1
|
Bompierre S, Byelyayeva Y, Mota E, Lefevre M, Pumo A, Kehler J, Castro LRV, Vincent P. Cross-pathway integration of cAMP signals through cGMP and calcium-regulated phosphodiesterases in mouse striatal cholinergic interneurons. Br J Pharmacol 2025; 182:1236-1253. [PMID: 39604216 DOI: 10.1111/bph.17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND PURPOSE Acetylcholine plays a key role in striatal function. Firing properties of striatal cholinergic interneurons depend on intracellular cAMP through the regulation of Ih currents. Yet, the dynamics of cyclic nucleotide signalling in these neurons have remained elusive. EXPERIMENTAL APPROACH We used highly selective FRET biosensors and pharmacological compounds to analyse the functional contribution of phosphodiesterases in striatal cholinergic interneurons in mouse brain slices. KEY RESULTS PDE1A, PDE3A and PDE4 appear as the main controllers of cAMP levels in striatal cholinergic interneurons. The calcium signal elicited through NMDA or metabotropic glutamate receptors activates PDE1A, which degrades both cAMP and cGMP. Interestingly, the nitric oxide/cGMP pathway amplifies cAMP signalling via PDE3A inhibition-a mechanism hitherto unexplored in a neuronal context. CONCLUSIONS AND IMPLICATIONS The expression pattern of specific PDE enzymes in striatal cholinergic interneurons, by integrating diverse intracellular pathways, can adjust cAMP responses bidirectionally. These properties eventually allow striatal cholinergic interneurons to dynamically regulate their overall activity and modulate acetylcholine release. Remarkably, this effect is the opposite of the cGMP-induced inhibition of cAMP signals involving PDE2A in striatal medium-sized spiny neurons, which provides important insights for the understanding of signal integration in the striatum.
Collapse
Affiliation(s)
- Ségolène Bompierre
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | | | - Elia Mota
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Marion Lefevre
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Anna Pumo
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | | | - Liliana R V Castro
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Pierre Vincent
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
2
|
Nelissen E, Schepers M, Ponsaerts L, Foulquier S, Bronckaers A, Vanmierlo T, Sandner P, Prickaerts J. Soluble guanylyl cyclase: A novel target for the treatment of vascular cognitive impairment? Pharmacol Res 2023; 197:106970. [PMID: 37884069 DOI: 10.1016/j.phrs.2023.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Vascular cognitive impairment (VCI) describes neurodegenerative disorders characterized by a vascular component. Pathologically, it involves decreased cerebral blood flow (CBF), white matter lesions, endothelial dysfunction, and blood-brain barrier (BBB) impairments. Molecularly, oxidative stress and inflammation are two of the major underlying mechanisms. Nitric oxide (NO) physiologically stimulates soluble guanylate cyclase (sGC) to induce cGMP production. However, under pathological conditions, NO seems to be at the basis of oxidative stress and inflammation, leading to a decrease in sGC activity and expression. The native form of sGC needs a ferrous heme group bound in order to be sensitive to NO (Fe(II)sGC). Oxidation of sGC leads to the conversion of ferrous to ferric heme (Fe(III)sGC) and even heme-loss (apo-sGC). Both Fe(III)sGC and apo-sGC are insensitive to NO, and the enzyme is therefore inactive. sGC activity can be enhanced either by targeting the NO-sensitive native sGC (Fe(II)sGC), or the inactive, oxidized sGC (Fe(III)sGC) and the heme-free apo-sGC. For this purpose, sGC stimulators acting on Fe(II)sGC and sGC activators acting on Fe(III)sGC/apo-sGC have been developed. These sGC agonists have shown their efficacy in cardiovascular diseases by restoring the physiological and protective functions of the NO-sGC-cGMP pathway, including the reduction of oxidative stress and inflammation, and improvement of vascular functioning. Yet, only very little research has been performed within the cerebrovascular system and VCI pathology when focusing on sGC modulation and its potential protective mechanisms on vascular and neural function. Therefore, within this review, the potential of sGC as a target for treating VCI is highlighted.
Collapse
Affiliation(s)
- Ellis Nelissen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium
| | - Laura Ponsaerts
- Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; Department of Cardio & Organ Systems (COS), Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, School for Mental Health and Neuroscience (MHeNS), School for Cardiovascular Diseases (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Annelies Bronckaers
- Department of Cardio & Organ Systems (COS), Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium
| | - Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113 Wuppertal, Germany; Hannover Medical School, 30625 Hannover, Germany
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
3
|
Palacio LC, Pachajoa DC, Echeverri-Londoño CA, Saiz J, Tobón C. Air Pollution and Cardiac Diseases: A Review of Experimental Studies. Dose Response 2023; 21:15593258231212793. [PMID: 37933269 PMCID: PMC10625734 DOI: 10.1177/15593258231212793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Air pollution is associated with around 6.5 million premature deaths annually, which are directly related to cardiovascular diseases, and the most dangerous atmospheric pollutants to health are as follows: NO2, SO2, CO, and PM. The mechanisms underlying the observed effects have not yet been clearly defined. This work aims to conduct a narrative review of experimental studies to provide a more comprehensive and multiperspective assessment of how the effect of atmospheric pollutants on cardiac activity can result in the development of cardiac diseases. For this purpose, a review was carried out in databases of experimental studies, excluding clinical trials, and epidemiological and simulation studies. After analyzing the available information, the existence of pathophysiological effects of the different pollutants on cardiac activity from exposure during both short-term and long-term is evident. This narrative review based on experimental studies is a basis for the development of recommendations for public health.
Collapse
Affiliation(s)
| | | | | | - Javier Saiz
- Universitat Politècnica de València, Valencia, Spain
| | | |
Collapse
|
4
|
Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat Rev Cardiol 2023; 20:90-108. [PMID: 36050457 DOI: 10.1038/s41569-022-00756-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) modulate the neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple PDE isozymes with different enzymatic properties and subcellular localization regulate local pools of cyclic nucleotides and specific functions. This organization is heavily perturbed during cardiac hypertrophy and heart failure (HF), which can contribute to disease progression. Clinically, PDE inhibition has been considered a promising approach to compensate for the catecholamine desensitization that accompanies HF. Although PDE3 inhibitors, such as milrinone or enoximone, have been used clinically to improve systolic function and alleviate the symptoms of acute HF, their chronic use has proved to be detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as new potential targets to treat HF, each having a unique role in local cyclic nucleotide signalling pathways. In this Review, we describe cAMP and cGMP signalling in cardiomyocytes and present the various PDE families expressed in the heart as well as their modifications in pathological cardiac hypertrophy and HF. We also appraise the evidence from preclinical models as well as clinical data pointing to the use of inhibitors or activators of specific PDEs that could have therapeutic potential in HF.
Collapse
|
5
|
Harvey RD, Clancy CE. Mechanisms of cAMP compartmentation in cardiac myocytes: experimental and computational approaches to understanding. J Physiol 2021; 599:4527-4544. [PMID: 34510451 DOI: 10.1113/jp280801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
The small diffusible second messenger 3',5'-cyclic adenosine monophosphate (cAMP) is found in virtually every cell in our bodies, where it mediates responses to a variety of different G protein coupled receptors (GPCRs). In the heart, cAMP plays a critical role in regulating many different aspects of cardiac myocyte function, including gene transcription, cell metabolism, and excitation-contraction coupling. Yet, not all GPCRs that stimulate cAMP production elicit the same responses. Subcellular compartmentation of cAMP is essential to explain how different receptors can utilize the same diffusible second messenger to elicit unique functional responses. However, the mechanisms contributing to this behaviour and its significance in producing physiological and pathological responses are incompletely understood. Mathematical modelling has played an essential role in gaining insight into these questions. This review discusses what we currently know about cAMP compartmentation in cardiac myocytes and questions that are yet to be answered.
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, NV, 89557, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
6
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, largely associated to morbidity and mortality. Over the past decades, research in appearance and progression of this arrhythmia have turned into significant advances in its management. However, the incidence of AF continues to increase with the aging of the population and many important fundamental and translational underlaying mechanisms remain elusive. Here, we review recent advances in molecular and cellular basis for AF initiation, maintenance and progression. We first provide an overview of the basic molecular and electrophysiological mechanisms that lead and characterize AF. Next, we discuss the upstream regulatory factors conducting the underlying mechanisms which drive electrical and structural AF-associated remodeling, including genetic factors (risk variants associated to AF as transcriptional regulators and genetic changes associated to AF), neurohormonal regulation (i.e., cAMP) and oxidative stress imbalance (cGMP and mitochondrial dysfunction). Finally, we discuss the potential therapeutic implications of those findings, the knowledge gaps and consider future approaches to improve clinical management.
Collapse
|
7
|
Huang MH, Loh PH, Tan HC, Poh KK. Reducing reperfusion injury during percutaneous coronary intervention. Singapore Med J 2020; 60:608-609. [PMID: 31889201 DOI: 10.11622/smedj.2019157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Poay Huan Loh
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Huay Cheem Tan
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kian Keong Poh
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
8
|
Menges L, Krawutschke C, Füchtbauer EM, Füchtbauer A, Sandner P, Koesling D, Russwurm M. Mind the gap (junction): cGMP induced by nitric oxide in cardiac myocytes originates from cardiac fibroblasts. Br J Pharmacol 2019; 176:4696-4707. [PMID: 31423565 PMCID: PMC6965686 DOI: 10.1111/bph.14835] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 01/02/2023] Open
Abstract
Background and Purpose The intracellular signalling molecule cGMP, formed by NO‐sensitive GC (NO–GC), has an established function in the vascular system. Despite numerous reports about NO‐induced cGMP effects in the heart, the underlying cGMP signals are poorly characterized. Experimental Approach Therefore, we analysed cGMP signals in cardiac myocytes and fibroblasts isolated from knock‐in mice expressing a FRET‐based cGMP indicator. Key Results Whereas in cardiac myocytes, none of the known NO–GC‐activating substances (NO, GC activators, and GC stimulators) increased cGMP even in the presence of PDE inhibitors, they induced substantial cGMP increases in cardiac fibroblasts. As cardiac myocytes and fibroblasts are electrically connected via gap junctions, we asked whether cGMP can take the same route. Indeed, in cardiomyocytes co‐cultured on cardiac fibroblasts, NO‐induced cGMP signals were detectable, and two groups of unrelated gap junction inhibitors abolished these signals. Conclusion and Implication We conclude that NO‐induced cGMP formed in cardiac fibroblasts enters cardiac myocytes via gap junctions thereby turning cGMP into an intercellular signalling molecule. The findings shed new light on NO/cGMP signalling in the heart and will potentially broaden therapeutic opportunities for cardiac disease.
