lipid content and monocyte/macrophage accumulation. These findings confirm that KIR-SOCS1-based drugs could be excellent antioxidant agents to contrast atherosclerosis.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples “Federico II”, 80134 Naples, Italy; (S.L.M.); (G.M.)
- Renal and Vascular Inflammation Group, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), 28040 Madrid, Spain; (L.L.-S.); (S.B.); (L.J.-C.); (I.P.)
| | - Laura Lopez-Sanz
- Renal and Vascular Inflammation Group, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), 28040 Madrid, Spain; (L.L.-S.); (S.B.); (L.J.-C.); (I.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Susana Bernal
- Renal and Vascular Inflammation Group, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), 28040 Madrid, Spain; (L.L.-S.); (S.B.); (L.J.-C.); (I.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Luna Jimenez-Castilla
- Renal and Vascular Inflammation Group, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), 28040 Madrid, Spain; (L.L.-S.); (S.B.); (L.J.-C.); (I.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Ignacio Prieto
- Renal and Vascular Inflammation Group, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), 28040 Madrid, Spain; (L.L.-S.); (S.B.); (L.J.-C.); (I.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Giancarlo Morelli
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples “Federico II”, 80134 Naples, Italy; (S.L.M.); (G.M.)
| | - Carmen Gomez-Guerrero
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
- Correspondence: (C.G.-G.); (D.M.)
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples “Federico II”, 80134 Naples, Italy; (S.L.M.); (G.M.)
- Correspondence: (C.G.-G.); (D.M.)
| |
Collapse
|
15
|
Zhu L, Wang F, Yang H, Zhang J, Chen S. Low shear stress damages endothelial function through STAT1 in endothelial cells (ECs). J Physiol Biochem 2020; 76:147-157. [PMID: 32037480 DOI: 10.1007/s13105-020-00729-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/21/2020] [Indexed: 01/04/2023]
Abstract
Low shear stress (LSS) occurs in areas where atherosclerosis is prevalent. Many studies have revealed that signal transducer and activator of transcription 1 (STAT1) plays a significant role in cardiovascular disease. Nonetheless, the mechanism underlying the connection between STAT1 and LSS is not fully understood. The purpose of this study was to investigate the link between LSS and STAT1 in endothelial cells (ECs). Monolayer endothelial cells were stimulated or not stimulated by LSS. Protein expression and phosphorylation levels were determined by western blotting. Immunofluorescence was used to compare the protein expression differences in bifurcated and non-bifurcated human coronary arteries. Endothelial function was assessed by using a dihydroethidium assay, real-time PCR, western blotting and nitric oxide (NO)-sensitive fluorophore. Results showed that STAT1 played a key role in LSS-induced endothelium damage. Firstly, LSS activated STAT1, as evidenced by LSS-induced STAT1 (Tyr701) phosphorylation in ECs in vitro and the increased intimal STAT1 expression at bifurcation of human coronary arteries. Secondly, LSS-induced STAT1 phosphorylation was positively regulated by inhibitor of nuclear factor kappa-B kinase ε (IKKε). Additionally, LSS-promoted inflammatory factor expression was markedly reversed by silencing STAT1 (siSTAT1). LSS also increased reactive oxygen species (ROS) level and decreased endogenous NO release: however, siSTAT1 reversed these adverse effects through upregulating the antioxidant gene heme oxygenase-1(HO-1) and downregulating endothelial nitric oxide synthase (eNOS) Thr495 phosphorylation. According to our results, LSS-mediated EC injury may be associated with the activation of STAT1. Strategies designed to reduce STAT1 expression or inhibit STAT1 activation may be effective approaches for reducing the incidence of atherosclerosis.
Collapse
Affiliation(s)
- Linlin Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongfeng Yang
- Department of intensive Care Unit, Affiliated People' Hospital of Jiangsu University, Zhenjiang, China
| | - Junjie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
p-STAT1 regulates the influenza A virus replication and inflammatory response in vitro and vivo. Virology 2019; 537:110-120. [PMID: 31493649 DOI: 10.1016/j.virol.2019.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022]
Abstract
Influenza A virus infection activates various intracellular signaling pathways, which is mediated by the transcription factors. Here, a quantitative phosphoproteomic analysis of A549 cells after infection with influenza A virus (H5N1) was performed and we found that the transcription factor STAT1 was highly activated. Unexpectedly, upon inhibition of p-STAT1, titers of progeny virus and viral protein synthesis were both reduced. The STAT1 inhibitor Fludarabine (FLUD) inhibited an early progeny step in viral infection and reduced the levels of influenza virus genomic RNA (vRNA). Concomitantly, there was reduced expression of inflammatory cytokines in p-STAT1 inhibited cells. In vivo, suppression of p-STAT1 improved the survival of H5N1 virus-infected mice, reduced the pulmonary inflammatory response and viral burden. Thus, our data demonstrated a critical role for p-STAT1 in influenza virus replication and inflammatory responses. We speculate that STAT1 is an example of a putative antiviral signaling component to support effective replication.
Collapse
|
17
|
Chen Q, Lv J, Yang W, Xu B, Wang Z, Yu Z, Wu J, Yang Y, Han Y. Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics 2019; 9:6424-6442. [PMID: 31588227 PMCID: PMC6771242 DOI: 10.7150/thno.35528] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is the main pathological basis of ischemic cardiovascular and cerebrovascular diseases and has attracted more attention in recent years. Multiple studies have demonstrated that the signal transducer and activator of transcription 3 (STAT3) plays essential roles in the process of atherosclerosis. Moreover, aberrant STAT3 activation has been shown to contribute to the occurrence and development of atherosclerosis. Therefore, the study of STAT3 inhibitors has gradually become a focal research topic. In this review, we describe the crucial roles of STAT3 in endothelial cell dysfunction, macrophage polarization, inflammation, and immunity during atherosclerosis. STAT3 in mitochondria is mentioned as well. Then, we present a summary and classification of STAT3 inhibitors, which could offer potential treatment strategies for atherosclerosis. Furthermore, we enumerate some of the problems that have interfered with the development of mature therapies utilizing STAT3 inhibitors to treat atherosclerosis. Finally, we propose ideas that may help to solve these problems to some extent. Collectively, this review may be useful for developing future STAT3 inhibitor therapies for atherosclerosis.
Collapse
|
18
|
Antonczyk A, Krist B, Sajek M, Michalska A, Piaszyk-Borychowska A, Plens-Galaska M, Wesoly J, Bluyssen HAR. Direct Inhibition of IRF-Dependent Transcriptional Regulatory Mechanisms Associated With Disease. Front Immunol 2019; 10:1176. [PMID: 31178872 PMCID: PMC6543449 DOI: 10.3389/fimmu.2019.01176] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/09/2019] [Indexed: 12/24/2022] Open
Abstract
Interferon regulatory factors (IRFs) are a family of homologous proteins that regulate the transcription of interferons (IFNs) and IFN-induced gene expression. As such they are important modulating proteins in the Toll-like receptor (TLR) and IFN signaling pathways, which are vital elements of the innate immune system. IRFs have a multi-domain structure, with the N-terminal part acting as a DNA binding domain (DBD) that recognizes a DNA-binding motif similar to the IFN-stimulated response element (ISRE). The C-terminal part contains the IRF-association domain (IAD), with which they can self-associate, bind to IRF family members or interact with other transcription factors. This complex formation is crucial for DNA binding and the commencing of target-gene expression. IRFs bind DNA and exert their activating potential as homo or heterodimers with other IRFs. Moreover, they can form complexes (e.g., with Signal transducers and activators of transcription, STATs) and collaborate with other co-acting transcription factors such as Nuclear factor-κB (NF-κB) and PU.1. In time, more of these IRF co-activating mechanisms have been discovered, which may play a key role in the pathogenesis of many diseases, such as acute and chronic inflammation, autoimmune diseases, and cancer. Detailed knowledge of IRFs structure and activating mechanisms predisposes IRFs as potential targets for inhibition in therapeutic strategies connected to numerous immune system-originated diseases. Until now only indirect IRF modulation has been studied in terms of antiviral response regulation and cancer treatment, using mainly antisense oligonucleotides and siRNA knockdown strategies. However, none of these approaches so far entered clinical trials. Moreover, no direct IRF-inhibitory strategies have been reported. In this review, we summarize current knowledge of the different IRF-mediated transcriptional regulatory mechanisms and how they reflect the diverse functions of IRFs in homeostasis and in TLR and IFN signaling. Moreover, we present IRFs as promising inhibitory targets and propose a novel direct IRF-modulating strategy employing a pipeline approach that combines comparative in silico docking to the IRF-DBD with in vitro validation of IRF inhibition. We hypothesize that our methodology will enable the efficient identification of IRF-specific and pan-IRF inhibitors that can be used for the treatment of IRF-dependent disorders and malignancies.
