1
|
Kaneguchi A, Sakitani N, Umehara T. Histological changes in skeletal muscle induced by heart failure in human patients and animal models: A scoping review. Acta Histochem 2024; 126:152210. [PMID: 39442432 DOI: 10.1016/j.acthis.2024.152210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This scoping review aimed to characterize the histological changes in skeletal muscle after heart failure (HF) and to identify gaps in knowledge. METHODS On April 03, 2024, systematic searches were performed for papers in which histological analyses were conducted on skeletal muscle sampled from patients with HF or animal models of HF. Screening and data extraction were conducted by two independent authors. RESULTS AND CONCLUSION A total of 118 papers were selected, including 33 human and 85 animal studies. Despite some disagreements among studies, some trends were observed. These trends included a slow-to-fast transition, a decrease in muscle fiber size, capillary to muscle fiber ratio, and mitochondrial activity and content, and an increase in apoptosis. These changes may contribute to the fatigability and decrease in muscle strength observed after HF. Although there were some disagreements between the results of human and animal studies, the results were generally similar. Animal models of HF will therefore be useful in elucidating the histological changes in skeletal muscle that occur in human patients with HF. Because the muscles subjected to histological analysis were mostly thigh muscles in humans and mostly lower leg muscles in animals, it remains uncertain whether changes similar to those seen in lower limb (hindlimb) muscles after HF also occur in upper limb (forelimb) muscles. The results of this review will consolidate the current knowledge on HF-induced histological changes in skeletal muscle and consequently aid in the rehabilitation of patients with HF and future studies.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan.
| | - Naoyoshi Sakitani
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Hayashi-cho 2217-4, Takamatsu, Kagawa, 761-0395, Japan
| | - Takuya Umehara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan
| |
Collapse
|
2
|
Jędrejko K, Catlin O, Stewart T, Muszyńska B. Mexidol, Cytoflavin, and succinic acid derivatives as antihypoxic, anti-ischemic metabolic modulators, and ergogenic aids in athletes and consideration of their potential as performance enhancing drugs. Drug Test Anal 2024; 16:1436-1467. [PMID: 38403950 DOI: 10.1002/dta.3655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
Emoxypine (ethylmethylhydroxypyridine) is a synthetic derivative of vitamin B6. Emoxypine succinate is a registered drug in Russia and Ukraine under various trade names including Mexidol, Mexicor, and Armadin Long. Mexidol demonstrates antihypoxic and anti-ischemic effects and also modulates metabolism. The use of Mexidol by Russian athletes has been confirmed in the past. Current use by athletes is unknown as this drug is not monitored or included in drug testing protocol. Metabotropic and antihypoxic effects of Mexidol were compared to the effects of meldonium or trimetazidine, both of which are included on the World Anti-Doping Agency (WADA) Prohibited List in category S4.4. Metabolic Modulators. The conjugation of emoxypine with succinate elevates the therapeutic effectiveness of the Mexidol formulation as succinic acid itself has important impacts to consider despite being a common food additive and drug excipient. Other succinic acid salts like ammonium succinate, found as dietary supplement, have been patented as performance enhancers. Available research on healthy subjects suggests that combinations of selected 3-substituted pyridine derivatives with succinate including Mexidol and a related drug Cytoflavin can enhance the performance of athletes. Cytoflavin is a multi-component formula containing meglumine sodium succinate, nicotinamide (vitamin B3), inosine (riboxin), and riboflavin. Other related succinate-based drugs include Remaxol, Reamberin, and Cogitum. Mexidol and Cytoflavin and related substances exhibit similar biological effects as drugs on the WADA Prohibited List, and if they are used for performance enhancement by athletes, they could be worthy of consideration as prohibited substances in sport.
Collapse
Affiliation(s)
- Karol Jędrejko
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Jagiellonian University Medical College, Kraków, Poland
| | - Oliver Catlin
- Banned Substances Control Group (BSCG), Los Angeles, California, USA
| | - Timothy Stewart
- Banned Substances Control Group (BSCG), Los Angeles, California, USA
| | - Bożena Muszyńska
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
3
|
Caldwell HG, Jeppesen JS, Lossius LO, Atti JP, Durrer CG, Oxfeldt M, Melin AK, Hansen M, Bangsbo J, Gliemann L, Hellsten Y. The whole-body and skeletal muscle metabolic response to 14 days of highly controlled low energy availability in endurance-trained females. FASEB J 2024; 38:e70157. [PMID: 39530548 DOI: 10.1096/fj.202401780r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
This study investigated the effects of 14 days low energy availability (LEA) versus optimal energy availability (OEA) in endurance-trained females on substrate utilization, insulin sensitivity, and skeletal muscle mitochondrial oxidative capacity; and the impact of metabolic changes on exercise performance. Twelve endurance-trained females (V̇O2max 55.2 ± 5.1 mL × min-1 × kg-1) completed two 14-day randomized, blinded, cross-over, controlled dietary interventions: (1) OEA (51.9 ± 2.0 kcal × kg fat-free mass (FFM)-1 × day-1) and (2) LEA (22.3 ± 1.5 kcal × kg FFM-1 × day-1), followed by 3 days OEA. Participants maintained their exercise training volume during both interventions (approx. 8 h × week-1 at 79% heart rate max). Skeletal muscle mitochondrial respiratory capacity, glycogen, and maximal activity of CS, HAD, and PFK were unaltered with LEA. 20-min time trial endurance performance was impaired by 7.8% (Δ -16.8 W, 95% CI: -23.3 to -10.4, p < .001) which persisted following 3 days refueling post-LEA (p < .001). Fat utilization was increased post-LEA as evidenced by: (1) 99.4% (p < .001) increase in resting plasma free fatty acids (FFA); (2) 270% (p = .007) larger reduction in FFA in response to acute exercise; and (3) 28.2% (p = .015) increase in resting fat oxidation which persisted during submaximal exercise (p < .001). These responses were reversed with 3 days refueling. Daily glucose control (via CGM), HOMA-IR, HOMA-β, were unaffected by LEA. Skeletal muscle O2 utilization and carbohydrate availability were not limiting factors for aerobic exercise capacity and performance; therefore, whether LEA per se affects aspects of training quality/recovery requires investigation.
Collapse
Affiliation(s)
- Hannah G Caldwell
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jan S Jeppesen
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lone O Lossius
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Sport Science, Linnæus University, Växjö/Kalmar, Sweden
| | - Jesper P Atti
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Cody G Durrer
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Anna K Melin
- Department of Sport Science, Linnæus University, Växjö/Kalmar, Sweden
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Jens Bangsbo
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Gliemann
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Maruta H, Fujii Y, Toyokawa N, Nakamura S, Yamashita H. Effects of Bifidobacterium-Fermented Milk on Obesity: Improved Lipid Metabolism through Suppression of Lipogenesis and Enhanced Muscle Metabolism. Int J Mol Sci 2024; 25:9934. [PMID: 39337421 PMCID: PMC11432277 DOI: 10.3390/ijms25189934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a major global health concern. Studies suggest that the gut microflora may play a role in protecting against obesity. Probiotics, including lactic acid bacteria and Bifidobacterium, have garnered attention for their potential in obesity prevention. However, the effects of Bifidobacterium-fermented products on obesity have not been thoroughly elucidated. Bifidobacterium, which exists in the gut of animals, is known to enhance lipid metabolism. During fermentation, it produces acetic acid, which has been reported to improve glucose tolerance and insulin resistance, and exhibit anti-obesity and anti-diabetic effects. Functional foods have been very popular around the world, and fermented milk is a good candidate for enrichment with probiotics. In this study, we aim to evaluate the beneficial effects of milks fermented with Bifidobacterium strains on energy metabolism and obesity prevention. Three Bifidobacterium strains (Bif-15, Bif-30, and Bif-39), isolated from newborn human feces, were assessed for their acetic acid production and viability in milk. These strains were used to ferment milk. Otsuka-Long-Evans Tokushima Fatty (OLETF) rats administered Bif-15-fermented milk showed significantly lower weight gain compared to those in the water group. The phosphorylation of AMPK was increased and the expression of lipogenic genes was suppressed in the liver of rats given Bif-15-fermented milk. Additionally, gene expression related to respiratory metabolism was significantly increased in the soleus muscle of rats given Bif-15-fermented milk. These findings suggest that milk fermented with the Bifidobacterium strain Bif-15 can improve lipid metabolism and suppress obesity.
Collapse
Affiliation(s)
- Hitomi Maruta
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi 719-1197, Okayama, Japan
| | - Yusuke Fujii
- Fundamental Laboratory, Ohayo Daily Products Co., Ltd., 565 Koshita, Naka-ku, Okayama-shi 703-8505, Okayama, Japan
| | - Naoki Toyokawa
- Fundamental Laboratory, Ohayo Daily Products Co., Ltd., 565 Koshita, Naka-ku, Okayama-shi 703-8505, Okayama, Japan
| | - Shoji Nakamura
- Fundamental Laboratory, Ohayo Daily Products Co., Ltd., 565 Koshita, Naka-ku, Okayama-shi 703-8505, Okayama, Japan
| | - Hiromi Yamashita
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi 719-1197, Okayama, Japan
- Graduate School of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi 719-1197, Okayama, Japan
| |
Collapse
|
5
|
Mastrandrea CJ, Hedge ET, Hughson RL. The Detrimental Effects of Bedrest: Premature Cardiovascular Aging and Dysfunction. Can J Cardiol 2024; 40:1468-1482. [PMID: 38759726 DOI: 10.1016/j.cjca.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
Bedrest as an experimental paradigm or as an in-patient stay for medical reasons has negative consequences for cardiovascular health. The effects of severe inactivity parallel many of the changes experienced with natural aging but over a much shorter duration. Cardiac function is reduced, arteries stiffen, neural reflex responses are impaired, and metabolic and oxidative stress responses impose burden on the heart and vascular systems. The effect of these changes is revealed in studies of integrative function. Aerobic fitness progressively deteriorates with bedrest and tolerance of upright posture is rapidly impaired. In this review we consider the similarities of aging and bedrest-induced cardiovascular deconditioning. We concur with many recent clinical recommendations that early and regular mobility with upright posture will reduce likelihood of hospital-associated disability related to bedrest.
Collapse
Affiliation(s)
- Carmelo J Mastrandrea
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Eric T Hedge
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Richard L Hughson
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada.
| |
Collapse
|
6
|
de Haan M, van der Zwaard S, Schreven S, Beek PJ, Jaspers RT. Determining V̇O 2max in competitive swimmers: Comparing the validity and reliability of cycling, arm cranking, ergometer swimming, and tethered swimming. J Sci Med Sport 2024; 27:499-506. [PMID: 38643061 DOI: 10.1016/j.jsams.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVES This study aims to identify the optimal method for determining V̇O2max in competitive swimmers in terms of validity and test-retest reliability. DESIGN Controlled experiment. METHODS Twenty competitive swimmers performed four maximal incremental exercise tests: cycling, arm cranking, ergometer swimming, and tethered swimming. Gas analysis was conducted to estimate V̇O2max. Validity was assessed in terms of the amount of variance of the performance on a 1500-m time trial explained by the estimated V̇O2max . Test-retest reliability was evaluated using the intraclass correlation coefficient (ICC). RESULTS V̇O2max obtained from tethered swimming, ergometer swimming, and cycling explained a similar amount of variance of the 1500-m performance (R2 = 0.64, 0.64 and 0.65, respectively). However, ergometer swimming yielded significantly lower V̇O2max estimates (40.54 ± 6.55 ml/kg/min) than tethered swimming (54.40 ± 6.21 ml/kg/min) and cycling (54.39 ± 5.63 ml/kg/min). Arm cranking resulted in both a lower explained variance (R2 = 0.41) and a significantly lower V̇O2max (43.14 ± 7.81 ml/kg/min). Tethered swimming showed good reliability (ICC = 0.81). CONCLUSIONS Bicycle and tethered swimming tests demonstrated high validity with comparable V̇O2max estimates, explaining a large proportion of differences in endurance performance. Choosing between these two methods involves a trade-off between a higher practical applicability and reliability of the bicycle test and the more sport-specific nature of the tethered swimming test.