Collapse
Affiliation(s)
- Lukas Menges
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, Bochum, Germany
| | | | - Ernst-Martin Füchtbauer
- Department of Molecular Biology and Genetics, Molecular Cell and Developmental Biology Aarhus University, Aarhus C, Denmark
| | - Annette Füchtbauer
- Department of Molecular Biology and Genetics, Molecular Cell and Developmental Biology Aarhus University, Aarhus C, Denmark
| | - Peter Sandner
- Drug Discovery, Cardiovascular Research, Bayer AG, Pharmaceuticals, Wuppertal, Germany
| | - Doris Koesling
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, Bochum, Germany
| | - Michael Russwurm
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
9
|
Bae H, Kim T, Lim I. Effects of nitric oxide on apoptosis and voltage-gated calcium channels in human cardiac myofibroblasts. Clin Exp Pharmacol Physiol 2019; 47:16-26. [PMID: 31519057 DOI: 10.1111/1440-1681.13178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 02/05/2023]
Abstract
We characterised the voltage-gated Ca2+ channels (VGCCs) in human cardiac fibroblasts (HCFs) and myofibroblasts (HCMFs) and investigated the effects of nitric oxide (NO) on apoptosis and on these channels. Western blotting and immunofluorescence analyses show that α-smooth muscle actin (a myofibroblast marker) was markedly expressed in passage (P) 12-15 but not in P4 HCF cells, whereas calponin (a fibroblast marker) was expressed only in P4 cells. CaV 1.2 (L-type) and CaV 3.3 (T-type) of VGCCs were highly expressed in P12-15 cells, but only weak CaV 2.3 (R-type) expression was identified in P4 cells using reverse transcription-polymerase chain reaction analysis. S-Nitroso-N-acetylpenicillamine (SNAP, an NO donor) decreased cell viability of HCMFs in a dose-dependent manner and induced apoptotic changes, and nifedipine (an L-type Ca2+ channel blocker) prevented apoptosis as shown with immunofluorescence staining and flow cytometry. Whole-cell mode patch-clamp recordings demonstrate the presence of L-type Ca2+ (IC a,L ) and T-type Ca2+ (IC a,T ) currents in HCMFs. SNAP inhibited IC a,L of HCMFs, but pre-treatment with ODQ (a guanylate cyclase inhibitor) or KT5823 (a PKG inhibitor) prevented it. Pre-treating cells with KT5720 (a PKA inhibitor) or SQ22536 (an adenylate cyclase inhibitor) blocked SNAP-induced inhibition of IC a,L . 8-Bromo-cyclic GMP or 8-bromo-cyclic AMP also inhibited IC a,L . However, pre-treatment with N-ethylmaleimide (a thiol-alkylating reagent) did not block the SNAP effect, nor did DL-dithiothreitol (a reducing agent) reverse it. These data suggest that high concentrations of NO injure HCMFs and inhibit IC a,L through the PKG and PKA signalling pathways but not through the S-nitrosylation pathway.
Collapse
Affiliation(s)
- Hyemi Bae
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Taeho Kim
- Department of Internal Medicine, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Inja Lim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Treinys R, Kanaporis G, Fischmeister R, Jurevičius J. Metabolic Inhibition Induces Transient Increase of L-type Ca 2+ Current in Human and Rat Cardiac Myocytes. Int J Mol Sci 2019; 20:ijms20061501. [PMID: 30917498 PMCID: PMC6471217 DOI: 10.3390/ijms20061501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/23/2019] [Indexed: 01/17/2023] Open
Abstract
Metabolic inhibition is a common condition observed during ischemic heart disease and heart failure. It is usually accompanied by a reduction in L-type Ca2+ channel (LTCC) activity. In this study, however, we show that metabolic inhibition results in a biphasic effect on LTCC current (ICaL) in human and rat cardiac myocytes: an initial increase of ICaL is observed in the early phase of metabolic inhibition which is followed by the more classical and strong inhibition. We studied the mechanism of the initial increase of ICaL in cardiac myocytes during β-adrenergic stimulation by isoprenaline, a non-selective agonist of β-adrenergic receptors. The whole-cell patch⁻clamp technique was used to record the ICaL in single cardiac myocytes. The initial increase of ICaL was induced by a wide range of metabolic inhibitors (FCCP, 2,4-DNP, rotenone, antimycin A). In rat cardiomyocytes, the initial increase of ICaL was eliminated when the cells were pre-treated with thapsigargin leading to the depletion of Ca2+ from the sarcoplasmic reticulum (SR). Similar results were obtained when Ca2+ release from the SR was blocked with ryanodine. These data suggest that the increase of ICaL in the early phase of metabolic inhibition is due to a reduced calcium dependent inactivation (CDI) of LTCCs. This was further confirmed in human atrial myocytes where FCCP failed to induce the initial stimulation of ICaL when Ca2+ was replaced by Ba2+, eliminating CDI of LTCCs. We conclude that the initial increase in ICaL observed during the metabolic inhibition in human and rat cardiomyocytes is a consequence of an acute reduction of Ca2+ release from SR resulting in reduced CDI of LTCCs.
Collapse
Affiliation(s)
- Rimantas Treinys
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas LT-50162, Lithuania.
| | - Giedrius Kanaporis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas LT-50162, Lithuania.
| | - Rodolphe Fischmeister
- INSERM UMR-S 1180, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry F-92296, France.
| | - Jonas Jurevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas LT-50162, Lithuania.
| |
Collapse
|
11
|
Abstract
Electromechanical coupling studies have described the intervention of nitric oxide and S-nitrosylation processes in Ca2+ release induced by stretch, with heterogeneous findings. On the other hand, ion channel function activated by stretch is influenced by nitric oxide, and concentration-dependent biphasic effects upon several cellular functions have been described. The present study uses isolated and perfused rabbit hearts to investigate the changes in mechanoelectric feedback produced by two different concentrations of the nitric oxide carrier S-nitrosoglutathione. Epicardial multielectrodes were used to record myocardial activation at baseline and during and after left ventricular free wall stretch using an intraventricular device. Three experimental series were studied: (a) control (n = 10); (b) S-nitrosoglutathione 10 µM (n = 11); and (c) S-nitrosoglutathione 50 µM (n = 11). The changes in ventricular fibrillation (VF) pattern induced by stretch were analyzed and compared. S-nitrosoglutathione 10 µM did not modify VF at baseline, but attenuated acceleration of the arrhythmia (15.6 ± 1.7 vs. 21.3 ± 3.8 Hz; p < 0.0001) and reduction of percentile 5 of the activation intervals (42 ± 3 vs. 38 ± 4 ms; p < 0.05) induced by stretch. In contrast, at baseline using the 50 µM concentration, percentile 5 was shortened (38 ± 6 vs. 52 ± 10 ms; p < 0.005) and the complexity index increased (1.77 ± 0.18 vs. 1.27 ± 0.13; p < 0.0001). The greatest complexity indices (1.84 ± 0.17; p < 0.05) were obtained during stretch in this series. S-nitrosoglutathione 10 µM attenuates the effects of mechanoelectric feedback, while at a concentration of 50 µM the drug alters the baseline VF pattern and accentuates the increase in complexity of the arrhythmia induced by myocardial stretch.
Collapse
|
12
|
Mitrokhin V, Mladenov M, Gorbacheva L, Babkina I, Lovchikova I, Kazanski V, Kamkin A. Influence of NO and [Ca2+]o on [Ca2+]i homeostasis in rat ventricular cardiomyocytes. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1488621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Vadim Mitrokhin
- Faculty of Medical Biology, Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Mitko Mladenov
- Faculty of Medical Biology, Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
- Faculty of Natural Sciences and Mathematics, Department of Physiology, “Ss. Cyril and Methodius” University, Skopje, Macedonia
| | - Lyubov Gorbacheva
- Faculty of Medical Biology, Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Irina Babkina
- Faculty of Medical Biology, Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Irina Lovchikova
- Faculty of Medical Biology, Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Viktor Kazanski
- Faculty of Medical Biology, Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Andre Kamkin
- Faculty of Medical Biology, Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
13
|
Huang C, Hu W, Wang J, Tong L, Lu X, Wu F, Ling Y, Jiang B, Zhang W, Chen Z, Xiong Q, Qin Y, Yang R. Methylene blue increases the amount of HSF1 through promotion of PKA-mediated increase in HSF1-p300 interaction. Int J Biochem Cell Biol 2017; 84:75-88. [DOI: 10.1016/j.biocel.2017.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
|
14
|
Bond RC, Bryant SM, Watson JJ, Hancox JC, Orchard CH, James AF. Reduced density and altered regulation of rat atrial L-type Ca 2+ current in heart failure. Am J Physiol Heart Circ Physiol 2017; 312:H384-H391. [PMID: 27923791 PMCID: PMC5402008 DOI: 10.1152/ajpheart.00528.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 11/22/2022]
Abstract
Constitutive regulation by PKA has recently been shown to contribute to L-type Ca2+ current (ICaL) at the ventricular t-tubule in heart failure. Conversely, reduction in constitutive regulation by PKA has been proposed to underlie the downregulation of atrial ICaL in heart failure. The hypothesis that downregulation of atrial ICaL in heart failure involves reduced channel phosphorylation was examined. Anesthetized adult male Wistar rats underwent surgical coronary artery ligation (CAL, N=10) or equivalent sham-operation (Sham, N=12). Left atrial myocytes were isolated ~18 wk postsurgery and whole cell currents recorded (holding potential=-80 mV). ICaL activated by depolarizing pulses to voltages from -40 to +50 mV were normalized to cell capacitance and current density-voltage relations plotted. CAL cell capacitances were ~1.67-fold greater than Sham (P ≤ 0.0001). Maximal ICaL conductance (Gmax ) was downregulated more than 2-fold in CAL vs. Sham myocytes (P < 0.0001). Norepinephrine (1 μmol/l) increased Gmax >50% more effectively in CAL than in Sham so that differences in ICaL density were abolished. Differences between CAL and Sham Gmax were not abolished by calyculin A (100 nmol/l), suggesting that increased protein dephosphorylation did not account for ICaL downregulation. Treatment with either H-89 (10 μmol/l) or AIP (5 μmol/l) had no effect on basal currents in Sham or CAL myocytes, indicating that, in contrast to ventricular myocytes, neither PKA nor CaMKII regulated basal ICaL Expression of the L-type α1C-subunit, protein phosphatases 1 and 2A, and inhibitor-1 proteins was unchanged. In conclusion, reduction in PKA-dependent regulation did not contribute to downregulation of atrial ICaL in heart failure.NEW & NOTEWORTHY Whole cell recording of L-type Ca2+ currents in atrial myocytes from rat hearts subjected to coronary artery ligation compared with those from sham-operated controls reveals marked reduction in current density in heart failure without change in channel subunit expression and associated with altered phosphorylation independent of protein kinase A.
