1
|
Yasuda Y, Maksym GN, Wang L, Chitano P, Seow CY. Characteristics of lung resistance and elastance associated with tracheal stenosis and intrapulmonary airway narrowing in ex vivo sheep lungs. Respir Res 2024; 25:332. [PMID: 39251985 PMCID: PMC11385140 DOI: 10.1186/s12931-024-02959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Understanding the characteristics of pulmonary resistance and elastance in relation to the location of airway narrowing, e.g., tracheal stenosis vs. intrapulmonary airway obstruction, will help us understand lung function characteristics and mechanisms related to different airway diseases. METHODS In this study, we used ex vivo sheep lungs as a model to measure lung resistance and elastance across a range of transpulmonary pressures (5-30 cmH2O) and ventilation frequencies (0.125-2 Hz). We established two tracheal stenosis models by inserting plastic tubes into the tracheas, representing mild (71.8% lumen area reduction) and severe (92.1%) obstructions. For intrapulmonary airway obstruction, we induced airway narrowing by challenging the lung with acetylcholine (ACh). RESULTS We found a pattern change in the lung resistance and apparent lung elastance as functions of ventilation frequency that depended on the transpulmonary pressure (or lung volume). At a transpulmonary pressure of 10 cmH2O, lung resistance increased with ventilation frequency in severe tracheal stenosis, whereas in ACh-induced airway narrowing the opposite occurred. Furthermore, apparent lung elastance at 10 cmH2O decreased with increasing ventilation frequency in severe tracheal stenosis whereas in ACh-induced airway narrowing the opposite occurred. Flow-volume analysis revealed that the flow amplitude was much sensitive to ventilation frequency in tracheal stenosis than it was in ACh induced airway constriction. CONCLUSIONS Results from this study suggest that lung resistance and apparent elastance measured at 10 cmH2O over the frequency range of 0.125-2 Hz can differentiate tracheal stenosis vs. intrapulmonary airway narrowing in ex vivo sheep lungs.
Collapse
Affiliation(s)
- Yuto Yasuda
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, 1081 Burrard Street, Rm 166, Vancouver, BC, V6Z 1Y6, Canada
| | - Geoffrey N Maksym
- School of Biomedical Engineering, Dalhousie University, 6299 South St, Halifax, NS, B3H 4R2, Canada
| | - Lu Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, 1081 Burrard Street, Rm 166, Vancouver, BC, V6Z 1Y6, Canada
| | - Pasquale Chitano
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, 1081 Burrard Street, Rm 166, Vancouver, BC, V6Z 1Y6, Canada
| | - Chun Y Seow
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, 1081 Burrard Street, Rm 166, Vancouver, BC, V6Z 1Y6, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
2
|
Henry C, Boucher M, Boulay MÈ, Côté A, Boulet LP, Bossé Y. The cumulative effect of methacholine on large and small airways when deep inspirations are avoided. Respirology 2023; 28:226-235. [PMID: 36210352 DOI: 10.1111/resp.14387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/20/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVE The effect of serial incremental concentrations of methacholine is only slightly cumulative when assessed by spirometry. This limited cumulative effect may be attributed to the bronchodilator effect of deep inspirations that are required between concentrations to measure lung function. Using oscillometry, the response to methacholine can be measured without deep inspirations. Conveniently, oscillometry can also dissociate the contribution of large versus small airways. Herein, oscillometry was used to assess the cumulative effect of methacholine in the absence of deep inspirations on large and small airways. METHODS Healthy and asthmatic volunteers underwent a multiple-concentration methacholine challenge on visit 1 and a single-concentration challenge on visit 2 using the highest concentration of visit 1. The maximal response was compared between visits to assess the cumulative effect of methacholine. The lung volume was also measured after the final concentration to assess hyperinflation. RESULTS In both healthy and asthmatic subjects, increases in resistance at 19 Hz (Rrs19 ), reflecting large airway narrowing, did not differ between the multiple- and the single-concentration challenge. However, increases in resistance at 5 Hz (Rrs5 ) minus Rrs19 , reflecting small airway narrowing, were 117 and 270% greater in the multiple- than the single-concentration challenge in healthy (p = 0.006) and asthmatic (p < 0.0001) subjects, respectively. Hyperinflation occurred with both challenges and was greater in the multiple- than the single-concentration challenge in both groups. CONCLUSION Without deep inspirations, the effect of methacholine is cumulative on small airways but not on large airways. Lung hyperinflation and derecruitment may partially explain these different responses.
Collapse
Affiliation(s)
- Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Marie-Ève Boulay
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Andréanne Côté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | | | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| |
Collapse
|
3
|
Lutchen K. A Few Bad Airways Can Wreak Havoc: Recognizing Asthma as a Local Disorder. Am J Respir Crit Care Med 2023; 207:386-388. [PMID: 36516460 PMCID: PMC9940148 DOI: 10.1164/rccm.202212-2231ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Kenneth Lutchen
- Department of Biomedical EngineeringBoston UniversityBoston, Massachusetts
| |
Collapse
|
4
|
James AL, Donovan GM, Green FHY, Mauad T, Abramson MJ, Cairncross A, Noble PB, Elliot JG. Heterogeneity of Airway Smooth Muscle Remodeling in Asthma. Am J Respir Crit Care Med 2023; 207:452-460. [PMID: 36399661 DOI: 10.1164/rccm.202111-2634oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rationale: Ventilatory defects in asthma are heterogeneous and may represent the distribution of airway smooth muscle (ASM) remodeling. Objectives: To determine the distribution of ASM remodeling in mild-severe asthma. Methods: The ASM area was measured in nine airway levels in three bronchial pathways in cases of nonfatal (n = 30) and fatal asthma (n = 20) and compared with control cases without asthma (n = 30). Correlations of ASM area within and between bronchial pathways were calculated. Asthma cases with 12 large and 12 small airways available (n = 42) were classified on the basis of the presence or absence of ASM remodeling (more than two SD of mean ASM area of control cases, n = 86) in the large or small airway or both. Measurements and Main Results: ASM remodeling varied widely within and between cases of nonfatal asthma and was more widespread and confluent and more marked in fatal cases. There were weak correlations of ASM between levels within the same or separate bronchial pathways; however, predictable patterns of remodeling were not observed. Using mean data, 44% of all asthma cases were classified as having no ASM remodeling in either the large or small airway despite a three- to 10-fold increase in the number of airways with ASM remodeling and 81% of asthma cases having ASM remodeling in at least one large and small airway. Conclusions: ASM remodeling is related to asthma severity but is heterogeneous within and between individuals and may contribute to the heterogeneous functional defects observed in asthma. These findings support the need for patient-specific targeting of ASM remodeling.
Collapse
Affiliation(s)
- Alan L James
- West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,School of Medicine and Pharmacology and
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Francis H Y Green
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Thais Mauad
- Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil; and
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Alvenia Cairncross
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - John G Elliot
- West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
5
|
Klimenko O, Luu P, Dominelli P, Noggle N, Petrics G, Haverkamp HC. Effect of exercise-induced bronchoconstriction on the configuration of the maximal expiratory flow-volume curve in adults with asthma. Physiol Rep 2023; 11:e15614. [PMID: 36823958 PMCID: PMC9950550 DOI: 10.14814/phy2.15614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023] Open
Abstract
We determined the effect of exercise-induced bronchoconstriction (EIB) on the shape of the maximal expiratory flow-volume (MEFV) curve in asthmatic adults. The slope-ratio index (SR) was used to quantitate the shape of the MEFV curve. We hypothesized that EIB would be accompanied by increases in SR and thus increased curvilinearity of the MEFV curve. Adult asthmatic ( n = 10) and non-asthmatic control subjects ( n = 9) cycled for 6-8 min at 85% of peak power. Following exercise, subjects remained on the ergometer and performed a maximal forced exhalation every 2 min for a total 20 min. In each MEFV curve, the slope-ratio index (SR) was calculated in 1% volume increments beginning at peak expiratory flow (PEF) and ending at 20% of forced vital capacity (FVC). Baseline spirometry was lower in asthmatics compared to control subjects (FEV1 % predicted, 89.1 ± 14.3 vs. 96.5 ± 12.2% [SD] in asthma vs. control; p < 0.05). In asthmatic subjects, post-exercise FEV1 decreased by 29.9 ± 13.2% from baseline (3.48 ± 0.74 and 2.24 ± 0.59 [SD] L for baseline and post-exercise nadir; p < 0.001). At baseline and at all timepoints after exercise, average SR between 80 and 20% of FVC was larger in asthmatic than control subjects (1.48 ± 0.02 vs. 1.23 ± 0.02 [SD] for asthma vs. control; p < 0.005). This averaged SR did not change after exercise in either subject group. In contrast, post-exercise SR between PEF and 75% of FVC was increased from baseline in subjects with asthma, suggesting that airway caliber heterogeneity increases with EIB. These findings suggest that the SR-index might provide useful information on the physiology of acute airway narrowing that complements traditional spirometric measures.
Collapse
Affiliation(s)
- Oksana Klimenko
- Department of Nutrition and Exercise Physiology, Washington State University-Spokane Health Sciences, Elson S. Floyd College of Medicine, Spokane, Washington, USA
| | - Peter Luu
- Department of Nutrition and Exercise Physiology, Washington State University-Spokane Health Sciences, Elson S. Floyd College of Medicine, Spokane, Washington, USA
| | - Paolo Dominelli
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Nathan Noggle
- Department of Nutrition and Exercise Physiology, Washington State University-Spokane Health Sciences, Elson S. Floyd College of Medicine, Spokane, Washington, USA
| | - Gregory Petrics
- Department of Mathematics, Northern Vermont University-Johnson, Johnson, Vermont, USA
| | - Hans Christian Haverkamp
- Department of Nutrition and Exercise Physiology, Washington State University-Spokane Health Sciences, Elson S. Floyd College of Medicine, Spokane, Washington, USA
| |
Collapse
|
6
|
Lilien TA, Gunjak M, Myti D, Casado F, van Woensel JBM, Morty RE, Bem RA. Long-Term Pulmonary Dysfunction by Hyperoxia Exposure during Severe Viral Lower Respiratory Tract Infection in Mice. Pathogens 2022; 11:1334. [PMID: 36422586 PMCID: PMC9696792 DOI: 10.3390/pathogens11111334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 10/28/2023] Open
Abstract
Viral-induced lower respiratory tract infection (LRTI), mainly by respiratory syncytial virus (RSV), causes a major health burden among young children and has been associated with long-term respiratory dysfunction. Children with severe viral LRTI are frequently treated with oxygen therapy, hypothetically posing an additional risk factor for pulmonary sequelae. The main goal of this study was to determine the effect of concurrent hyperoxia exposure during the acute phase of viral LRTI on long-term pulmonary outcome. As an experimental model for severe RSV LRTI in infants, C57Bl/6J mice received an intranasal inoculation with the pneumonia virus of mice J3666 strain at post-natal day 7, and were subsequently exposed to hyperoxia (85% O2) or normoxia (21% O2) from post-natal day 10 to 17 during the acute phase of disease. Long-term outcomes, including lung function and structural development, were assessed 3 weeks post-inoculation at post-natal day 28. Compared to normoxic conditions, hyperoxia exposure in PVM-inoculated mice induced a transient growth arrest without subsequent catchup growth, as well as a long-term increase in airway resistance. This hyperoxia-induced pulmonary dysfunction was not associated with developmental changes to the airway or lung structure. These findings suggest that hyperoxia exposure during viral LRTI at young age may aggravate subsequent long-term pulmonary sequelae. Further research is needed to investigate the specific mechanisms underlying this alteration to pulmonary function.