Collapse
Affiliation(s)
- Michel de Haan
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Netherlands. https://twitter.com/Md_Haan
| | - Stephan van der Zwaard
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Netherlands; Department of Cardiology, Amsterdam University Medical Center, University of Amsterdam, Netherlands
| | | | - Peter J Beek
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Netherlands
| | - Richard T Jaspers
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Netherlands.
| |
Collapse
|
7
|
Peden DL, Rogers R, Mitchell EA, Taylor SM, Bailey SJ, Ferguson RA. Skeletal muscle mitochondrial correlates of critical power and W' in healthy active individuals. Exp Physiol 2024. [PMID: 38593224 DOI: 10.1113/ep091835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
The asymptote (critical power; CP) and curvature constant (W') of the hyperbolic power-duration relationship can predict performance within the severe-intensity exercise domain. However, the extent to which these parameters relate to skeletal muscle mitochondrial content and respiratory function is not known. Fifteen males (peak O2 uptake, 52.2 ± 8.7 mL kg-1 min-1; peak work rate, 366 ± 40 W; and gas exchange threshold, 162 ± 41 W) performed three to five constant-load tests to task failure for the determination of CP (246 ± 44 W) and W' (18.6 ± 4.1 kJ). Skeletal muscle biopsies were obtained from the vastus lateralis to determine citrate synthase (CS) activity, as a marker of mitochondrial content, and the ADP-stimulated respiration (P) and maximal electron transfer (E) through mitochondrial complexes (C) I-IV. The CP was positively correlated with CS activity (absolute CP, r = 0.881, P < 0.001; relative CP, r = 0.751, P = 0.001). The W' was not correlated with CS activity (P > 0.05). Relative CP was positively correlated with mass-corrected CI + IIE (r = 0.659, P = 0.038), with absolute CP being inversely correlated with CS activity-corrected CIVE (r = -0.701, P = 0.024). Relative W' was positively correlated with CS activity-corrected CI + IIP (r = 0.713, P = 0.021) and the phosphorylation control ratio (r = 0.661, P = 0.038). There were no further correlations between CP or W' and mitochondrial respiratory variables. These findings support the assertion that skeletal muscle mitochondrial oxidative capacity is positively associated with CP and that this relationship is strongly determined by mitochondrial content.
Collapse
Affiliation(s)
- Donald L Peden
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Robert Rogers
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Emma A Mitchell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Suzanne M Taylor
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Richard A Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
8
|
Nesti L, Pugliese NR, Santoni L, Armenia S, Chiriacò M, Sacchetta L, De Biase N, Del Punta L, Masi S, Tricò D, Natali A. Distinct effects of type 2 diabetes and obesity on cardiopulmonary performance. Diabetes Obes Metab 2024; 26:351-361. [PMID: 37828824 DOI: 10.1111/dom.15324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
AIM Effort intolerance is frequent in patients with overweight/obesity and/or type 2 diabetes (T2D) free from cardiac and respiratory disease. We sought to quantify the independent effects of T2D and body mass index (BMI) on cardiopulmonary capacity and gain insights on the possible pathophysiology by case-control and regression analyses. METHODS Patients at high/moderate cardiovascular risk, with or without T2D, underwent spirometry and combined echocardiography-cardiopulmonary exercise test as part of their clinical workup. Subjects with evidence of cardiopulmonary disease were excluded. The effects of T2D and obesity were estimated by multivariable models accounting for known/potential confounders and the major pathophysiological determinants of oxygen uptake at peak exercise (VO2peak ) normalized for fat-free mass (FFM). RESULTS In total, 109 patients with T2D and 97 controls were included in the analysis. The two groups had similar demographic and anthropometric characteristics except for higher BMI in T2D (28.6 ± 4.6 vs. 26.3 ± 4.4 kg/m2 , p = .0003) but comparable FFM. Patients with T2D achieved lower VO2peak than controls (18.5 ± 4.4 vs. 21.7 ± 8.3 ml/min/kg, p = .0006). Subclinical cardiovascular dysfunctions were observed in T2D: concentric left ventricular remodelling, autonomic dysfunction, systolic dysfunction and reduced systolic reserve. After accounting for confounders and major determinants of VO2peakFFM , T2D still displayed reduced VO2peak by 1.0 (-1.7/-0.3) ml/min/kgFFM , p = .0089, while the effect of BMI [-0.2 (-0.3/0.1) ml/min/kgFFM , p = .06 per unit increase], was largely explained by a combination of chronotropic incompetence, reduced peripheral oxygen extraction, impaired systolic reserve and ventilatory (in)efficiency. CONCLUSIONS T2D is an independent negative determinant of VO2peak whose effect is additive to other pathophysiological determinants of oxygen uptake, including BMI.
Collapse
Affiliation(s)
- Lorenzo Nesti
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Heart Failure Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicola Riccardo Pugliese
- Heart Failure Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenza Santoni
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Silvia Armenia
- Heart Failure Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Martina Chiriacò
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Sacchetta
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicolò De Biase
- Heart Failure Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lavinia Del Punta
- Heart Failure Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Masi
- Heart Failure Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Domenico Tricò
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Natali
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Heart Failure Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Hughes RP, Carlini NA, Fleenor BS, Harber MP. Mitochondrial-targeted antioxidant ingestion acutely blunts VO 2max in physically inactive females. Physiol Rep 2023; 11:e15871. [PMID: 38061764 PMCID: PMC10703545 DOI: 10.14814/phy2.15871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/17/2023] Open
Abstract
PURPOSE To determine the acute effects of a mitochondrial targeting antioxidant (MitoQ) on the metabolic response during exercise. METHODS Nine (n = 9) physically inactive females (age 47 ± 22 years) performed two trials (Placebo and MitoQ) in a double-blind randomized cross-over design. In both trials, participants performed an exercise protocol consisting of 3-min stages at submaximal workloads followed by a ramp protocol to volitional exhaustion. Participants received either Placebo or MitoQ (80 mg) 1 h prior to exercise. Indirect calorimetry and cardiovascular measurements were collected throughout the duration of the exercise bout. RESULTS Submaximal metabolic and cardiovascular variables were not different between trials (p > 0.05). VO2max was higher (p = 0.03) during Placebo (23.5 ± 5.7 mL kg min-1 ) compared to MitoQ (21.0 ± 6.6 mL kg min-1 ). Maximal ventilation was also higher (p = 0.02) in Placebo (82.4 ± 17.7 L/min) compared to MitoQ (75.0 ± 16.8 L/min). Maximal cardiovascular variables and blood lactate were not different between trials (p > 0.05). CONCLUSION An acute dose of MitoQ blunted VO2max , which was primarily mediated by impairment of ventilatory function. These data suggest that the acute accumulation of exercise-induced mitochondrial reactive oxygen species (mtROS) are necessary for maximal aerobic capacity. Further research is warranted on mtROS-antioxidant cell signaling cascades, and how they relate to mitochondrial function during exercise.
Collapse
Affiliation(s)
- Ryan P. Hughes
- Clinical Exercise Physiology, Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | - Nicholas A. Carlini
- Clinical Exercise Physiology, Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | - Bradley S. Fleenor
- Clinical Exercise Physiology, Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | - Matthew P. Harber
- Clinical Exercise Physiology, Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| |
Collapse
|
10
|
Possamai LT, de Aguiar RA, Borszcz FK, do Nascimento Salvador PC, de Lucas RD, Turnes T. Muscle Oxidative Capacity in Vivo Is Associated With Physiological Parameters in Trained Rowers. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:1020-1027. [PMID: 36048498 DOI: 10.1080/02701367.2022.2100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Purpose: The muscle oxygen uptake (m V ˙ O 2 ) kinetics following exercise, measured by near-infrared spectroscopy, has been used as a functional evaluation of muscle oxidative metabolism. This study aimed to determine the m V ˙ O 2 off-kinetics and verify the relationship of the recovery rate of m V ˙ O 2 (k) with time-trial performance and different aerobic parameters in trained rowers. Methods: Eleven male rowers (age: 20 ± 3 years; V ˙ O 2 m a x : 4.28 ± 0.35 L·min-1) used a rowing ergometer to perform (I) an incremental test to determine the maximal oxygen uptake (V ˙ O 2 m a x ) and peak power output (Ppeak); (II) several visits to determine maximal lactate steady state (MLSS); and (III) a 2000-m rowing ergometer performance test. Also, one test to determine m V ˙ O 2 off-kinetics of the vastus lateralis muscle using a repeated arterial occlusions protocol. Results: The m V ˙ O 2 generated a good monoexponential fit (R2 = 0.960 ± 0.030; SEE = 0.041 ± 0.018%.s-1). The k of m V ˙ O 2 (2.06 ± 0.58 min-1) was associated with relative V ˙ O 2 m a x (r = 0.79), power output at MLSS (r = 0.76), and Ppeak (r = 0.83); however, it was not related with 2000-m rowing performance (r = -0.38 to 0.52; p > .152). Conclusion: These findings suggest that although not associated with rowing performance, the m V ˙ O 2 off-kinetics determined after a submaximal isometric knee extension may be a practical and less-exhaustive approach than invasive responses and incremental tests to assess the muscle oxidative metabolism during a training program.
Collapse
|
11
|
Ho JS, Wong JJ, Gao F, Wee HN, Teo LLY, Ewe SH, Tan RS, Ching J, Chua KV, Lee LS, Koh WP, Kovalik JP, Koh AS. Adverse cardiovascular and metabolic perturbations among older women: 'fat-craving' hearts. Clin Res Cardiol 2023; 112:1555-1567. [PMID: 36651997 DOI: 10.1007/s00392-023-02156-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Despite known sex-based differences in cardiovascular aging, differences in aging biology are poorly understood. We hypothesize that circulating metabolites studied cross-sectionally with cardiac aging may be associated with cardiovascular changes that distinguish cardiac aging in women. METHODS A population-based cohort of community men and women without cardiovascular disease from Singapore underwent detailed clinical and echocardiography examinations. Cross-sectional associations between cardiac functional characteristics and metabolomics profiles were examined. RESULTS Five hundred sixty-seven adults (48.9% women) participated. Women were younger (72 ± 4.4 years vs 73 ± 4.3 years, p = 0.022), had lower diastolic blood pressures (71 ± 11.0 mmHg vs 76 ± 11.2 mmHg, p < 0.0001, and less likely to have diabetes mellitus (18.0% vs 27.6%, p = 0.013) and smoking (3.8% vs 34.5%, p < 0.001). Body mass indices were similar (24 ± 3.8 kg/m2 vs 24 ± 3.4 kg/m2, p = 0.29), but women had smaller waist circumferences (81 ± 10.1 cm vs 85 ± 9.2 cm, p < 0.001). Women had a significantly higher E/e' ratios (10.9 ± 3.4 vs 9.9 ± 3.3, p = 0.007) and mitral A peak (0.86 ± 0.2 m/s vs 0.79 ± 0.2 m/s, p < 0.001) than men. Among women, lower E/e' ratio was associated with higher levels of C16 (OR 1.019, 95%CI 1.002-1.036, p = 0.029), C16:1 (OR 1.06, 95%CI 1.006-1.118, p = 0.028), serine (OR 1.019, 95%CI 1.002-1.036, p = 0.025), and histidine (OR 1.045, 95%CI 1.013-1.078, p = 0.006). Lower mitral A peak was associated with higher levels of histidine (OR 1.039, 95%CI 1.009-1.070, p = 0.011), isoleucine (OR 1.013, 95%CI 1.004-1.021, p = 0.004), and C20 (OR 1.341, 95%CI 1.067-1.684, p = 0.012). CONCLUSION Impairments in diastolic functions were more frequent among older women compared to men, despite lower prevalence of vascular risk factors and preserved cardiac structure. Cardiac aging in women correlated with metabolites involved in fatty acid oxidation and tricyclic acid cycle fuelling.