Collapse
Affiliation(s)
- Richard C Bond
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Simon M Bryant
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Judy J Watson
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Jules C Hancox
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Clive H Orchard
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Andrew F James
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
15
|
Gasparova I, Kubatka P, Opatrilova R, Caprnda M, Filipova S, Rodrigo L, Malan L, Mozos I, Rabajdova M, Nosal V, Kobyliak N, Valentova V, Petrovic D, Adamek M, Kruzliak P. Perspectives and challenges of antioxidant therapy for atrial fibrillation. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:1-14. [PMID: 27900409 DOI: 10.1007/s00210-016-1320-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/18/2016] [Indexed: 12/26/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia associated with significant morbidity and mortality. The mechanisms underlying the pathogenesis of AF are poorly understood, although electrophysiological remodeling has been described as an important initiating step. There is growing evidence that oxidative stress is involved in the pathogenesis of AF. Many known triggers of oxidative stress, such as age, diabetes, smoking, and inflammation, are linked with an increased risk of arrhythmia. Numerous preclinical studies and clinical trials reported the importance of antioxidant therapy in the prevention of AF, using vitamins C and E, polyunsaturated fatty acids, statins, or nitric oxide donors. The aim of our work is to give a current overview and analysis of opportunities, challenges, and benefits of antioxidant therapy in AF.
Collapse
Affiliation(s)
- Iveta Gasparova
- Institute of Biology, Genetics and Medical Genetics, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovak Republic, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic, Slovakia
| | - Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Martin Caprnda
- 2nd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Slavomira Filipova
- Department of Cardiology, National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University of Asturias (HUCA), Oviedo, Spain
| | - Leone Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Ioana Mozos
- Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Vladimir Nosal
- Clinic of Neurology, Jessenius Faculty of Medicine, Comenius University and University Hospital in Martin, Martin, Slovak Republic
| | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Vanda Valentova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic, Slovakia
| | - Daniel Petrovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljublana, Ljublana, Slovenia
| | - Mariusz Adamek
- Department of Thoracic Surgery, Medical University of Silesia, Zabrze, Poland
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic. .,2nd Department of Surgery, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
16
|
Treinys R, Bogdelis A, Rimkutė L, Jurevičius J, Skeberdis VA. Differences in the control of basal L-type Ca(2+) current by the cyclic AMP signaling cascade in frog, rat, and human cardiac myocytes. J Physiol Sci 2016; 66:327-36. [PMID: 26676115 PMCID: PMC10716949 DOI: 10.1007/s12576-015-0430-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022]
Abstract
β-adrenergic receptors (β-ARs) mediate the positive inotropic effects of catecholamines by cAMP-dependent phosphorylation of the L-type Ca(2+) channels (LTCCs), which provide Ca(2+) for the initiation and regulation of cell contraction. The overall effect of cAMP-modulating agents on cardiac calcium current (I Ca,L) and contraction depends on the basal activity of LTCCs which, in turn, depends on the basal activities of key enzymes involved in the cAMP signaling cascade. Our current work is a comparative study demonstrating the differences in the basal activities of β-ARs, adenylyl cyclase, phosphodiesterases, phosphatases, and LTCCs in the frog and rat ventricular and human atrial myocytes. The main conclusion is that the basal I Ca,L, and consequently the contractile function of the heart, is secured from unnecessary elevation of its activity and energy consumption at the several "checking-points" of cAMP-dependent signaling cascade and the loading of these "checking-points" may vary in different species and tissues.
Collapse
Affiliation(s)
- Rimantas Treinys
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 17, 50009, Kaunas, Lithuania
| | - Andrius Bogdelis
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 17, 50009, Kaunas, Lithuania
| | - Lina Rimkutė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 17, 50009, Kaunas, Lithuania
| | - Jonas Jurevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 17, 50009, Kaunas, Lithuania
| | - Vytenis Arvydas Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 17, 50009, Kaunas, Lithuania.
| |
Collapse
|
17
|
Alexander JS, Becker F. Dual signals underlying diabetic lymphatic barrier dysregulation. Cardiovasc Res 2015; 107:3-4. [PMID: 25994173 DOI: 10.1093/cvr/cvv158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Felix Becker
- Department for General and Visceral Surgery, University of Münster, Münster, Germany
| |
Collapse
|
18
|
Walther S, Pluteanu F, Renz S, Nikonova Y, Maxwell JT, Yang LZ, Schmidt K, Edwards JN, Wakula P, Groschner K, Maier LS, Spiess J, Blatter LA, Pieske B, Kockskämper J. Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177. Am J Physiol Heart Circ Physiol 2014; 307:H689-700. [PMID: 25015964 DOI: 10.1152/ajpheart.00694.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca(2+)-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling.
Collapse
Affiliation(s)
- Stefanie Walther
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | - Florentina Pluteanu
- Institute of Pharmacology and Clinical Pharmacy, Biochemical and Pharmacological Centre Marburg, Philipps-University of Marburg, Marburg, Germany
| | - Susanne Renz
- Department of Cardiology and Pneumology, University Medicine Göttingen, Göttingen, Germany
| | - Yulia Nikonova
- Institute of Pharmacology and Clinical Pharmacy, Biochemical and Pharmacological Centre Marburg, Philipps-University of Marburg, Marburg, Germany
| | - Joshua T Maxwell
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | - Li-Zhen Yang
- Molecular Neuroendocrinology Group of the Max Planck Institute for Experimental Medicine, Göttingen, Germany, and Specialized Neuroscience Research Program 2, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Division of Endocrinology, Department of Internal Medicine, Shanghai Ninth People's Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Kurt Schmidt
- Institute of Pharmaceutical Sciences, Pharmacology and Toxicology, Karl-Franzens-University of Graz, Graz, Austria
| | - Joshua N Edwards
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | - Paulina Wakula
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Klaus Groschner
- Ludwig-Boltzmann-Institute for Translational Heart Failure Research, Graz, Austria; Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Lars S Maier
- Department of Cardiology and Pneumology, University Medicine Göttingen, Göttingen, Germany; Clinic and Policlinic for Internal Medicine II, University Clinics Regensburg, Regensburg, Germany; and
| | - Joachim Spiess
- Molecular Neuroendocrinology Group of the Max Planck Institute for Experimental Medicine, Göttingen, Germany, and Specialized Neuroscience Research Program 2, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Sanford Burnham Medical Research Institute, La Jolla, California
| | - Lothar A Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | - Burkert Pieske
- Division of Cardiology, Medical University of Graz, Graz, Austria; Ludwig-Boltzmann-Institute for Translational Heart Failure Research, Graz, Austria
| | - Jens Kockskämper
- Institute of Pharmacology and Clinical Pharmacy, Biochemical and Pharmacological Centre Marburg, Philipps-University of Marburg, Marburg, Germany;
| |
Collapse
|
19
|
Huang Y, Zheng L, Yang H, Chen J, Wang Y, Li H, Xie S. Calcium mobilization in HeLa cells induced by nitric oxide. SCANNING 2014; 36:258-262. [PMID: 23740568 DOI: 10.1002/sca.21098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/09/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Nitric oxide (NO) has been proposed to be involved in tumor growth and metastasis. However, the mechanism by which nitric oxide modulates cancer cell growth and metastasis on cellular and molecular level is still not fully understood. This work utilized confocal microscopy and fluorescence microplate reader to investigate the effects of exogenous NO on the mobilization of calcium, which is one of the regulators of cell migration, in HeLa cells. The results show that NO elevates calcium in concentration-dependent manner in HeLa cells. And the elevation of calcium induced by NO is due to calcium influx and calcium release from intracellular calcium stores. Moreover, calcium release from intracellular stores is dominant. Furthermore, calcium release from mitochondria is one of the modulation pathways of NO. These findings would contribute to recognizing the significance of NO in cancer cell proliferation and metastasis.
Collapse
Affiliation(s)
- Yimei Huang
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Liqin Zheng
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Hongqin Yang
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Jiangxu Chen
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Yuhua Wang
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Hui Li
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Shusen Xie
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| |
Collapse
|
20
|
Treinys R, Zablockaitė D, Gendvilienė V, Jurevičius J, Skeberdis VA. β₃-Adrenergic regulation of L-type Ca²⁺ current and force of contraction in human ventricle. J Membr Biol 2014; 247:309-18. [PMID: 24531741 DOI: 10.1007/s00232-014-9635-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 01/29/2014] [Indexed: 12/18/2022]
Abstract
β3-Adrenergic receptor (β3-AR) is expressed in human atrial and ventricular tissues. Recently, we have demonstrated that it was involved in the activation of L-type Ca(2+) current (I(Ca,L)) in human atrial myocytes and the force of contraction of human atrial trabeculae. In the present study, we examined the effect of β3-AR agonist CGP12177 which also is a β1-AR/β2-AR antagonist on I(Ca,L) in human ventricular myocytes (HVMs) and the force of contraction of human ventricular trabeculae. CGP12177 stimulated I(Ca,L) in HVMs with high potency but much lower efficacy than isoprenaline. The β3-AR antagonist L-748,337 inhibited the effect of CGP12177. CGP12177 and L748,337 competed selectively on β3-ARs because L748,337 had no effect on isoprenaline-induced stimulation of I(Ca,L), while CGP12177 completely blocked the effect of isoprenaline. The activation of β3-ARs by CGP12177 does not involve the activation of Gi proteins because CGP12177 had no effect on forskolin-induced stimulation of I(Ca,L). CGP12177 had no effect on the force of contraction of human ventricular trabeculae. L-NMMA, an inhibitor of NO synthase, and IBMX, a nonselective inhibitor of phosphodiesterases, did not potentiate the effect of CGP12177 either on contraction of human ventricular trabeculae or on I(Ca,L) in HVMs. We conclude that in human ventricles β3-AR activation has no inotropic effect, while it slightly increases I(Ca,L). In contrast to human atrium, the activation of β3-ARs in human ventricle is not accompanied by increased activity of phosphodiesterases.