Collapse
Affiliation(s)
- Aleksandra Antonczyk
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Bart Krist
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Sajek
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Agata Michalska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Piaszyk-Borychowska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Martyna Plens-Galaska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
19
|
Torella D, Iaconetti C, Tarallo R, Marino F, Giurato G, Veneziano C, Aquila I, Scalise M, Mancuso T, Cianflone E, Valeriano C, Marotta P, Tammè L, Vicinanza C, Sasso FC, Cozzolino D, Torella M, Weisz A, Indolfi C. miRNA Regulation of the Hyperproliferative Phenotype of Vascular Smooth Muscle Cells in Diabetes. Diabetes 2018; 67:2554-2568. [PMID: 30257973 DOI: 10.2337/db17-1434] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 09/14/2018] [Indexed: 02/05/2023]
Abstract
Harnessing the mechanisms underlying the exacerbated vascular remodeling in diabetes mellitus (DM) is pivotal to prevent the high toll of vascular diseases in patients with DM. miRNA regulates vascular smooth muscle cell (VSMC) phenotypic switch. However, miRNA modulation of the detrimental diabetic VSMC phenotype is underexplored. Streptozotocin-induced type 1 DM (T1DM) Wistar rats and type 2 DM (T2DM) Zucker rats underwent right carotid artery experimental angioplasty, and global miRNA/mRNA expression profiling was obtained by RNA sequencing (RNA-Seq). Two days after injury, a set of six miRNAs were found to be uniquely downregulated or upregulated in VSMCs both in T1DM and T2DM. Among these miRNAs, miR-29c and miR-204 were the most significantly misregulated in atherosclerotic plaques from patients with DM. miR-29c overexpression and miR-204 inhibition per se attenuated VSMC phenotypic switch in DM. Concomitant miR-29c overexpression and miR-204 inhibition fostered an additive reduction in VSMC proliferation. Epithelial membrane protein 2 (Emp2) and Caveolin-1 (Cav1) mRNAs were identified as direct targets of miR-29c and miR-204, respectively. Importantly, contemporary miR-29c overexpression and miR-204 inhibition in the injured artery robustly reduced arterial stenosis in DM rats. Thus, contemporaneous miR-29c activation and miR-204 inhibition in DM arterial tissues is necessary and sufficient to prevent the exaggerated VSMC growth upon injury.
Collapse
MESH Headings
- Animals
- Cell Proliferation/physiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Humans
- Male
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Daniele Torella
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Claudio Iaconetti
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Salerno, Italy
| | - Fabiola Marino
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Salerno, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Salerno, Italy
| | - Claudia Veneziano
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Iolanda Aquila
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mariangela Scalise
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Teresa Mancuso
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Eleonora Cianflone
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Chiara Valeriano
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Pina Marotta
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Laura Tammè
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Carla Vicinanza
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Ferdinando C Sasso
- Department of Internal and Experimental Medicine "Magrassi-Lanzara," University of Campania "L. Vanvitelli," Naples, Italy
| | - Domenico Cozzolino
- Department of Internal and Experimental Medicine "Magrassi-Lanzara," University of Campania "L. Vanvitelli," Naples, Italy
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania "L. Vanvitelli," Naples, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Salerno, Italy
| | - Ciro Indolfi
- Cardiovascular Institute, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
20
|
The Clinical Significance of Changes in the Expression Levels of MicroRNA-1 and Inflammatory Factors in the Peripheral Blood of Children with Acute-Stage Asthma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7632487. [PMID: 30046607 PMCID: PMC6038680 DOI: 10.1155/2018/7632487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/18/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
This study assessed the changes and clinical significance of microRNA-1 (miR-1) and inflammatory factors in the peripheral blood of children with acute-stage asthma. 100 children with acute-stage asthma (study group) and 100 healthy children (control group) were enrolled. For all enrolled children, the peripheral blood levels of miR-1, interleukin-4 (IL-4), IL-5, IL-8, tumor necrosis factor-alpha (TNF-α), and interferon-γ (IFN-γ) were measured. The relative expression levels of miR-1 and IFN-γ in the peripheral blood of children in the study group were significantly lower than those in the control group, whereas expression levels of IL-4, IL-5, IL-8, and TNF-α were significantly higher. Moreover, these levels changed to a greater extent in patients with severe disease (P < 0.05). Further analyses showed that the miR-1 expression level positively correlated with IFN-γ and negatively correlated with IL-4, IL-5, IL-8, and TNF-α expression levels (P < 0.05). ROC curve analysis to identify diagnostic specificity and sensitivity showed that, for diagnosing exacerbation in asthma, the area under the curve (AUC) for miR-1 was the highest (AUC = 0.900, P < 0.05) of all tested markers; this held true for diagnosing severe asthma as well (AUC = 0.977, P < 0.05). Compared to healthy children, children with acute-stage asthma had a low miR-1 expression level and a Th1/Th2 imbalance in their peripheral blood. The changes were closely related, became more exaggerated with an increase in disease severity, and could be used as auxiliary variables for diagnosing asthma exacerbation and evaluating disease severity.
Collapse
|
21
|
Sasidharan Nair V, Toor SM, Ali BR, Elkord E. Dual inhibition of STAT1 and STAT3 activation downregulates expression of PD-L1 in human breast cancer cells. Expert Opin Ther Targets 2018; 22:547-557. [PMID: 29702007 DOI: 10.1080/14728222.2018.1471137] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Breast cancer is the most commonly diagnosed cancer, and it is a leading cause of cancer-related deaths in females worldwide. Triple-negative breast cancer (TNBC) constitutes 15% of breast cancer and shows distinct metastasis profiles with poor prognosis. Strong PD-L1 expression has been observed in some tumors, supporting their escape from immune surveillance. Targeting PD-L1 could be a promising therapeutic approach in breast cancer patients. We investigated potential molecular mechanisms for constitutive expression of PD-L1 by inhibiting upstream STAT1 and STAT3 signals. METHODS PD-L1 expression in three breast cancer cell lines was measured using quantitative PCR and western blotting. Activation of STAT1 and STAT3 was blocked using pharmacological inhibitors and siRNA. The mechanism underlying the constitutive expression of PD-L1 was investigated using ChIP and co-immunoprecipitation assays. RESULTS We found that individual inhibition of STAT1 and STAT3 activation partially downregulated PD-L1, while combined inhibition completely downregulated PD-L1 expression. Moreover, our results suggest that pSTAT1-pSTAT3 dimerize in cytosol and translocate to the nucleus, where they bind to PD-L1 promoter and induce PD-L1 expression. CONCLUSION These findings provide a rationale for combined targeting of STAT1 and STAT3 for the development of immune-based cancer therapies for down regulation of PD-L1 expression.
Collapse
Affiliation(s)
- Varun Sasidharan Nair
- a Cancer Research Center , Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation , Doha , Qatar
| | - Salman M Toor
- a Cancer Research Center , Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation , Doha , Qatar
| | - Bassam R Ali
- b College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates
| | - Eyad Elkord
- a Cancer Research Center , Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation , Doha , Qatar
- c Institute of Cancer Sciences , University of Manchester , Manchester , UK
| |
Collapse
|
22
|
Fludarabine inhibits STAT1-mediated up-regulation of caspase-3 expression in dexamethasone-induced osteoblasts apoptosis and slows the progression of steroid-induced avascular necrosis of the femoral head in rats. Apoptosis 2018; 22:1001-1012. [PMID: 28601953 DOI: 10.1007/s10495-017-1383-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Steroid-induced avascular necrosis of the femoral head (SANFH) is a major limitation of long-term or excessive clinical administration of glucocorticoids. Fludarabine, which is a compound used to treat various hematological malignancies, such as chronic lymphocytic leukemia, acts by down-regulating signal transducer and activator of transcription 1 (STAT1) by inhibiting STAT1 phosphorylation in both normal and cancer cells. This study assessed the effects of fludarabine in vitro (primary murine osteoblasts) and in vivo (rat SANFH model). In vitro, pretreatment with fludarabine significantly inhibited Dexamethasone (Dex)-induced apoptosis in osteoblasts, which was examined by TUNEL staining. Treatment with Dex caused a remarkable decrease in the expression of Bcl-2; an increase in cytochrome c release; activation of BAX, caspase-9, and caspase-3; and an obvious enhancement in STAT1 phosphorylation. However, treatment resulted in the up-regulation of caspase-3 expression. Enhanced P-STAT1 activity and up-regulation of caspase-3 expression were also observed in osteoblasts. In vivo, the subchondral trabeculae in fludarabine-treated rats exhibited less bone loss and a lower ratio of empty lacunae. Taken together, our results suggest that STAT1-mediated up-regulation of caspase-3 is involved in osteoblast apoptosis induced by Dex and indicates that fludarabine may serve as a potential agent for the treatment of SANFH.
Collapse
|
23
|
Sorrentino S, Iaconetti C, De Rosa S, Polimeni A, Sabatino J, Gareri C, Passafaro F, Mancuso T, Tammè L, Mignogna C, Camastra C, Esposito G, Curcio A, Torella D, Indolfi C. Hindlimb Ischemia Impairs Endothelial Recovery and Increases Neointimal Proliferation in the Carotid Artery. Sci Rep 2018; 8:761. [PMID: 29335599 PMCID: PMC5768880 DOI: 10.1038/s41598-017-19136-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/18/2017] [Indexed: 01/29/2023] Open
Abstract
Peripheral ischemia is associated with higher degree of endothelial dysfunction and a worse prognosis after percutaneous coronary interventions (PCI). However, the role of peripheral ischemia on vascular remodeling in remote districts remains poorly understood. Here we show that the presence of hindlimb ischemia significantly enhances neointima formation and impairs endothelial recovery in balloon-injured carotid arteries. Endothelial-derived microRNAs are involved in the modulation of these processes. Indeed, endothelial miR-16 is remarkably upregulated after vascular injury in the presences of hindlimb ischemia and exerts a negative effect on endothelial repair through the inhibition of RhoGDIα and nitric oxide (NO) production. We showed that the repression of RhoGDIα by means of miR-16 induces RhoA, with consequent reduction of NO bioavailability. Thus, hindlimb ischemia affects negative carotid remodeling increasing neointima formation after injury, while systemic antagonizzation of miR-16 is able to prevent these negative effects.