Collapse
Affiliation(s)
- Jien Sze Ho
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Jie Jun Wong
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Fei Gao
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Louis L Y Teo
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - See Hooi Ewe
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Ru-San Tan
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Jianhong Ching
- Duke-NUS Medical School, Singapore, Singapore
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | | | | | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Jean-Paul Kovalik
- Duke-NUS Medical School, Singapore, Singapore
- Singapore General Hospital, Singapore, Singapore
| | - Angela S Koh
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
12
|
Leszczynski EC, Schwartz NE, McPeek AC, Currie KD, Ferguson DP, Garland T. Selectively breeding for high voluntary physical activity in female mice does not bestow inherent characteristics that resemble eccentric remodeling of the heart, but the mini-muscle phenotype does. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:205-212. [PMID: 37753423 PMCID: PMC10518799 DOI: 10.1016/j.smhs.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 09/28/2023] Open
Abstract
Physical activity engagement results in a variety of positive health outcomes, including a reduction in cardiovascular disease risk partially due to eccentric remodeling of the heart. The purpose of this investigation was to determine if four replicate lines of High Runner mice that have been selectively bred for voluntary exercise on wheels have a cardiac phenotype that resembles the outcome of eccentric remodeling. Adult females (average age 55 days) from the 4 High Runner and 4 non-selected control lines were anaesthetized via vaporized isoflurane, then echocardiographic images were collected and analyzed for structural and functional differences. High Runner mice in general had lower ejection fractions compared to control mice lines (2-tailed p = 0.023 6) and tended to have thicker walls of the anterior portion of the left ventricle (p = 0.065). However, a subset of the High Runner individuals, termed mini-muscle mice, had greater ejection fraction (p = 0.000 6), fractional shortening percentage (p < 0.000 1), and ventricular mass at dissection (p < 0.002 7 with body mass as a covariate) compared to non-mini muscle mice. Mice from replicate lines bred for high voluntary exercise did not all have inherent positive cardiac functional or structural characteristics, although a genetically unique subset of mini-muscle individuals did have greater functional cardiac characteristics, which in conjunction with their previously described peripheral aerobic enhancements (e.g., increased capillarity) would partially account for their increased V ˙ O2max.
Collapse
Affiliation(s)
| | - Nicole E. Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Ashley C. McPeek
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | | | - David P. Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
13
|
Olex-Zarychta D. Effects of hyperbaric oxygen therapy on human psychomotor performance: A review. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:430-440. [PMID: 37652780 DOI: 10.1016/j.joim.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/19/2023] [Indexed: 09/02/2023]
Abstract
Psychomotor performance is the coordination of a sensory or ideational (cognitive) process and a motor activity. All sensorimotor processes involved in planning and execution of voluntary movements need oxygen supply and seem to be significantly disrupted in states of hypoxia. Hyperbaric oxygen therapy has become a widely used treatment in routine medicine and sport medicine due to its beneficial effects on different aspects of human physiology and performance. This paper presents state-of-the-art data on the effects of hyperbaric oxygen therapy on different aspects of human psychomotor function. The therapy's influence on musculoskeletal properties and motor abilities as well as the effects of hyperbaric oxygenation on cognitive, myocardial and pulmonary functions are presented. In this review the molecular and physiological processes related to human psychomotor performance in response to hyperbaric oxygen are discussed to contribute to this fast-growing field of research in integrative medicine. Please cite this article as: Olex-Zarychta D. Effects of hyperbaric oxygen therapy on human psychomotor performance: A review. J Integr Med. 2023; 21(5): 430-440.
Collapse
Affiliation(s)
- Dorota Olex-Zarychta
- Institute of Sport Sciences, Academy of Physical Education in Katowice, 40-065 Katowice, Poland.
| |
Collapse
|
14
|
Flockhart M, Tischer D, Nilsson LC, Blackwood SJ, Ekblom B, Katz A, Apró W, Larsen FJ. Reduced glucose tolerance and insulin sensitivity after prolonged exercise in endurance athletes. Acta Physiol (Oxf) 2023; 238:e13972. [PMID: 37017615 DOI: 10.1111/apha.13972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/06/2023]
Abstract
AIM The purpose of this study was to 1. investigate if glucose tolerance is affected after one acute bout of different types of exercise; 2. assess if potential differences between two exercise paradigms are related to changes in mitochondrial function; and 3. determine if endurance athletes differ from nonendurance-trained controls in their metabolic responses to the exercise paradigms. METHODS Nine endurance athletes (END) and eight healthy nonendurance-trained controls (CON) were studied. Oral glucose tolerance tests (OGTT) and mitochondrial function were assessed on three occasions: in the morning, 14 h after an overnight fast without prior exercise (RE), as well as after 3 h of prolonged continuous exercise at 65% of VO2 max (PE) or 5 × 4 min at ~95% of VO2 max (HIIT) on a cycle ergometer. RESULTS Glucose tolerance was markedly reduced in END after PE compared with RE. END also exhibited elevated fasting serum FFA and ketones levels, reduced insulin sensitivity and glucose oxidation, and increased fat oxidation during the OGTT. CON showed insignificant changes in glucose tolerance and the aforementioned measurements compared with RE. HIIT did not alter glucose tolerance in either group. Neither PE nor HIIT affected mitochondrial function in either group. END also exhibited increased activity of 3-hydroxyacyl-CoA dehydrogenase activity in muscle extracts vs. CON. CONCLUSION Prolonged exercise reduces glucose tolerance and increases insulin resistance in endurance athletes the following day. These findings are associated with an increased lipid load, a high capacity to oxidize lipids, and increased fat oxidation.
Collapse
Affiliation(s)
- Mikael Flockhart
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Dominik Tischer
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Lina C Nilsson
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Sarah J Blackwood
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Abram Katz
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Filip J Larsen
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| |
Collapse
|
15
|
Zhao F, Tomita M, Dutta A. Operational Modal Analysis of Near-Infrared Spectroscopy Measure of 2-Month Exercise Intervention Effects in Sedentary Older Adults with Diabetes and Cognitive Impairment. Brain Sci 2023; 13:1099. [PMID: 37509027 PMCID: PMC10377417 DOI: 10.3390/brainsci13071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The Global Burden of Disease Study (GBD 2019 Diseases and Injuries Collaborators) found that diabetes significantly increases the overall burden of disease, leading to a 24.4% increase in disability-adjusted life years. Persistently high glucose levels in diabetes can cause structural and functional changes in proteins throughout the body, and the accumulation of protein aggregates in the brain that can be associated with the progression of Alzheimer's Disease (AD). To address this burden in type 2 diabetes mellitus (T2DM), a combined aerobic and resistance exercise program was developed based on the recommendations of the American College of Sports Medicine. The prospectively registered clinical trials (NCT04626453, NCT04812288) involved two groups: an Intervention group of older sedentary adults with T2DM and a Control group of healthy older adults who could be either active or sedentary. The completion rate for the 2-month exercise program was high, with participants completing on an average of 89.14% of the exercise sessions. This indicated that the program was practical, feasible, and well tolerated, even during the COVID-19 pandemic. It was also safe, requiring minimal equipment and no supervision. Our paper presents portable near-infrared spectroscopy (NIRS) based measures that showed muscle oxygen saturation (SmO2), i.e., the balance between oxygen delivery and oxygen consumption in muscle, drop during bilateral heel rise task (BHR) and the 6 min walk task (6MWT) significantly (p < 0.05) changed at the post-intervention follow-up from the pre-intervention baseline in the T2DM Intervention group participants. Moreover, post-intervention changes from pre-intervention baseline for the prefrontal activation (both oxyhemoglobin and deoxyhemoglobin) showed statistically significant (p < 0.05, q < 0.05) effect at the right superior frontal gyrus, dorsolateral, during the Mini-Cog task. Here, operational modal analysis provided further insights into the 2-month exercise intervention effects on the very-low-frequency oscillations (<0.05 Hz) during the Mini-Cog task that improved post-intervention in the sedentary T2DM Intervention group from their pre-intervention baseline when compared to active healthy Control group. Then, the 6MWT distance significantly (p < 0.01) improved in the T2DM Intervention group at post-intervention follow-up from pre-intervention baseline that showed improved aerobic capacity and endurance. Our portable NIRS based measures have practical implications at the point of care for the therapists as they can monitor muscle and brain oxygenation changes during physical and cognitive tests to prescribe personalized physical exercise doses without triggering individual stress response, thereby, enhancing vascular health in T2DM.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Machiko Tomita
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln LN67TS, UK
| |
Collapse
|
16
|
Mallardo M, D'Alleva M, Lazzer S, Giovanelli N, Graniero F, Billat V, Fiori F, Marinoni M, Parpinel M, Daniele A, Nigro E. Improvement of adiponectin in relation to physical performance and body composition in young obese males subjected to twenty-four weeks of training programs. Heliyon 2023; 9:e15790. [PMID: 37215851 PMCID: PMC10196512 DOI: 10.1016/j.heliyon.2023.e15790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Obesity and related metabolic diseases represent a worldwide health problem. The main factor predisposing to obesity is an unhealthy lifestyle including the lack of physical activity. A pivotal role in the etio-pathogenesis of obesity is carried out by adipose tissue, an endocrine organ secreting several adipokines involved in numerous metabolic and inflammatory processes. Among these, of particular importance is adiponectin, an adipokine involved in the regulation of insulin sensibility and in anti-inflammatory processes. The aim of the study was to determine the effects of 24 weeks of two different training programs polarized (POL) and threshold training (THR) on body composition, physical capacities and adiponectin expression. Thirteen male obese subjects (BMI: 32.0 ± 3.0 kg m-2) followed 24 weeks of two different training programs, POL and THR, consisting of walking or running (or a combination of the two methods) in their normal living conditions. Before (T0) and after the end of the program (T1), the assessment of body composition was assessed by bioelectrical impedance and the concentration of salivary and serum adiponectin was analyzed by enzyme-linked immunosorbent assay and western blotting. Although the results obtained did not show significant differences between the two training programs, body mass and body mass index decreased by a mean of -4.46 ± 2.90 kg and 1.43 ± 0.92 kg m-2 (P < 0.05). Fat mass decreased by -4.47 ± 2.78 kg (P < 0.05). V'O2max increased by a mean of 0.20 ± 0.26 L min-1 (P < 0.05) Also, we observed an increase in saliva and in serum of adiponectin concentrations at T1 compared to T0 by 4.72 ± 3.52 μg mL-1 and 5.22 ± 4.74 ng mL-1 (P < 0.05) respectively. Finally, we found significant correlations between Δ serum adiponectin and Δ Hip (R = -0.686, P = 0.001) and between Δ salivary adiponectin and ΔWaist (R = -0.678, P = 0.011). Our results suggest that a 24 weeks training program, independently from intensity and volume, induces an amelioration of body composition and fitness performance. These improvements are associated with an increase in total and HMW adiponectin expression in both saliva and in serum.
Collapse
Affiliation(s)
- Marta Mallardo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, via A. Vivaldi, 81100, Caserta, Italy
- CEINGE Biotecnologie Avanzate “Franco Salvatore” scarl, Via G. Salvatore 486, 80145, Napoli, Italy
| | - Mattia D'Alleva
- Department of Medicine, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| | - Stefano Lazzer
- Department of Medicine, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| | - Nicola Giovanelli
- Department of Medicine, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| | - Francesco Graniero
- Physical Exercise Prescription Center, Azienda Sanitaria Universitaria Friuli Centrale, Gemona del Friuli, Udine, Italy
| | - Véronique Billat
- Unité de Biologie Intégrative des Adaptations à l’Exercice, Université Paris-Saclay, Univ Evry, 91000, Evry-Courcouronnes, France
- BillaTraining SAS, 32 rue Paul Vaillant-Couturier, 94140, Alforville, France
| | - Federica Fiori
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Maria Parpinel
- Department of Medicine, University of Udine, Udine, Italy
| | - Aurora Daniele
- CEINGE Biotecnologie Avanzate “Franco Salvatore” scarl, Via G. Salvatore 486, 80145, Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, via Pansini, Napoli, 80131, Italy
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, via A. Vivaldi, 81100, Caserta, Italy
- CEINGE Biotecnologie Avanzate “Franco Salvatore” scarl, Via G. Salvatore 486, 80145, Napoli, Italy
| |
Collapse
|
17
|
Jacobs N, Mos D, Bloemers FW, van der Laarse WJ, Jaspers RT, van der Zwaard S. Low myoglobin concentration in skeletal muscle of elite cyclists is associated with low mRNA expression levels. Eur J Appl Physiol 2023:10.1007/s00421-023-05161-z. [PMID: 36877252 DOI: 10.1007/s00421-023-05161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Myoglobin is essential for oxygen transport to the muscle fibers. However, measurements of myoglobin (Mb) protein concentrations within individual human muscle fibers are scarce. Recent observations have revealed surprisingly low Mb concentrations in elite cyclists, however it remains unclear whether this relates to Mb translation, transcription and/or myonuclear content. The aim was to compare Mb concentration, Mb messenger RNA (mRNA) expression levels and myonuclear content within muscle fibers of these elite cyclists with those of physically-active controls. Muscle biopsies were obtained from m. vastus lateralis in 29 cyclists and 20 physically-active subjects. Mb concentration was determined by peroxidase staining for both type I and type II fibers, Mb mRNA expression level was determined by quantitative PCR and myonuclear domain size (MDS) was obtained by immunofluorescence staining. Average Mb concentrations (mean ± SD: 0.38 ± 0.04 mM vs. 0.48 ± 0.19 mM; P = 0.014) and Mb mRNA expression levels (0.067 ± 0.019 vs. 0.088 ± 0.027; P = 0.002) were lower in cyclists compared to controls. In contrast, MDS and total RNA per mg muscle were not different between groups. Interestingly, in cyclists compared to controls, Mb concentration was only lower for type I fibers (P < 0.001), but not for type II fibers (P > 0.05). In conclusion, the lower Mb concentration in muscle fibers of elite cyclists is partly explained by lower Mb mRNA expression levels per myonucleus and not by a lower myonuclear content. It remains to be determined whether cyclists may benefit from strategies that upregulate Mb mRNA expression levels, particularly in type I fibers, to enhance their oxygen supply.