Collapse
Affiliation(s)
- Rimantas Treinys
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Avenue, 50009, Kaunas, Lithuania
| | | | | | | | | |
Collapse
|
21
|
Rozmaritsa N, Christ T, Van Wagoner DR, Haase H, Stasch JP, Matschke K, Ravens U. Attenuated response of L-type calcium current to nitric oxide in atrial fibrillation. Cardiovasc Res 2013; 101:533-42. [PMID: 24336332 DOI: 10.1093/cvr/cvt334] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM Nitric oxide (NO) synthesized by cardiomyocytes plays an important role in the regulation of cardiac function. Here, we studied the impact of NO signalling on calcium influx in human right atrial myocytes and its relation to atrial fibrillation (AF). METHODS AND RESULTS Right atrial appendages (RAAs) were obtained from patients in sinus rhythm (SR) and AF. The biotin-switch technique was used to evaluate endogenous S-nitrosylation of the α1C subunit of L-type calcium channels. Comparing SR to AF, S-nitrosylation of Ca(2+) channels was similar. Direct effects of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) on L-type calcium current (ICa,L) were studied in cardiomyocytes with standard voltage-clamp techniques. In SR, ICa,L increased with SNAP (100 µM) by 48%, n/N = 117/56, P < 0.001. The SNAP effect on ICa,L involved activation of soluble guanylate cyclase and protein kinase A. Specific inhibition of phosphodiesterase (PDE)3 with cilostamide (1 µM) enhanced ICa,L to a similar extent as SNAP. However, when cAMP was elevated by PDE3 inhibition or β-adrenoceptor stimulation, SNAP reduced ICa,L, pointing to cGMP-cAMP cross-regulation. In AF, the stimulatory effect of SNAP on ICa,L was attenuated, while its inhibitory effect on isoprenaline- or cilostamide-stimulated current was preserved. cGMP elevation with SNAP was comparable between the SR and AF group. Moreover, the expression of PDE3 and soluble guanylate cyclase was not reduced in AF. CONCLUSION NO exerts dual effects on ICa,L in SR with an increase of basal and inhibition of cAMP-stimulated current, and in AF NO inhibits only stimulated ICa,L. We conclude that in AF, cGMP regulation of PDE2 is preserved, but regulation of PDE3 is lost.
Collapse
Affiliation(s)
- Nadiia Rozmaritsa
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Demirel-Yilmaz E, Cenik B, Ozcan G, Derici MK. Various phosphodiesterase activities in different regions of the heart alter the cardiac effects of nitric oxide. J Cardiovasc Pharmacol 2013; 60:283-92. [PMID: 22653417 DOI: 10.1097/fjc.0b013e31825f3eeb] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The modulation of cardiac functions by nitric oxide (NO) was established. This study examined the influences of phosphodiesterase (PDE) inhibitors on the action of NO in the different regions of the rat heart. NO donor diethylamine nonoate (DEA/NO) (0.1-100 μM) decreased functions of the right atrium. DEA/NO-induced depression of the developed tension of the right atrium was inhibited by [erythro-9-(2-hydroxy-3-nonyl)adenine] (PDE2 inhibitor), augmented by milrinone (PDE3 inhibitor), and upturned by rolipram (PDE4 inhibitor). A DEA/NO-induced decrease in the resting tension was inhibited by vinpocetine (PDE1 inhibitor) and [erythro-9-(2-hydroxy-3-nonyl)adenine] but reversed by rolipram. The decreased sinus rate by DEA/NO was prevented by vinpocetine and rolipram. DEA/NO increased cyclic guanosine monophosphate and cyclic adenosine monophosphate (cAMP) concentrations in the right atrium, and rolipram enhanced increased cAMP level. DEA/NO had no effect on the contraction of the papillary muscle. However, unchanged contraction under DEA/NO stimulation was decreased by vinpocetine, milrinone, and rolipram. DEA/NO increased cyclic guanosine monophosphate concentration but has no effect on cAMP in the papillary muscle. However, in the presence of vinpocetine and milrinone, DEA/NO reduced cAMP level. The PDE5 inhibitor sildenafil has no effect on DEA/NO actions. This study indicates that a variety of PDE activities in different regions of the rat heart shapes the action of NO on the myocardium.
Collapse
Affiliation(s)
- Emine Demirel-Yilmaz
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University, Sihhiye, Ankara, Turkey.
| | | | | | | |
Collapse
|
23
|
Distinct patterns of constitutive phosphodiesterase activity in mouse sinoatrial node and atrial myocardium. PLoS One 2012; 7:e47652. [PMID: 23077656 PMCID: PMC3471891 DOI: 10.1371/journal.pone.0047652] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/14/2012] [Indexed: 01/13/2023] Open
Abstract
Phosphodiesterases (PDEs) are critical regulators of cyclic nucleotides in the heart. In ventricular myocytes, the L-type Ca(2+) current (I(Ca,L)) is a major target of regulation by PDEs, particularly members of the PDE2, PDE3 and PDE4 families. Conversely, much less is known about the roles of PDE2, PDE3 and PDE4 in the regulation of action potential (AP) properties and I(Ca,L) in the sinoatrial node (SAN) and the atrial myocardium, especially in mice. Thus, the purpose of our study was to measure the effects of global PDE inhibition with Isobutyl-1-methylxanthine (IBMX) and selective inhibitors of PDE2, PDE3 and PDE4 on AP properties in isolated mouse SAN and right atrial myocytes. We also measured the effects of these inhibitors on I(Ca,L) in SAN and atrial myocytes in comparison to ventricular myocytes. Our data demonstrate that IBMX markedly increases spontaneous AP frequency in SAN myocytes and AP duration in atrial myocytes. Spontaneous AP firing in SAN myocytes was also increased by the PDE2 inhibitor erythro-9-[2-hydroxy-3-nonyl] adenine (EHNA), the PDE3 inhibitor milrinone (Mil) and the PDE4 inhibitor rolipram (Rol). In contrast, atrial AP duration was increased by EHNA and Rol, but not by Mil. IBMX also potently, and similarly, increased I(Ca,L) in SAN, atrial and ventricular myocytes; however, important differences emerged in terms of which inhibitors could modulate I(Ca,L) in each myocyte type. Consistent with our AP measurements, EHNA, Mil and Rol each increased I(Ca,L) in SAN myocytes. Also, EHNA and Rol, but not Mil, increased atrial I(Ca,L). In complete contrast, no selective PDE inhibitors increased I(Ca,L) in ventricular myocytes when given alone. Thus, our data show that the effects of selective PDE2, PDE3 and PDE4 inhibitors are distinct in the different regions of the myocardium indicating important differences in how each PDE family constitutively regulates ion channel function in the SAN, atrial and ventricular myocardium.
Collapse
|
24
|
Gödecke A, Schrader J, Reinartz M. Nitric oxide-mediated protein modification in cardiovascular physiology and pathology. Proteomics Clin Appl 2012; 2:811-22. [PMID: 21136881 DOI: 10.1002/prca.200780079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO) is a key regulator of cardiovascular functions including the control of vascular tone, anti-inflammatory properties of the endothelium, cardiac contractility, and thrombocyte activation and aggregation. Numerous experimental data support the view that NO not only acts via cyclic guanosine monophosphate (cGMP)-dependent mechanisms but also modulates protein function by nitrosation, nitrosylation, glutathiolation, and nitration, respectively. To understand how NO regulates all of these diverse biological processes on the molecular level a comprehensive assessment of NO-mediated cGMP-dependent and independent targets is required. Novel proteomic approaches allow the simultaneous identification of large quantities of proteins modified in an NO-dependent manner and thereby will considerably deepen our understanding of the role NO plays in cardiovascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Axel Gödecke
- Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
| | | | | |
Collapse
|
25
|
Bang CN, Greve AM, Abdulla J, Køber L, Gislason GH, Wachtell K. The preventive effect of statin therapy on new-onset and recurrent atrial fibrillation in patients not undergoing invasive cardiac interventions: a systematic review and meta-analysis. Int J Cardiol 2012; 167:624-30. [PMID: 22999824 DOI: 10.1016/j.ijcard.2012.08.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 08/31/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Previous meta-analyses suggest that pre-procedural use of statin therapy may reduce atrial fibrillation (AF) following invasive cardiac interventions (coronary artery by-pass grafting and percutaneous coronary intervention). However, the current evidence on the benefit of statins unrelated to invasive cardiac interventions has not been clarified systematically. METHODS Through a systematic literature search, trials examining the effect of statin therapy on AF were selected. Trials using statins before any percutaneous or surgical cardiac interventions were excluded. RESULTS The search identified 11 randomized and 16 observational eligible studies, totaling 106,640 patients receiving statin therapy and 129,305 serving as controls. Fourteen studies investigated the effect of statins on new-onset AF, 13 studies investigated the effect of statins on recurrent AF and one in both new-onset and recurrent AF. In the statin versus control group the mean age was 60.7 ± 8.3 versus 68.6 ± 6.2 years and females comprised 8.4% versus 10.3%. Statin therapy was associated with significant reduction of AF (Risk ratio (RR): 0.81 [95% confidence interval (CI): 0.80-0.83], p<0.001) combining all studies. Assessing exclusively randomized trials, statin therapy showed no significant risk reduction (RR: 0.97 [95%CI: 0.90-1.05], p=0.509), heterogeneity p>0.05. Assessing exclusively observational studies the risk reduction of new-onset AF was 12% (RR: 0.88 [95%CI: 0.85-0.91], p<0.001) and recurrent AF 15% (RR: 0.85 [95%CI: 0.80-0.90], p<0.001), heterogeneity p<0.001. CONCLUSION The hitherto published randomized clinical trials do not support a beneficial effect of statins on AF in patients not undergoing invasive cardiac interventions. This is in contrast to the results of observational and interventional studies.