Collapse
Affiliation(s)
- Sabato Sorrentino
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Claudio Iaconetti
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Alberto Polimeni
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Jolanda Sabatino
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Clarice Gareri
- Department of Medicine, Duke University, Durham, 27710, NC, USA
| | - Francesco Passafaro
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Teresa Mancuso
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Laura Tammè
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Chiara Mignogna
- Department of Health Science, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Caterina Camastra
- Department of Health Science, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Giovanni Esposito
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Antonio Curcio
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy. .,URT-CNR of IFC, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
24
|
Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease. Oncotarget 2018; 7:48788-48812. [PMID: 27166190 PMCID: PMC5217051 DOI: 10.18632/oncotarget.9195] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/22/2016] [Indexed: 02/06/2023] Open
Abstract
Key factors contributing to early stages of atherosclerosis and plaque development include the pro-inflammatory cytokines Interferon (IFN)α, IFNγ and Interleukin (IL)-6 and Toll-like receptor 4 (TLR4) stimuli. Together, they trigger activation of Signal Transducer and Activator of Transcription (STAT) and Interferon Regulatory Factor (IRF) families. In particular, STAT1, 2 and 3; IRF1 and 8 have recently been recognized as prominent modulators of inflammation, especially in immune and vascular cells during atherosclerosis. Moreover, inflammation-mediated activation of these STATs and IRFs coordinates a platform for synergistic amplification leading to pro-atherogenic responses. Searches for STAT3-targeting compounds, exploring the pTyr-SH2 interaction area of STAT3, yielded many small molecules including natural products. Only a few inhibitors for other STATs, but none for IRFs, are described. Promising results for several STAT3 inhibitors in recent clinical trials predicts STAT3-inhibiting strategies may find their way to the clinic. However, many of these inhibitors do not seem STAT-specific, display toxicity and are not very potent. This illustrates the need for better models, and screening and validation tools for novel STAT and IRF inhibitors. This review presents a summary of these findings. It postulates STAT1, STAT2 and STAT3 and IRF1 and IRF8 as interesting therapeutic targets and targeted inhibition could be a potential treatment strategy in CVDs. In addition, it proposes a pipeline approach that combines comparative in silico docking of STAT-SH2 and IRF-DBD models with in vitro STAT and IRF activation inhibition validation, as a novel tool to screen multi-million compound libraries and identify specific inhibitors for STATs and IRFs.
Collapse
|
25
|
Du J, Dong W, Li H, Li B, Liu X, Kong Q, Sun W, Sun T, Ma P, Cui Y, Kang P. Protective effects of IFN-γ on the kidney of type- 2 diabetic KKAy mice. Pharmacol Rep 2017; 70:607-613. [PMID: 29684848 DOI: 10.1016/j.pharep.2017.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Development of novel therapeutic strategies that specifically target diabetic kidney disease (DKD) is urgently needed. METHODS Male KKAy mice were divided randomly into three equal groups - KK, KI, and KF; Male C57BL/6 mice were the control group. All KKAy mice were fed a high-fat diet. From the 16th week, the KI group was given IFN-γ, and the KF group was assigned to be treated with fludarabine. C57BL/6 mice were always fed a normal mouse diet. Every 4 weeks, body weight, random blood sugar, urine albumin and urea of all mice were measured. At the 20th week, all mice were killed, renal tissue was obtained to observe the pathological manifestations and extract proteins, and transforming growth factor- beta1 (TGF-β1), collagen IV and Janus kinase 2/signal transducers and activators of transcription 1 (JAK2/STAT1) pathway proteins were measured by western blot. RESULTS The present study showed that all KKAy mice appeared obese and hyperglycaemic from 12 weeks old and exhibited an increased urine albumin-to-creatinine ratio (ACR) from 16 weeks old. At the 20th week, compared to the KK group, the KI group showed lower ACR, more overexpression of P-STAT1 and less expression of TGF-β1 and collagen IV proteins in renal tissue. The KI group mice showed less accumulation of glomerular mesangial matrix than those in the KK group. CONCLUSIONS Our results indicate that IFN-γ might activate STAT1 to suppress the overexpression of TGF-β1 and collagen IV proteins and attenuate the excessive accumulation of mesangial matrix under DKD conditions in KKAy mice.
Collapse
Affiliation(s)
- Juan Du
- Department of Nephrology, Daqing Oilfield General Hospital, Daqing, PR China.
| | - Wenpeng Dong
- Department of Nephrology, Daqing Oilfield General Hospital, Daqing, PR China.
| | - Huifeng Li
- Department of Nephrology, Daqing Oilfield General Hospital, Daqing, PR China.
| | - Bo Li
- Department of Nephrology, Daqing Oilfield General Hospital, Daqing, PR China.
| | - Xiaodan Liu
- Department of Nephrology, First Hospital of China Medical University, Shenyang, PR China.
| | - Qinghui Kong
- Daqing OilField Communication Technology Company, Daqing, PR China.
| | - Wei Sun
- Department of Nephrology, Daqing Oilfield General Hospital, Daqing, PR China.
| | - Tingli Sun
- Department of Nephrology, Daqing Oilfield General Hospital, Daqing, PR China.
| | - Peilong Ma
- Department of Nephrology, Daqing Oilfield General Hospital, Daqing, PR China.
| | - Yan Cui
- Department of Nephrology, Daqing Oilfield General Hospital, Daqing, PR China.
| | - Ping Kang
- Department of Nephrology, Daqing Oilfield General Hospital, Daqing, PR China.
| |
Collapse
|
26
|
Cellular and Molecular Mechanisms of Diabetic Atherosclerosis: Herbal Medicines as a Potential Therapeutic Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9080869. [PMID: 28883907 PMCID: PMC5572632 DOI: 10.1155/2017/9080869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 01/09/2023]
Abstract
An increasing number of patients diagnosed with diabetes mellitus eventually develop severe coronary atherosclerosis disease. Both type 1 and type 2 diabetes mellitus increase the risk of cardiovascular disease associated with atherosclerosis. The cellular and molecular mechanisms affecting the incidence of diabetic atherosclerosis are still unclear, as are appropriate strategies for the prevention and treatment of diabetic atherosclerosis. In this review, we discuss progress in the study of herbs as potential therapeutic agents for diabetic atherosclerosis.
Collapse
|
27
|
Kirkham CL, Aguilar OA, Yu T, Tanaka M, Mesci A, Chu KL, Fine JH, Mossman KL, Bremner R, Allan DSJ, Carlyle JR. Interferon-Dependent Induction of Clr-b during Mouse Cytomegalovirus Infection Protects Bystander Cells from Natural Killer Cells via NKR-P1B-Mediated Inhibition. J Innate Immun 2017; 9:343-358. [PMID: 28288457 DOI: 10.1159/000454926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/05/2016] [Indexed: 01/17/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that aid in self-nonself discrimination by recognizing cells undergoing pathological alterations. The NKR-P1B inhibitory receptor recognizes Clr-b, a self-encoded marker of cell health downregulated during viral infection. Here, we show that Clr-b loss during mouse cytomegalovirus (MCMV) infection is predicated by a loss of Clr-b (Clec2d) promoter activity and nascent transcripts, driven in part by MCMV ie3 (M122) activity. In contrast, uninfected bystander cells near MCMV-infected fibroblasts reciprocally upregulate Clr-b expression due to paracrine type-I interferon (IFN) signaling. Exposure of fibroblasts to type-I IFN augments Clec2d promoter activity and nascent Clr-b transcripts, dependent upon a cluster of IRF3/7/9 motifs located ∼200 bp upstream of the transcriptional start site. Cells deficient in type-I IFN signaling components revealed IRF9 and STAT1 as key transcription factors involved in Clr-b upregulation. In chromatin immunoprecipitation experiments, the Clec2d IRF cluster recruited STAT2 upon IFN-α exposure, confirming the involvement of ISGF3 (IRF9/STAT1/STAT2) in positively regulating the Clec2d promoter. These findings demonstrate that Clr-b is an IFN-stimulated gene on healthy bystander cells, in addition to a missing-self marker on MCMV-infected cells, and thereby enhances the dynamic range of innate self-nonself discrimination by NK cells.