Collapse
Affiliation(s)
- Thijs A. Lilien
- Pediatric Intensive Care Unit, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Miša Gunjak
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), 35392 Giessen, Germany
- Department of Translational Pulmonology, and Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), 35392 Giessen, Germany
- Department of Translational Pulmonology, and Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Francisco Casado
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), 35392 Giessen, Germany
- Department of Translational Pulmonology, and Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Job B. M. van Woensel
- Pediatric Intensive Care Unit, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Rory E. Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Translational Pulmonology, and Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Reinout A. Bem
- Pediatric Intensive Care Unit, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
7
|
Dong SJ, Wang L, Chitano P, Vasilescu DM, Paré PD, Seow CY. Airway and parenchymal tissue resistance and elastance in ex vivo sheep lungs: Effects of bronchochallenge and deep inspiration. Am J Physiol Lung Cell Mol Physiol 2022; 322:L882-L889. [PMID: 35537098 DOI: 10.1152/ajplung.00033.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung resistance (RL) is determined by airway and parenchymal tissue resistance, as well as the degree of heterogeneity in airway constriction. Deep inspirations (DIs) are known to reverse experimentally induced increase in RL, but the mechanism is not entirely clear. The first step towards understanding the effect of DI is to determine how each of the resistance components is affected by DI. In the present study, we measured RL and apparent airway resistance (RAW, which combines the effects of airway resistance and airway heterogeneity) simultaneously before and after a DI in acetylcholine (ACh)-challenged ex vivo sheep lungs. We found that at normal breathing frequency (0.25 Hz) ACh-challenge led to doubling of RL, 80.3% of that increase was caused by an increase in RAW; the increase in apparent tissue resistance (RT) was insignificant. 57.7% of the increase in RAW was abolished by a single DI. After subtracting RAW from RL, the remaining RT was mostly independent of ACh-challenge and its reduction after a DI came mostly from the change in the mechanical properties of lung parenchyma. We conclude that at normal breathing frequency, RL in an unchallenged lung is mostly composed of RT, and the increase in RL due to ACh-challenge stems mostly from the increase in RAW and that both RAW and RT can be greatly reduced by a DI, likely due to a reduction in true airway resistance and heterogeneity, as well as parenchymal tissue hysteresis post DI.
Collapse
Affiliation(s)
- Shou-Jin Dong
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Respiratory Department, Chengdu First People's Hospital, Chengdu, China
| | - Lu Wang
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Pasquale Chitano
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Dragos Mihai Vasilescu
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Peter D Paré
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chun Y Seow
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Kaminsky DA, Simpson SJ, Berger KI, Calverley P, de Melo PL, Dandurand R, Dellacà RL, Farah CS, Farré R, Hall GL, Ioan I, Irvin CG, Kaczka DW, King GG, Kurosawa H, Lombardi E, Maksym GN, Marchal F, Oostveen E, Oppenheimer BW, Robinson PD, van den Berge M, Thamrin C. Clinical significance and applications of oscillometry. Eur Respir Rev 2022; 31:31/163/210208. [PMID: 35140105 PMCID: PMC9488764 DOI: 10.1183/16000617.0208-2021] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022] Open
Abstract
Recently, “Technical standards for respiratory oscillometry” was published, which reviewed the physiological basis of oscillometric measures and detailed the technical factors related to equipment and test performance, quality assurance and reporting of results. Here we present a review of the clinical significance and applications of oscillometry. We briefly review the physiological principles of oscillometry and the basics of oscillometry interpretation, and then describe what is currently known about oscillometry in its role as a sensitive measure of airway resistance, bronchodilator responsiveness and bronchial challenge testing, and response to medical therapy, particularly in asthma and COPD. The technique may have unique advantages in situations where spirometry and other lung function tests are not suitable, such as in infants, neuromuscular disease, sleep apnoea and critical care. Other potential applications include detection of bronchiolitis obliterans, vocal cord dysfunction and the effects of environmental exposures. However, despite great promise as a useful clinical tool, we identify a number of areas in which more evidence of clinical utility is needed before oscillometry becomes routinely used for diagnosing or monitoring respiratory disease. This paper provides a current review of the interpretation, clinical significance and application of oscillometry in respiratory medicine, with special emphasis on limitations of evidence and suggestions for future research.https://bit.ly/3GQPViA
Collapse
Affiliation(s)
- David A Kaminsky
- Dept of Medicine, Pulmonary and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, USA.,These authors have contributed equally to this manuscript
| | - Shannon J Simpson
- Children's Lung Health, Telethon Kids Institute, School of Allied Health, Curtin University, Perth, Australia.,These authors have contributed equally to this manuscript
| | - Kenneth I Berger
- Division of Pulmonary, Critical Care, and Sleep Medicine, NYU School of Medicine and André Cournand Pulmonary Physiology Laboratory, Belleuve Hospital, New York, NY, USA
| | - Peter Calverley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Pedro L de Melo
- Dept of Physiology, Biomedical Instrumentation Laboratory, Institute of Biology and Faculty of Engineering, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronald Dandurand
- Lakeshore General Hospital, Pointe-Claire, QC, Canada.,Montreal Chest Institute, Meakins-Christie Labs, Oscillometry Unit of the Centre for Innovative Medicine, McGill University Health Centre and Research Institute, and McGill University, Montreal, QC, Canada
| | - Raffaele L Dellacà
- Dipartimento di Elettronica, Informazione e Bioingegneria - DEIB, Politecnico di Milano University, Milan, Italy
| | - Claude S Farah
- Dept of Respiratory Medicine, Concord Repatriation General Hospital, Sydney, Australia
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Graham L Hall
- Children's Lung Health, Telethon Kids Institute, School of Allied Health, Curtin University, Perth, Australia
| | - Iulia Ioan
- Dept of Paediatric Lung Function Testing, Children's Hospital, Vandoeuvre-lès-Nancy, France.,EA 3450 DevAH - Laboratory of Physiology, Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Charles G Irvin
- Dept of Medicine, Pulmonary and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - David W Kaczka
- Depts of Anaesthesia, Biomedical Engineering and Radiology, University of Iowa, Iowa City, IA, USA
| | - Gregory G King
- Dept of Respiratory Medicine and Airway Physiology and Imaging Group, Royal North Shore Hospital, St Leonards, Australia.,Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Hajime Kurosawa
- Dept of Occupational Health, Tohoku University School of Medicine, Sendai, Japan
| | - Enrico Lombardi
- Paediatric Pulmonary Unit, Meyer Paediatric University Hospital, Florence, Italy
| | - Geoffrey N Maksym
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - François Marchal
- Dept of Paediatric Lung Function Testing, Children's Hospital, Vandoeuvre-lès-Nancy, France.,EA 3450 DevAH - Laboratory of Physiology, Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Ellie Oostveen
- Dept of Respiratory Medicine, Antwerp University Hospital and University of Antwerp, Belgium
| | - Beno W Oppenheimer
- Division of Pulmonary, Critical Care, and Sleep Medicine, NYU School of Medicine and André Cournand Pulmonary Physiology Laboratory, Belleuve Hospital, New York, NY, USA
| | - Paul D Robinson
- Woolcock Institute of Medical Research, Children's Hospital at Westmead, Sydney, Australia
| | - Maarten van den Berge
- Dept of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Cindy Thamrin
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| |
Collapse
|
9
|
Commentaries on Viewpoint: Small airways vs. large airways in asthma: time for a new perspective. J Appl Physiol (1985) 2021; 131:1842-1848. [PMID: 34898290 DOI: 10.1152/japplphysiol.00762.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Durack T, Chapman DG, Rutting S, Thamrin C, King GG, Tonga KO. Dynamic compliance and reactance in older non-smokers with asthma and fixed airflow obstruction. Eur Respir J 2021; 58:13993003.04400-2020. [PMID: 33863745 DOI: 10.1183/13993003.04400-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/05/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Timothy Durack
- The Department of Respiratory Medicine, Royal North Shore Hospital, St Leonards, Australia.,Airway Physiology and Imaging Group and The Woolcock Emphysema Centre, The Woolcock Institute of Medical Research, Glebe, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - David G Chapman
- The Department of Respiratory Medicine, Royal North Shore Hospital, St Leonards, Australia.,Airway Physiology and Imaging Group and The Woolcock Emphysema Centre, The Woolcock Institute of Medical Research, Glebe, Australia.,Discipline of Medical Sciences, University of Technology Sydney, Broadway, Australia
| | - Sandra Rutting
- The Department of Respiratory Medicine, Royal North Shore Hospital, St Leonards, Australia.,Airway Physiology and Imaging Group and The Woolcock Emphysema Centre, The Woolcock Institute of Medical Research, Glebe, Australia.,NHMRC Centre of Excellence in Severe Asthma, New Lambton Heights, Australia
| | - Cindy Thamrin
- Airway Physiology and Imaging Group and The Woolcock Emphysema Centre, The Woolcock Institute of Medical Research, Glebe, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Gregory G King
- The Department of Respiratory Medicine, Royal North Shore Hospital, St Leonards, Australia.,Airway Physiology and Imaging Group and The Woolcock Emphysema Centre, The Woolcock Institute of Medical Research, Glebe, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,NHMRC Centre of Excellence in Severe Asthma, New Lambton Heights, Australia
| | - Katrina O Tonga
- The Department of Respiratory Medicine, Royal North Shore Hospital, St Leonards, Australia.,Airway Physiology and Imaging Group and The Woolcock Emphysema Centre, The Woolcock Institute of Medical Research, Glebe, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,The Department of Thoracic and Lung Transplant Medicine, St Vincent's Hospital, Darlinghurst, Australia.,Faculty of Medicine, St Vincent's Clinical School, The University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Dong SJ, Wang L, Chitano P, Coxson HO, Paré PD, Seow CY. Airway diameter at different transpulmonary pressures in ex vivo sheep lungs: Implications for deep-inspiration-induced bronchodilation and bronchoprotection. Am J Physiol Lung Cell Mol Physiol 2021; 321:L663-L674. [PMID: 34287071 DOI: 10.1152/ajplung.00208.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep inspiration (DI)-induced bronchodilation is the first line of defense against bronchoconstriction in healthy subjects. A hallmark of asthma is the lack of this beneficial effect of DI. The mechanism underlying the bronchodilatory effect of DI is not clear. Understanding the mechanism will help us unravel the mystery of asthma pathophysiology. It has been postulated that straining airway smooth muscle (ASM) during a DI could lead to bronchodilation and bronchoprotection. The hypothesis is currently under debate, and a central question is whether ASM is sufficiently stretched during a DI for its contractility to be compromised. Besides bronchoconstriction, another contributor to lung resistance is airway heterogeneity. The present study examines changes in airway diameter and heterogeneity at different lung volumes. Freshly explanted sheep lungs were used in plethysmographic measurements of lung resistance and elastance at different lung volumes while the airway dimensions were measured by computed tomography (CT). The change in airway diameter informed by CT measurements was applied to isolated airway ring preparations to determine the strain-induced loss of ASM contractility. We found that changing the transpulmonary pressure from 5 to 30 cmH2O led to a 51%-increase in lung volume, accompanied by a 46%-increase in the airway diameter with no change in airway heterogeneity. When comparable airway strains measured in the whole lung were applied to isolated airway rings in either relaxed or contracted state, a significant loss of ASM contractility was observed, suggesting that DI-induced bronchodilation and bronchoprotection can result from strain-induced loss of ASM contractility.