Collapse
Affiliation(s)
- Nina Jacobs
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniek Mos
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank W Bloemers
- Department for Trauma Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Richard T Jaspers
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stephan van der Zwaard
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Taurine Stimulates AMP-Activated Protein Kinase and Modulates the Skeletal Muscle Functions in Rats via the Induction of Intracellular Calcium Influx. Int J Mol Sci 2023; 24:ijms24044125. [PMID: 36835534 PMCID: PMC9962205 DOI: 10.3390/ijms24044125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Taurine (2-aminoethanesulfonic acid) is a free amino acid abundantly found in mammalian tissues. Taurine plays a role in the maintenance of skeletal muscle functions and is associated with exercise capacity. However, the mechanism underlying taurine function in skeletal muscles has not yet been elucidated. In this study, to investigate the mechanism of taurine function in the skeletal muscles, the effects of short-term administration of a relatively low dose of taurine on the skeletal muscles of Sprague-Dawley rats and the underlying mechanism of taurine function in cultured L6 myotubes were investigated. The results obtained in this study in rats and L6 cells indicate that taurine modulates the skeletal muscle function by stimulating the expression of genes and proteins associated with mitochondrial and respiratory metabolism through the activation of AMP-activated protein kinase via the calcium signaling pathway.
Collapse
|
19
|
Liu Y, Xia Y, Yue T, Li F, Zhou A, Zhou X, Yao Y, Zhang Y, Wang Y. Adaptations to 4 weeks of high-intensity interval training in healthy adults with different training backgrounds. Eur J Appl Physiol 2023; 123:1283-1297. [PMID: 36795131 DOI: 10.1007/s00421-023-05152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE This study investigated the physical fitness and oxygen uptake kinetics ([Formula: see text]) along with the exercise-onset O2 delivery (heart rate kinetics, τHR; changes in normalized deoxyhemoglobin/[Formula: see text] ratio, Δ[HHb]/[Formula: see text]) adaptations of individuals with different physical activity (PA) backgrounds responding to 4 weeks of high-intensity interval training (HIIT), and the possible effects of skeletal muscle mass (SMM) on training-induced adaptations. METHODS Twenty subjects (10 high-PA level, HIIT-H; 10 moderate-PA level, HIIT-M) engaged in 4 weeks of treadmill HIIT. Ramp-incremental (RI) test and step-transitions to moderate-intensity exercise were performed. Cardiorespiratory fitness, body composition, muscle oxygenation status, VO2 and HR kinetics were assessed at baseline and post-training. RESULTS HIIT improved fitness status for HIIT-H ([Formula: see text], + 0.26 ± 0.07 L/min; SMM, + 0.66 ± 0.70 kg; body fat, - 1.52 ± 1.93 kg; [Formula: see text], - 7.11 ± 1.05 s, p < 0.05) and HIIT-M ([Formula: see text], 0.24 ± 0.07 L/min, SMM, + 0.58 ± 0.61 kg; body fat, - 1.64 ± 1.37 kg; [Formula: see text], - 5.48 ± 1.05 s, p < 0.05) except for visceral fat area (p = 0.293) without between-group differences (p > 0.05). Oxygenated and deoxygenated hemoglobin amplitude during the RI test increased for both groups (p < 0.05) except for total hemoglobin (p = 0.179). The Δ[HHb]/[Formula: see text] overshoot was attenuated for both groups (p < 0.05) but only eliminated in HIIT-H (1.05 ± 0.14 to 0.92 ± 0.11), and no change was observed in τHR (p = 0.144). Linear mixed-effect models presented positive effects of SMM on absolute [Formula: see text] (p < 0.001) and ΔHHb (p = 0.034). CONCLUSION Four weeks of HIIT promoted positive adaptations in physical fitness and [Formula: see text] kinetics, with the peripheral adaptations attributing to the observed improvements. The training effects are similar between groups suggesting that HIIT is effective for reaching higher physical fitness levels.
Collapse
Affiliation(s)
- Yujie Liu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yuncan Xia
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Tian Yue
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Fengya Li
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Aiyi Zhou
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Xiaoxiao Zhou
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yibing Yao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yihong Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yan Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
20
|
Kolodziej F, McDonagh B, Burns N, Goljanek-Whysall K. MicroRNAs as the Sentinels of Redox and Hypertrophic Signalling. Int J Mol Sci 2022; 23:ijms232314716. [PMID: 36499053 PMCID: PMC9737617 DOI: 10.3390/ijms232314716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress and inflammation are associated with skeletal muscle function decline with ageing or disease or inadequate exercise and/or poor diet. Paradoxically, reactive oxygen species and inflammatory cytokines are key for mounting the muscular and systemic adaptive responses to endurance and resistance exercise. Both ageing and lifestyle-related metabolic dysfunction are strongly linked to exercise redox and hypertrophic insensitivity. The adaptive inability and consequent exercise intolerance may discourage people from physical training resulting in a vicious cycle of under-exercising, energy surplus, chronic mitochondrial stress, accelerated functional decline and increased susceptibility to serious diseases. Skeletal muscles are malleable and dynamic organs, rewiring their metabolism depending on the metabolic or mechanical stress resulting in a specific phenotype. Endogenous RNA silencing molecules, microRNAs, are regulators of these metabolic/phenotypic shifts in skeletal muscles. Skeletal muscle microRNA profiles at baseline and in response to exercise have been observed to differ between adult and older people, as well as trained vs. sedentary individuals. Likewise, the circulating microRNA blueprint varies based on age and training status. Therefore, microRNAs emerge as key regulators of metabolic health/capacity and hormetic adaptability. In this narrative review, we summarise the literature exploring the links between microRNAs and skeletal muscle, as well as systemic adaptation to exercise. We expand a mathematical model of microRNA burst during adaptation to exercise through supporting data from the literature. We describe a potential link between the microRNA-dependent regulation of redox-signalling sensitivity and the ability to mount a hypertrophic response to exercise or nutritional cues. We propose a hypothetical model of endurance exercise-induced microRNA "memory cloud" responsible for establishing a landscape conducive to aerobic as well as anabolic adaptation. We suggest that regular aerobic exercise, complimented by a healthy diet, in addition to promoting mitochondrial health and hypertrophic/insulin sensitivity, may also suppress the glycolytic phenotype and mTOR signalling through miRNAs which in turn promote systemic metabolic health.
Collapse
Affiliation(s)
- Filip Kolodziej
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Brian McDonagh
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Nicole Burns
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
- Institute of Life Course and Medical Science, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
21
|
Skeletal muscle mitochondrial remodeling in heart failure: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2022; 155:113833. [DOI: 10.1016/j.biopha.2022.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
|
22
|
Botella J, Motanova ES, Bishop DJ. Muscle contraction and mitochondrial biogenesis - A brief historical reappraisal. Acta Physiol (Oxf) 2022; 235:e13813. [PMID: 35305290 DOI: 10.1111/apha.13813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/17/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Javier Botella
- Metabolic Research Unit School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT) Deakin University Waurn Ponds Victoria Australia
| | - Evgeniia S. Motanova
- Laboratory of Gravitational Physiology of the Sensorimotor System Institute of Biomedical Problems Russian Academy of Sciences Moscow Russia
| | - David J. Bishop
- Institute for Health and Sport (iHeS) Victoria University Melbourne Victoria Australia
| |
Collapse
|
23
|
Maruta H, Abe R, Yamashita H. Effect of Long-Term Supplementation with Acetic Acid on the Skeletal Muscle of Aging Sprague Dawley Rats. Int J Mol Sci 2022; 23:ijms23094691. [PMID: 35563082 PMCID: PMC9101554 DOI: 10.3390/ijms23094691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/10/2022] Open
Abstract
Mitochondrial function in skeletal muscle, which plays an essential role in oxidative capacity and physical activity, declines with aging. Acetic acid activates AMP-activated protein kinase (AMPK), which plays a key role in the regulation of whole-body energy by phosphorylating key metabolic enzymes in both biosynthetic and oxidative pathways and stimulates gene expression associated with slow-twitch fibers and mitochondria in skeletal muscle cells. In this study, we investigate whether long-term supplementation with acetic acid improves age-related changes in the skeletal muscle of aging rats in association with the activation of AMPK. Male Sprague Dawley (SD) rats were administered acetic acid orally from 37 to 56 weeks of age. Long-term supplementation with acetic acid decreased the expression of atrophy-related genes, such as atrogin-1, muscle RING-finger protein-1 (MuRF1), and transforming growth factor beta (TGF-β), activated AMPK, and affected the proliferation of mitochondria and type I fiber-related molecules in muscles. The findings suggest that acetic acid exhibits an anti-aging function in the skeletal muscles of aging rats.
Collapse
Affiliation(s)
- Hitomi Maruta
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja 719-1197, Okayama, Japan;
| | - Reina Abe
- Graduate School of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja 719-1197, Okayama, Japan;
| | - Hiromi Yamashita
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja 719-1197, Okayama, Japan;
- Graduate School of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja 719-1197, Okayama, Japan;
- Correspondence: ; Tel.: +81-866-94-2150
| |
Collapse
|
24
|
Hadanny A, Hachmo Y, Rozali D, Catalogna M, Yaakobi E, Sova M, Gattegno H, Abu Hamed R, Lang E, Polak N, Friedman M, Finci S, Zemel Y, Bechor Y, Gal N, Efrati S. Effects of Hyperbaric Oxygen Therapy on Mitochondrial Respiration and Physical Performance in Middle-Aged Athletes: A Blinded, Randomized Controlled Trial. SPORTS MEDICINE - OPEN 2022; 8:22. [PMID: 35133516 PMCID: PMC8825926 DOI: 10.1186/s40798-021-00403-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Introduction Hyperbaric oxygen therapy (HBOT) has been used to increase endurance performance but has yet to be evaluated in placebo-controlled clinical trials. The current study aimed to evaluate the effect of an intermittent HBOT protocol on maximal physical performance and mitochondrial function in middle-aged master athletes. Methods A double-blind, randomized, placebo-controlled study on 37 healthy middle-aged (40–50) master athletes was performed between 2018 and 2020. The subjects were exposed to 40 repeated sessions of either HBOT [two absolute atmospheres (ATA), breathing 100% oxygen for 1 h] or SHAM (1.02ATA, breathing air for 1 h). Results Out of 37 athletes, 16 HBOT and 15 SHAM allocated athletes were included in the final analysis. Following HBOT, there was a significant increase in the maximal oxygen consumption (VO2Max) (p = 0.010, effect size(es) = 0.989) and in the oxygen consumption measured at the anaerobic threshold (VO2AT)(es = 0.837) compared to the SHAM group. Following HBOT, there were significant increases in both maximal oxygen phosphorylation capacity (es = 1.085, p = 0.04), maximal uncoupled capacity (es = 0.956, p = 0.02) and mitochondrial mass marker MTG (p = 0.0002) compared to the SHAM sessions. Conclusion HBOT enhances physical performance in healthy middle-age master athletes, including VO2max, power and VO2AT. The mechanisms may be related to significant improvements in mitochondrial respiration and increased mitochondrial mass. Trial Registration ClinicalTrials.gov Identifier: https://clinicaltrials.gov/ct2/show/NCT03524989 (May 15, 2018).