Collapse
Affiliation(s)
- Casper N Bang
- Department of Cardiology, The Heart Center, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
26
|
Bonilla IM, Sridhar A, Györke S, Cardounel AJ, Carnes CA. Nitric oxide synthases and atrial fibrillation. Front Physiol 2012; 3:105. [PMID: 22536189 PMCID: PMC3332924 DOI: 10.3389/fphys.2012.00105] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 04/02/2012] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of atrial fibrillation. There are multiple systems in the myocardium which contribute to redox homeostasis, and loss of homeostasis can result in oxidative stress. Potential sources of oxidants include nitric oxide synthases (NOS), which normally produce nitric oxide in the heart. Two NOS isoforms (1 and 3) are normally expressed in the heart. During pathologies such as heart failure, there is induction of NOS 2 in multiple cell types in the myocardium. In certain conditions, the NOS enzymes may become uncoupled, shifting from production of nitric oxide to superoxide anion, a potent free radical and oxidant. Multiple lines of evidence suggest a role for NOS in the pathogenesis of atrial fibrillation. Therapeutic approaches to reduce atrial fibrillation by modulation of NOS activity may be beneficial, although further investigation of this strategy is needed.
Collapse
Affiliation(s)
- Ingrid M Bonilla
- College of Pharmacy, The Ohio State University Columbus, OH, USA
| | | | | | | | | |
Collapse
|
27
|
Study of the regulation of the inotropic response to 5-HT4 receptor activation via phosphodiesterases and its cross-talk with C-type natriuretic peptide in porcine left atrium. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:565-77. [PMID: 22426996 DOI: 10.1007/s00210-012-0746-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
Abstract
We studied how 5-HT(4) receptor-mediated inotropic responses are regulated at the level of cAMP in porcine left atrium. We used selective phosphodiesterase (PDE) inhibitors to assess which PDE subtypes are responsible for the fade with time of inotropic responses to 5-HT(4) receptor activation with 5-HT and the 5-HT(4) receptor agonist prucalopride. A possible cross-talk via PDEs between cGMP and 5-HT(4) receptor-induced cAMP signalling was evaluated. Electrically paced left atrial pectinate muscles from young male pigs (15-25 kg) were studied in vitro. Simultaneous inhibition of PDE3 plus PDE4 subtypes was necessary to increase the amplitude and completely prevent the fade of the inotropic response to 5-HT and prucalopride. When responses to 5-HT or prucalopride had faded 1 h after addition, the nonspecific PDE-inhibitor IBMX still fully recovered inotropic responses. Stimulation of particulate guanylyl cyclase, together with PDE2 and PDE4 inhibition, delayed the fade of the response to 5-HT, while stimulation of soluble guanylyl cyclase independently of PDEs accelerated the fade of the response to 5-HT. In conclusion, both PDE3 and PDE4 subtypes are responsible for the suppression and the fade of the inotropic response to 5-HT and prucalopride. Signalling through the 5-HT(4) receptor remains fully active for at least 90 min with PDEs continuously regulating the response. cGMP levels, elevated by activation of particulate guanylyl cyclase under PDE2 inhibition, can indirectly enhance 5-HT(4) receptor-mediated signalling, at least when also PDE4 is inhibited, presumably through inhibition of PDE3. Elevation of cGMP generated by soluble guanylyl cyclase attenuates responses to 5-HT independently of PDEs.
Collapse
|
28
|
Afzal F, Qvigstad E, Aronsen JM, Moltzau LR, Sjaastad I, Skomedal T, Osnes JB, Levy FO. Agents increasing cyclic GMP amplify 5-HT4-elicited positive inotropic response in failing rat cardiac ventricle. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:543-53. [PMID: 21901315 PMCID: PMC3220808 DOI: 10.1007/s00210-011-0670-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/08/2011] [Indexed: 02/02/2023]
Abstract
Activation of 5-HT4 receptors in failing ventricles elicits a cAMP-dependent positive inotropic response which is mainly limited by the cGMP-inhibitable phosphodiesterase (PDE) 3. However, PDE4 plays an additional role which is demasked by PDE3 inhibition. The objective of this study was to evaluate the effect of cGMP generated by particulate and soluble guanylyl cyclase (GC) on the 5-HT4-mediated inotropic response. Extensive myocardial infarctions were induced by coronary artery ligation in Wistar rats, exhibiting heart failure 6 weeks after surgery. Contractility was measured in left ventricular preparations. Cyclic GMP was measured by EIA. In ventricular preparations, ANP or BNP displayed no impact on 5-HT4-mediated inotropic response. However, CNP increased the 5-HT4-mediated inotropic response as well as the β1-adrenoceptor (β1-AR)-mediated response to a similar extent as PDE3 inhibition by cilostamide. Pretreatment with cilostamide eliminated the effect of CNP. Inhibition of nitric oxide (NO) synthase and soluble GC by l-NAME and ODQ, respectively, attenuated the 5-HT4-mediated inotropic response, whereas the NO donor Sin-1 increased this response. The effects were absent during PDE3 inhibition, suggesting cGMP-dependent inhibition of PDE3. However, in contrast to the effects on the 5-HT4 response, Sin-1 inhibited whereas l-NAME and ODQ enhanced the β1-AR-mediated inotropic response. cGMP generated both by particulate (NPR-B) and soluble GC increases the 5-HT4-mediated inotropic response in failing hearts, probably through inhibition of PDE3. β1-AR and 5-HT4 receptor signalling are subject to opposite regulatory control by cGMP generated by soluble GC in failing hearts. Thus, cGMP from different sources is functionally compartmented, giving differential regulation of different Gs-coupled receptors.
Collapse
Affiliation(s)
- Faraz Afzal
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bogdelis A, Treinys R, Stankevičius E, Jurevičius J, Skeberdis VA. Src family protein tyrosine kinases modulate L-type calcium current in human atrial myocytes. Biochem Biophys Res Commun 2011; 413:116-21. [PMID: 21872572 DOI: 10.1016/j.bbrc.2011.08.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
Abstract
In the heart, L-type voltage dependent calcium channels (L-VDCC) provide Ca(2+) for the activation of contractile apparatus. The best described pathway for L-type Ca(2+) current (I(Ca,L)) modulation is the phosphorylation of calcium channels by cAMP-dependent protein kinase A (PKA), the activity of which is predominantly regulated in opposite manner by β-adrenergic (β-ARs) and muscarinic receptors. The role of other kinases is controversial and often depends on tissues and species used in the studies. In different studies the inhibitors of tyrosine kinases have been shown either to stimulate or inhibit, or even have a biphasic effect on I(Ca,L). Moreover, there is no clear picture about the route of activation and the site of action of cardiac Src family nonreceptor tyrosine kinases (Src-nPTKs). In the present study we used PP1, a selective inhibitor of Src-nPTKs, alone and together with different activators of I(Ca,L), and demonstrated that in human atrial myocytes (HAMs): (i) Src-nPTKs are activated concomitantly with activation of cAMP-signaling cascade; (ii) Src-nPTKs attenuate PKA-dependent stimulation of I(Ca,L) by inhibiting PKA activity; (iii) Gα(s) are not involved in the direct activation of Src-nPTKs. In this way, Src-nPTKs may provide a protecting mechanism against myocardial overload under conditions of increased sympathetic activity.
Collapse
Affiliation(s)
- Andrius Bogdelis
- Lithuanian University of Health Sciences, Institute of Cardiology, 50009 Kaunas, Lithuania
| | | | | | | | | |
Collapse
|
30
|
Lenaerts I, Holemans P, Pokreisz P, Sipido KR, Janssens S, Heidbuchel H, Willems R. Nitric oxide delays atrial tachycardia-induced electrical remodelling in a sheep model. Europace 2011; 13:747-54. [DOI: 10.1093/europace/eur021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
31
|
Tio R, Slart R, de Boer R, van der Vleuten P, de Jong R, van Wijk L, Willems T, Lubbers D, Voors A, van Veldhuisen D. Reduced regional myocardial perfusion reserve is associated with impaired contractile performance in idiopathic dilated cardiomyopathy. Neth Heart J 2010. [DOI: 10.1007/s12471-010-0005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
32
|
Tamargo J, Caballero R, Gómez R, Delpón E. Cardiac electrophysiological effects of nitric oxide. Cardiovasc Res 2010; 87:593-600. [PMID: 20587506 DOI: 10.1093/cvr/cvq214] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nitric oxide (NO) synthetized by essentially all cardiac cell types plays a key role in the regulation of cardiac function. Recent evidence shows that NO modulates the activity of cardiac ion channels implicated in the genesis of the cardiac action potential and exerts anti-arrhythmic properties under some circumstances. We review the effects of NO on cardiac ion channels and the signalling pathways, including cGMP-dependent (protein kinase G and cGMP-regulated phosphodiesterases) and cGMP-independent mechanisms (S-nitrosylation and direct effects on G proteins) and finally the role of NO in the genesis of cardiac arrhythmias during ischemia-reperfusion, heart failure, long QT syndrome, atrial fibrillation, and sudden cardiac death.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
33
|
Turner DL, Ferrari N, Ford WR, Kidd EJ, Paquet L, Renzi P, Broadley KJ. TPI 1020, a novel anti-inflammatory, nitric oxide donating compound, potentiates the bronchodilator effects of salbutamol in conscious guinea-pigs. Eur J Pharmacol 2010; 641:213-9. [PMID: 20639142 DOI: 10.1016/j.ejphar.2010.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 04/19/2010] [Accepted: 05/23/2010] [Indexed: 11/29/2022]
Abstract
Inhaled corticosteroids are regularly co-administered with beta(2)-adrenoceptor agonists. This study evaluates in conscious guinea-pigs the bronchodilator effect, alone or combined with salbutamol, of TPI 1020, a novel anti-inflammatory corticosteroid and nitric oxide (NO) donor derived from budesonide. Guinea-pigs received inhaled histamine (3 mM) and specific airway conductance (sG(aw)) measured. Responses to histamine were measured before and on the next day 15 min after a 15 min inhalation of vehicle, salbutamol, TPI 1020, budesonide, the NO-donor, S-nitroso-N-acetylpenicillamine (SNAP), or combinations of these drugs. Salbutamol and TPI 1020 caused concentration-dependent bronchodilatation measured as inhibition of histamine-induced bronchoconstriction. TPI 1020-induced bronchodilatation was blocked by the guanylyl cyclise inhibitor, ODQ, indicating cGMP-dependence through released NO. While salbutamol at 80 microM did not exert significant bronchodilatation, significant inhibitions were observed when co-administered with TPI 1020, 0.11 and 0.33 mM. The combined effects of TPI 1020 and salbutamol lasted significantly longer than either drug alone. Inhaled budesonide was a weak bronchodilator and when co-administered with salbutamol there was enhanced bronchodilatation. Addition of the NO-donor, SNAP (0.1 mM), to the budesonide/salbutamol combination, also improved the inhibition of histamine-induced bronchoconstriction. This study has shown that TPI 1020 potentiates the bronchodilator activity of salbutamol, and their combination lasted longer than either drug administered individually. Both the corticosteroid and NO-releasing activities of TPI 1020 appear to be required for the potentiation of salbutamol. Combination of TPI 1020 with a beta(2)-adrenoceptor agonist may therefore be useful against acute bronchoconstriction episodes in asthma, and may offer an opportunity for reducing doses of inhaled beta(2)-adrenoceptor agonists.