Collapse
Affiliation(s)
- Shou-Jin Dong
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Respiratory Department, Chengdu First People's Hospital, Chengdu, China
| | - Lu Wang
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Pasquale Chitano
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Harvey O Coxson
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Peter D Paré
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chun Y Seow
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Stretch-activated calcium mobilization in airway smooth muscle and pathophysiology of asthma. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Roy GS, Daphtary N, Johnson O, Dixon AE, Kaminsky DA, Bates JHT. Measuring the mechanical input impedance of the respiratory system with breath-driven flow oscillations. J Appl Physiol (1985) 2021; 130:1064-1071. [PMID: 33571055 DOI: 10.1152/japplphysiol.00976.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In recent years, the mechanical input impedance of the respiratory system (Zrs) determined using the technique known as oscillometry has been gaining traction as a clinical diagnostic tool to complement conventional spirometry. Nevertheless, despite currently approved oscillometry devices being relatively compact and portable, they are still too heavy and bulky to be used in an ambulatory hands-free setting, mostly because of the mass of the motor and power supply. We therefore explored the possibility of using the subject's own respiratory musculature as the power source for creating flow oscillations at the mouth. We measured reference Zrs in 8 normal volunteers by having them breathe tidally into a piston-driven oscillator powered by an external motor. We fit the measured Zrs to the single-compartment model of the respiratory system characterized by the three parameters resistance (Rrs), elastance (Ers), and inertance (Irs). We then compared these parameter values to those obtained with two commercially available mucus-clearing devices that generate oscillations when expiratory flow drives a flapper valve. The estimates of Rrs agreed mostly within ±1 cmH2O·s·L-1, which is usefully accurate for most clinical needs. Ers and Irs agreed less well because the breath-driven oscillators provided data at essentially a single frequency close to the resonant frequency of the respiratory system. Nevertheless, we conclude that perturbing respiratory airflow and pressure with a breath-driven oscillator has the potential to provide measurements of Zrs, possibly serving as the basis for a lightweight ambulatory oscillometry system.NEW & NOTEWORTHY The technique of oscillometry for measuring the mechanical input impedance of the respiratory system is gaining traction as a clinical diagnostic tool, but the portability of existing commercially available devices is limited by the size and weight of oscillator motors and power supplies. We show that impedance can be measured by oscillations in mouth pressure and flow generated by mucus-clearing devices that are powered by the subject's own respiratory flow.
Collapse
Affiliation(s)
- Gregory S Roy
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Nirav Daphtary
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Olivia Johnson
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Anne E Dixon
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - David A Kaminsky
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jason H T Bates
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
14
|
Ciloglu D. A numerical study of the aerosol behavior in intra-acinar region of a human lung. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2020; 32:103305. [PMID: 33100807 PMCID: PMC7583362 DOI: 10.1063/5.0024200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The determination of the particle dynamics in the human acinar airways having millions of alveoli is critical in preventing potential health problems and delivering therapeutic particles effectively to target locations. Despite its complex geometrical structure and complicate wall movements, the advanced calculation simulations can provide valuable results to accurately predict the aerosol deposition in this region. The objective of this study was to numerically investigate the aerosol particle transport and deposition in the intra-acinar region of a human lung for different breathing scenarios (i.e., light, normal, and heavy activities) during multiple breaths. Idealized intra-acinar models utilized in this study consisted of a respiratory bronchial model, an alveolar duct model, and an alveolar sac model. The particles with 5 μm in diameter released from the inlet of the model were tracked until they deposited or escaped from the computational domain. The results showed that due to the rhythmic alveolar wall movement, the flow field was divided into two regions: one is the low-speed alveolar flow and the other is the channel flow. It was found that the chaotic acinar flow irreversibility played a significant role in the aerosol transport in higher generations. During the succeeding breaths, more particles deposited or escaped to the relating acinar generation and reached the more distal regions of the lung. The number of particles remaining in the suspension at the end of the third cycle ranged from 0.016% to 3%. When the mouth flow rate increased, the number of particles remaining in the suspension reduced, resulting in higher deposition efficiency. The total deposition efficiencies for each flow rate were 24%, 47%, and 77%, respectively. The particle simulation results also showed that more breathing cycle was required for full aerosol particle deposition or escape from the model. In addition to the alveolar wall motion, the type of breathing condition and breathing cycle had a significant effect on the accurate prediction of the aerosol deposition in the intra-acinar region of the human lung.
Collapse
|
15
|
Abstract
This article will discuss in detail the pathophysiology of asthma from the point of view of lung mechanics. In particular, we will explain how asthma is more than just airflow limitation resulting from airway narrowing but in fact involves multiple consequences of airway narrowing, including ventilation heterogeneity, airway closure, and airway hyperresponsiveness. In addition, the relationship between the airway and surrounding lung parenchyma is thought to be critically important in asthma, especially as related to the response to deep inspiration. Furthermore, dynamic changes in lung mechanics over time may yield important information about asthma stability, as well as potentially provide a window into future disease control. All of these features of mechanical properties of the lung in asthma will be explained by providing evidence from multiple investigative methods, including not only traditional pulmonary function testing but also more sophisticated techniques such as forced oscillation, multiple breath nitrogen washout, and different imaging modalities. Throughout the article, we will link the lung mechanical features of asthma to clinical manifestations of asthma symptoms, severity, and control. © 2020 American Physiological Society. Compr Physiol 10:975-1007, 2020.
Collapse
Affiliation(s)
- David A Kaminsky
- University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - David G Chapman
- University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Bou Jawde S, Walkey AJ, Majumdar A, O'Connor GT, Smith BJ, Bates JHT, Lutchen KR, Suki B. Tracking respiratory mechanics around natural breathing rates via variable ventilation. Sci Rep 2020; 10:6722. [PMID: 32317734 PMCID: PMC7174375 DOI: 10.1038/s41598-020-63663-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/26/2020] [Indexed: 11/08/2022] Open
Abstract
Measuring respiratory resistance and elastance as a function of time, tidal volume, respiratory rate, and positive end-expiratory pressure can guide mechanical ventilation. However, current measurement techniques are limited since they are assessed intermittently at non-physiological frequencies or involve specialized equipment. To this end, we introduce ZVV, a practical approach to continuously track resistance and elastance during Variable Ventilation (VV), in which frequency and tidal volume vary from breath-to-breath. ZVV segments airway pressure and flow recordings into individual breaths, calculates resistance and elastance for each breath, bins them according to frequency or tidal volume and plots the results against bin means. ZVV's feasibility was assessed clinically in five human patients with acute lung injury, experimentally in five mice ventilated before and after lavage injury, and computationally using a viscoelastic respiratory model. ZVV provided continuous measurements in both settings, while the computational study revealed <2% estimation errors. Our findings support ZVV as a feasible technique to assess respiratory mechanics under physiological conditions. Additionally, in humans, ZVV detected a decrease in resistance and elastance with time by 12.8% and 6.2%, respectively, suggesting that VV can improve lung recruitment in some patients and can therefore potentially serve both as a dual diagnostic and therapeutic tool.
Collapse
Affiliation(s)
- Samer Bou Jawde
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Allan J Walkey
- Department of Medicine, Pulmonary, Allergy, Sleep, & Critical Care Medicine, Boston University, Boston, MA, USA
| | - Arnab Majumdar
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - George T O'Connor
- Department of Medicine, Pulmonary, Allergy, Sleep, & Critical Care Medicine, Boston University, Boston, MA, USA
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
| | - Jason H T Bates
- Pulmonary/Critical Care Division, University of Vermont, Burlington, VT, USA
| | - Kenneth R Lutchen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
17
|
King GG, Bates J, Berger KI, Calverley P, de Melo PL, Dellacà RL, Farré R, Hall GL, Ioan I, Irvin CG, Kaczka DW, Kaminsky DA, Kurosawa H, Lombardi E, Maksym GN, Marchal F, Oppenheimer BW, Simpson SJ, Thamrin C, van den Berge M, Oostveen E. Technical standards for respiratory oscillometry. Eur Respir J 2020; 55:13993003.00753-2019. [PMID: 31772002 DOI: 10.1183/13993003.00753-2019] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022]
Abstract
Oscillometry (also known as the forced oscillation technique) measures the mechanical properties of the respiratory system (upper and intrathoracic airways, lung tissue and chest wall) during quiet tidal breathing, by the application of an oscillating pressure signal (input or forcing signal), most commonly at the mouth. With increased clinical and research use, it is critical that all technical details of the hardware design, signal processing and analyses, and testing protocols are transparent and clearly reported to allow standardisation, comparison and replication of clinical and research studies. Because of this need, an update of the 2003 European Respiratory Society (ERS) technical standards document was produced by an ERS task force of experts who are active in clinical oscillometry research.The aim of the task force was to provide technical recommendations regarding oscillometry measurement including hardware, software, testing protocols and quality control.The main changes in this update, compared with the 2003 ERS task force document are 1) new quality control procedures which reflect use of "within-breath" analysis, and methods of handling artefacts; 2) recommendation to disclose signal processing, quality control, artefact handling and breathing protocols (e.g. number and duration of acquisitions) in reports and publications to allow comparability and replication between devices and laboratories; 3) a summary review of new data to support threshold values for bronchodilator and bronchial challenge tests; and 4) updated list of predicted impedance values in adults and children.
Collapse
Affiliation(s)
- Gregory G King
- Dept of Respiratory Medicine and Airway Physiology and Imaging Group, Royal North Shore Hospital and The Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Jason Bates
- Dept of Medicine, Pulmonary/Critical Care Division, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Kenneth I Berger
- Division of Pulmonary, Critical Care, and Sleep Medicine, NYU School of Medicine and André Cournand Pulmonary Physiology Laboratory, Belleuve Hospital, New York, NY, USA
| | - Peter Calverley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Pedro L de Melo
- Institute of Biology and Faculty of Engineering, Department of Physiology, Biomedical Instrumentation Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raffaele L Dellacà
- Dipartimento di Elettronica, Informazione e Bioingegneria - DEIB, Politecnico di Milano University, Milano, Italy
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Graham L Hall
- Children's Lung Health, Telethon Kids Institute, School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia
| | - Iulia Ioan
- Dept of Pediatric Lung Function Testing, Children's Hospital, Vandoeuvre-lès-Nancy, France.,EA 3450 DevAH - Laboratory of Physiology, Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Charles G Irvin
- Dept of Medicine, Pulmonary/Critical Care Division, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - David W Kaczka
- Depts of Anesthesia, Biomedical Engineering and Radiology, University of Iowa, Iowa City, IA, USA
| | - David A Kaminsky
- Dept of Medicine, Pulmonary/Critical Care Division, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Hajime Kurosawa
- Dept of Occupational Health, Tohoku University School of Medicine, Sendai, Japan
| | - Enrico Lombardi
- Pediatric Pulmonary Unit, Meyer Pediatric University Hospital, Florence, Italy
| | - Geoffrey N Maksym
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - François Marchal
- Dept of Pediatric Lung Function Testing, Children's Hospital, Vandoeuvre-lès-Nancy, France.,EA 3450 DevAH - Laboratory of Physiology, Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Beno W Oppenheimer
- Division of Pulmonary, Critical Care, and Sleep Medicine, NYU School of Medicine and André Cournand Pulmonary Physiology Laboratory, Belleuve Hospital, New York, NY, USA
| | - Shannon J Simpson
- Children's Lung Health, Telethon Kids Institute, School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia
| | - Cindy Thamrin
- Dept of Respiratory Medicine and Airway Physiology and Imaging Group, Royal North Shore Hospital and The Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Dept of Pulmonary Diseases, Groningen, The Netherlands
| | - Ellie Oostveen
- Dept of Respiratory Medicine, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Poorbahrami K, Mummy DG, Fain SB, Oakes JM. Patient-specific modeling of aerosol delivery in healthy and asthmatic adults. J Appl Physiol (1985) 2019; 127:1720-1732. [PMID: 31513445 PMCID: PMC6962611 DOI: 10.1152/japplphysiol.00221.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
The magnitude and regional heterogeneity of airway obstructions in severe asthmatics is likely linked to insufficient drug delivery, as evidenced by the inability to mitigate exacerbations with inhaled aerosol medications. To understand the correlation between morphometric features, airflow distribution, and inhaled dosimetry, we perform dynamic computational simulations in two healthy and four asthmatic subjects. Models incorporate computed tomography-based and patient-specific central airway geometries and hyperpolarized 3He MRI-measured segmental ventilation defect percentages (SVDPs), implemented as resistance boundary conditions. Particles [diameters (dp) = 1, 3, and 5 μm] are simulated throughout inhalation, and we record their initial conditions, both spatially and temporally, with their fate in the lung. Predictions highlight that total central airway deposition is the same between the healthy subjects (26.6%, dp = 3 μm) but variable among the asthmatic subjects (ranging from 5.9% to 59.3%, dp = 3 μm). We found that by preferentially releasing the particles during times of fast or slow inhalation rates we enhance either central airway deposition percentages or peripheral particle delivery, respectively. These predictions highlight the potential to identify with simulations patients who may not receive adequate therapeutic dosages with inhaled aerosol medication and therefore identify patients who may benefit from alternative treatment strategies. Furthermore, by improving regional dose levels, we may be able to preferentially deliver drugs to the airways in need, reducing associated adverse side effects.NEW & NOTEWORTHY Although it is evident that exacerbation mitigation is unsuccessful in some asthmatics, it remains unclear whether or not these patients receive adequate dosages of inhaled therapeutics. By coupling MRI and computed tomography data with patient-specific computational models, our predictions highlight the large intersubject variability, specifically in severe asthma.