Collapse
Affiliation(s)
- Amir Hadanny
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel. .,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Bar Ilan University, Ramat-Gan, Israel.
| | - Yafit Hachmo
- Research and Development Unit, Shamir Medical Center, Zerifin, Israel
| | - Daniella Rozali
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Merav Catalogna
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Eldad Yaakobi
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Marina Sova
- Research and Development Unit, Shamir Medical Center, Zerifin, Israel
| | - Hadar Gattegno
- Research and Development Unit, Shamir Medical Center, Zerifin, Israel
| | - Ramzia Abu Hamed
- Research and Development Unit, Shamir Medical Center, Zerifin, Israel
| | - Erez Lang
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Nir Polak
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Mony Friedman
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Shachar Finci
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Yonatan Zemel
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Yair Bechor
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Noga Gal
- Physical Therapy Department, Shamir Medical Center, Zerifin, Israel
| | - Shai Efrati
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Physical Therapy Department, Shamir Medical Center, Zerifin, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
25
|
Richards CT, Meah VL, James PE, Rees DA, Lord RN. HIIT'ing or MISS'ing the Optimal Management of Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis of High- Versus Moderate-Intensity Exercise Prescription. Front Physiol 2021; 12:715881. [PMID: 34483969 PMCID: PMC8415631 DOI: 10.3389/fphys.2021.715881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 01/16/2023] Open
Abstract
Introduction: Polycystic Ovary syndrome (PCOS) is a metabolic disorder associated with increased cardiovascular disease risk. Exercise is an effective treatment strategy to manage symptoms and reduce long-term health risk. High-intensity interval training (HIIT) has been suggested as a more efficient exercise mode in PCOS; however, it is not clear whether HIIT is superior to moderate intensity steady state exercise (MISS). Methods: We synthesized available data through a systematic review and meta-analysis to compare the effectiveness of isolated HIIT and MISS exercise interventions. Our primary outcome measures were cardiorespiratory fitness and insulin resistance, measured using V˙O2max and HOMA-IR respectively. Results: A total of 16 studies were included. Moderate-quality evidence from 16 studies identified significant improvements in V˙O2max following MISS (Δ = 1.081 ml/kg/min, p < 0.001, n = 194), but not HIIT (Δ = 0.641 ml/kg/min, p = 0.128, n = 28). Neither HIIT nor MISS improved HOMA-IR [(Δ = −0.257, p = 0.374, n = 60) and (Δ = −0.341, p = 0.078, n = 159), respectively]. Discussion: A significant improvement in V˙O2max was evident following MISS, but not HIIT exercise in women with PCOS. This contrasts with previous literature in healthy and clinical cohorts that report superior benefits of HIIT. Therefore, based on available moderate-quality evidence, HIIT exercise does not provide superior outcomes in V˙O2max compared with MISS, although larger high-quality interventions are needed to fully address this. Additional dietary/pharmacological interventions may be required in conjunction with exercise to improve insulin sensitivity.
Collapse
Affiliation(s)
- Cory T Richards
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Victoria L Meah
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Philip E James
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - D Aled Rees
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rachel N Lord
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| |
Collapse
|
26
|
Caen K, Bourgois G, Dauwe C, Blancquaert L, Vermeire K, Lievens E, VAN Dorpe JO, Derave W, Bourgois JG, Pringels L, Boone J. W' Recovery Kinetics after Exhaustion: A Two-Phase Exponential Process Influenced by Aerobic Fitness. Med Sci Sports Exerc 2021; 53:1911-1921. [PMID: 33787532 DOI: 10.1249/mss.0000000000002673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The aims of this study were 1) to model the temporal profile of W' recovery after exhaustion, 2) to estimate the contribution of changing V˙O2 kinetics to this recovery, and 3) to examine associations with aerobic fitness and muscle fiber type (MFT) distribution. METHODS Twenty-one men (age = 25 ± 2 yr, V˙O2peak = 54.4 ± 5.3 mL·min-1·kg-1) performed several constant load tests to determine critical power and W' followed by eight trials to quantify W' recovery. Each test consisted of two identical exhaustive work bouts (WB1 and WB2), separated by a variable recovery interval of 30, 60, 120, 180, 240, 300, 600, or 900 s. Gas exchange was measured and muscle biopsies were collected to determine MFT distribution. W' recovery was quantified as observed W' recovery (W'OBS), model-predicted W' recovery (W'BAL), and W' recovery corrected for changing V˙O2 kinetics (W'ADJ). W'OBS and W'ADJ were modeled using mono- and biexponential fitting. Root-mean-square error (RMSE) and Akaike information criterion (∆AICC) were used to evaluate the models' accuracy. RESULTS The W'BAL model (τ = 524 ± 41 s) was associated with an RMSE of 18.6% in fitting W'OBS and underestimated W' recovery for all durations below 5 min (P < 0.002). Monoexponential modeling of W'OBS resulted in τ = 104 s with RMSE = 6.4%. Biexponential modeling of W'OBS resulted in τ1 = 11 s and τ2 = 256 s with RMSE = 1.7%. W'ADJ was 11% ± 1.5% lower than W'OBS (P < 0.001). ∆AICC scores favored the biexponential model for W'OBS, but not for W'ADJ. V˙O2peak (P = 0.009) but not MFT distribution (P = 0.303) was associated with W'OBS. CONCLUSION We showed that W' recovery from exhaustion follows a two-phase exponential time course that is dependent on aerobic fitness. The appearance of a fast initial recovery phase was attributed to an enhanced aerobic energy provision resulting from changes in V˙O2 kinetics.
Collapse
Affiliation(s)
| | - Gil Bourgois
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| | - Charles Dauwe
- Department of Subatomic and Radiation Physics, Ghent University, Ghent, BELGIUM
| | - Laura Blancquaert
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| | - Kobe Vermeire
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| | - J O VAN Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, BELGIUM
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| | | | - Lauren Pringels
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| | | |
Collapse
|
27
|
van der Zwaard S, Brocherie F, Jaspers RT. Under the Hood: Skeletal Muscle Determinants of Endurance Performance. Front Sports Act Living 2021; 3:719434. [PMID: 34423293 PMCID: PMC8371266 DOI: 10.3389/fspor.2021.719434] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
In the past decades, researchers have extensively studied (elite) athletes' physiological responses to understand how to maximize their endurance performance. In endurance sports, whole-body measurements such as the maximal oxygen consumption, lactate threshold, and efficiency/economy play a key role in performance. Although these determinants are known to interact, it has also been demonstrated that athletes rarely excel in all three. The leading question is how athletes reach exceptional values in one or all of these determinants to optimize their endurance performance, and how such performance can be explained by (combinations of) underlying physiological determinants. In this review, we advance on Joyner and Coyle's conceptual framework of endurance performance, by integrating a meta-analysis of the interrelationships, and corresponding effect sizes between endurance performance and its key physiological determinants at the macroscopic (whole-body) and the microscopic level (muscle tissue, i.e., muscle fiber oxidative capacity, oxygen supply, muscle fiber size, and fiber type). Moreover, we discuss how these physiological determinants can be improved by training and what potential physiological challenges endurance athletes may face when trying to maximize their performance. This review highlights that integrative assessment of skeletal muscle determinants points toward efficient type-I fibers with a high mitochondrial oxidative capacity and strongly encourages well-adjusted capillarization and myoglobin concentrations to accommodate the required oxygen flux during endurance performance, especially in large muscle fibers. Optimisation of endurance performance requires careful design of training interventions that fine tune modulation of exercise intensity, frequency and duration, and particularly periodisation with respect to the skeletal muscle determinants.
Collapse
Affiliation(s)
- Stephan van der Zwaard
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - Richard T. Jaspers
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
28
|
Zhang X, Kunz HE, Gries K, Hart CR, Polley EC, Lanza IR. Preserved skeletal muscle oxidative capacity in older adults despite decreased cardiorespiratory fitness with ageing. J Physiol 2021; 599:3581-3592. [PMID: 34032280 DOI: 10.1113/jp281691] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS Healthy older adults exhibit lower cardiorespiratory fitness ( V ̇ O 2 peak ) than young in the absence of any age-related difference in skeletal muscle mitochondrial capacity, suggesting central haemodynamics plays a larger role in age-related declines in V ̇ O 2 peak . Total physical activity did not differ by age, but moderate-to-vigorous physical activity was lower in older compared to young adults. Moderate-to-vigorous physical activity is associated with V ̇ O 2 peak and muscle oxidative capacity, but physical inactivity cannot entirely explain the age-related reduction in V ̇ O 2 peak . ABSTRACT Declining fitness ( V ̇ O 2 peak ) is a hallmark of ageing and believed to arise from decreased oxygen delivery and reduced muscle oxidative capacity. Physical activity is a modifiable lifestyle factor that is critical when evaluating the effects of age on parameters of fitness and energy metabolism. The objective was to evaluate the effects of age and sex on V ̇ O 2 peak , muscle mitochondrial physiology, and physical activity in young and older adults. An additional objective was to assess the contribution of skeletal muscle oxidative capacity to age-related reductions in V ̇ O 2 peak and determine if age-related variation in V ̇ O 2 peak and muscle oxidative capacity could be explained on the basis of physical activity levels. In 23 young and 52 older men and women measurements were made of V ̇ O 2 peak , mitochondrial physiology in permeabilized muscle fibres, and free-living physical activity by accelerometry. Regression analyses were used to evaluate associations between age and V ̇ O 2 peak , mitochondrial function, and physical activity. Significant age-related reductions were observed for V ̇ O 2 peak (P < 0.001), but not muscle mitochondrial capacity. Total daily step counts did not decrease with age, but older adults showed lower moderate-to-vigorous physical activity, which was associated with V ̇ O 2 peak (R2 = 0.323, P < 0.001) and muscle oxidative capacity (R2 = 0.086, P = 0.011). After adjusting for sex and physical activity, age was negatively associated with V ̇ O 2 peak but not muscle oxidative capacity. Healthy older adults exhibit lower V ̇ O 2 peak but preserved mitochondrial capacity compared to young. Physical activity, particularly moderate-to-vigorous, is a key factor in observed age-related changes in fitness and muscle oxidative capacity, but cannot entirely explain the age-related reduction in V ̇ O 2 peak .
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Geriatrics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hawley E Kunz
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kevin Gries
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Exercise and Sports Science, College of Health Professions, Marian University, Indianapolis, IN, USA
| | - Corey R Hart
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eric C Polley
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Ian R Lanza
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
29
|
Paredes-Ruiz MJ, Jódar-Reverte M, Ferrer-López V, González-Moro IM. MUSCLE OXYGENATION OF THE QUADRICEPS AND GASTROCNEMIUS DURING MAXIMAL AEROBIC EFFORT. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127022020_0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Near infrared spectroscopy (NIRS) is a non-invasive technique that is used in the assessment of tissue oxygenation and the monitoring of physical activity. Objective: To determine the influence of sexual, anthropometric and ergospirometric factors on muscle oxygenation of the quadriceps and gastrocnemius, obtained by NIRS during a stress test. Methods: Twenty healthy subjects participated in this study (10 women). Two Humon Hex® devices were placed on the dominant side of the quadriceps and gastrocnemius muscles to measure muscle oxygen saturation (SmO2). The stress test was performed on a treadmill with electrocardiographic control and measurement of oxygen consumption. SmO2 was obtained at rest and after maximum effort during the stress test. In addition, the height, weight, skinfold and waist contour were measured. Bioimpedance was used to obtain the percentages of fat mass and muscle mass, which were used to calculate the relative fat mass (RFM). Results: The SmO2 of both muscles at rest is higher in males than in females. At maximum effort, the SmO2 of the quadriceps is similar in both groups. The SmO2 of both muscles is positively related to height, body mass, percentage of mass muscle and waist contour, and negatively with percentage of mass fat, RFM and skinfold thickness. The negative correlation between fat percentage and oxygen saturation is more evident in females. It was observed that the variables that quantify maximum effort are not related to the SmO2 values, except for the correlation between HR max and SmO2 of the gastrocnemius muscle in males. Conclusion: The SmO2 of recreational athletes is influenced by the location of the device and the fat mass of the subjects. The biggest differences between the sexes are in the gastrocnemius muscle. Level of Evidence II; Diagnostic Studies - Investigating a Diagnostic Test .