Collapse
Affiliation(s)
- Dawn L Turner
- Division of Pharmacology, Welsh School of Pharmacy, Cardiff University, Cathays Park Campus, Cardiff, Wales, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Miao L, Wang M, Yin WX, Yuan Q, Chen YX, Fleischmann B, Hescheler J, Ji G. Atrial natriuretic peptide regulates Ca channel in early developmental cardiomyocytes. PLoS One 2010; 5:e8847. [PMID: 20107504 PMCID: PMC2809742 DOI: 10.1371/journal.pone.0008847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 12/27/2009] [Indexed: 11/30/2022] Open
Abstract
Background Cardiomyocytes derived from murine embryonic stem (ES) cells possess various membrane currents and signaling cascades link to that of embryonic hearts. The role of atrial natriuretic peptide (ANP) in regulation of membrane potentials and Ca2+ currents has not been investigated in developmental cardiomyocytes. Methodology/Principal Findings We investigated the role of ANP in regulating L-type Ca2+ channel current (ICaL) in different developmental stages of cardiomyocytes derived from ES cells. ANP decreased the frequency of action potentials (APs) in early developmental stage (EDS) cardiomyocytes, embryonic bodies (EB) as well as whole embryo hearts. ANP exerted an inhibitory effect on basal ICaL in about 70% EDS cardiomyocytes tested but only in about 30% late developmental stage (LDS) cells. However, after stimulation of ICaL by isoproterenol (ISO) in LDS cells, ANP inhibited the response in about 70% cells. The depression of ICaL induced by ANP was not affected by either Nω, Nitro-L-Arginine methyl ester (L-NAME), a nitric oxide synthetase (NOS) inhibitor, or KT5823, a cGMP-dependent protein kinase (PKG) selective inhibitor, in either EDS and LDS cells; whereas depression of ICaL by ANP was entirely abolished by erythro-9-(2-Hydroxy-3-nonyl) adenine (EHNA), a selective inhibitor of type 2 phosphodiesterase(PDE2) in most cells tested. Conclusion/Significances Taken together, these results indicate that ANP induced depression of action potentials and ICaL is due to activation of particulate guanylyl cyclase (GC), cGMP production and cGMP-activation of PDE2 mediated depression of adenosine 3′, 5′–cyclic monophophate (cAMP)–cAMP-dependent protein kinase (PKA) in early cardiomyogenesis.
Collapse
Affiliation(s)
- Lin Miao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wen-Xuan Yin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qi Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying-Xiao Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Köln, Germany
- * E-mail: (JH); (GJ)
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (JH); (GJ)
| |
Collapse
|
35
|
Dessy C, Balligand JL. Beta3-adrenergic receptors in cardiac and vascular tissues emerging concepts and therapeutic perspectives. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 59:135-63. [PMID: 20933201 DOI: 10.1016/s1054-3589(10)59005-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Catecholamines released by the orthosympathetic system play a major role in the short- and long-term regulation of cardiovascular function. Beta1- and beta2-adrenoreceptors (ARs) have classically been considered as mediating most of their effects on cardiac contraction. After their initial cloning and pharmacologic characterization in the late 1980s, beta3-ARs have been mostly thought of as receptors mediating metabolic effects (e.g., lipolysis) in adipocytes. However, definitive evidence for their expression and functional coupling in cardiovascular tissues (including in humans) has recently initiated a re-examination of their implication in the pathophysiology of cardiovascular diseases. Distinctive pharmacodynamic properties of beta3-AR, e.g., their upregulation in disease and resistance to desensitization, suggest that they may be attractive targets for therapeutic intervention. They may substitute efficient vasodilating pathways when beta1/2-ARs are inoperative. In the heart, their contractile effects, which are functionally antipathetic to those of beta1/2-AR, may protect the myocardium against adverse effects of excessive catecholamine stimulation and perhaps mediate additional ancillary effects on key aspects of electrophysiology or remodeling. Longitudinal studies in animals and patients with different stages of heart failure are now needed to identify the optimal therapeutic scheme using specific combinations of agonists or antagonists at all three beta-ARs.
Collapse
Affiliation(s)
- Chantal Dessy
- Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
36
|
Tio R, Slart R, de Boer R, van der Vleuten P, de Jong R, van Wijk L, Willems T, Lubbers D, Voors A, van Veldhuisen D. Reduced regional myocardial perfusion reserve is associated with impaired contractile performance in idiopathic dilated cardiomyopathy. Neth Heart J 2009; 17:470-4. [PMID: 20087450 PMCID: PMC2804079 DOI: 10.1007/bf03086306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background. In idiopathic dilated cardiomyopathy (IDC) an imbalance between myocardial oxygen consumption and supply has been postulated. Subclinical myocardial ischaemia may contribute to progressive deterioration of left ventricular function. The relation between regional myocardial perfusion reserve (MPR) and contractile performance was investigated.Methods. Patients with newly diagnosed IDC underwent positron emission tomography (PET) scanning using both (13)N-ammonia as a perfusion tracer (baseline and dypiridamole stress), and (18)F-fluorodeoxyglucose viability tracer and a dobutamine stress MRI. MPR (assessed by PET) as well as wall motion score (WMS, assessed by MRI) were evaluated in a 17-segment model.Results. Twenty-two patients were included (age 49+/-11 years; 15 males, LVEF 33+/-10%). With MRI, a total of 305 segments could be analysed. Wall motion abnormalities at rest were present in 127 (35.5%) segments and in 103 (29.9%) during dobutamine stress. Twenty-one segments deteriorated during stress and 43 improved. MPR was significantly higher in those segments that improved, compared with those that did not change or were impaired during stress (1.87+/-0.04 vs. 1.56+/- 0.07 p<0.01.)Conclusion. Signs of regional ischaemia were clearly present in IDC patients. Ischaemic regions displayed impaired contractility during stress. This suggests that impaired oxygen supply contributes to cardiac dysfunction in IDC. (Neth Heart J 2009;17:470-4.).
Collapse
Affiliation(s)
- R.A. Tio
- Department of Cardiology, University Medical Center Groningen, Groningen, the Netherlands
| | - R.H.J.A. Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands
| | - R.A. de Boer
- Department of Cardiology, University Medical Center Groningen, Groningen, the Netherlands
| | - P.A. van der Vleuten
- Department of Cardiology, University Medical Center Groningen, Groningen, the Netherlands
| | - R.M. de Jong
- Department of Cardiology, University Medical Center Groningen, Groningen, the Netherlands
| | - L.M. van Wijk
- Department of Cardiology, Refaja Hospital Stadskanaal, the Netherlands
| | - T. Willems
- Department of Radiology, University Medical Center Groningen, Groningen, the Netherlands
| | - D.D. Lubbers
- Department of Radiology, University Medical Center Groningen, Groningen, the Netherlands
| | - A.A. Voors
- Department of Cardiology, University Medical Center Groningen, Groningen, the Netherlands
| | - D.J. van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
37
|
Qvigstad E, Moltzau LR, Aronsen JM, Nguyen CHT, Hougen K, Sjaastad I, Levy FO, Skomedal T, Osnes JB. Natriuretic peptides increase beta1-adrenoceptor signalling in failing hearts through phosphodiesterase 3 inhibition. Cardiovasc Res 2009; 85:763-72. [PMID: 19900965 DOI: 10.1093/cvr/cvp364] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Whereas natriuretic peptides increase cGMP levels with beneficial cardiovascular effects through protein kinase G, we found an unexpected cardio-excitatory effect of C-type natriuretic peptide (CNP) through natriuretic peptide receptor B (NPR-B) stimulation in failing cardiac muscle and explored the mechanism. METHODS AND RESULTS Heart failure was induced in male Wistar rats by coronary artery ligation. Contraction studies were performed in left ventricular muscle strips. Cyclic nucleotides were measured by radio- and enzyme immunoassay. Apoptosis was determined in isolated cardiomyocytes by Annexin-V/propidium iodide staining and phosphorylation of phospholamban (PLB) and troponin I was measured by western blotting. Stimulation of NPR-B enhanced beta1-adrenoceptor (beta1-AR)-evoked contractile responses through cGMP-mediated inhibition of phosphodiesterase 3 (PDE3). CNP enhanced beta1-AR-mediated increase of cAMP levels to the same extent as the selective PDE3 inhibitor cilostamide and increased beta1-AR-stimulated protein kinase A activity, as demonstrated by increased PLB and troponin I phosphorylation. CNP promoted cardiomyocyte apoptosis similar to inhibition of PDE3 by cilostamide, indicative of adverse effects of NPR-B signalling in failing hearts. CONCLUSION An NPR-B-cGMP-PDE3 inhibitory pathway enhances beta(1)-AR-mediated responses and may in the long term be detrimental to the failing heart through mechanisms similar to those operating during treatment with PDE3 inhibitors or during chronic beta-adrenergic stimulation.