Collapse
Affiliation(s)
- Kamran Poorbahrami
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts
| | - David G Mummy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean B Fain
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| |
Collapse
|
19
|
Bhatawadekar SA, Leary D, de Lange V, Peters U, Fulton S, Hernandez P, McParland C, Maksym GN. Reactance and elastance as measures of small airways response to bronchodilator in asthma. J Appl Physiol (1985) 2019; 127:1772-1781. [PMID: 31647721 DOI: 10.1152/japplphysiol.01131.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bronchodilation alters both respiratory system resistance (Rrs) and reactance (Xrs) in asthma, but how changes in Rrs and Xrs compare, and respond differently in health and asthma, in reflecting the contributions from the large and small airways has not been assessed. We assessed reversibility using spirometry and oscillometry in healthy and asthma subjects. Using a multibranch airway-tree model with the mechanics of upper airway shunt, we compared the effects of airway dilation and small airways recruitment to explain the changes in Rrs and Xrs. Bronchodilator decreased Rrs by 23.0 (19.0)% in 18 asthma subjects and by 13.5 (19.5)% in 18 healthy subjects. Estimated respiratory system elastance (Ers) decreased by 23.2 (21.4)% in asthma, with no significant decrease in healthy subjects. With the use of the model, airway recruitment of 15% across a generation of the small airways could explain the changes in Ers in asthma with no recruitment in healthy subjects. In asthma, recruitment accounted for 40% of the changes in Rrs, with the remaining explained by airway dilation of 6.8% attributable largely to the central airways. Interestingly, the same dilation magnitude explained the changes in Rrs in healthy subjects. Shunt only affected Rrs of the model. Ers was unaltered in health and unaffected by shunt in both groups. In asthma, Ers changed comparably to Rrs and could be attributed to small airways, while the change in Rrs was split between large and small airways. This implies that in asthma Ers sensed through Xrs may be a more effective measure of small airways obstruction and recruitment than Rrs.NEW & NOTEWORTHY This is the first study to quantify to relative contributions of small and large airways to bronchodilator response in healthy subjects and patients with asthma. The response of the central airways to bronchodilator was similar in magnitude in both study groups, whereas the response of the small airways was significant among patients with asthma. These results suggest that low-frequency reactance and derived elastance are both sensitive measures of small airway function in asthma.
Collapse
Affiliation(s)
- S A Bhatawadekar
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - D Leary
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - V de Lange
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - U Peters
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - S Fulton
- Division of Respirology, QE-II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - P Hernandez
- Division of Respirology, QE-II Health Sciences Centre, Halifax, Nova Scotia, Canada.,Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - C McParland
- Division of Respirology, QE-II Health Sciences Centre, Halifax, Nova Scotia, Canada.,Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G N Maksym
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
20
|
Polak AG, Wysoczański D, Mroczka J. Effects of homogeneous and heterogeneous changes in the lung periphery on spirometry results. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 173:139-145. [PMID: 31046988 DOI: 10.1016/j.cmpb.2019.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND OBJECTIVES The most widespread chronic pulmonary disorders are associated with heterogeneous changes in the lung periphery and spirometry is the most commonly used test to monitor these diseases. So far only a few attempts have been undertaken to investigate the effects of lung inhomogeneity on spirometry results. The aim of this work was to evaluate whether the spirometric curve and indexes are sensitive to parallel peripheral inhomogeneities, and if the level of heterogeneity can be deduced from this test. METHODS To this end, an enhanced computational model for forced expiration, taking into account a heterogeneous structure and properties of the respiratory system, was used. Two main phenomena were mimicked: small airways narrowing and the loss of tissue elastic recoil. Numerical simulations were performed with the model having 76 separate peripheral compartments. For a given degree of mean change, three heterogeneity levels were investigated and compared to the effects of homogeneous alterations. RESULTS All spirometric curves representing different patterns of inhomogeneous constriction, computed for each of the investigated cases, almost coincided with the curve originating from homogeneous changes, regardless of the heterogeneity level. Also the differences between the spirometric indexes obtained for heterogeneous and homogeneous alterations were negligible in comparison to their values. CONCLUSION The main finding is that the spirometry results are insensitive to the level of heterogeneity in the lung periphery and that it is practically impossible to distinguish between the homogeneous or heterogeneous nature of pathological processes occurring in this lung region.
Collapse
Affiliation(s)
- Adam G Polak
- Faculty of Electronics, Wrocław University of Science and Technology, B. Prusa Str. 53/55, Wrocław, Poland.
| | - Dariusz Wysoczański
- Faculty of Electronics, Wrocław University of Science and Technology, B. Prusa Str. 53/55, Wrocław, Poland
| | - Janusz Mroczka
- Faculty of Electronics, Wrocław University of Science and Technology, B. Prusa Str. 53/55, Wrocław, Poland
| |
Collapse
|
21
|
Laveneziana P, Beurnier A. [Dyspnoea in asthma: diagnostic approach]. Presse Med 2019; 48:274-281. [PMID: 30853285 DOI: 10.1016/j.lpm.2019.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
Dyspnoea is a cardinal symptom of asthma and an essential part of assessing control of the disease. Its intensity is variable for the same level of bronchial obstruction, which suggests the involvement of other mechanisms. Therefore, it is extremely important to characterize and measure dyspnoea in asthmatic patients because its profile can be quantitatively and qualitatively modified by disease control, comorbidities and anxiety. Hence the value of using additional tools to ACT and ACQ because the latter do not characterize nor measure specifically dyspnoea in asthma. Different tools can be used in this regard, at rest as the subjective assessment of dyspnoea by scales such as the modified Medical Research Council (mMRC), the New York Heart Association (NYHA) and the Visual Analogue Scale (VAS) or more recently using the Dyspnea-12 and the Multidimensional Dyspnea Profile (MDP) questionnaire, which assesses the sensory and affective dimensions of dyspnoea; and during exercise testing such as the "modified" Borg scale, graduated from 0 to 10, or the VAS. Among the factors contributing to dyspnoea in asthmatic patients, probably bronchial obstruction, increased airway resistance and dynamic hyperinflation play an important role. Despite this, the asthmatic patient's description of dyspnoea may be masked by hyperventilation syndrome or other comorbidities that can easily be detected and treated through educational programs and targeted therapies.
Collapse
Affiliation(s)
- Pierantonio Laveneziana
- Sorbonne Université, INSERM, UMRS 1158, neurophysiologie respiratoire expérimentale et clinique, 75013 Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, service des explorations fonctionnelles de la respiration, de l'exercice et de la dyspnée, 75013 Paris, France.
| | - Antoine Beurnier
- Université Paris-Sud, faculté de médecine, université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; AP-HP, Hôpital Bicêtre, service de physiologie, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
22
|
Bossé Y. The Strain on Airway Smooth Muscle During a Deep Inspiration to Total Lung Capacity. JOURNAL OF ENGINEERING AND SCIENCE IN MEDICAL DIAGNOSTICS AND THERAPY 2019; 2:0108021-1080221. [PMID: 32328568 PMCID: PMC7164505 DOI: 10.1115/1.4042309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/06/2018] [Indexed: 02/05/2023]
Abstract
The deep inspiration (DI) maneuver entices a great deal of interest because of its ability to temporarily ease the flow of air into the lungs. This salutary effect of a DI is proposed to be mediated, at least partially, by momentarily increasing the operating length of airway smooth muscle (ASM). Concerningly, this premise is largely derived from a growing body of in vitro studies investigating the effect of stretching ASM by different magnitudes on its contractility. The relevance of these in vitro findings remains uncertain, as the real range of strains ASM undergoes in vivo during a DI is somewhat elusive. In order to understand the regulation of ASM contractility by a DI and to infer on its putative contribution to the bronchodilator effect of a DI, it is imperative that in vitro studies incorporate levels of strains that are physiologically relevant. This review summarizes the methods that may be used in vivo in humans to estimate the strain experienced by ASM during a DI from functional residual capacity (FRC) to total lung capacity (TLC). The strengths and limitations of each method, as well as the potential confounders, are also discussed. A rough estimated range of ASM strains is provided for the purpose of guiding future in vitro studies that aim at quantifying the regulatory effect of DI on ASM contractility. However, it is emphasized that, owing to the many limitations and confounders, more studies will be needed to reach conclusive statements.
Collapse
Affiliation(s)
- Ynuk Bossé
- Université Laval, Faculty of Medicine, Department of Medicine, IUCPQ, M2694, Pavillon Mallet, Chemin Sainte-Foy, Québec, QC G1V 4G5, Canada e-mail:
| |
Collapse
|
23
|
Xu XK, Harvey BP, Lutchen KR, Gelbman BD, Monfre SL, Coifman RE, Forbes CE. Comparison of a micro-electro-mechanical system airflow sensor with the pneumotach in the forced oscillation technique. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2018; 11:419-426. [PMID: 30588132 PMCID: PMC6296186 DOI: 10.2147/mder.s181258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose This study supports the use of thin-film micro-electro-mechanical system (MEMS) airflow sensors in the forced oscillation technique. Materials and methods The study employed static testing using air flow standards and computer-controlled sound attenuations at 8 Hz. Human feasibility studies were conducted with a testing apparatus consisting of a pneumotach and thin-film MEMS air flow sensors in series. Short-time Fourier transform spectra were obtained using SIGVIEW software. Results Three tests were performed, and excellent correlations were observed between the probes. The thin-film MEMS probe showed superior sensitivity to higher frequencies up to 200 Hz. Conclusion The results suggest that lower-cost thin-film MEMS can be used for forced oscillation technique applications (including home care devices) that will benefit patients suffering from pulmonary diseases such as asthma, COPD, and cystic fibrosis.
Collapse
Affiliation(s)
- Xiaohe K Xu
- Feather Sensors, LLC, Millville, NJ 08332, USA,
| | - Brian P Harvey
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kenneth R Lutchen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Brian D Gelbman
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical Center, New York, NY 10065, USA
| | | | | | | |
Collapse
|
24
|
Comparison of two methods of determining lung de-recruitment, using the forced oscillation technique. Eur J Appl Physiol 2018; 118:2213-2224. [PMID: 30062516 DOI: 10.1007/s00421-018-3949-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Airway closure has proved to be important in a number of respiratory diseases and may be the primary functional defect in asthma. A surrogate measure of closing volume can be identified using the forced oscillation technique (FOT), by performing a deflation maneuver and examining the resultant reactance (Xrs) lung volume relationship. This study aims to determine if a slow vital capacity maneuver can be used instead of this deflation maneuver and compare it to existing more complex techniques. Three subject groups were included in the study; healthy (n = 29), asthmatic (n = 18), and COPD (n = 10) for a total of 57 subjects. Reactance lung volume curves were generated via FOT recordings during two different breathing manoeuvres (both pre and post bronchodilator). The correlation and agreement between surrogate closing volume (Volcrit) and reactance (Xrscrit) at this volume was analysed. The changes in Volcrit and Xrscrit pre and post bronchodilator were also analysed. Across all three subject groups, the two different measures of Volcrit were shown to be statistically equivalent (p > 0.05) and demonstrated a strong fit to the data (R2 = 0.49, 0.78, 0.59, for asthmatic, COPD and healthy subject groups, respectively). A bias was evident between the two measurements of Xrscrit with statistically different means (p < 0.05). However, the two measurements of Xrscrit displayed the same trends. In conclusion, we have developed an alternative technique for measuring airway closure from FOT recordings. The technique delivers equivalent and possibly more sensitive results to previous methods while being simple and easily performed by the patient.