Collapse
|
30
|
Lim C, Dunford EC, Valentino SE, Oikawa SY, McGlory C, Baker SK, Macdonald MJ, Phillips SM. Both Traditional and Stair Climbing-based HIIT Cardiac Rehabilitation Induce Beneficial Muscle Adaptations. Med Sci Sports Exerc 2021; 53:1114-1124. [PMID: 33394901 DOI: 10.1249/mss.0000000000002573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE There is a lack of knowledge as to how different exercise-based cardiac rehabilitation programming affects skeletal muscle adaptations in coronary artery disease (CAD) patients. We first characterized the skeletal muscle from adults with CAD compared with a group of age- and sex-matched healthy adults. We then determined the effects of a traditional moderate-intensity continuous exercise program (TRAD) or a stair climbing-based high-intensity interval training program (STAIR) on skeletal muscle metabolism in CAD. METHODS Sixteen adults (n = 16, 61 ± 7 yr), who had undergone recent treatment for CAD, were randomized to perform (3 d·wk-1) either TRAD (n = 7, 30 min at 60%-80% of peak heart rate) or STAIR (n = 9, 3 × 6 flights) for 12 wk. Muscle biopsies were collected at baseline in both CAD and healthy controls (n = 9), and at 4 and 12 wk after exercise training in CAD patients undertaking TRAD or STAIR. RESULTS We found that CAD had a lower capillary-to-fiber ratio (C/Fi, 35% ± 25%, P = 0.06) and capillary-to-fiber perimeter exchange (CFPE) index (23% ± 29%, P = 0.034) in Type II fibers compared with healthy controls. However, 12 wk of cardiac rehabilitation with either TRAD or STAIR increased C/Fi (Type II, 23% ± 14%, P < 0.001) and CFPE (Type I, 10% ± 23%, P < 0.01; Type II, 18% ± 22%, P = 0.002). CONCLUSION Cardiac rehabilitation via TRAD or STAIR exercise training improved the compromised skeletal muscle microvascular phenotype observed in CAD patients.
Collapse
Affiliation(s)
- Changhyun Lim
- Department of Kinesiology, McMaster University, Hamilton, ON, CANADA
| | - Emily C Dunford
- Department of Kinesiology, McMaster University, Hamilton, ON, CANADA
| | | | - Sara Y Oikawa
- Department of Kinesiology, McMaster University, Hamilton, ON, CANADA
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queens University, Kingston, ON, CANADA
| | - Steve K Baker
- Department of Neurology, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, CANADA
| | | | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, CANADA
| |
Collapse
|
31
|
Flockhart M, Nilsson LC, Tais S, Ekblom B, Apró W, Larsen FJ. Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. Cell Metab 2021; 33:957-970.e6. [PMID: 33740420 DOI: 10.1016/j.cmet.2021.02.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/18/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Exercise training positively affects metabolic health through increased mitochondrial oxidative capacity and improved glucose regulation and is the first line of treatment in several metabolic diseases. However, the upper limit of the amount of exercise associated with beneficial therapeutic effects has not been clearly identified. Here, we used a training model with a progressively increasing exercise load during an intervention over 4 weeks. We closely followed changes in glucose tolerance, mitochondrial function and dynamics, physical exercise capacity, and whole-body metabolism. Following the week with the highest exercise load, we found a striking reduction in intrinsic mitochondrial function that coincided with a disturbance in glucose tolerance and insulin secretion. We also assessed continuous blood glucose profiles in world-class endurance athletes and found that they had impaired glucose control compared with a matched control group.
Collapse
Affiliation(s)
- Mikael Flockhart
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden.
| | - Lina C Nilsson
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden
| | - Senna Tais
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden
| | - Björn Ekblom
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden
| | - William Apró
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden; Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Filip J Larsen
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden.
| |
Collapse
|
32
|
Koklesova L, Samec M, Liskova A, Zhai K, Büsselberg D, Giordano FA, Kubatka P, Golunitschaja O. Mitochondrial impairments in aetiopathology of multifactorial diseases: common origin but individual outcomes in context of 3P medicine. EPMA J 2021; 12:27-40. [PMID: 33686350 PMCID: PMC7931170 DOI: 10.1007/s13167-021-00237-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
Mitochondrial injury plays a key role in the aetiopathology of multifactorial diseases exhibiting a "vicious circle" characteristic for pathomechanisms of the mitochondrial and multi-organ damage frequently developed in a reciprocal manner. Although the origin of the damage is common (uncontrolled ROS release, diminished energy production and extensive oxidative stress to life-important biomolecules such as mtDNA and chrDNA), individual outcomes differ significantly representing a spectrum of associated pathologies including but not restricted to neurodegeneration, cardiovascular diseases and cancers. Contextually, the role of predictive, preventive and personalised (PPPM/3P) medicine is to introduce predictive analytical approaches which allow for distinguishing between individual outcomes under circumstance of mitochondrial impairments followed by cost-effective targeted prevention and personalisation of medical services. Current article considers innovative concepts and analytical instruments to advance management of mitochondriopathies and associated pathologies.
Collapse
Affiliation(s)
- Lenka Koklesova
- Department of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Olga Golunitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
33
|
Chen YT, Hsieh YY, Ho JY, Lin TY, Lin JC. Two weeks of detraining reduces cardiopulmonary function and muscular fitness in endurance athletes. Eur J Sport Sci 2021; 22:399-406. [DOI: 10.1080/17461391.2021.1880647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yun-Tsung Chen
- School of Physical Education, Huizhou University, Guangdong, People’s Republic of China
| | - Yao-Yi Hsieh
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
| | - Jen-Yu Ho
- Department of Athletic Performance, National Taiwan Normal University, Taipei, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jung-Charng Lin
- Graduate Institute of Sport Coaching Science, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|
34
|
Mohamed AA. Can Proprioceptive Training Enhance Fatigability and Decrease Progression Rate of Sarcopenia in Seniors? A Novel Approach. Curr Rheumatol Rev 2021; 17:58-67. [PMID: 32348231 DOI: 10.2174/1573397116666200429113226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 01/03/2023]
Abstract
Sarcopenia is a common condition in older adults, which causes the frequent occurrence of muscle fatigue. Muscle fatigue commonly develops among seniors. Muscle fatigue is a type of physical fatigue that occurs due to either motor or sensory dysfunctions. Current interventions developed to decrease the occurrence of muscle fatigue, which include either increasing rest periods or subdividing large tasks into small ones. The effectiveness of these interventions is highly contradicted. Recently, researchers discovered that mechanoreceptors are the main receptors of muscle fatigue, however, no clinical study investigated the effect of performing proprioceptive training to enhance the mechanoreceptors and decrease the occurrence of muscle fatigue. Performing proprioceptive training could improve muscle fatigue by improving its sensory part. The function of mechanoreceptors might consequently enhance fatigue and decrease the progression rate of sarcopenia. Thus, this review was conducted to suggest a novel approach of treatment to enhance fatigue and decrease Sarcopenia in seniors. This might be accomplished through increasing the firing rate of α- motor neurons, increasing the amount of Ca2+ ions in the neuromuscular junction, slowing the progression rate of Sarcopenia, and correcting movement deviations, which commonly occur with muscle fatigue in seniors. In conclusion, proprioceptive training could play an effective role in decreasing the progression rate of sarcopenia and enhancing the fatigability among seniors.
Collapse
Affiliation(s)
- Ayman A Mohamed
- Department of Physiotherapy and Rehabilitation, School of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey
| |
Collapse
|
35
|
Broskey NT, Zou K, Dohm GL, Houmard JA. Plasma Lactate as a Marker for Metabolic Health. Exerc Sport Sci Rev 2020; 48:119-124. [PMID: 32271180 DOI: 10.1249/jes.0000000000000220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Blood lactate concentrations traditionally have been used as an index of exercise intensity or clinical hyperlactatemia. However, more recent data suggest that fasting plasma lactate can also be indicative of the risk for subsequent metabolic disease. The hypothesis presented is that fasting blood lactate accumulation reflects impaired mitochondrial substrate use, which in turn influences metabolic disease risk.
Collapse
Affiliation(s)
| | - Kai Zou
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA
| | | | | |
Collapse
|
36
|
van der Zwaard S, de Leeuw AW, Meerhoff LRA, Bodine SC, Knobbe A. Articles with impact: insights into 10 years of research with machine learning. J Appl Physiol (1985) 2020; 129:967-979. [PMID: 32790596 DOI: 10.1152/japplphysiol.00489.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Worldwide scientific output is growing faster and faster. Academics should not only publish much and fast, but also publish research with impact. The aim of this study is to use machine learning to investigate characteristics of articles that were published in the Journal of Applied Physiology between 2009 and 2018, and characterize high-impact articles. Article impact was assessed for 4,531 publications by three common impact metrics: the Altmetric Attention Scores, downloads, and citations. Additionally, a broad collection of (more than 200) characteristics was collected from the article's title, abstract, authors, keywords, publication, and article engagement. We constructed random forest (RF) regression models to predict article impact and articles with the highest impact (top-25% and top-10% for each impact metric), which were compared with a naive baseline method. RF models outperformed the baseline models when predicting the impact of unseen articles (P < 0.001 for each impact metric). Also, RF models predicted top-25% and top-10% high-impact articles with a high accuracy. Moreover, RF models revealed important article characteristics. Higher impact was observed for articles about exercise, training, performance and V̇o2max, reviews, human studies, articles from large collaborations, longer articles with many references and high engagement by scientists, practitioners and public or via news outlets and videos. Lower impact was shown for articles about respiratory physiology or sleep apnea, editorials, animal studies, and titles with a question mark or a reference to places or individuals. In summary, research impact can be predicted and better understood using a combination of article characteristics and machine learning.NEW & NOTEWORTHY Common measures of article impact are the Altmetric Attention Scores, number of downloads, and number of citations. To our knowledge, this is the first study that applies machine learning on a comprehensive collection of article characteristics to predict article attention scores, downloads, and citations. Using 10 years of research articles, we obtained accurate predictions of high-impact articles and discovered important article characteristics related to article impact.
Collapse
Affiliation(s)
- Stephan van der Zwaard
- Leiden Institute of Advanced Computer Science, Universiteit Leiden, Leiden, the Netherlands.,Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Arie-Willem de Leeuw
- Leiden Institute of Advanced Computer Science, Universiteit Leiden, Leiden, the Netherlands
| | - L Rens A Meerhoff
- Leiden Institute of Advanced Computer Science, Universiteit Leiden, Leiden, the Netherlands
| | - Sue C Bodine
- Department of Internal Medicine, Endocrinology and Metabolism, University of Iowa, Iowa City, Iowa
| | - Arno Knobbe
- Leiden Institute of Advanced Computer Science, Universiteit Leiden, Leiden, the Netherlands
| |
Collapse
|
37
|
Molinger J, Pastva AM, Whittle J, Wischmeyer PE. Novel approaches to metabolic assessment and structured exercise to promote recovery in ICU survivors. Curr Opin Crit Care 2020; 26:369-378. [PMID: 32568800 PMCID: PMC8104451 DOI: 10.1097/mcc.0000000000000748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Survivorship or addressing impaired quality of life (QoL) in ICU survivors has been named 'the defining challenge of critical care' for this century to address this challenge; in addition to optimal nutrition, we must learn to employ targeted metabolic/muscle assessment techniques and utilize structured, progressive ICU rehabilitative strategies. RECENT FINDINGS Objective measurement tools such as ccardiopulmonary exercise testing (CPET) and muscle-specific ultrasound show great promise to assess/treat post-ICU physical dysfunction. CPET is showing that systemic mitochondrial dysfunction may underlie development and persistence of poor post-ICU functional recovery. Finally, recent data indicate that we are poor at delivering effective, early ICU rehabilitation and that there is limited benefit of currently employed later ICU rehabilitation on ICU-acquired weakness and QoL outcomes. SUMMARY The combination of nutrition with effective, early rehabilitation is highly likely to be essential to optimize muscle mass/strength and physical function in ICU survivors. Currently, technologies such as muscle-specific ultrasound and CPET testing show great promise to guide ICU muscle/functional recovery. Further, we must evolve improved ICU-rehabilitation strategies, as current methods are not consistently improving outcomes. In conclusion, we must continue to look to other areas of medicine and to athletes if we hope to ultimately improve 'ICU Survivorship'.