Collapse
Affiliation(s)
- Christina L Kirkham
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lin YM, Yu BC, Chiu WT, Sun HY, Chien YC, Su HC, Yen SY, Lai HW, Bai CH, Young KC, Tsao CW. Fluoxetine regulates cell growth inhibition of interferon-α. Int J Oncol 2016; 49:1746-54. [DOI: 10.3892/ijo.2016.3650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/25/2016] [Indexed: 11/05/2022] Open
|
29
|
Lerchenmüller C, Heißenberg J, Damilano F, Bezzeridis VJ, Krämer I, Bochaton-Piallat ML, Hirschberg K, Busch M, Katus HA, Peppel K, Rosenzweig A, Busch H, Boerries M, Most P. S100A6 Regulates Endothelial Cell Cycle Progression by Attenuating Antiproliferative Signal Transducers and Activators of Transcription 1 Signaling. Arterioscler Thromb Vasc Biol 2016; 36:1854-67. [PMID: 27386938 DOI: 10.1161/atvbaha.115.306415] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 06/27/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE S100A6, a member of the S100 protein family, has been described as relevant for cell cycle entry and progression in endothelial cells. The molecular mechanism conferring S100A6's proliferative actions, however, remained elusive. APPROACH AND RESULTS Originating from the clinically relevant observation of enhanced S100A6 protein expression in proliferating endothelial cells in remodeling coronary and carotid arteries, our study unveiled S100A6 as a suppressor of antiproliferative signal transducers and activators of transcription 1 signaling. Discovery of the molecular liaison was enabled by combining gene expression time series analysis with bioinformatic pathway modeling in S100A6-silenced human endothelial cells stimulated with vascular endothelial growth factor A. This unbiased approach led to successful identification and experimental validation of interferon-inducible transmembrane protein 1 and protein inhibitors of activated signal transducers and activators of transcription as key components of the link between S100A6 and signal transducers and activators of transcription 1. CONCLUSIONS Given the important role of coordinated endothelial cell cycle activity for integrity and reconstitution of the inner lining of arterial blood vessels in health and disease, signal transducers and activators of transcription 1 suppression by S100A6 may represent a promising therapeutic target to facilitate reendothelialization in damaged vessels.
Collapse
Affiliation(s)
- Carolin Lerchenmüller
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries).
| | - Julian Heißenberg
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Federico Damilano
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Vassilios J Bezzeridis
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Isabel Krämer
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Marie-Luce Bochaton-Piallat
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Kristóf Hirschberg
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Martin Busch
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Hugo A Katus
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Karsten Peppel
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Anthony Rosenzweig
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Hauke Busch
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Melanie Boerries
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries).
| | - Patrick Most
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| |
Collapse
|
30
|
He C, Li H, Viollet B, Zou MH, Xie Z. AMPK Suppresses Vascular Inflammation In Vivo by Inhibiting Signal Transducer and Activator of Transcription-1. Diabetes 2015; 64:4285-97. [PMID: 25858560 PMCID: PMC4657575 DOI: 10.2337/db15-0107] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/31/2015] [Indexed: 12/14/2022]
Abstract
Activation of AMPK suppresses inflammation, but the underlying mechanisms remain poorly understood. This study was designed to characterize the molecular mechanisms by which AMPK suppresses vascular inflammation. In cultured human aortic smooth muscle cells, pharmacologic or genetic activation of AMPK inhibited the signal transducer and activator of transcription-1 (STAT1), while inhibition of AMPK had opposite effects. Deletion of AMPKα1 or AMPKα2 resulted in activation of STAT1 and in increases in proinflammatory mediators, both of which were attenuated by administration of STAT1 small interfering RNA or fludarabine, a selective STAT1 inhibitor. Moreover, AMPK activation attenuated the proinflammatory actions induced by STAT1 activators such as interferon-γ and angiotensin II (AngII). Mechanistically, we found that AMPK activation increased, whereas AMPK inhibition decreased, the levels of mitogen-activated protein kinase phosphatase-1 (MKP-1), an inducible nuclear phosphatase, by regulating proteasome-dependent degradation of MKP-1. Gene silencing of MKP-1 increased STAT1 phosphorylation and prevented 5-aminoimidazole-4-carboxyamide ribonucleoside-reduced STAT1 phosphorylation. Finally, we found that infusion of AngII caused a more severe inflammatory response in AMPKα2 knockout mouse aortas, all of which were suppressed by chronic administration of fludarabine. We conclude that AMPK activation suppresses STAT1 signaling and inhibits vascular inflammation through the upregulation of MKP-1.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/antagonists & inhibitors
- AMP-Activated Protein Kinases/chemistry
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/metabolism
- Angiotensin II/adverse effects
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Aorta, Thoracic
- Cells, Cultured
- Dual Specificity Phosphatase 1/antagonists & inhibitors
- Dual Specificity Phosphatase 1/chemistry
- Dual Specificity Phosphatase 1/genetics
- Dual Specificity Phosphatase 1/metabolism
- Enzyme Activation/drug effects
- Humans
- Interferon-gamma/adverse effects
- MAP Kinase Signaling System/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- RNA Interference
- Random Allocation
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- STAT1 Transcription Factor/agonists
- STAT1 Transcription Factor/antagonists & inhibitors
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/metabolism
- Vasculitis/chemically induced
- Vasculitis/immunology
- Vasculitis/metabolism
- Vasculitis/pathology
Collapse
Affiliation(s)
- Chaoyong He
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Hongliang Li
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Benoit Viollet
- INSERM U1016, Institut Cochin, Paris, France CNRS UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Ming-Hui Zou
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zhonglin Xie
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
31
|
Jeong SJ, Lim HS, Seo CS, Jin SE, Yoo SR, Lee N, Shin HK. Anti-inflammatory actions of herbal formula Gyejibokryeong-hwan regulated by inhibiting chemokine production and STAT1 activation in HaCaT cells. Biol Pharm Bull 2015; 38:425-34. [PMID: 25757924 DOI: 10.1248/bpb.b14-00660] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gyejibokryeong-hwan (GJBRH; Keishi-bukuryo-gan in Japan and Guizhi Fuling Wan in China) is a traditional herbal formula comprising five medicinal herbs and is used to treat climacteric syndrome. GJBRH has been shown to exhibit biological activity against diabetes, diabetic nephropathy, atherosclerosis, ischemia, and cancer. However, there is no scientific evidence of its activities against skin inflammation, including atopic dermatitis. We used the HaCaT human keratinocyte cell line to investigate the effects of GJBRH on skin inflammation. No significant cytotoxicity was observed in cells treated with GJBRH up to a concentration of 1000 µg/mL. Exposure to the proinflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) significantly increased HaCaT cell production of the following chemokines: macrophage-derived chemokine (MDC)/CCL22; regulated on activation, normal T-cell expressed and secreted (RANTES)/CCL5; and interleukin-8 (IL-8). In contrast, GJBRH significantly reduced the production of MDC, RANTES, and IL-8 compared with control cells simulated with TNF-α and IFN-γ. Consistently, GJBRH suppressed the mRNA expression of MDC, RANTES, and IL-8 in TNF-α and IFN-γ-treated cells. Treatment with GJBRH markedly inhibited phosphorylation of signal transducer and activator of transcription 1 (STAT1) in HaCaT cells stimulated with TNF-α and IFN-γ. Our findings indicate that GJBRH impairs TNF-α and IFN-γ-mediated inflammatory chemokine production and STAT1 phosphorylation in keratinocytes. We suggest that GJBRH may be a potent therapeutic agent for inflammatory skin disorders.
Collapse
Affiliation(s)
- Soo-Jin Jeong
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine
| | | | | | | | | | | | | |
Collapse
|
32
|
Chmielewski S, Piaszyk-Borychowska A, Wesoly J, Bluyssen HAR. STAT1 and IRF8 in Vascular Inflammation and Cardiovascular Disease: Diagnostic and Therapeutic Potential. Int Rev Immunol 2015; 35:434-454. [DOI: 10.3109/08830185.2015.1087519] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Stefan Chmielewski
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Anna Piaszyk-Borychowska
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Hans A. R. Bluyssen
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
33
|
Vlková V, Štěpánek I, Hrušková V, Šenigl F, Mayerová V, Šrámek M, Šímová J, Bieblová J, Indrová M, Hejhal T, Dérian N, Klatzmann D, Six A, Reiniš M. Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes. Oncotarget 2015; 5:6923-35. [PMID: 25071011 PMCID: PMC4196173 DOI: 10.18632/oncotarget.2222] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Downregulation of MHC class I expression on tumour cells, a common mechanism by which tumour cells can escape from specific immune responses, can be associated with coordinated silencing of antigen-presenting machinery genes. The expression of these genes can be restored by IFNγ. In this study we documented association of DNA demethylation of selected antigen-presenting machinery genes located in the MHC genomic locus (TAP-1, TAP-2, LMP-2, LMP-7) upon IFNγ treatment with MHC class I upregulation on tumour cells in several MHC class I-deficient murine tumour cell lines (TC-1/A9, TRAMP-C2, MK16 and MC15). Our data also documented higher methylation levels in these genes in TC-1/A9 cells, as compared to their parental MHC class I-positive TC-1 cells. IFNγ-mediated DNA demethylation was relatively fast in comparison with demethylation induced by DNA methyltransferase inhibitor 5-azacytidine, and associated with increased histone H3 acetylation in the promoter regions of APM genes. Comparative transcriptome analysis in distinct MHC class I-deficient cell lines upon their treatment with either IFNγ or epigenetic agents revealed that a set of genes, significantly enriched for the antigen presentation pathway, was regulated in the same manner. Our data demonstrate that IFNγ acts as an epigenetic modifier when upregulating the expression of antigen-presenting machinery genes.