Collapse
|
25
|
Peters U, Dechman G, Hernandez P, Bhatawadekar SA, Ellsmere J, Maksym G. Improvement in upright and supine lung mechanics with bariatric surgery affects bronchodilator responsiveness and sleep quality. J Appl Physiol (1985) 2018; 125:1305-1314. [PMID: 30048205 DOI: 10.1152/japplphysiol.00694.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Obesity and weight-loss have complex effects on respiratory physiology, but these have been insufficiently studied, particularly at early time points following weight-loss surgery and in the supine position. We evaluated 15 severely obese female participants before, and 5 weeks and 6 months after bariatric surgery using the Pittsburgh Sleep Quality Index (PSQI), spirometry, plethysmography, and oscillometry to measure respiratory system mechanics. Oscillometry and spirometry were conducted in the upright and supine position, and pre- and post-bronchodilation with 200µg of salbutamol. At 5 weeks post-surgery, weight-loss was 11.9±2.7kg with no effect on spirometric outcomes and a slight effect on oscillometric outcomes. However, at 6 months, weight-loss was 21.4±7.1kg with a 14.1±6.1% and 17.8±5.4% reduction in upright and supine Rrs,6, respectively. Ers also decreased by 25.7±9.4% and 20.2±7.2% in the upright and supine positions. No changes were observed in spirometry, but sleep quality improved from PSQI of 8.4±3.5 to 4.1±2.9. Bronchodilator responsiveness was low at baseline but increased significantly post-surgery, and this response was comparable to the improvement in Rrs produced by weight-loss. Modeling the impedance spectra with a two-compartment model demonstrated that improvements in lung mechanics with weight-loss begin in the upper or central compartment of the lungs and progress to include the peripheral compartment. Respiratory mechanics are impaired in the severely obese and is associated with poor sleep quality, but these improved substantially with weight-loss. Our data provide new evidence that severely obese individuals may have poor sleep quality due to abnormal respiratory mechanics that weight-loss improves.
Collapse
Affiliation(s)
- Ubong Peters
- Larner College of Medicine, University of Vermont, United States
| | | | - Paul Hernandez
- Department of Medicine, University and Division of Respirology
| | | | | | | |
Collapse
|
26
|
Lutchen KR, Paré PD, Seow CY. Hyperresponsiveness: Relating the Intact Airway to the Whole Lung. Physiology (Bethesda) 2018; 32:322-331. [PMID: 28615315 DOI: 10.1152/physiol.00008.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 11/22/2022] Open
Abstract
We relate changes of the airway wall to the response of the intact airway and the whole lung. We address how mechanical conditions and specific structural changes for an airway contribute to hyperresponsiveness resistant to deep inspiration. This review conveys that the origins of hyperresponsiveness do not devolve into an abnormality at single structural level but require examination of the complex interplay of all the parts.
Collapse
Affiliation(s)
- Kenneth R Lutchen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Peter D Paré
- Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation-St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Chun Y Seow
- Centre for Heart Lung Innovation-St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; and.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Young HM, Guo F, Eddy RL, Maksym G, Parraga G. Oscillometry and pulmonary MRI measurements of ventilation heterogeneity in obstructive lung disease: relationship to quality of life and disease control. J Appl Physiol (1985) 2018. [PMID: 29543132 DOI: 10.1152/japplphysiol.01031.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ventilation heterogeneity is a hallmark finding in obstructive lung disease and may be evaluated using a variety of methods, including multiple-breath gas washout and pulmonary imaging. Such methods provide an opportunity to better understand the relationships between structural and functional abnormalities in the lungs, and their relationships with important clinical outcomes. We measured ventilation heterogeneity and respiratory impedance in 100 subjects [50 patients with asthma, 22 ex-smokers, and 28 patients with chronic obstructive pulmonary disease (COPD)] using oscillometry and hyperpolarized 3He magnetic resonance imaging (MRI) and determined their relationships with quality of life scores and disease control/exacerbations. We also coregistered MRI ventilation maps to a computational airway tree model to generate patient-specific respiratory impedance predictions for comparison with experimental measurements. In COPD and asthma patients, respectively, forced oscillation technique (FOT)-derived peripheral resistance (5-19 Hz) and MRI ventilation defect percentage (VDP) were significantly related to quality of life (FOT: COPD ρ = 0.4, P = 0.004; asthma ρ = -0.3, P = 0.04; VDP: COPD ρ = 0.6, P = 0.003; asthma ρ = -0.3, P = 0.04). Patients with poorly controlled asthma (Asthmatic Control Questionnaire >2) had significantly increased resistance (5 Hz: P = 0.01; 5-19 Hz: P = 0.006) and reactance (5 Hz: P = 0.03). FOT-derived peripheral resistance (5-19 Hz) was significantly related to VDP in patients with asthma and COPD patients (asthma: ρ = 0.5, P < 0.001; COPD: ρ = 0.5, P = 0.01), whereas total respiratory impedance was related to VDP only in patients with asthma (resistance 5 Hz: ρ = 0.3, P = 0.02; reactance 5 Hz: ρ = -0.5, P < 0.001). Model-predicted and FOT-measured reactance (5 Hz) were correlated in patients with asthma (ρ = 0.5, P = 0.001), whereas in COPD patients, model-predicted and FOT-measured resistance (5-19 Hz) were correlated (ρ = 0.5, P = 0.004). In summary, in patients with asthma and COPD patients, we observed significant, independent relationships for FOT-measured impedance and MRI ventilation heterogeneity measurements with one another and with quality of life scores. NEW & NOTEWORTHY In 100 patients, including patients with asthma and ex-smokers, 3He MRI ventilation heterogeneity and respiratory system impedance were correlated and both were independently related to quality of life scores and asthma control. These findings demonstrated the critical relationships between respiratory system impedance and ventilation heterogeneity and their role in determining quality of life and disease control. These observations underscore the dominant role that abnormalities in the lung periphery play in ventilation heterogeneity that results in patients' symptoms.
Collapse
Affiliation(s)
- Heather M Young
- Robarts Research Institute, Western University , London, Ontario , Canada.,Department of Medical Biophysics, Western University , London, Ontario , Canada
| | - Fumin Guo
- Robarts Research Institute, Western University , London, Ontario , Canada.,Graduate Program in Biomedical Engineering, Western University , London, Ontario , Canada
| | - Rachel L Eddy
- Robarts Research Institute, Western University , London, Ontario , Canada.,Department of Medical Biophysics, Western University , London, Ontario , Canada
| | - Geoffrey Maksym
- School of Biomedical Engineering, Dalhousie University , Halifax, Nova Scotia , Canada
| | - Grace Parraga
- Robarts Research Institute, Western University , London, Ontario , Canada.,Department of Medical Biophysics, Western University , London, Ontario , Canada.,Graduate Program in Biomedical Engineering, Western University , London, Ontario , Canada
| |
Collapse
|
28
|
Lui JK, Lutchen KR. The role of heterogeneity in asthma: a structure-to-function perspective. Clin Transl Med 2017; 6:29. [PMID: 28776171 PMCID: PMC5543015 DOI: 10.1186/s40169-017-0159-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
A number of methods have evolved through the years in probing the dysfunction that impacts mechanics and ventilation in asthma. What has been consistently found is the notion of heterogeneity that is not only captured in the frequency dependence of lung mechanics measurements but also rendered on imaging as patchy diffuse areas of ventilation defects. The degree of heterogeneity has been linked to airway hyperresponsiveness, a hallmark feature of asthma. How these heterogeneous constriction patterns lead to functional impairment in asthma have only been recently explored using computational airway tree models. By synthesizing measurements of lung mechanics and advances in imaging, computational airway tree models serve as a powerful engine to accelerate our understanding of the physiologic changes that occur in asthma. This review will be focused on the current state of investigational work on the role of heterogeneity in asthma, specifically exploring the structural and functional relationships.
Collapse
Affiliation(s)
- Justin K. Lui
- Department of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Kenneth R. Lutchen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
| |
Collapse
|
29
|
Abstract
BACKGROUND The etiology of herniated intervertebral disc (HIVD) disease in children and adolescents is multifactorial and not merely related to disc degeneration. Therefore, in the present study, we investigated the relationship between young asthma patients and the risk of early HIVD disease in a population under 30 years of age. METHODS Data from the National Health Insurance Research Database (NHIRD) of Taiwan were used to conduct a retrospective longitudinal cohort study. The study cohort comprised 23,470 patients with asthma (asthma group) and 23,470 patients without asthma (non-asthma group), who were selected through frequency matching on the basis of sex, age, and the index year. The study patients were followed until HIVD disease occurrence, withdrawal from the National Health Insurance program, or 31 December 2013. Cox proportional hazards regression analysis was conducted to assess the risk of HIVD disease in the asthma group after adjustment for sex, age, and comorbidities. RESULTS After adjustment for sex, age, and comorbidities, the asthma group had a 1.69-fold (95% confidence interval [CI] = 1.29-2.23) higher risk of HIVD disease than did the non-asthma group. In addition, the asthma group had a higher risk of cervical and lumbar HIVD diseases than did the non-asthma group (adjusted hazard ratio [HR] = 2.38; 95% CI = 1.25-4.57 and adjusted HR = 1.56; 95% CI = 1.15-2.12, respectively). CONCLUSIONS Young patients with asthma are at a significantly higher risk of early cervical or lumbar HIVD disease.
Collapse
Affiliation(s)
- Cheng-Di Chiu
- a School of Medicine , College of Medicine, China Medical University , Taichung , Taiwan
- b Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan
- c Department of Neurosurgery , China Medical University Hospital , Taichung , Taiwan
| | - Hsuan-Ju Chen
- a School of Medicine , College of Medicine, China Medical University , Taichung , Taiwan
- d Management Office for Health Data , China Medical University Hospital , Taichung , Taiwan
| | - Hean-Pat Saw
- e Institute of Medical Department , Chung Shan Medical University , Taichung , Taiwan
- f Chung Kang Branch , Cheng Ching General Hospital , Taichung , Taiwan
| | - Nai-Wei Yao
- a School of Medicine , College of Medicine, China Medical University , Taichung , Taiwan
- g Institute of Biomedical Sciences, Academic Sinica , Taipei , Taiwan
| | - Hung-Rong Yen
- h School of Chinese Medicine , China Medical University , Taichung , Taiwan
- i Department of Chinese Medicine , China Medical University Hospital , Taichung , Taiwan
| | - Chia-Hung Kao
- j Graduate Institute of Clinical Medical Science and School of Medicine , College of Medicine, China Medical University , Taichung , Taiwan
- k Department of Nuclear Medicine and PET Center , China Medical University Hospital , Taichung , Taiwan
- l Department of Bioinformatics and Medical Engineering , Asia University , Taichung , Taiwan
| |
Collapse
|
30
|
Barnoy EA, Kim HJ, Gjertson DW. Complexity in applying spatial analysis to describe heterogeneous air-trapping in thoracic imaging data. J Appl Stat 2017. [DOI: 10.1080/02664763.2016.1221901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Eran A. Barnoy
- Department of Biostatistics, University of California Los Angeles, Los Angeles CA, USA
- Department of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Hyun J. Kim
- Department of Biostatistics, University of California Los Angeles, Los Angeles CA, USA
| | - David W. Gjertson
- Department of Biostatistics, University of California Los Angeles, Los Angeles CA, USA
| |
Collapse
|
31
|
Hoff BA, Pompe E, Galbán S, Postma DS, Lammers JWJ, Ten Hacken NHT, Koenderman L, Johnson TD, Verleden SE, de Jong PA, Mohamed Hoesein FAA, van den Berge M, Ross BD, Galbán CJ. CT-Based Local Distribution Metric Improves Characterization of COPD. Sci Rep 2017; 7:2999. [PMID: 28592874 PMCID: PMC5462827 DOI: 10.1038/s41598-017-02871-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/20/2017] [Indexed: 02/04/2023] Open
Abstract
Parametric response mapping (PRM) of paired CT lung images has been shown to improve the phenotyping of COPD by allowing for the visualization and quantification of non-emphysematous air trapping component, referred to as functional small airways disease (fSAD). Although promising, large variability in the standard method for analyzing PRMfSAD has been observed. We postulate that representing the 3D PRMfSAD data as a single scalar quantity (relative volume of PRMfSAD) oversimplifies the original 3D data, limiting its potential to detect the subtle progression of COPD as well as varying subtypes. In this study, we propose a new approach to analyze PRM. Based on topological techniques, we generate 3D maps of local topological features from 3D PRMfSAD classification maps. We found that the surface area of fSAD (SfSAD) was the most robust and significant independent indicator of clinically meaningful measures of COPD. We also confirmed by micro-CT of human lung specimens that structural differences are associated with unique SfSAD patterns, and demonstrated longitudinal feature alterations occurred with worsening pulmonary function independent of an increase in disease extent. These findings suggest that our technique captures additional COPD characteristics, which may provide important opportunities for improved diagnosis of COPD patients.