Collapse
Affiliation(s)
- Jeroen Molinger
- Duke University School of Medicine, Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke Human Pharmacology and Physiology Lab (HPPL), Durham, North Carolina, USA
- Department of Intensive Care Medicine, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Amy M Pastva
- Duke University School of Medicine, Department of Orthopedic Surgery, Division of Physical Therapy, and Duke Claude D. Pepper Older Americans Independence Center, Durham, North Carolina, USA
| | - John Whittle
- Duke University School of Medicine, Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke Human Pharmacology and Physiology Lab (HPPL), Durham, North Carolina, USA
| | - Paul E Wischmeyer
- Duke University School of Medicine, Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke Human Pharmacology and Physiology Lab (HPPL), Durham, North Carolina, USA
| |
Collapse
|
38
|
Burtscher M. A breath of fresh air for mitochondria in exercise physiology. Acta Physiol (Oxf) 2020; 229:e13490. [PMID: 32365411 DOI: 10.1111/apha.13490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 01/18/2023]
|
39
|
Valenzuela PL, Maffiuletti NA, Joyner MJ, Lucia A, Lepers R. Lifelong Endurance Exercise as a Countermeasure Against Age-Related
V
˙
O
2
max
Decline: Physiological Overview and Insights from Masters Athletes. Sports Med 2020; 50:703-716. [PMID: 31873927 DOI: 10.1007/s40279-019-01252-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Maximum oxygen consumption (V ˙ O 2 max ) is not only an indicator of endurance performance, but also a strong predictor of cardiovascular disease and mortality. This physiological parameter is known to decrease with aging. In turn, physical exercise might attenuate the rate of aging-related decline inV ˙ O 2 max , which in light of the global population aging is of major clinical relevance, especially at advanced ages. In this narrative review, we summarize the evidence available from masters athletes about the role of lifelong endurance exercise on aging-relatedV ˙ O 2 max decline, with examples of the highestV ˙ O 2 max values reported in the scientific literature for athletes across different ages (e.g., 35 ml·kg-1·min-1 in a centenarian cyclist). These data suggest that a linear decrease inV ˙ O 2 max might be possible if physical exercise loads are kept consistently high through the entire life span, withV ˙ O 2 max values remaining higher than those of the general population across all ages. We also summarize the main physiological changes that occur with inactive aging at different system levels-pulmonary and cardiovascular function, blood O2 carrying capacity, skeletal muscle capillary density and oxidative capacity-and negatively influenceV ˙ O 2 max , and review how lifelong exercise can attenuate or even prevent most-but apparently not all (e.g., maximum heart rate decline)-of them. In summary, although aging seems to be invariably associated with a progressive decline inV ˙ O 2 max , maintaining high levels of physical exercise along the life span slows the multi-systemic deterioration that is commonly observed in inactive individuals, thereby attenuating age-relatedV ˙ O 2 max decline.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Physiology Unit, Department of Systems Biology, School of Medicine, University of Alcalá, Ctra. Barcelona, Km 33,600, 28871, Alcalá De Henares, Madrid, Spain.
- Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain.
| | | | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre ('i + 12'), CIBERFES, Madrid, Spain
| | - Romuald Lepers
- INSERM UMR1093, Cognition Action et Plasticité Sensorimotrice, University of Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
40
|
Barclay CJ, Loiselle DS. An Equivocal Final Link - Quantitative Determination of the Thermodynamic Efficiency of ATP Hydrolysis - Sullies the Chain of Electric, Ionic, Mechanical and Metabolic Steps Underlying Cardiac Contraction. Front Physiol 2020; 11:183. [PMID: 32296338 PMCID: PMC7137898 DOI: 10.3389/fphys.2020.00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/17/2020] [Indexed: 11/13/2022] Open
Abstract
Each beat of the heart completes the final step in a sequence of events commencing with electrical excitation-triggered release of Ca2+ from the sarcoplasmic reticulum which, in turn, triggers ATP-hydrolysis-dependent mechanical contraction. Given that Thermodynamics is inherently detail-independent, the heart can be thus be viewed as a mechanical pump - the generator of pressure that drives blood through the systemic and pulmonary circulations. The beat-to-beat pressure-volume work (W) of the heart is relatively straightforward to measure experimentally. Given an ability to measure, simultaneously, the accompanying heat production or oxygen consumption, it is trivial to calculate the mechanical efficiency: ε = W/ΔH where ΔH is the change of enthalpy: (W + Q), Q representing the accompanying production of heat. But it is much less straightforward to measure the thermodynamic efficiency: η = W/ΔG ATP , where ΔG ATP signifies the Gibbs Free Energy of ATP hydrolysis. The difficulty arises because of uncertain quantification of the substrate-dependent yield of ATP - conveniently expressed as the P/O2 ratio. P/O2 ratios, originally ("classically") inferred from thermal studies, have been considerably reduced over the past several decades by re-analysis of the stoichiometric coefficients separating sequential steps in the electron transport system - in particular, dropping the requirement that the coefficients have integer values. Since the early classical values are incompatible with the more recent estimates, we aim to probe this discrepancy with a view to its reconciliation. Our probe consists of a simple, thermodynamically constrained, algebraic model of cardiac mechano-energetics. Our analysis fails to reconcile recent and classical estimates of PO2 ratios; hence, we are left with a conundrum.
Collapse
Affiliation(s)
| | - Denis Scott Loiselle
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
41
|
Nakano I, Kinugawa S, Hori H, Fukushima A, Yokota T, Takada S, Kakutani N, Obata Y, Yamanashi K, Anzai T. Serum Brain-Derived Neurotrophic Factor Levels Are Associated with Skeletal Muscle Function but Not with Muscle Mass in Patients with Heart Failure. Int Heart J 2020; 61:96-102. [DOI: 10.1536/ihj.19-400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ippei Nakano
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Hiroaki Hori
- Department of Rehabilitation, Hokkaido University Hospital
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
- Research Fellow of the Japan Society for the Promotion of Science
| | - Yoshikuni Obata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Katsuma Yamanashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| |
Collapse
|
42
|
Jones S, Kinsella M, Torlasco C, Kaynezhad P, de Roever I, Moon JC, Hughes AD, Bale G. Improvements in Skeletal Muscle Can Be Detected Using Broadband NIRS in First-Time Marathon Runners. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1232:245-251. [PMID: 31893417 DOI: 10.1007/978-3-030-34461-0_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Skeletal muscle metabolic function is known to respond positively to endurance exercise interventions, such as marathon training. Studies investigating skeletal muscle have typically used muscle biopsy samples or magnetic resonance spectroscopy (MRS) to interrogate metabolic function. We aimed to non-invasively detect exercise-training-induced improvements in muscle function using broadband near-infrared spectroscopy (NIRS). We used NIRS to determine concentration changes in oxygenated haemoglobin (HbO2) and the oxidation state of cytochrome-c-oxidase (oxCCO) in gastrocnemius during arterial occlusion in 14 volunteers. We also used a cardio-pulmonary exercise test (CPET) to assess peak total body oxygen uptake (peakVO2; a measure of fitness). Measurements were made at baseline (BL) which was prior to a period of at least 16 weeks of training for the 2017 London Marathon, and then within 3 weeks after completion of the marathon, follow-up (FU). We observed an increase in locally measured muscle oxygen consumption and rate of oxCCO concentration change, but not in cardio-respiratory fitness measured as whole-body peak oxygen consumption (peakVO2).
Collapse
Affiliation(s)
- Siana Jones
- MRC Unit for Lifelong Health & Ageing at UCL, Department of Population Science & Experimental Medicine, Institute for Cardiovascular Science, UCL, London, UK
| | - Matthew Kinsella
- Medical Physics and Biomedical Engineering, University College London, London, UK
| | | | - Pardis Kaynezhad
- Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Isabel de Roever
- Medical Physics and Biomedical Engineering, University College London, London, UK
| | - James C Moon
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Alun D Hughes
- MRC Unit for Lifelong Health & Ageing at UCL, Department of Population Science & Experimental Medicine, Institute for Cardiovascular Science, UCL, London, UK
| | - Gemma Bale
- Medical Physics and Biomedical Engineering, University College London, London, UK.
| |
Collapse
|
43
|
Nilsson A, Björnson E, Flockhart M, Larsen FJ, Nielsen J. Complex I is bypassed during high intensity exercise. Nat Commun 2019; 10:5072. [PMID: 31699973 PMCID: PMC6838197 DOI: 10.1038/s41467-019-12934-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/10/2019] [Indexed: 12/28/2022] Open
Abstract
Human muscles are tailored towards ATP synthesis. When exercising at high work rates muscles convert glucose to lactate, which is less nutrient efficient than respiration. There is hence a trade-off between endurance and power. Metabolic models have been developed to study how limited catalytic capacity of enzymes affects ATP synthesis. Here we integrate an enzyme-constrained metabolic model with proteomics data from muscle fibers. We find that ATP synthesis is constrained by several enzymes. A metabolic bypass of mitochondrial complex I is found to increase the ATP synthesis rate per gram of protein compared to full respiration. To test if this metabolic mode occurs in vivo, we conduct a high resolved incremental exercise tests for five subjects. Their gas exchange at different work rates is accurately reproduced by a whole-body metabolic model incorporating complex I bypass. The study therefore shows how proteome allocation influences metabolism during high intensity exercise.
Collapse
Affiliation(s)
- Avlant Nilsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE41296, Sweden
| | - Elias Björnson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE41296, Sweden.,Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Flockhart
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Filip J Larsen
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE41296, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800, Kongens Lyngby, Denmark.
| |
Collapse
|
44
|
van der Zwaard S, de Ruiter CJ, Jaspers RT, de Koning JJ. Anthropometric Clusters of Competitive Cyclists and Their Sprint and Endurance Performance. Front Physiol 2019; 10:1276. [PMID: 31649555 PMCID: PMC6794383 DOI: 10.3389/fphys.2019.01276] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/20/2019] [Indexed: 11/29/2022] Open
Abstract
Do athletes specialize toward sports disciplines that are well aligned with their anthropometry? Novel machine-learning algorithms now enable scientists to cluster athletes based on their individual anthropometry while integrating multiple anthropometric dimensions, which may provide new perspectives on anthropometry-dependent sports specialization. We aimed to identify clusters of competitive cyclists based on their individual anthropometry using multiple anthropometric measures, and to evaluate whether athletes with a similar anthropometry also competed in the same cycling discipline. Additionally, we assessed differences in sprint and endurance performance between the anthropometric clusters. Twenty-four nationally and internationally competitive male cyclists were included from sprint, pursuit, and road disciplines. Anthropometry was measured and k-means clustering was performed to divide cyclists into three anthropometric subgroups. Sprint performance (Wingate 1-s peak power, squat-jump mean power) and endurance performance (mean power during a 15 km time trial, V˙O2peak) were obtained. K-means clustering assigned sprinters to a mesomorphic cluster (endo-, meso-, and ectomorphy were 2.8, 5.0, and 2.4; n = 6). Pursuit and road cyclists were distributed over a short meso-ectomorphic cluster (1.6, 3.8, and 3.9; n = 9) and tall meso-ectomorphic cluster (1.5, 3.6, and 4.0; n = 9), the former consisting of significantly lighter, shorter, and smaller cyclists (p < 0.05). The mesomorphic cluster demonstrated higher sprint performance (p < 0.05), whereas the meso-ectomorphic clusters established higher endurance performance (p < 0.001). Overall, endurance performance was associated with lean ectomorph cyclists with small girths and small frontal area (p < 0.05), and sprint performance related to cyclists with larger skinfolds, larger girths, and low frontal area per body mass (p < 0.05). Clustering optimization revealed a mesomorphic cluster of sprinters with high sprint performance and short and tall meso-ectomorphic clusters of pursuit and road cyclists with high endurance performance. Anthropometry-dependent specialization was partially confirmed, as the clustering algorithm distinguished short and tall endurance-type cyclists (matching the anthropometry of all-terrain and flat-terrain road cyclists) rather than pursuit and road cyclists. Machine-learning algorithms therefore provide new insights in how athletes match their sports discipline with their individual anthropometry.