Collapse
Affiliation(s)
- Veronika Vlková
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Ivan Štěpánek
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Veronika Hrušková
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Filip Šenigl
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Veronika Mayerová
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Martin Šrámek
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Jana Šímová
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Jana Bieblová
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Marie Indrová
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Tomáš Hejhal
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Nicolas Dérian
- UPMC Univ Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, CIC-BTi Biotherapy & Département Hospitalo-Universitaire (DHU) Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - David Klatzmann
- UPMC Univ Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, CIC-BTi Biotherapy & Département Hospitalo-Universitaire (DHU) Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - Adrien Six
- UPMC Univ Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, CIC-BTi Biotherapy & Département Hospitalo-Universitaire (DHU) Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - Milan Reiniš
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| |
Collapse
|
34
|
Liao Z, Gu L, Vergalli J, Mariani SA, De Dominici M, Lokareddy RK, Dagvadorj A, Purushottamachar P, McCue PA, Trabulsi E, Lallas CD, Gupta S, Ellsworth E, Blackmon S, Ertel A, Fortina P, Leiby B, Xia G, Rui H, Hoang DT, Gomella LG, Cingolani G, Njar V, Pattabiraman N, Calabretta B, Nevalainen MT. Structure-Based Screen Identifies a Potent Small Molecule Inhibitor of Stat5a/b with Therapeutic Potential for Prostate Cancer and Chronic Myeloid Leukemia. Mol Cancer Ther 2015; 14:1777-93. [PMID: 26026053 DOI: 10.1158/1535-7163.mct-14-0883] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/15/2015] [Indexed: 11/16/2022]
Abstract
Bypassing tyrosine kinases responsible for Stat5a/b phosphorylation would be advantageous for therapy development for Stat5a/b-regulated cancers. Here, we sought to identify small molecule inhibitors of Stat5a/b for lead optimization and therapy development for prostate cancer and Bcr-Abl-driven leukemias. In silico screening of chemical structure databases combined with medicinal chemistry was used for identification of a panel of small molecule inhibitors to block SH2 domain-mediated docking of Stat5a/b to the receptor-kinase complex and subsequent phosphorylation and dimerization. We tested the efficacy of the lead compound IST5-002 in experimental models and patient samples of two known Stat5a/b-driven cancers, prostate cancer and chronic myeloid leukemia (CML). The lead compound inhibitor of Stat5-002 (IST5-002) prevented both Jak2 and Bcr-Abl-mediated phosphorylation and dimerization of Stat5a/b, and selectively inhibited transcriptional activity of Stat5a (IC50 = 1.5μmol/L) and Stat5b (IC50 = 3.5 μmol/L). IST5-002 suppressed nuclear translocation of Stat5a/b, binding to DNA and Stat5a/b target gene expression. IST5-002 induced extensive apoptosis of prostate cancer cells, impaired growth of prostate cancer xenograft tumors, and induced cell death in patient-derived prostate cancers when tested ex vivo in explant organ cultures. Importantly, IST5-002 induced robust apoptotic death not only of imatinib-sensitive but also of imatinib-resistant CML cell lines and primary CML cells from patients. IST5-002 provides a lead structure for further chemical modifications for clinical development for Stat5a/b-driven solid tumors and hematologic malignancies.
Collapse
Affiliation(s)
- Zhiyong Liao
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lei Gu
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jenny Vergalli
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Samanta A Mariani
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marco De Dominici
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ravi K Lokareddy
- Department of Biochemistry, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ayush Dagvadorj
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Puranik Purushottamachar
- School of Pharmacy, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peter A McCue
- Department of Pathology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edouard Trabulsi
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Costas D Lallas
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shilpa Gupta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Elyse Ellsworth
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shauna Blackmon
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam Ertel
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Guanjun Xia
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hallgeir Rui
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Pathology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David T Hoang
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leonard G Gomella
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gino Cingolani
- Department of Biochemistry, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vincent Njar
- School of Pharmacy, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nagarajan Pattabiraman
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Bruno Calabretta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marja T Nevalainen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
35
|
Coronary in-stent restenosis in patients treated with thoracic external beam radiation for cancer. JACC Cardiovasc Interv 2015; 8:641. [PMID: 25907094 DOI: 10.1016/j.jcin.2015.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/01/2015] [Indexed: 11/20/2022]
|
36
|
Lim HS, Jin SE, Kim OS, Shin HK, Jeong SJ. Alantolactone from Saussurea lappa Exerts Antiinflammatory Effects by Inhibiting Chemokine Production and STAT1 Phosphorylation in TNF-α and IFN-γ-induced in HaCaT cells. Phytother Res 2015; 29:1088-96. [PMID: 25881570 DOI: 10.1002/ptr.5354] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 11/08/2022]
Abstract
Skin inflammation is the most common condition seen in dermatology practice and can be caused by various allergic reactions and certain toxins or chemicals. In the present study, we investigated the antiinflammatory effects of Saussurea lappa, a medicinal herb, and its marker compounds alantolactone, caryophyllene, costic acid, costunolide, and dehydrocostuslactone in the HaCaT human keratinocyte cell line. HaCaT cells were stimulated with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), and treated with S. lappa or each of five marker compounds. Chemokine production and expression were analyzed by enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction, respectively. Phosphorylation of signal transducer and activator of transcription (STAT) 1 was determined by immunoblotting. Stimulation with TNF-α and IFN-γ significantly increased the production of the following chemokines: thymus-regulated and activation-regulated chemokine (TARC): regulated on activation, normal T-cell expressed and secreted (RANTES): macrophage-derived chemokine (MDC): and interleukin-8 (IL-8). By contrast, S. lappa and the five marker compounds significantly reduced the production of these chemokines by TNF-α and IFN-γ-treated cells. S. lappa and alantolactone suppressed the TNF-α and IFN-γ-stimulated increase in the phosphorylation of STAT1. Our results demonstrate that alantolactone from S. lappa suppresses TNF-α and IFN-γ-induced production of RANTES and IL-8 by blocking STAT1 phosphorylation in HaCaT cells.
Collapse
Affiliation(s)
- Hye-Sun Lim
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, 305-811, Korea.,Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Chungcheongbuk-do, 361-951, Korea
| | - Sung-Eun Jin
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, 305-811, Korea
| | - Ohn-Soon Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, 305-811, Korea
| | - Hyeun-Kyoo Shin
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, 305-811, Korea
| | - Soo-Jin Jeong
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, 305-811, Korea
| |
Collapse
|
37
|
Cao ZH, Zheng QY, Li GQ, Hu XB, Feng SL, Xu GL, Zhang KQ. STAT1-mediated down-regulation of Bcl-2 expression is involved in IFN-γ/TNF-α-induced apoptosis in NIT-1 cells. PLoS One 2015; 10:e0120921. [PMID: 25811609 PMCID: PMC4374929 DOI: 10.1371/journal.pone.0120921] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/09/2015] [Indexed: 01/30/2023] Open
Abstract
Tumor necrosis factor (TNF)-α and interferon (IFN)-γ are the major pro-inflammatory cytokines involved in beta-cell destruction. The fate of islet beta-cells in the cytokine-induced intrinsic mitochondrial apoptotic pathway is determined by the interaction between members of the Bcl-2 family. However, the mechanism through which beta-cell apoptosis is regulated remains unclear. In this study, we treated the murine beta-cell line NIT-1 with TNF-α and IFN-γ and then investigated the regulation of signal transducer and activator of transcription-1 (STAT-1) and expression of the members of the Bcl-2 family in this apoptotic pathway. Results showed that TNF-α and IFN-γ synergistically reduced NIT-1 cell viability. In addition, the decrease in cell growth was due to apoptosis as shown by apoptotic body formation, detected by confocal laser microscope, and a significant increase in Annexin-Vup+ cell percentage, detected by flow cytometry. Combination treatment with TNF-α and IFN-γ caused a remarkable increase in the release of cytochrome c, and in the activation of caspase-9 and caspase-3, as well as, an obvious enhancement in STAT-1 phosphorylation; the treatment, however, resulted in the down-regulation in Bcl-2 expression. The enhancement in STAT-1 activity and a down-regulation in Bcl-2 expression was also observed in MIN6 cells, another murine beta-cell derived line, after cells exposure to the combination of TNF-α and IFN-γ treatment. Knockdown of STAT-1 gene expression by siRNA or inhibition of STAT-1 activation with fludarabine reversed Bcl-2 down-expression and led to a significant decrease in apoptosis in TNF-α- and IFN-γ-treated NIT-1 cells. Taken together, our results suggest that STAT1-mediated down-regulation of Bcl-2 is involved in NIT-1 cell apoptosis induced by combination treatment with TNF-α and IFN-γ.
Collapse
Affiliation(s)
- Zhao-hui Cao
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Department of Biochemistry and Molecular Biology, School of Pharmacy and Biological Sciences, School of Public Health, University of South China, Hengyang 421001, China
| | - Quan-you Zheng
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Gui-qing Li
- Department of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Xiao-bo Hu
- Department of Biochemistry and Molecular Biology, School of Pharmacy and Biological Sciences, School of Public Health, University of South China, Hengyang 421001, China
| | - Shao-long Feng
- Department of Health Laboratory Technology, School of Public Health, University of South China, Hengyang 421001, China
| | - Gui-lian Xu
- Department of Immunology, Third Military Medical University, Chongqing 400038, China
- * E-mail: (GLX); (KQZ)
| | - Ke-qin Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- * E-mail: (GLX); (KQZ)
| |
Collapse
|
38
|
He D, Liu W, Zhang T. The development of carotid stent material. INTERVENTIONAL NEUROLOGY 2015; 3:67-77. [PMID: 26019710 PMCID: PMC4439791 DOI: 10.1159/000369480] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endovascular angioplasty with stenting is a promising option for treating carotid artery stenosis. There exist a rapidly increasing number of different stent types with different materials. The bare-metal stent is the most commonly used stent with acceptable results, but it leaves us with the problems of thrombosis and restenosis. The drug-eluting stent is a breakthrough as it has the ability to reduce the restenosis rate, but the problem of late thrombosis still has to be addressed. The biodegradable stent disappears after having served its function. However, restenosis and degradation rates remain to be studied. In this article, we review every stent material with its characteristics, clinical results and complications and point out the standards of an ideal carotid stent.