Collapse
Affiliation(s)
- Benjamin A Hoff
- Department of Radiology, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI, United States
| | - Esther Pompe
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefanie Galbán
- Department of Radiology, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI, United States
| | - Dirkje S Postma
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Disease, Utrecht, The Netherlands
| | - Jan-Willem J Lammers
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nick H T Ten Hacken
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Disease, Utrecht, The Netherlands
| | - Leo Koenderman
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Timothy D Johnson
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
| | - Stijn E Verleden
- Lung transplant Unit, Department of clinical and experimental medicine, KU Leuven, Leuven, Belgium
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Disease, Utrecht, The Netherlands
| | - Brian D Ross
- Department of Radiology, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI, United States
| | - Craig J Galbán
- Department of Radiology, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI, United States.
| |
Collapse
|
32
|
Choi S, Hoffman EA, Wenzel SE, Castro M, Fain S, Jarjour N, Schiebler ML, Chen K, Lin CL. Quantitative computed tomographic imaging-based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes. J Allergy Clin Immunol 2017; 140:690-700.e8. [PMID: 28143694 DOI: 10.1016/j.jaci.2016.11.053] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/15/2016] [Accepted: 11/21/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Imaging variables, including airway diameter, wall thickness, and air trapping, have been found to be important metrics when differentiating patients with severe asthma from those with nonsevere asthma and healthy subjects. OBJECTIVE The objective of this study was to identify imaging-based clusters and to explore the association of the clusters with existing clinical metrics. METHODS We performed an imaging-based cluster analysis using quantitative computed tomography-based structural and functional variables extracted from the respective inspiration and expiration scans of 248 asthmatic patients. The imaging-based metrics included a broader set of multiscale variables, such as inspiratory airway dimension, expiratory air trapping, and registration-based lung deformation (inspiration vs expiration). Asthma subgroups derived from a clustering method were associated with subject demographics, questionnaire results, medication history, and biomarker variables. RESULTS Cluster 1 was composed of younger patients with early-onset nonsevere asthma and reversible airflow obstruction and normal airway structure. Cluster 2 was composed of patients with a mix of patients with nonsevere and severe asthma with marginal inflammation who exhibited airway luminal narrowing without wall thickening. Clusters 3 and 4 were dominated by patients with severe asthma. Cluster 3 patients were obese female patients with reversible airflow obstruction who exhibited airway wall thickening without airway narrowing. Cluster 4 patients were late-onset older male subjects with persistent airflow obstruction who exhibited significant air trapping and reduced regional deformation. Cluster 3 and 4 patients also showed decreased lymphocyte and increased neutrophil counts, respectively. CONCLUSIONS Four image-based clusters were identified and shown to be correlated with clinical characteristics. Such clustering serves to differentiate asthma subgroups that can be used as a basis for the development of new therapies.
Collapse
Affiliation(s)
- Sanghun Choi
- Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, Iowa; IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, Iowa; Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Eric A Hoffman
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa; Department of Radiology, University of Iowa, Iowa City, Iowa; Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Mario Castro
- Departments of Internal Medicine and Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Sean Fain
- School of Medicine & Public Health, University of Wisconsin, Madison, Wis
| | - Nizar Jarjour
- School of Medicine & Public Health, University of Wisconsin, Madison, Wis
| | - Mark L Schiebler
- School of Medicine & Public Health, University of Wisconsin, Madison, Wis
| | - Kun Chen
- Department of Statistics, University of Connecticut, Storrs, Conn
| | - Ching-Long Lin
- Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, Iowa; IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, Iowa; Department of Radiology, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
33
|
Gazzola M, Lortie K, Henry C, Mailhot-Larouche S, Chapman DG, Couture C, Seow CY, Paré PD, King GG, Boulet LP, Bossé Y. Airway smooth muscle tone increases airway responsiveness in healthy young adults. Am J Physiol Lung Cell Mol Physiol 2016; 312:L348-L357. [PMID: 27941076 DOI: 10.1152/ajplung.00400.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/22/2022] Open
Abstract
Force adaptation, a process whereby sustained spasmogenic activation (viz., tone) of airway smooth muscle (ASM) increases its contractile capacity, has been reported in isolated ASM tissues in vitro, as well as in mice in vivo. The objective of the present study was to assess the effect of tone on airway responsiveness in humans. Ten healthy volunteers underwent methacholine challenge on two occasions. One challenge consisted of six serial doses of saline followed by a single high dose of methacholine. The other consisted of six low doses of methacholine 5 min apart followed by a higher dose. The cumulative dose was identical for both challenges. After both methacholine challenges, subjects took a deep inspiration (DI) to total lung capacity as another way to probe ASM mechanics. Responses to methacholine and the DI were measured using a multifrequency forced oscillation technique. Compared with a single high dose, the challenge preceded by tone led to an elevated response measured by respiratory system resistance (Rrs) and reactance at 5 Hz. However, there was no difference in the increase in Rrs at 19 Hz, suggesting a predominant effect on smaller airways. Increased tone also reduced the efficacy of DI, measured by an attenuated maximal dilation during the DI and an increased renarrowing post-DI. We conclude that ASM tone increases small airway responsiveness to inhaled methacholine and reduces the effectiveness of DI in healthy humans. This suggests that force adaptation may contribute to airway hyperresponsiveness and the reduced bronchodilatory effect of DI in asthma.
Collapse
Affiliation(s)
- Morgan Gazzola
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Katherine Lortie
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Samuel Mailhot-Larouche
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - David G Chapman
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, Vermont
| | - Christian Couture
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Chun Y Seow
- University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Peter D Paré
- University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Gregory G King
- Woolcock Institute of Medical Research, Sydney, Australia.,University of Sydney, Sydney, Australia; and.,Cooperative Research Centre for Asthma, Sydney, Australia
| | - Louis-Philippe Boulet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada;
| |
Collapse
|
34
|
Donovan GM. Clustered ventilation defects and bilinear respiratory reactance in asthma. J Theor Biol 2016; 406:166-75. [PMID: 27374171 DOI: 10.1016/j.jtbi.2016.06.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/08/2016] [Accepted: 06/27/2016] [Indexed: 11/24/2022]
Abstract
Imaging studies of asthmatics typically reveal clustered ventilation patterns, rather than homogeneous ventilation; furthermore, the variation of these clusters suggests that the causes are at least partially dynamic, rather than structural. Theoretical studies have indicated dynamic mechanisms by which homogeneous ventilation solutions lose stability and clustered solutions emerge. At the same time, it has been demonstrated experimentally that respiratory reactance characteristically has a bilinear relationship with lung volume, and that changes to this relationship are indicative of various aspects of disease progression and control. Moreover, the transition point in the bilinear reactance relationship is thought to relate to reopening/recruitment of airway units, and thus may be connected to the bifurcation via which clustered ventilation solutions emerge. In order to investigate this possibility we develop a new model, including both airway-airway coupling and airway-parenchymal coupling, which exhibits both clustered ventilation defects and also a bilinear reactance relationship. Studying this model reveals that (1) the reactance breakpoint is not coincident with the bifurcation; (2) numerous changes to underlying behaviour can alter the reactance breakpoint in ways which mimic the experimental data; and (3) the location of ventilation defects can be a combination of both structural and dynamic factors.
Collapse
Affiliation(s)
- Graham M Donovan
- Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
35
|
O'Toole J, Mikulic L, Kaminsky DA. Epidemiology and Pulmonary Physiology of Severe Asthma. Immunol Allergy Clin North Am 2016; 36:425-38. [PMID: 27401616 DOI: 10.1016/j.iac.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The epidemiology and physiology of severe asthma are inherently linked because of varying phenotypes and expressions of asthma throughout the population. To understand how to better treat severe asthma, we must use both population data and physiologic principles to individualize therapies among groups with similar expressions of this disease.
Collapse
Affiliation(s)
- Jacqueline O'Toole
- Department of Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401, USA
| | - Lucas Mikulic
- Division of Pulmonary and Critical Care Medicine, University of Vermont Medical Center, Given D208, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - David A Kaminsky
- Division of Pulmonary and Critical Care Medicine, University of Vermont College of Medicine, Given D213, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
36
|
Brown RH, Togias A. Measurement of intraindividual airway tone heterogeneity and its importance in asthma. J Appl Physiol (1985) 2016; 121:223-32. [PMID: 27103654 PMCID: PMC4967252 DOI: 10.1152/japplphysiol.00545.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 04/20/2016] [Indexed: 11/22/2022] Open
Abstract
While airways have some degree of baseline tone, the level and variability of this tone is not known. It is also unclear whether there is a difference in airway tone or in the variability of airway tone between asthmatic and healthy individuals. This study examined airway tone and intraindividual airway tone heterogeneity (variance of airway tone) in vivo in 19 individuals with asthma compared with 9 healthy adults. All participants underwent spirometry, body plethysmography, and high-resolution computed tomography at baseline and after maximum bronchodilation with albuterol. Airway tone was defined as the percent difference in airway diameter after albuterol at total lung capacity compared with baseline. The amount of airway tone in each airway varied both within and between subjects. The average airway tone did not differ significantly between the two groups (P = 0.09), but the intraindividual airway tone heterogeneity did (P = 0.016). Intraindividual airway tone heterogeneity was strongly correlated with airway tone (r = 0.78, P < 0.0001). Also, it was negatively correlated with the magnitude of the distension of the airways from functional residual capacity to total lung capacity at both baseline (r = −0.49, P = 0.03) and after maximum bronchodilation (r = −0.51, P = 0.02) in the asthma, but not the healthy group. However, we did not find any relationship between intraindividual airway tone heterogeneity and conventional lung function outcomes. Intraindividual airway tone heterogeneity appears to be an important characteristic of airway pathophysiology in asthma.