Collapse
Affiliation(s)
- Eirik Qvigstad
- Department of Pharmacology, University of Oslo, PO Box 1057 Blindern, Oslo 0316, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
3-Hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statins) are some of the most commonly prescribed drugs in the world. While lipid modification remains the primary function of statins, there has been increasing interest in its potential pleiotropic effects, particularly as an anti-inflammatory agent in its role as an antiarrhythmic. Atrial fibrillation (AF) is the most common arrhythmia encountered in clinical practice and carries with it a significant burden in both morbidity and mortality. Treatment for AF currently involves either rate or rhythm control where both have demonstrable associated risks. Rate control necessitates anticoagulation, which can cause life-threatening bleeding, while rhythm control has a poor side-effect profile that may lead to greater mortality and may not completely eliminate the need for anticoagulation. Considering this pressing need for novel therapeutic interventions in AF, this long overdue systematic review explores the potential role of statins in the treatment and prevention of AF. Physicians, especially cardiologists, need to be aware of the host of currently available literature and, more importantly, need to be stimulated to generate discussion and formulate studies that will help debate the issues under the most erudite standards.
Collapse
Affiliation(s)
- David E Dawe
- Department of Internal Medicine, St. Boniface General Hospital, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
39
|
Balligand JL. β3-Adrenoceptor Stimulation on Top of β1-Adrenoceptor Blockade. J Am Coll Cardiol 2009; 53:1539-42. [DOI: 10.1016/j.jacc.2009.01.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/30/2009] [Indexed: 10/20/2022]
|
40
|
Rao YJ, Xi L. Pivotal effects of phosphodiesterase inhibitors on myocyte contractility and viability in normal and ischemic hearts. Acta Pharmacol Sin 2009; 30:1-24. [PMID: 19060915 DOI: 10.1038/aps.2008.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphodiesterases (PDEs) are enzymes that degrade cellular cAMP and cGMP and are thus essential for regulating the cyclic nucleotides. At least 11 families of PDEs have been identified, each with a distinctive structure, activity, expression, and tissue distribution. The PDE type-3, -4, and -5 (PDE3, PDE4, PDE5) are localized to specific regions of the cardiomyocyte, such as the sarcoplasmic reticulum and Z-disc, where they are likely to influence cAMP/cGMP signaling to the end effectors of contractility. Several PDE inhibitors exhibit remarkable hemodynamic and inotropic properties that may be valuable to clinical practice. In particular, PDE3 inhibitors have potent cardiotonic effects that can be used for short-term inotropic support, especially in situations where adrenergic stimulation is insufficient. Most relevant to this review, PDE inhibitors have also been found to have cytoprotective effects in the heart. For example, PDE3 inhibitors have been shown to be cardioprotective when given before ischemic attack, whereas PDE5 inhibitors, which include three widely used erectile dysfunction drugs (sildenafil, vardenafil and tadalafil), can induce remarkable cardioprotection when administered either prior to ischemia or upon reperfusion. This article provides an overview of the current laboratory and clinical evidence, as well as the cellular mechanisms by which the inhibitors of PDE3, PDE4 and PDE5 exert their beneficial effects on normal and ischemic hearts. It seems that PDE inhibitors hold great promise as clinically applicable agents that can improve cardiac performance and cell survival under critical situations, such as ischemic heart attack, cardiopulmonary bypass surgery, and heart failure.
Collapse
|
41
|
Skeberdis VA, Gendviliene V, Zablockaite D, Treinys R, Macianskiene R, Bogdelis A, Jurevicius J, Fischmeister R. beta3-adrenergic receptor activation increases human atrial tissue contractility and stimulates the L-type Ca2+ current. J Clin Invest 2008; 118:3219-27. [PMID: 18704193 DOI: 10.1172/jci32519] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 07/09/2008] [Indexed: 11/17/2022] Open
Abstract
beta3-adrenergic receptor (beta3-AR) activation produces a negative inotropic effect in human ventricles. Here we explored the role of beta3-AR in the human atrium. Unexpectedly, beta3-AR activation increased human atrial tissue contractility and stimulated the L-type Ca2+ channel current (I Ca,L) in isolated human atrial myocytes (HAMs). Right atrial tissue specimens were obtained from 57 patients undergoing heart surgery for congenital defects, coronary artery diseases, valve replacement, or heart transplantation. The I(Ca,L) and isometric contraction were recorded using a whole-cell patch-clamp technique and a mechanoelectrical force transducer. Two selective beta3-AR agonists, SR58611 and BRL37344, and a beta3-AR partial agonist, CGP12177, stimulated I(Ca,L) in HAMs with nanomolar potency and a 60%-90% efficacy compared with isoprenaline. The beta3-AR agonists also increased contractility but with a much lower efficacy (approximately 10%) than isoprenaline. The beta3-AR antagonist L-748,337, beta1-/beta2-AR antagonist nadolol, and beta1-/beta2-/beta3-AR antagonist bupranolol were used to confirm the involvement of beta3-ARs (and not beta1-/beta2-ARs) in these effects. The beta3-AR effects involved the cAMP/PKA pathway, since the PKA inhibitor H89 blocked I(Ca,L) stimulation and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) strongly increased the positive inotropic effect. Therefore, unlike in ventricular tissue, beta3-ARs are positively coupled to L-type Ca2+ channels and contractility in human atrial tissues through a cAMP-dependent pathway.
Collapse
|
42
|
Savelieva I, Camm J. Statins and polyunsaturated fatty acids for treatment of atrial fibrillation. ACTA ACUST UNITED AC 2008; 5:30-41. [DOI: 10.1038/ncpcardio1038] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 09/14/2007] [Indexed: 02/03/2023]
|
43
|
Halpin DMG. ABCD of the phosphodiesterase family: interaction and differential activity in COPD. Int J Chron Obstruct Pulmon Dis 2008; 3:543-61. [PMID: 19281073 PMCID: PMC2650605 DOI: 10.2147/copd.s1761] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phosphodiesterases (PDEs) are important enzymes that hydrolyze the cyclic nucleotides adenosine 3'5'-cyclic monophosphate (cAMP) and guanosine 3'5'-cyclic monophosphate (cGMP) to their inactive 5' monophosphates. They are highly conserved across species and as well as their role in signal termination, they also have a vital role in intra-cellular localization of cyclic nucleotide signaling and integration of the cyclic nucleotide pathways with other signaling pathways. Because of their pivotal role in intracellular signaling, they are now of considerable interest as therapeutic targets in a wide variety diseases, including COPD where PDE inhibitors may have bronchodilator, anti-inflammatory and pulmonary vasodilator actions. This review examines the diversity and cellular localization of the isoforms of PDE, the known and speculative relevance of this to the treatment of COPD, and the range of PDE inhibitors in development together with a discussion of their possible role in treating COPD.
Collapse
|
44
|
Osadchii OE. Myocardial phosphodiesterases and regulation of cardiac contractility in health and cardiac disease. Cardiovasc Drugs Ther 2007; 21:171-94. [PMID: 17373584 DOI: 10.1007/s10557-007-6014-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 02/21/2007] [Indexed: 01/14/2023]
Abstract
Phosphodiesterase (PDE) inhibitors are potent cardiotonic agents used for parenteral inotropic support in heart failure. Contractile effects of these agents are mediated through cAMP-protein kinase A-induced stimulation of I (Ca2+) which ultimately results in increased Ca(2+)-induced sarcoplasmic reticulum Ca(2+) release. A number of additional effects such as increases in sarcoplasmic reticulum Ca(2+) stores, stimulation of reverse mode Na(+)-Ca(2+) exchange, direct or cAMP-mediated effects on sarcoplasmic reticulum ryanodine receptor, stimulation of the voltage-sensitive sarcoplasmic reticulum Ca(2+) release mechanism, as well as A(1) adenosine receptor blockade could contribute to positive inotropic responses to PDE inhibitors. Moreover, some PDE inhibitors exhibit Ca(2+) sensitizer properties as they could increase the affinity of troponin C Ca(2+)-binding sites as well as reduce Ca(2+) threshold for thin myofilament sliding and facilitate cross-bridge cycling. Inotropic responses to PDE inhibitors are significantly reduced in cardiac disease, an effect largely attributed to downregulation of cAMP-mediated signalling due to sustained sympathetic activation. Four PDE isoenzymes (PDE1, PDE2, PDE3 and PDE4) are present in myocardial tissue of various mammalian species, of which PDE3 and PDE4 are particularly involved in regulation of cardiac myocyte contraction. PDE cAMP-hydrolysing activity is preserved in compensated cardiac hypertrophy but significantly reduced in animal models of heart failure. However, clinical studies have not revealed any changes in distribution profile as well as kinetic and regulatory properties of myocardial PDEs in failing human hearts. A reduction of PDE inhibitors-induced contractile responses in heart failure has therefore been ascribed to reduced cAMP synthesis due to uncoupling of adenylyl cyclase from beta-adrenoreceptor. In cardiac myocytes, PDEs are targeted to distinct subcellular compartments by scaffolding proteins such as myomegalin, mAKAP and beta-arrestins. Over subcellular microdomains, cAMP hydrolysis by PDE3 and PDE4 allows to control the activity of local pools of protein kinase A and therefore the extent of protein kinase A-mediated phosphorylation of cellular proteins.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Cardiology Group, School of Clinical Sciences, University Clinical Departments, University of Liverpool, The Duncan Building, Liverpool, UK.
| |
Collapse
|
45
|
Abstract
Growing evidence suggests that multiple spatially, temporally, and functionally distinct pools of cyclic nucleotides exist and regulate cardiac performance, from acute myocardial contractility to chronic gene expression and cardiac structural remodeling. Cyclic nucleotide phosphodiesterases (PDEs), by hydrolyzing cAMP and cyclic GMP, regulate the amplitude, duration, and compartmentation of cyclic nucleotide-mediated signaling. In particular, PDE3 enzymes play a major role in regulating cAMP metabolism in the cardiovascular system. PDE3 inhibitors, by raising cAMP content, have acute inotropic and vasodilatory effects in treating congestive heart failure but have increased mortality in long-term therapy. PDE3A expression is downregulated in human and animal failing hearts. In vitro, inhibition of PDE3A function is associated with myocyte apoptosis through sustained induction of a transcriptional repressor ICER (inducible cAMP early repressor) and thereby inhibition of antiapoptotic molecule Bcl-2 expression. Sustained induction of ICER may also cause the change of other protein expression implicated in human and animal failing hearts. These data suggest that the downregulation of PDE3A observed in failing hearts may play a causative role in the progression of heart failure, in part, by inducing ICER and promoting cardiac myocyte dysfunction. Hence, strategies that maintain PDE3A function may represent an attractive approach to circumvent myocyte apoptosis and cardiac dysfunction.