Collapse
Affiliation(s)
- Dongsheng He
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wenhua Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Tao Zhang
- College of Engineering and Applied Science, Nanjing University, Nanjing, China
| |
Collapse
|
39
|
Recio C, Oguiza A, Lazaro I, Mallavia B, Egido J, Gomez-Guerrero C. Suppressor of cytokine signaling 1-derived peptide inhibits Janus kinase/signal transducers and activators of transcription pathway and improves inflammation and atherosclerosis in diabetic mice. Arterioscler Thromb Vasc Biol 2014; 34:1953-60. [PMID: 25012131 DOI: 10.1161/atvbaha.114.304144] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Activation of Janus kinase/signal transducers and activators of transcription (STAT) pathway by hyperglycemia and dislypidemia contributes to the progression of diabetic complications, including atherosclerosis. Suppressor of cytokine signaling (SOCS) proteins negatively regulate Janus kinase/STAT and have emerged as promising target for anti-inflammatory therapies. We investigated whether a cell-permeable lipopeptide corresponding to the kinase inhibitory region of SOCS1 could reduce atherosclerosis in diabetic mice and identified the mechanisms involved. APPROACH AND RESULTS Streptozotocin-induced diabetic apolipoprotein E-deficient mice (aged 8 and 22 weeks) were given intraperitoneal injections of vehicle, SOCS1-derived peptide, or control mutant peptide for 6 to 10 weeks. SOCS1 therapy suppressed STAT1/STAT3 activation in atherosclerotic plaques of diabetic mice and significantly reduced lesion size at both early and advanced stages of lesion development compared with vehicle group. Plaque characterization demonstrated that SOCS1 peptide decreased the accumulation of lipids, macrophages, and T lymphocytes, whereas increasing collagen and smooth muscle cell content. This atheroprotective effect was accompanied by systemic (reduced proinflammatory Ly6C(high) monocytes and splenic cytokine expression) and local (reduced aortic expression of chemokines and cytokines) mechanisms, without impact on metabolic parameters. In vitro, SOCS1 peptide dose dependently inhibited STAT1/STAT3 activation and target gene expression in vascular smooth muscle cells and macrophages and also suppressed cytokine-induced cell migration and adhesion processes. CONCLUSIONS SOCS1-based targeting Janus kinase/STAT restrains key mechanisms of atherogenesis in diabetic mice, thereby preventing plaque formation and increasing plaque stability. Approaches to mimic native SOCS1 functions may have a therapeutic potential to retard the progression of diabetic complications.
Collapse
Affiliation(s)
- Carlota Recio
- From the Renal and Vascular Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain (C.R., A.O., I.L., B.M., J.E., C.G.-G.); and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain (C.R., A.O., J.E., C.G.-G.)
| | - Ainhoa Oguiza
- From the Renal and Vascular Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain (C.R., A.O., I.L., B.M., J.E., C.G.-G.); and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain (C.R., A.O., J.E., C.G.-G.)
| | - Iolanda Lazaro
- From the Renal and Vascular Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain (C.R., A.O., I.L., B.M., J.E., C.G.-G.); and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain (C.R., A.O., J.E., C.G.-G.)
| | - Beñat Mallavia
- From the Renal and Vascular Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain (C.R., A.O., I.L., B.M., J.E., C.G.-G.); and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain (C.R., A.O., J.E., C.G.-G.)
| | - Jesus Egido
- From the Renal and Vascular Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain (C.R., A.O., I.L., B.M., J.E., C.G.-G.); and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain (C.R., A.O., J.E., C.G.-G.)
| | - Carmen Gomez-Guerrero
- From the Renal and Vascular Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain (C.R., A.O., I.L., B.M., J.E., C.G.-G.); and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain (C.R., A.O., J.E., C.G.-G.).
| |
Collapse
|
40
|
Fludarabine downregulates indoleamine 2,3-dioxygenase in tumors via a proteasome-mediated degradation mechanism. PLoS One 2014; 9:e99211. [PMID: 24911872 PMCID: PMC4050125 DOI: 10.1371/journal.pone.0099211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 05/12/2014] [Indexed: 12/25/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) is found in multiple malignancies and exerts immunosuppressive effects that are central in protecting tumors from host T lymphocyte rejection. IDO is an enzyme involved in the catabolism of tryptophan resulting in inhibition of T lymphocyte function. While inhibition of IDO enzymatic activity results in tumor rejection, it is still unknown how we can directly target IDO expression within tumors using drugs. We have chosen to interfere with IDO expression by targeting the key-signaling event signal transducer and activator of transcription 1 (STAT1). We evaluated the efficacy of fludarabine, previously described to inhibit STAT1 phosphorylation. Interestingly, fludarabine was efficient in suppressing protein expression and consequently IDO activity in two different cell lines derived from breast cancer and melanoma when IDO was activated with interferon-gamma (IFN-γ) or supernatants prepared from activated T lymphocytes. However, fludarabine had no inhibitory effect on STAT1 phosphorylation. Other IFN-γ-responsive genes were only marginally inhibited by fludarabine. The level of IDO transcript was unaffected by this inhibitor, suggesting the involvement of post-transcriptional control. Strikingly, we have found that the inhibition of proteasome partially protected IDO from fludarabine-induced degradation, indicating that fludarabine induces IDO degradation through a proteasome-dependent pathway. Currently used in the clinic to treat some malignancies, fludarabine has the potential for use in the treatment of human tumors through induction of IDO degradation and consequently, for the promotion of T cell-mediated anti-tumor response.
Collapse
|
41
|
The Effects of Fludarabine on Rat Cerebral Ischemia. J Mol Neurosci 2014; 55:289-96. [DOI: 10.1007/s12031-014-0320-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
|
42
|
Kirchmer MN, Franco A, Albasanz-Puig A, Murray J, Yagi M, Gao L, Dong ZM, Wijelath ES. Modulation of vascular smooth muscle cell phenotype by STAT-1 and STAT-3. Atherosclerosis 2014; 234:169-75. [PMID: 24657387 DOI: 10.1016/j.atherosclerosis.2014.02.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/24/2014] [Accepted: 02/27/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Smooth muscle cell (SMC) de-differentiation is a key step that leads to pathological narrowing of blood vessels. De-differentiation involves a reduction in the expression of the SMC contractile genes that are the hallmark of quiescent SMCs. While there is considerable evidence linking inflammation to vascular diseases, very little is known about the mechanisms by which inflammatory signals lead to SMC de-differentiation. Given that the Signal Transducers and Activators of Transcription (STAT) transcriptional factors are the key signaling molecules activated by many inflammatory cytokines and growth factors, the aim of the present study was to determine if STAT transcriptional factors play a role SMC de-differentiation. METHODS AND RESULTS Using shRNA targeted to STAT-1 and STAT-3, we show by real time RT-PCR and Western immunoblots that STAT-1 significantly reduces SMC contractile gene expression. In contrast, STAT-3 promotes expression of SMC contractile genes. Over-expression studies of STAT-1 and STAT-3 confirmed our observation that STAT-1 down-regulates whereas STAT-3 promotes SMC contractile gene expression. Bioinformatics analysis shows that promoters of all SMC contractile genes contain STAT binding sites. Finally, using ChIP analysis, we show that both STAT-1 and STAT-3 associate with the calponin gene. CONCLUSION These data indicate that the balance of STAT-1 and STAT-3 influences the differentiation status of SMCs. Increased levels of STAT-1 promote SMC de-differentiation, whereas high levels of STAT-3 drive SMC into a more mature phenotype. Thus, inhibition of STAT-1 may represent a novel target for therapeutic intervention in the control of vascular diseases such as atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Mayumi Namekata Kirchmer
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and The University of Washington School of Medicine, Seattle, WA, USA
| | - Anais Franco
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and The University of Washington School of Medicine, Seattle, WA, USA
| | - Adaia Albasanz-Puig
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and The University of Washington School of Medicine, Seattle, WA, USA
| | - Jacqueline Murray
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and The University of Washington School of Medicine, Seattle, WA, USA
| | - Mayumi Yagi
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and The University of Washington School of Medicine, Seattle, WA, USA
| | - Lu Gao
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and The University of Washington School of Medicine, Seattle, WA, USA
| | - Zhao Ming Dong
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and The University of Washington School of Medicine, Seattle, WA, USA
| | - Errol S Wijelath
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and The University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
43
|
Shin ES, Huang Q, Gurel Z, Palenski TL, Zaitoun I, Sorenson CM, Sheibani N. STAT1-mediated Bim expression promotes the apoptosis of retinal pericytes under high glucose conditions. Cell Death Dis 2014; 5:e986. [PMID: 24407239 PMCID: PMC4040686 DOI: 10.1038/cddis.2013.517] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 12/17/2022]
Abstract
Hyperglycemia impacts different vascular cell functions and promotes the development and progression of various vasculopathies including diabetic retinopathy. Although the increased rate of apoptosis in pericytes (PCs) has been linked to increased oxidative stress and activation of protein kinase C-δ (PKC-δ) and SHP-1 (Src homology region 2 domain-containing phosphatase-1) tyrosine phosphatase during diabetes, the detailed mechanisms require further elucidation. Here we show that the rate of apoptosis and expression of proapoptotic protein Bim were increased in the retinal PCs of diabetic Akita/+ mice and mouse retinal PCs cultured under high glucose conditions. Increased Bim expression in retinal PCs under high glucose conditions required the sustained activation of signal transducer and activator of transcription 1 (STAT1) through production of inflammatory cytokines. PCs cultured under high glucose conditions also exhibited increased oxidative stress and diminished migration. Inhibition of oxidative stress, PKC-δ or Rho-associated protein kinase I/II was sufficient to protect PCs against apoptosis under high glucose conditions. Furthermore, PCs deficient in Bim expression were protected from high glucose-mediated increased oxidative stress and apoptosis. However, only inhibition of PKC-δ lowered Bim levels. N-acetylcysteine did not affect STAT1 levels, suggesting that oxidative stress is downstream of Bim. PCs cultured under high glucose conditions disrupted capillary morphogenesis of retinal endothelial cells (ECs) in coculture experiments. In addition, conditioned medium prepared from PCs under high glucose conditions attenuated EC migration. Taken together, our results indicate that Bim has a pivotal role in the dysfunction of retinal PCs under high glucose conditions by increasing oxidative stress and death of PCs.