Collapse
Affiliation(s)
- Stephan van der Zwaard
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Leiden Institute of Advanced Computer Science, Universiteit Leiden, Leiden, Netherlands
| | - Cornelis J de Ruiter
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Richard T Jaspers
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jos J de Koning
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI, United States
| |
Collapse
|
45
|
Sandford GN, Stellingwerff T. " Question Your Categories": the Misunderstood Complexity of Middle-Distance Running Profiles With Implications for Research Methods and Application. Front Sports Act Living 2019; 1:28. [PMID: 33344952 PMCID: PMC7739647 DOI: 10.3389/fspor.2019.00028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/02/2019] [Indexed: 11/15/2022] Open
Abstract
Middle-distance running provides unique complexity where very different physiological and structural/mechanical profiles may achieve similar elite performances. Training and improving the key determinants of performance and applying interventions to athletes within the middle-distance event group are probably much more divergent than many practitioners and researchers appreciate. The addition of maximal sprint speed and other anaerobic and biomechanical based parameters, alongside more commonly captured aerobic characteristics, shows promise to enhance our understanding and analysis within the complexities of middle-distance sport science. For coaches, athlete diversity presents daily training programming challenges in order to best individualize a given stimulus according to the athletes profile and avoid “non-responder” outcomes. It is from this decision making part of the coaching process, that we target this mini-review. First we ask researchers to “question their categories” concerning middle-distance event groupings. Historically broad classifications have been used [from 800 m (~1.5 min) all the way to 5,000 m (~13–15 min)]. Here within we show compelling rationale from physiological and event demand perspectives for narrowing middle-distance to 800 and 1,500 m alone (1.5–5 min duration), considering the diversity of bioenergetics and mechanical constraints within these events. Additionally, we provide elite athlete data showing the large diversity of 800 and 1,500 m athlete profiles, a critical element that is often overlooked in middle-distance research design. Finally, we offer practical recommendations on how researchers, practitioners, and coaches can advance training study designs, scientific interventions, and analysis on middle-distance athletes/participants to provide information for individualized decision making trackside and more favorable and informative study outcomes.
Collapse
Affiliation(s)
- Gareth N Sandford
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Physiology, Canadian Sport Institute-Pacific, Victoria, BC, Canada.,Athletics Canada, Ottawa, ON, Canada
| | - Trent Stellingwerff
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Physiology, Canadian Sport Institute-Pacific, Victoria, BC, Canada.,Athletics Canada, Ottawa, ON, Canada
| |
Collapse
|
46
|
Nakano I, Hori H, Fukushima A, Yokota T, Kinugawa S, Takada S, Yamanashi K, Obata Y, Kitaura Y, Kakutani N, Abe T, Anzai T. Enhanced Echo Intensity of Skeletal Muscle Is Associated With Exercise Intolerance in Patients With Heart Failure. J Card Fail 2019; 26:685-693. [PMID: 31533068 DOI: 10.1016/j.cardfail.2019.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Skeletal muscle is quantitatively and qualitatively impaired in patients with heart failure (HF), which is closely linked to lowered exercise capacity. Ultrasonography (US) for skeletal muscle has emerged as a useful, noninvasive tool to evaluate muscle quality and quantity. Here we investigated whether muscle quality based on US-derived echo intensity (EI) is associated with exercise capacity in patients with HF. METHODS AND RESULTS Fifty-eight patients with HF (61 ± 12 years) and 28 control subjects (58 ± 14 years) were studied. The quadriceps femoris echo intensity (QEI) was significantly higher and the quadriceps femoris muscle thickness (QMT) was significantly lower in the patients with HF than the controls (88.3 ± 13.4 vs 81.1 ± 7.5, P= .010; 5.21 ± 1.10 vs 6.54 ±1.34 cm, P< .001, respectively). By univariate analysis, QEI was significantly correlated with age, peak oxygen uptake (VO2), and New York Heart Association class in the HF group. A multivariable analysis revealed that the QEI was independently associated with peak VO2 after adjustment for age, gender, body mass index, and QMT: β-coefficient = -11.80, 95%CI (-20.73, -2.86), P= .011. CONCLUSION Enhanced EI in skeletal muscle was independently associated with lowered exercise capacity in HF. The measurement of EI is low-cost, easily accessible, and suitable for assessment of HF-related alterations in skeletal muscle quality.
Collapse
Affiliation(s)
- Ippei Nakano
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Hori
- Department of Rehabilitation, Hokkaido University Hospital, Sapporo, Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Katsuma Yamanashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshikuni Obata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Kitaura
- Laboratory of Nutritional Biochemistry, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takahiro Abe
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
47
|
Convertino VA, Lye KR, Koons NJ, Joyner MJ. Physiological comparison of hemorrhagic shock and V˙ O 2max: A conceptual framework for defining the limitation of oxygen delivery. Exp Biol Med (Maywood) 2019; 244:690-701. [PMID: 31042073 PMCID: PMC6552402 DOI: 10.1177/1535370219846425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT Disturbance of normal homeostasis occurs when oxygen delivery and energy stores to the body's tissues fail to meet the energy requirement of cells. The work submitted in this review is important because it advances the understanding of inadequate oxygen delivery as it relates to early diagnosis and treatment of circulatory shock and its relationship to disturbance of normal functioning of cellular metabolism in life-threatening conditions of hemorrhage. We explored data from the clinical and exercise literature to construct for the first time a conceptual framework for defining the limitation of inadequate delivery of oxygen by comparing the physiology of hemorrhagic shock caused by severe blood loss to maximal oxygen uptake induced by intense physical exercise. We also provide a translational framework in which understanding the fundamental relationship between the body's reserve to compensate for conditions of inadequate oxygen delivery as a limiting factor to V ˙ O2max helps to re-evaluate paradigms of triage for improved monitoring of accurate resuscitation in patients suffering from hemorrhagic shock.
Collapse
Affiliation(s)
- Victor A Convertino
- Battlefield Health & Trauma Center for Human Integrative Physiology, U. S. Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| | - Kristen R Lye
- Battlefield Health & Trauma Center for Human Integrative Physiology, U. S. Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| | - Natalie J Koons
- Battlefield Health & Trauma Center for Human Integrative Physiology, U. S. Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| | - Michael J Joyner
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
48
|
Bishop DJ, Botella J, Genders AJ, Lee MJC, Saner NJ, Kuang J, Yan X, Granata C. High-Intensity Exercise and Mitochondrial Biogenesis: Current Controversies and Future Research Directions. Physiology (Bethesda) 2019; 34:56-70. [PMID: 30540234 DOI: 10.1152/physiol.00038.2018] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is well established that different types of exercise can provide a powerful stimulus for mitochondrial biogenesis. However, there are conflicting findings in the literature, and a consensus has not been reached regarding the efficacy of high-intensity exercise to promote mitochondrial biogenesis in humans. The purpose of this review is to examine current controversies in the field and to highlight some important methodological issues that need to be addressed to resolve existing conflicts.
Collapse
Affiliation(s)
- David J Bishop
- Institute for Health and Sport, Victoria University , Melbourne , Australia.,School of Medical & Health Sciences, Edith Cowan University , Joondalup , Australia
| | - Javier Botella
- Institute for Health and Sport, Victoria University , Melbourne , Australia
| | - Amanda J Genders
- Institute for Health and Sport, Victoria University , Melbourne , Australia
| | - Matthew J-C Lee
- Institute for Health and Sport, Victoria University , Melbourne , Australia
| | - Nicholas J Saner
- Institute for Health and Sport, Victoria University , Melbourne , Australia
| | - Jujiao Kuang
- Institute for Health and Sport, Victoria University , Melbourne , Australia
| | - Xu Yan
- Institute for Health and Sport, Victoria University , Melbourne , Australia
| | - Cesare Granata
- Department of Diabetes, Central Clinical School, Monash University , Melbourne , Australia
| |
Collapse
|
49
|
Xiong Y, Wu Z, Zhang B, Wang C, Mao F, Liu X, Hu K, Sun X, Jin W, Kuang S. Fndc5 loss-of-function attenuates exercise-induced browning of white adipose tissue in mice. FASEB J 2019; 33:5876-5886. [PMID: 30721625 DOI: 10.1096/fj.201801754rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fibronectin type III domain containing 5 (Fndc5) is a transmembrane protein highly expressed in the skeletal muscle. It was reported that exercise promotes the shedding of the extracellular domain of Fndc5, generating a circulating peptide (irisin) that cross-talks to adipose tissues to convert lipid-storing white adipocytes to energy-catabolizing beige adipocytes. However, the requirement of Fndc5 in mediating the beneficial effect of exercise remains to be determined. Here, we created a mouse model of Fndc5 mutation through transcription activator-like effector nuclease-mediated DNA targeting. The Fndc5 mutant mice have normal skeletal muscle development, growth, regeneration, as well as glucose and lipid metabolism at resting state, even when fed a high-fat diet. In response to running exercise, however, the Fndc5 mutant mice exhibit reduced glucose tolerance and insulin sensitivity and have lower maximal oxygen consumption compared with the exercised wild-type mice. Mechanistically, Fndc5 mutation attenuates exercise-induced browning of white adipose tissue that is crucial for the metabolic benefits of physical activities. These data provide genetic evidence that Fndc5 is dispensable for muscle development and basal metabolism but essential for exercise-induced browning of white adipose tissues in mice.-Xiong, Y., Wu, Z., Zhang, B., Wang, C., Mao, F., Liu, X., Hu, K., Sun, X., Jin, W., Kuang, S. Fndc5 loss-of-function attenuates exercise-induced browning of white adipose tissue in mice.
Collapse
Affiliation(s)
- Yan Xiong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Zihuan Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Wang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Fengyi Mao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China.,Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Xiao Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Keping Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
50
|
Gibson OR, Taylor L, Watt PW, Maxwell NS. Cross-Adaptation: Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia. Sports Med 2018; 47:1751-1768. [PMID: 28389828 PMCID: PMC5554481 DOI: 10.1007/s40279-017-0717-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To prepare for extremes of heat, cold or low partial pressures of oxygen (O2), humans can undertake a period of acclimation or acclimatization to induce environment-specific adaptations, e.g. heat acclimation (HA), cold acclimation (CA), or altitude training. While these strategies are effective, they are not always feasible due to logistical impracticalities. Cross-adaptation is a term used to describe the phenomenon whereby alternative environmental interventions, e.g. HA or CA, may be a beneficial alternative to altitude interventions, providing physiological stress and inducing adaptations observable at altitude. HA can attenuate physiological strain at rest and during moderate-intensity exercise at altitude via adaptations allied to improved O2 delivery to metabolically active tissue, likely following increases in plasma volume and reductions in body temperature. CA appears to improve physiological responses to altitude by attenuating the autonomic response to altitude. While no cross-acclimation-derived exercise performance/capacity data have been measured following CA, post-HA improvements in performance underpinned by aerobic metabolism, and therefore dependent on O2 delivery at altitude, are likely. At a cellular level, heat shock protein responses to altitude are attenuated by prior HA, suggesting that an attenuation of the cellular stress response and therefore a reduced disruption to homeostasis at altitude has occurred. This process is known as cross-tolerance. The effects of CA on markers of cross-tolerance is an area requiring further investigation. Because much of the evidence relating to cross-adaptation to altitude has examined the benefits at moderate to high altitudes, future research examining responses at lower altitudes should be conducted, given that these environments are more frequently visited by athletes and workers. Mechanistic work to identify the specific physiological and cellular pathways responsible for cross-adaptation between heat and altitude, and between cold and altitude, is warranted, as is exploration of benefits across different populations and physical activity profiles.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, Uxbridge, UK. .,Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK.
| | - Lee Taylor
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Peter W Watt
- Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK
| | - Neil S Maxwell
- Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK
| |
Collapse
|