Collapse
Affiliation(s)
- Robert H Brown
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland; Department of Environmental Health Sciences, Division of Physiology, Johns Hopkins University, Baltimore, Maryland; Department of Radiology, Johns Hopkins University, Baltimore, Maryland; and
| | - Alkis Togias
- Department of Medicine, Divisions of Allergy and Clinical Immunology and Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
37
|
Huang SY, Chou PC, Wang TY, Lo YL, Joa WC, Chen LF, Sheng TF, Chung KF, Wang CH, Kuo HP. Exercise-Induced Changes in Exhaled NO Differentiates Asthma With or Without Fixed Airway Obstruction From COPD With Dynamic Hyperinflation. Medicine (Baltimore) 2016; 95:e3400. [PMID: 27082615 PMCID: PMC4839859 DOI: 10.1097/md.0000000000003400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Asthmatic patients with fixed airway obstruction (FAO) and patients with chronic obstructive pulmonary disease (COPD) share similarities in terms of irreversible pulmonary function impairment. Exhaled nitric oxide (eNO) has been documented as a marker of airway inflammation in asthma, but not in COPD. To examine whether the basal eNO level and the change after exercise may differentiate asthmatics with FAO from COPD, 27 normal subjects, 60 stable asthmatics, and 62 stable COPD patients were studied. Asthmatics with FAO (n = 29) were defined as showing a postbronchodilator FEV1/forced vital capacity (FVC) ≤70% and FEV1 less than 80% predicted after inhaled salbutamol (400 μg). COPD with dynamic hyperinflation (n = 31) was defined as a decrease in inspiratory capacity (ΔIC%) after a 6 minute walk test (6MWT). Basal levels of eNO were significantly higher in asthmatics and COPD patients compared to normal subjects. The changes in eNO after 6MWT were negatively correlated with the percent change in IC (r = -0.380, n = 29, P = 0.042) in asthmatics with FAO. Their levels of basal eNO correlated with the maximum mid-expiratory flow (MMEF % predicted) before and after 6MWT. In COPD patients with air-trapping, the percent change of eNO was positively correlated to ΔIC% (rs = 0.404, n = 31, P = 0.024). We conclude that asthma with FAO may represent residual inflammation in the airways, while dynamic hyperinflation in COPD may retain NO in the distal airspace. eNO changes after 6MWT may differentiate the subgroups of asthma or COPD patients and will help toward delivery of individualized therapy for airflow obstruction.
Collapse
Affiliation(s)
- Shu-Yi Huang
- From the Department of Thoracic Medicine, Chang Gung Memorial Hospital, Cha-Yi (S-YH); Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan (P-CC, T-YW, Y-LL, W-CJ, L-FC, T-FS, C-HW, H-PK); and Experimental Studies, National Heart and Lung Institute, Imperial College, London, UK (KFC)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Development and Analysis of Patient-Based Complete Conducting Airways Models. PLoS One 2015; 10:e0144105. [PMID: 26656288 PMCID: PMC4684353 DOI: 10.1371/journal.pone.0144105] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 11/13/2015] [Indexed: 11/19/2022] Open
Abstract
The analysis of high-resolution computed tomography (CT) images of the lung is dependent on inter-subject differences in airway geometry. The application of computational models in understanding the significance of these differences has previously been shown to be a useful tool in biomedical research. Studies using image-based geometries alone are limited to the analysis of the central airways, down to generation 6-10, as other airways are not visible on high-resolution CT. However, airways distal to this, often termed the small airways, are known to play a crucial role in common airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). Other studies have incorporated an algorithmic approach to extrapolate CT segmented airways in order to obtain a complete conducting airway tree down to the level of the acinus. These models have typically been used for mechanistic studies, but also have the potential to be used in a patient-specific setting. In the current study, an image analysis and modelling pipeline was developed and applied to a number of healthy (n = 11) and asthmatic (n = 24) CT patient scans to produce complete patient-based airway models to the acinar level (mean terminal generation 15.8 ± 0.47). The resulting models are analysed in terms of morphometric properties and seen to be consistent with previous work. A number of global clinical lung function measures are compared to resistance predictions in the models to assess their suitability for use in a patient-specific setting. We show a significant difference (p < 0.01) in airways resistance at all tested flow rates in complete airway trees built using CT data from severe asthmatics (GINA 3-5) versus healthy subjects. Further, model predictions of airways resistance at all flow rates are shown to correlate with patient forced expiratory volume in one second (FEV1) (Spearman ρ = -0.65, p < 0.001) and, at low flow rates (0.00017 L/s), FEV1 over forced vital capacity (FEV1/FVC) (ρ = -0.58, p < 0.001). We conclude that the pipeline and anatomical models can be used directly in mechanistic modelling studies and can form the basis for future patient-based modelling studies.
Collapse
|
39
|
Lui JK, Parameswaran H, Albert MS, Lutchen KR. Linking Ventilation Heterogeneity Quantified via Hyperpolarized 3He MRI to Dynamic Lung Mechanics and Airway Hyperresponsiveness. PLoS One 2015; 10:e0142738. [PMID: 26569412 PMCID: PMC4646346 DOI: 10.1371/journal.pone.0142738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/25/2015] [Indexed: 11/18/2022] Open
Abstract
Advancements in hyperpolarized helium-3 MRI (HP 3He-MRI) have introduced the ability to render and quantify ventilation patterns throughout the anatomic regions of the lung. The goal of this study was to establish how ventilation heterogeneity relates to the dynamic changes in mechanical lung function and airway hyperresponsiveness in asthmatic subjects. In four healthy and nine mild-to-moderate asthmatic subjects, we measured dynamic lung resistance and lung elastance from 0.1 to 8 Hz via a broadband ventilation waveform technique. We quantified ventilation heterogeneity using a recently developed coefficient of variation method from HP 3He-MRI imaging. Dynamic lung mechanics and imaging were performed at baseline, post-challenge, and after a series of five deep inspirations. AHR was measured via the concentration of agonist that elicits a 20% decrease in the subject's forced expiratory volume in one second compared to baseline (PC20) dose. The ventilation coefficient of variation was correlated to low-frequency lung resistance (R = 0.647, P < 0.0001), the difference between high and low frequency lung resistance (R = 0.668, P < 0.0001), and low-frequency lung elastance (R = 0.547, P = 0.0003). In asthmatic subjects with PC20 values <25 mg/mL, the coefficient of variation at baseline exhibited a strong negative trend (R = -0.798, P = 0.02) to PC20 dose. Our findings were consistent with the notion of peripheral rather than central involvement of ventilation heterogeneity. Also, the degree of AHR appears to be dependent on the degree to which baseline airway constriction creates baseline ventilation heterogeneity. HP 3He-MRI imaging may be a powerful predictor of the degree of AHR and in tracking the efficacy of therapy.
Collapse
Affiliation(s)
- Justin K. Lui
- Boston University, School of Medicine, Boston, MA, United States of America
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | | | - Mitchell S. Albert
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, United States of America
- Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
| | - Kenneth R. Lutchen
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
40
|
Harvey BC, Parameswaran H, Lutchen KR. Can breathing-like pressure oscillations reverse or prevent narrowing of small intact airways? J Appl Physiol (1985) 2015; 119:47-54. [PMID: 25953836 DOI: 10.1152/japplphysiol.01100.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/01/2015] [Indexed: 01/20/2023] Open
Abstract
Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively large (>5 mm diameter) airways, which are inherently stiffer than smaller airways for which a preponderance of airway constriction in asthma likely occurs. The goal of this study was to determine the effectiveness of breathing-like transmural pressure oscillations to reverse induced narrowing and/or protect against future narrowing of smaller, more compliant intact airways. We constricted smaller (luminal diameter = 2.92 ± 0.29 mm) intact airway segments twice with ACh (10(-6) M), once while applying tidal-like pressure oscillations (5-15 cmH2O) before, during, and after inducing constriction (Pre + Post) and again while only imposing the tidal-like pressure oscillation after induced constriction (Post Only). Smaller airways were 128% more compliant than previously studied larger airways. This increased compliance translated into 196% more strain and 76% greater recovery (41 vs. 23%) because of tidal-like pressure oscillations. Larger pressure oscillations (5-25 cmH2O) caused more recovery (77.5 ± 16.5%). However, pressure oscillations applied before and during constriction resulted in the same steady-state diameter as when pressure oscillations were only applied after constriction. These data show that reduced straining of the airways before a challenge likely does not contribute to the emergence of airway hyperreactivity observed in asthma but may serve to sustain a given level of constriction.
Collapse
Affiliation(s)
- Brian C Harvey
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Kenneth R Lutchen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
41
|
Takahara N, Ito S, Furuya K, Naruse K, Aso H, Kondo M, Sokabe M, Hasegawa Y. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells. Am J Respir Cell Mol Biol 2015; 51:772-82. [PMID: 24885163 DOI: 10.1165/rcmb.2014-0008oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway smooth muscle (ASM) cells within the airway walls are continually exposed to mechanical stimuli, and exhibit various functions in response to these mechanical stresses. ATP acts as an extracellular mediator in the airway. Moreover, extracellular ATP is considered to play an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease. However, it is not known whether ASM cells are cellular sources of ATP secretion in the airway. We therefore investigated whether mechanical stretch induces ATP release from ASM cells. Mechanical stretch was applied to primary human ASM cells cultured on a silicone chamber coated with type I collagen using a stretching apparatus. Concentrations of ATP in cell culture supernatants measured by luciferin-luciferase bioluminescence were significantly elevated by cyclic stretch (12 and 20% strain). We further visualized the stretch-induced ATP release from the cells in real time using a luminescence imaging system, while acquiring differential interference contrast cell images with infrared optics. Immediately after a single uniaxial stretch for 1 second, strong ATP signals were produced by a certain population of cells and spread to surrounding spaces. The cyclic stretch-induced ATP release was significantly reduced by inhibitors of Ca(2+)-dependent vesicular exocytosis, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester, monensin, N-ethylmaleimide, and bafilomycin. In contrast, the stretch-induced ATP release was not inhibited by a hemichannel blocker, carbenoxolone, or blockade of transient receptor potential vanilloid 4 by short interfering RNA transfection or ruthenium red. These findings reveal a novel property of ASM cells: mechanically induced ATP release may be a cellular source of ATP in the airway.
Collapse
|
42
|
Takahashi A, Hamakawa H, Sakai H, Zhao X, Chen F, Fujinaga T, Shoji T, Bando T, Wada H, Date H. Noninvasive assessment for acute allograft rejection in a rat lung transplantation model. Physiol Rep 2014; 2:2/12/e12244. [PMID: 25524280 PMCID: PMC4332222 DOI: 10.14814/phy2.12244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
After lung transplantation, early detection of acute allograft rejection is important not only for timely and optimal treatment, but also for the prediction of chronic rejection which is a major cause of late death. Many biological and immunological approaches have been developed to detect acute rejection; however, it is not well known whether lung mechanics correlate with disease severity, especially with pathological rejection grade. In this study, we examined the relationship between lung mechanics and rejection grade development in a rat acute rejection model using the forced oscillation technique, which provides noninvasive assessment of lung function. To this end, we assessed lung resistance and elastance (RL and EL) from implanted left lung of these animals. The perivascular/interstitial component of rejection severity grade (A‐grade) was also quantified from histological images using tissue fraction (TF; tissue + cell infiltration area/total area). We found that TF, RL, and EL increased according to A‐grade. There was a strong positive correlation between EL at the lowest frequency (Elow; EL at 0.5 Hz) and TF (r2 = 0.930). Furthermore, the absolute difference between maximum value of EL (Emax) and Elow (Ehet; Emax − Elow) showed the strong relationship with standard deviation of TF (r2 = 0.709), and A‐grade (Spearman's correlation coefficients; rs = 0.964, P < 0.0001). Our results suggest that the dynamic elastance as well as its frequency dependence have the ability to predict A‐grade. These indexes should prove useful for noninvasive detection and monitoring the progression of disease in acute rejection. After lung transplantation, early detection of acute allograft rejection is important for both in timely treatment and prediction of chronic rejection which is a major cause of late death. We examined the relationship between lung mechanics and rejection grade development in a rat acute rejection model using the forced oscillation technique, which provides noninvasive assessment of lung function. Our results suggest that the dynamic elastance as well as its frequency dependence reflect the perivascular‐interstitial component of rejection severity grade (A‐grade), and this method should prove useful for noninvasive detection and monitoring the progression of disease in acute rejection.