Collapse
Affiliation(s)
- E S Shin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Q Huang
- 1] Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA [2]
| | - Z Gurel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - T L Palenski
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - I Zaitoun
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - C M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - N Sheibani
- 1] Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA [2] Mcpherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
44
|
Curcio A, Torella D, Iaconetti C, Pasceri E, Sabatino J, Sorrentino S, Giampà S, Micieli M, Polimeni A, Henning BJ, Leone A, Catalucci D, Ellison GM, Condorelli G, Indolfi C. MicroRNA-1 downregulation increases connexin 43 displacement and induces ventricular tachyarrhythmias in rodent hypertrophic hearts. PLoS One 2013; 8:e70158. [PMID: 23922949 PMCID: PMC3724819 DOI: 10.1371/journal.pone.0070158] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 06/19/2013] [Indexed: 01/11/2023] Open
Abstract
Downregulation of the muscle-specific microRNA-1 (miR-1) mediates the induction of pathologic cardiac hypertrophy. Dysfunction of the gap junction protein connexin 43 (Cx43), an established miR-1 target, during cardiac hypertrophy leads to ventricular tachyarrhythmias (VT). However, it is still unknown whether miR-1 and Cx43 are interconnected in the pro-arrhythmic context of hypertrophy. Thus, in this study we investigated whether a reduction in the extent of cardiac hypertrophy could limit the pathological electrical remodeling of Cx43 and the onset of VT by modulating miR-1 levels. Wistar male rats underwent mechanical constriction of the ascending aorta to induce pathologic left ventricular hypertrophy (LVH) and afterwards were randomly assigned to receive 10mg/kg valsartan, VAL (LVH+VAL) delivered in the drinking water or placebo (LVH) for 12 weeks. Sham surgery was performed for control groups. Programmed ventricular stimulation reproducibly induced VT in LVH compared to LVH+VAL group. When compared to sham controls, rats from LVH group showed a significant decrease of miR-1 and an increase of Cx43 expression and its ERK1/2-dependent phosphorylation, which displaces Cx43 from the gap junction. Interestingly, VAL administration to rats with aortic banding significantly reduced cardiac hypertrophy and prevented miR-1 down-regulation and Cx43 up-regulation and phosphorylation. Gain- and loss-of-function experiments in neonatal cardiomyocytes (NCMs) in vitro confirmed that Cx43 is a direct target of miR-1. Accordingly, in vitro angiotensin II stimulation reduced miR-1 levels and increased Cx43 expression and phosphorylation compared to un-stimulated NCMs. Finally, in vivo miR-1 cardiac overexpression by an adenoviral vector intra-myocardial injection reduced Cx43 expression and phosphorylation in mice with isoproterenol-induced LVH. In conclusion, miR-1 regulates Cx43 expression and activity in hypertrophic cardiomyocytes in vitro and in vivo. Treatment of pressure overload-induced myocyte hypertrophy reduces the risk of life-threatening VT by normalizing miR-1 expression levels with the consequent stabilization of Cx43 expression and activity within the gap junction.
Collapse
Affiliation(s)
- Antonio Curcio
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Daniele Torella
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
- Biostem Unit, RISES, Liverpool John Moores University, Liverpool, United Kingdom
| | - Claudio Iaconetti
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Eugenia Pasceri
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Jolanda Sabatino
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Sabato Sorrentino
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Salvatore Giampà
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Mariella Micieli
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Alberto Polimeni
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Beverley J. Henning
- Biostem Unit, RISES, Liverpool John Moores University, Liverpool, United Kingdom
| | - Angelo Leone
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Daniele Catalucci
- Humanitas Clinical and Research Center, Rozzano, Milan, and National Research Council, Italy
| | - Georgina M. Ellison
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
- Biostem Unit, RISES, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gianluigi Condorelli
- Humanitas Clinical and Research Center, Rozzano, Milan, and National Research Council, Italy
| | - Ciro Indolfi
- Division of Cardiology, Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
- URT - National Research Council, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
45
|
Sulforaphane inhibits PDGF-induced proliferation of rat aortic vascular smooth muscle cell by up-regulation of p53 leading to G1/S cell cycle arrest. Vascul Pharmacol 2013; 59:44-51. [PMID: 23810908 DOI: 10.1016/j.vph.2013.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 12/19/2022]
Abstract
Vascular diseases such as atherosclerosis and restenosis artery angioplasty are associated with vascular smooth muscle cell (VSMC) proliferation and intimal thickening arterial walls. In the present study, we investigated the inhibitory effects of sulforaphane, an isothiocyanate produced in cruciferous vegetables, on VSMC proliferation and neointimal formation in a rat carotid artery injury model. Sulforaphane at the concentrations of 0.5, 1.0, and 2.0 μM significantly inhibited platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation in a concentration-dependent manner, determined by cell count. The IC50 value of sulforaphane-inhibited VSMC proliferation was 0.8 μM. Sulforaphane increased the cyclin-dependent kinase inhibitor p21 and p53 levels, while it decreased CDK2 and cyclin E expression. The effects of sulforaphane on vascular thickening were determined 14 days after the injury to the rat carotid artery. The angiographic mean luminary diameters of the group treated with 2 and 4 μM sulforaphane were 0.25±0.1 and 0.09±0.1 mm², respectively, while the value of the control groups was 0.40±0.1 mm², indicating that sulforaphane may inhibit neointimal formation. The expression of PCNA, maker for cell cycle arrest, was decreased, while that of p53 and p21 was increased, which showed the same pattern as one in in-vitro study. These results suggest that sulforaphane-inhibited VSMC proliferation may occur through the G1/S cell cycle arrest by up-regulation of p53 signaling pathway, and then lead to the decreased neointimal hyperplasia thickening. Thus, sulforaphane may be a promising candidate for the therapy of atherosclerosis and post-angiography restenosis.
Collapse
|
46
|
Zhao J, Zhang M, Li W, Su X, Zhu L, Hang C. Suppression of JAK2/STAT3 signaling reduces end-to-end arterial anastomosis induced cell proliferation in common carotid arteries of rats. PLoS One 2013; 8:e58730. [PMID: 23516544 PMCID: PMC3597728 DOI: 10.1371/journal.pone.0058730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND JAK2/STAT3 pathway was reported to play an essential role in the neointima formation after vascular intima injury. However, little is known regarding this pathway to the whole layer injury after end-to-end arterial anastomosis (AA). Here, we investigated the role of JAK2/STAT3 pathway in common carotid arterial (CCA) anastomosis-induced cell proliferation, phenotypic change of vascular smooth muscle cells (VSMCs) and re-endothelialization. METHODS CCAs of adult male Wistar rats were resected at 3, 7, 14, and 30 days after end-to-end CCA anastomosis. Activation of JAK2/STAT3 pathway was detected by Western blotting and Immunofluorescence, and expression of proliferating cell nuclear antigen (PCNA) was detected by Q-PCR and Western blotting. Under the treatment with AG490 (a JAK2 inhibitor), protein levels of JAK2, STAT3 and PCNA, morphological changes of artery, phenotypic change of VSMCs, and re-endothelialization were measured by Western blotting, H&E, Q-PCR, and Evans blue staining respectively. RESULTS The protein levels of p-JAK2, p-STAT3, and PCNA were up-regulated, peaked on the 7(th) day in the vessel wall after AA. AG490 down-regulated the levels of p-JAK2, p-STAT3, and PCNA on the 7(th)-day-group, resulting in reduced vessel wall proliferation on the 7(th) and 14(th) day after AA. Besides, AG490 switched the phenotypic change of VSMCs after AA representing inhibited mRNA levels of synthetic phase markers (osteopoitin and SMemb) and up-regulated contractile phase markers (ASMA, SM2 and SM22α). Furthermore, AG490 did not affect the re-endothelialization process on all indicated time points after AA (the 3(rd), 7(th), 14(th), and 30(th) day). CONCLUSION Our study indicated that JAK2/STAT3 signaling pathway played an important role on cell proliferation of the injured vessel wall, and probably a promising target for the exploration of drugs increasing the patency or reducing the vascular narrowness after AA.