Collapse
Affiliation(s)
- Ayuko Takahashi
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Hamakawa
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan Department of Thoracic Surgery, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Hiroaki Sakai
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiangdong Zhao
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan Department of Surgery, Graduate school of Medicine, Kyoto University, Kyoto, Japan
| | - Fengshi Chen
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuji Fujinaga
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Shoji
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toru Bando
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Wada
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Brown RH. Groundhog day: airway narrowing, deep inspirations, and asthma. Am J Respir Crit Care Med 2014; 190:847-8. [PMID: 25317460 DOI: 10.1164/rccm.201409-1651ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Robert H Brown
- 1 Department of Anesthesiology and Critical Care Medicine Department of Environmental Health Sciences Department of Medicine, Division of Pulmonary and Critical Care Medicine and Department of Radiology Johns Hopkins Medical Institutions Baltimore, Maryland
| |
Collapse
|
44
|
Choi S, Hoffman EA, Wenzel SE, Castro M, Lin CL. Improved CT-based estimate of pulmonary gas trapping accounting for scanner and lung-volume variations in a multicenter asthmatic study. J Appl Physiol (1985) 2014; 117:593-603. [PMID: 25103972 DOI: 10.1152/japplphysiol.00280.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lung air trapping is estimated via quantitative computed tomography (CT) using density threshold-based measures on an expiration scan. However, the effects of scanner differences and imaging protocol adherence on quantitative assessment are known to be problematic. This study investigates the effects of protocol differences, such as using different CT scanners and breath-hold coaches in a multicenter asthmatic study, and proposes new methods that can adjust intersite and intersubject variations. CT images of 50 healthy subjects and 42 nonsevere and 52 severe asthmatics at total lung capacity (TLC) and functional residual capacity (FRC) were acquired using three different scanners and two different coaching methods at three institutions. A fraction threshold-based approach based on the corrected Hounsfield unit of air with tracheal density was applied to quantify air trapping at FRC. The new air-trapping method was enhanced by adding a lung-shaped metric at TLC and the lobar ratio of air-volume change between TLC and FRC. The fraction-based air-trapping method is able to collapse air-trapping data of respective populations into distinct regression lines. Relative to a constant value-based clustering scheme, the slope-based clustering scheme shows the improved performance and reduced misclassification rate of healthy subjects. Furthermore, both lung shape and air-volume change are found to be discriminant variables for differentiating among three populations of healthy subjects and nonsevere and severe asthmatics. In conjunction with the lung shape and air-volume change, the fraction-based measure of air trapping enables differentiation of severe asthmatics from nonsevere asthmatics and nonsevere asthmatics from healthy subjects, critical for the development and evaluation of new therapeutic interventions.
Collapse
Affiliation(s)
- Sanghun Choi
- Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, Iowa; IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, Iowa; Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa
| | - Eric A Hoffman
- Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa; Department of Radiology, The University of Iowa, Iowa City, Iowa; Department of Internal Medicine, The University of Iowa, Iowa City, Iowa
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh Pennsylvania; and
| | - Mario Castro
- Departments of Internal Medicine and Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Ching-Long Lin
- Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, Iowa; IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, Iowa;
| |
Collapse
|
45
|
Sferrazza Papa GF, Pellegrino GM, Pellegrino R. Asthma and respiratory physiology: putting lung function into perspective. Respirology 2014; 19:960-9. [PMID: 25060051 DOI: 10.1111/resp.12355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/11/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
Bronchial asthma is a chronic disease characterized by airway hyperresponsiveness, airway inflammation and remodelling. The hypothesis that the illness is inflammatory in nature has recently been challenged by studies showing that airway smooth muscle (ASM) plays a more important role than previously thought. For example, it is now known that in asthma patients, ASM proliferates more and faster than in healthy subjects, carries intrinsic defects and exhibits impaired relaxation, increased velocity of shortening, plastic adaptation to short length and perturbed equilibrium of actin-to-myosin during cycling. Similar conclusions can be drawn from studies on airway mechanics. For instance, in asthma, abnormal ASM contributes to limiting the response to deep lung stretching and accelerates the return of bronchial tone to baseline conditions, and contributes to increased airway stiffness. Upon stimulation, ASM causes airway narrowing that is heterogeneous across the lung and variable over time. This heterogeneity leads to patchy ventilation. Experimental studies have shown that patchy ventilation may precipitate an asthma attack, and inability to maintain bronchial tone control over time can predict the occurrence of bronchospastic attacks over a matter of a few days. To improve our knowledge on the pathogenesis of asthma, we believe that it is necessary to explore the disease within the framework of the topographical, volume and time domains of the lung that play an important role in setting the severity and progression of the disease. Application of the forced oscillation technique and multiple breath nitrogen washout may, alone or in combination, help address questions unsolvable until now.
Collapse
|
46
|
Mondoñedo JR, McNeil JS, Amin SD, Herrmann J, Simon BA, Kaczka DW. Volatile Anesthetics and the Treatment of Severe Bronchospasm: A Concept of Targeted Delivery. ACTA ACUST UNITED AC 2014; 15:43-50. [PMID: 26744597 DOI: 10.1016/j.ddmod.2014.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Status asthmaticus (SA) is a severe, refractory form of asthma that can result in rapid respiratory deterioration and death. Treatment of SA with inhaled anesthetics is a potentially life-saving therapy, but remarkably few data are available about its mechanism of action or optimal administration. In this paper, we will review the clinical use of inhaled anesthetics for treatment of SA, the potential mechanisms by which they dilate constricted airways, and the side effects associated with their administration. We will also introduce the concept of 'targeted' delivery of these agents to the conducting airways, a process which may maximize their therapeutic effects while minimizing associated systemic side effects. Such a delivery regimen has the potential to define a rapidly translatable treatment paradigm for this life-threatening disorder.
Collapse
Affiliation(s)
- Jarred R Mondoñedo
- Department of Biomedical Engineering, 44 Cummington Mall, Boston University, Boston MA
| | - John S McNeil
- Harvard Medical School, Boston, MA; Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA
| | - Samir D Amin
- Department of Biomedical Engineering, 44 Cummington Mall, Boston University, Boston MA
| | - Jacob Herrmann
- Department of Biomedical Engineering, 44 Cummington Mall, Boston University, Boston MA
| | - Brett A Simon
- Harvard Medical School, Boston, MA; Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA
| | - David W Kaczka
- Harvard Medical School, Boston, MA; Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA
| |
Collapse
|
47
|
Piorunek T, Kostrzewska M, Cofta S, Batura-Gabryel H, Andrzejczak P, Bogdański P, Wysocka E. Impulse oscillometry in the diagnosis of airway resistance in chronic obstructive pulmonary disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 838:47-52. [PMID: 25256340 DOI: 10.1007/5584_2014_49] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spirometry is a standard lung function test for diagnosis and staging of chronic obstructive pulmonary disease (COPD). Impulse oscillometry (IOS) can be complementary to spirometry, especially in patients at advanced age and with physical or mental disorders who cannot be diagnosed through spirometry. The aim of this study was to compare IOS and spirometry in the assessment of airway obstruction in COPD. The study was conducted in 112 stable COPD patients, including 29 females and 83 males of the mean age of 69±11 years. The oscillometric evaluation included total (R5), peripheral (R5-R20), and negative reactance (X5), which were compared with the predicted forced expiratory volume in 1 s (FEV1%pred). The findings show a significantly negative correlation between FEV1%pred and the R5, R5-R20, and X5. COPD patients had increased R5, R5-R20, and X5. The severity of bronchial obstruction found by impulse oscillometry correlated well the spirometric assessment. IOS is a simple to perform test that may be helpful for functional examination of COPD patients.
Collapse
Affiliation(s)
- T Piorunek
- Department of Pulmonology, Allergology, and Respiratory Oncology, University of Medical Sciences, 84 Szamarzewskiego St., 60-185, Poznan, Poland,
| | | | | | | | | | | | | |
Collapse
|
48
|
Bates JHT. Of course respiratory mechanics are related to airway inflammation in asthma! The more difficult question is "Why?". Clin Exp Allergy 2013; 43:488-90. [PMID: 23600538 DOI: 10.1111/cea.12106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 02/18/2013] [Indexed: 12/21/2022]
|
49
|
Kelly VJ, Sands SA, Harris RS, Venegas JG, Brown NJ, Stuart-Andrews CR, King GG, Thompson BR. Respiratory system reactance is an independent determinant of asthma control. J Appl Physiol (1985) 2013; 115:1360-9. [PMID: 23990243 DOI: 10.1152/japplphysiol.00093.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms underlying not well-controlled (NWC) asthma remain poorly understood, but accumulating evidence points to peripheral airway dysfunction as a key contributor. The present study tests whether our recently described respiratory system reactance (Xrs) assessment of peripheral airway dysfunction reveals insight into poor asthma control. The aim of this study was to investigate the contribution of Xrs to asthma control. In 22 subjects with asthma, we measured Xrs (forced oscillation technique), spirometry, lung volumes, and ventilation heterogeneity (inert-gas washout), before and after bronchodilator administration. The relationship between Xrs and lung volume during a deflation maneuver yielded two parameters: the volume at which Xrs abruptly decreased (closing volume) and Xrs at this volume (Xrscrit). Lowered (more negative) Xrscrit reflects reduced apparent lung compliance at high lung volumes due, for example, to heterogeneous airway narrowing and unresolved airway closure or near closure above the critical lung volume. Asthma control was assessed via the 6-point Asthma Control Questionnaire (ACQ6). NWC asthma was defined as ACQ6 > 1.0. In 10 NWC and 12 well-controlled subjects, ACQ6 was strongly associated with postbronchodilator (post-BD) Xrscrit (R(2) = 0.43, P < 0.001), independent of all measured variables, and was a strong predictor of NWC asthma (receiver operator characteristic area = 0.94, P < 0.001). By contrast, Xrs measures at lower lung volumes were not associated with ACQ6. Xrscrit itself was significantly associated with measures of gas trapping and ventilation heterogeneity, thus confirming the link between Xrs and airway closure and heterogeneity. Residual airway dysfunction at high lung volumes assessed via Xrscrit is an independent contributor to asthma control.
Collapse
Affiliation(s)
- Vanessa J Kelly
- Department of Medicine, Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kaczka DW, Mitzner W, Brown RH. Effects of lung inflation on airway heterogeneity during histaminergic bronchoconstriction. J Appl Physiol (1985) 2013; 115:626-33. [PMID: 23813528 DOI: 10.1152/japplphysiol.00476.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung inflation has been shown to dilate airways by altering the mechanical equilibrium between opposing airway and parenchymal forces. However, it is not known how heterogeneously such dilation occurs throughout the airway tree. In six anesthetized dogs, we measured the diameters of five to six central airway segments using high-resolution computed tomography, along with respiratory input impedance (Zrs) during generalized aerosol histamine challenge, and local histamine challenge in which the agonist was instilled directly onto the epithelia of the imaged central airways. Airway diameters and Zrs were measured at 12 and 25 cmH2O. The Zrs spectra were fitted with a model that incorporated continuous distributions of airway resistances. Airway heterogeneity was quantified using the coefficient of variation for predefined airway distribution functions. Significant reductions in average central airway diameter were observed at 12 cmH2O for both aerosolized and local challenges, along with significant increases upon inflation to 25 cmH2O. No significant differences were observed for the coefficient of variation of airway diameters under any condition. Significant increases in effective airway resistance as measured by Zrs were observed only for the aerosolized challenge at 12 cmH2O, which was completely reversed upon inflation. We conclude that the lung periphery may be the most dominant contributor to increases in airway resistance and tissue elastance during bronchoconstriction induced by aerosolized histamine. However, isolated constriction of only a few central airway segments may also affect tissue stiffness via interdependence with their surrounding parenchyma.
Collapse
|