Collapse
MESH Headings
- Anastomosis, Surgical/adverse effects
- Animals
- Carotid Arteries/cytology
- Carotid Arteries/metabolism
- Carotid Arteries/surgery
- Cell Proliferation/drug effects
- Down-Regulation/drug effects
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Janus Kinase 2/antagonists & inhibitors
- Janus Kinase 2/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Rats
- Rats, Wistar
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Tyrphostins/pharmacology
Collapse
Affiliation(s)
- Jinbing Zhao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Meijuan Zhang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University medical school, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xingfen Su
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Lin Zhu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Chunhua Hang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
- * E-mail:
| |
Collapse
|
47
|
Abstract
STAT1 (signal transducer and activator of transcription 1) is a member of the JAK-STAT signaling family and plays a key role in facilitating gene transcription in response to activation of the types I and II interferon (IFN) receptors. TYK2 is essential for type I, but not type II, IFN-induced STAT1 activation. Previous studies show that STAT1-deficient mice are resistant to endotoxin-induced shock. The goal of the present study was to assess the response of STAT1- and TYK2-deficient mice to septic shock caused by cecal ligation and puncture (CLP). End points included survival, core temperature, organ injury, systemic cytokine production, and bacterial clearance. Results showed that survival rates were significantly higher in STAT1 knockout (STAT1KO) mice compared with wild-type controls (80% vs. 10%). The improved survival of STAT1KO mice was associated with less hypothermia, metabolic acidosis, hypoglycemia, and hepatocellular injury. Plasma interleukin 6, MIP-2, CXCL10, and IFN-α concentrations were significantly lower in STAT1KO mice than in wild-type mice. In the absence of antibiotic treatment, blood and lung bacterial counts were significantly lower in STAT1KO mice than in controls. However, treatment with antibiotics ablated that difference. A survival advantage was not observed in TYK2-deficient mice compared with control. However, CLP-induced hypothermia and systemic interleukin 6 and CXCL10 production were significantly attenuated in TYK2-deficient mice. These results indicate that STAT1 activation is an important factor in the pathogenesis of CLP-induced septic shock and is associated with the development of systemic inflammation and organ injury. TYK2 activation also appears to contribute to CLP-induced inflammation, but to a lesser extent than STAT1.
Collapse
|
48
|
Yue H, Tanaka K, Furukawa T, Karnik SS, Li W. Thymidine phosphorylase inhibits vascular smooth muscle cell proliferation via upregulation of STAT3. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1316-23. [PMID: 22668509 PMCID: PMC4133185 DOI: 10.1016/j.bbamcr.2012.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/20/2012] [Accepted: 05/25/2012] [Indexed: 11/22/2022]
Abstract
Dysregulated growth and motility of vascular smooth muscle cells (VSMC) play important role in obstructive vascular diseases. We previously reported that gene transfer of thymidine phosphorylase (TP) into rat VSMC inhibits cell proliferation and attenuates balloon injury induced neointimal hyperplasia; however, the mechanism remains unclear. The current study identified a signaling pathway that mediates effect of TP inhibited VSMC proliferation with a TP activity-dependent manner. Rat VSMC overexpressing human TP gene (C2) or control empty vector (PC) were used. Serum stimulation induced constitutive STAT3 phosphorylation at tyrosine705 in C2 cell but not in PC, which was independent of JAK2 signaling pathway. Inhibition of Src family kinases activity inhibited STAT3 phosphorylation in C2 cells. Lyn activity was higher in C2 cell than in PC. SiRNA based gene knockdown of Lyn significantly decreased serum induced STAT3 phosphorylation in C2 and dramatically increased proliferation of this cell, suggesting that Lyn plays a pivotal role in TP inhibited VSMC proliferation. Unphosphorylated STAT3 (U-STAT3) expression was significantly increased in C2 cells, which may be due to the increased STAT3 transcription. Gene transfection of mouse wild-type or Y705F mutant STAT3 into PC cell or mouse primary cultured VSMC significantly reduced proliferation of these cells, suggesting that overexpression of U-STAT3 inhibits VSMC proliferation. We conclude that Lyn mediates TP induced STAT3 activation, which subsequently contributes to upregulate expression of U-STAT3. The U-STAT3 plays a critical role in inhibiting VSMC proliferation.
Collapse
Affiliation(s)
- Hong Yue
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic, Ohio USA
| | - Kuniyoshi Tanaka
- Second Department of Surgery, Faculty of Medical Sciences, University of Fukui, Fukui Japan
| | - Tatsuhiko Furukawa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima Japan
| | - Sadashiva S. Karnik
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic, Ohio USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Ohio, USA
| | - Wei Li
- Second Department of Surgery, Faculty of Medical Sciences, University of Fukui, Fukui Japan
- Department of Cell Biology, Lerner Research Institute, The Cleveland Clinic, Ohio USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Ohio, USA
| |
Collapse
|
49
|
Liu H, Ning H, Men H, Hou R, Fu M, Zhang H, Liu J. Regulation of CCL5 expression in smooth muscle cells following arterial injury. PLoS One 2012; 7:e30873. [PMID: 22292067 PMCID: PMC3264622 DOI: 10.1371/journal.pone.0030873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 12/22/2011] [Indexed: 12/15/2022] Open
Abstract
Chemokines play a crucial role in inflammation and in the pathophysiology of atherosclerosis by recruiting inflammatory immune cells to the endothelium. Chemokine CCL5 has been shown to be involved in atherosclerosis progression. However, little is known about how CCL5 is regulated in vascular smooth muscle cells. In this study we report that CCL5 mRNA expression was induced and peaked in aorta at day 7 and then declined after balloon artery injury, whereas IP-10 and MCP-1 mRNA expression were induced and peaked at day 3 and then rapidly declined. The expression of CCL5 receptors (CCR1, 3 & 5) were also rapidly induced and then declined except CCR5 which expression was still relatively high at day 14 after balloon injury. In rat smooth muscle cells (SMCs), similar as in aorta CCL5 mRNA expression was induced and kept increasing after LPS plus IFN-gamma stimulation, whereas IP-10 mRNA expression was rapidly induced and then declined. Our data further indicate that induction of CCL5 expression in SMCs was mediated by IRF-1 via binding to the IRF-1 response element in CCL5 promoter. Moreover, p38 MAPK was involved in suppression of CCL5 and IP-10 expression in SMCs through common upstream molecule MKK3. The downstream molecule MK2 was required for p38-mediated CCL5 but not IP-10 inhibition. Our findings indicate that CCL5 induction in aorta and SMCs is mediated by IRF-1 while activation of p38 MAPK signaling inhibits CCL5 and IP-10 expression. Methods targeting MK2 expression could be used to selectively regulate CCL5 but not IP-10 expression in SMCs.
Collapse
MESH Headings
- Animals
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Carotid Artery, Common/drug effects
- Carotid Artery, Common/metabolism
- Carotid Artery, Common/pathology
- Cells, Cultured
- Chemokine CCL5/genetics
- Chemokine CCL5/metabolism
- Chemokine CXCL10/genetics
- Chemokine CXCL10/metabolism
- Chemokine CXCL10/physiology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Interferon Regulatory Factor-1/genetics
- Interferon Regulatory Factor-1/metabolism
- Interferon Regulatory Factor-1/physiology
- Lipopolysaccharides/pharmacology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats
- Rats, Sprague-Dawley
- Time Factors
- Transfection
- p38 Mitogen-Activated Protein Kinases/metabolism
- p38 Mitogen-Activated Protein Kinases/physiology
Collapse
Affiliation(s)
- Huan Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- Heibei North University Medical College, Zhangjiakou, China
| | - Huan Ning
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Hongchao Men
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Rong Hou
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Mingui Fu
- Shock/Trauma Research Center & Department of Basic Medical Science, School of Medicine, University of Missouri Kansas City, Missouri, United States of America
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- * E-mail: (JL); (HZ)
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (JL); (HZ)
| |
Collapse
|
50
|
Zago AC, Matte BS, Reginato L, Iturry-Yamamoto G, Krepsky A, Bergoli LCC, Balvedi J, Raudales JC, Saadi EK, Zago AJ. First-in-Man Study of Simvastatin-Eluting Stent in De Novo Coronary Lesions. Circ J 2012; 76:1109-14. [DOI: 10.1253/circj.cj-11-1125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Bruno S. Matte
- Cardiovascular Research Center, Lutheran University of Brazil
| | | | | | - Ana Krepsky
- Cardiovascular Research Center, Lutheran University of Brazil
| | | | - Julise Balvedi
- Cardiovascular Research Center, Lutheran University of Brazil
| | | | | | - Alcides J. Zago
- Cardiovascular Research Center, Lutheran University of Brazil
| |
Collapse
|