Collapse
Affiliation(s)
- Chen Yan
- Center for Cardiovascular Research, Aab Institute of Biomedical Science, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
46
|
Wen JF, Quan HX, Zhou GH, Cho KW. Altered role of C-type natriuretic peptide-activated pGC-cGMP-PDE3-cAMP signaling in hyperthyroid beating rabbit atria. ACTA ACUST UNITED AC 2007; 142:123-30. [PMID: 17531330 DOI: 10.1016/j.regpep.2007.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 02/07/2007] [Accepted: 02/08/2007] [Indexed: 11/28/2022]
Abstract
The role of C-type natriuretic peptide (CNP) in the pathophysiology of atrial function in hyperthyroidism has not been defined. This study was to define the role of CNP-activated particulate (p) guanylyl cyclase (GC)-cGMP-phosphodiesterase (PDE)3 signaling in the regulation of cAMP levels and contractile and secretory functions in the atria from hyperthyroid rabbits. Experiments were performed in perfused beating rabbit atria. CNP was used to activate pGC. In euthyroid atria from sham-treated rabbits, CNP (100 nM) increased cGMP and cAMP efflux by 176.7+/-17.7 and 55.3+/-10.0%, respectively. CNP decreased stroke volume and pulse pressure and ANP release by 51+/-7 and 41+/-2 and 60.4+/-3.2%, respectively. Pretreatment with milrinone blocked the CNP-induced increase of cAMP but without significant changes in decrease of atrial dynamics and ANP release. In hyperthyroid atria, CNP-induced increase of cGMP levels was accentuated, while CNP-induced increase of cAMP was attenuated. The gain of cAMP, i.e., change in cAMP efflux concentration in terms of cGMP was attenuated in the hyperthyroid compared to euthyroid atria. CNP rather increased atrial dynamics in hyperthyroid atria instead of decrease. CNP-induced decrease in atrial ANP release was attenuated. Pretreatment with milrinone blocked the CNP-induced increase of cAMP levels concomitantly with a decrease of atrial dynamics. The present study demonstrates that altered role of CNP-activated pGC-cGMP-PDE3-cAMP signaling is involved in the pathophysiology of hyperthyroid heart.
Collapse
Affiliation(s)
- Jin Fu Wen
- Department of Physiology, Institute of Life Sciences, Taishan Medical University, Taian, Shandong 271000, PR China.
| | | | | | | |
Collapse
|
47
|
Fischmeister R, Castro LRV, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G. Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 2006; 99:816-28. [PMID: 17038651 DOI: 10.1161/01.res.0000246118.98832.04] [Citation(s) in RCA: 292] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A current challenge in cellular signaling is to decipher the complex intracellular spatiotemporal organization that any given cell type has developed to discriminate among different external stimuli acting via a common signaling pathway. This obviously applies to cAMP and cGMP signaling in the heart, where these cyclic nucleotides determine the regulation of cardiac function by many hormones and neuromediators. Recent studies have identified cyclic nucleotide phosphodiesterases as key actors in limiting the spread of cAMP and cGMP, and in shaping and organizing intracellular signaling microdomains. With this new role, phosphodiesterases have been promoted from the rank of a housekeeping attendant to that of an executive officer.
Collapse
Affiliation(s)
- Rodolphe Fischmeister
- INSERM U769, Université Paris-Sud 11, Faculté de Pharmacie, 5, Rue J.-B. Clément, F-92296 Châtenay-Malabry Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
48
|
Rochais F, Abi-Gerges A, Horner K, Lefebvre F, Cooper DM, Conti M, Fischmeister R, Vandecasteele G. A specific pattern of phosphodiesterases controls the cAMP signals generated by different Gs-coupled receptors in adult rat ventricular myocytes. Circ Res 2006; 98:1081-8. [PMID: 16556871 PMCID: PMC2099453 DOI: 10.1161/01.res.0000218493.09370.8e] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Compartmentation of cAMP is thought to generate the specificity of Gs-coupled receptor action in cardiac myocytes, with phosphodiesterases (PDEs) playing a major role in this process by preventing cAMP diffusion. We tested this hypothesis in adult rat ventricular myocytes by characterizing PDEs involved in the regulation of cAMP signals and L-type Ca2+ current (I(Ca,L)) on stimulation with beta1-adrenergic receptors (beta1-ARs), beta2-ARs, glucagon receptors (Glu-Rs) and prostaglandin E1 receptors (PGE1-Rs). All receptors but PGE1-R increased total cAMP, and inhibition of PDEs with 3-isobutyl-1-methylxanthine strongly potentiated these responses. When monitored in single cells by high-affinity cyclic nucleotide-gated (CNG) channels, stimulation of beta1-AR and Glu-R increased cAMP, whereas beta2-AR and PGE1-R had no detectable effect. Selective inhibition of PDE3 by cilostamide and PDE4 by Ro 20-1724 potentiated beta1-AR cAMP signals, whereas Glu-R cAMP was augmented only by PD4 inhibition. PGE1-R and beta2-AR generated substantial cAMP increases only when PDE3 and PDE4 were blocked. For all receptors except PGE1-R, the measurements of I(Ca,L) closely matched the ones obtained with CNG channels. Indeed, PDE3 and PDE4 controlled beta1-AR and beta2-AR regulation of I(Ca,L), whereas only PDE4 controlled Glu-R regulation of I(Ca,L) thus demonstrating that receptor-PDE coupling has functional implications downstream of cAMP. PGE1 had no effect on I(Ca,L) even after blockade of PDE3 or PDE4, suggesting that other mechanisms prevent cAMP produced by PGE1 to diffuse to L-type Ca2+ channels. These results identify specific functional coupling of individual PDE families to Gs-coupled receptors as a major mechanism enabling cardiac cells to generate heterogeneous cAMP signals in response to different hormones.
Collapse
Affiliation(s)
- Francesca Rochais
- Cardiologie cellulaire et moléculaire
INSERM : U769Université Paris Sud - Paris XIFaculté de Pharmacie
5, Rue Jean-Baptiste Clément
92296 Châtenay-Malabry,FR
| | - Aniella Abi-Gerges
- Cardiologie cellulaire et moléculaire
INSERM : U769Université Paris Sud - Paris XIFaculté de Pharmacie
5, Rue Jean-Baptiste Clément
92296 Châtenay-Malabry,FR
| | - Kathleen Horner
- Division of Reproductive Biology Department of Gynecology and Obstetrics
Stanford UniversityStanford,US
| | - Florence Lefebvre
- Cardiologie cellulaire et moléculaire
INSERM : U769Université Paris Sud - Paris XIFaculté de Pharmacie
5, Rue Jean-Baptiste Clément
92296 Châtenay-Malabry,FR
| | | | - Marco Conti
- Division of Reproductive Biology Department of Gynecology and Obstetrics
Stanford UniversityStanford,US
| | - Rodolphe Fischmeister
- Cardiologie cellulaire et moléculaire
INSERM : U769Université Paris Sud - Paris XIFaculté de Pharmacie
5, Rue Jean-Baptiste Clément
92296 Châtenay-Malabry,FR
- * Correspondence should be adressed to: Rodolphe Fischmeister
| | - Grégoire Vandecasteele
- Cardiologie cellulaire et moléculaire
INSERM : U769Université Paris Sud - Paris XIFaculté de Pharmacie
5, Rue Jean-Baptiste Clément
92296 Châtenay-Malabry,FR
| |
Collapse
|
49
|
Seya K, Furukawa KI, Yoshida K, Narita R, Motomura S. Nifedipine enhances cGMP production through the activation of soluble guanylyl cyclase in rat ventricular papillary muscle. J Pharm Pharmacol 2006; 57:511-4. [PMID: 15831213 DOI: 10.1211/0022357055740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
It is known that nifedipine, an L-type calcium channel blocker, increases cGMP production, which partially contributes to the relaxation of vascular smooth muscle. The aim of our investigation was to clarify whether or not nifedipine regulates cGMP production, which has a physiological role in cardiac muscle. To measure contractile responses and tissue cGMP levels, left ventricular papillary muscles prepared from male Wistar rats (350-400 g) were mounted in the isolated organ chamber under isometric conditions and electrically paced by means of platinum punctate electrodes (1 Hz, 1 ms duration). In papillary muscle preparation, the negative inotropic effect induced by nifedipine (30 to 300 nM) was significantly inhibited in the presence of ODQ(1H-[1,2,4]oxidazolo[4,3-a]quinoxaline1-one; 10 microM), a soluble guanylyl cyclase inhibitor. Furthermore, nifedipine (100 nM) strongly increased the tissue cGMP level, which was significantly decreased in the presence of ODQ. On the other hand,N(G)-monomethyl-(L)-arginine (100 microM), a nitric oxide synthase inhibitor, did not inhibit either the negative inotropic effect or cGMP production induced by nifedipine. These results indicate that in rat left ventricular papillary muscle, nifedipine augments its negative inotropic effect at least partly through direct activation of cardiac soluble guanylyl cyclase but not nitric oxide synthase.
Collapse
Affiliation(s)
- Kazuhiko Seya
- Department of Pharmacology, Hirosaki University School of Medicine, Zaifu-cho 5, Hirosaki 036-8562, Japan.
| | | | | | | | | |
Collapse
|
50
|
Zeng X, Keyser B, Li M, Sikka SC. T-type (alpha1G) low voltage-activated calcium channel interactions with nitric oxide-cyclic guanosine monophosphate pathway and regulation of calcium homeostasis in human cavernosal cells. J Sex Med 2006; 2:620-30; discussion 630-3. [PMID: 16422819 DOI: 10.1111/j.1743-6109.2005.00115.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Nitric oxide-cyclic guanosine monophosphate (NO-cGMP)-mediated relaxation of cavernosal smooth muscle during erection is accompanied by a decrease in intracellular calcium concentrations ([Ca2+](i)). However, it is not known whether and how an increase in [Ca2+](i) is responsible for (i) initiating smooth muscle contraction/detumescence following relaxation; and (ii) maintaining the penis in a flaccid state under nonstimulating conditions. AIM To elucidate (i) the mechanism(s) of [Ca2+](i) homeostasis regulation in human cavernosal smooth muscle cells (HCSMC); and (ii) how NO-cGMP interacts with such [Ca2+](i) homeostasis. METHODS We evaluated the expression and function of both T-type and L-type Ca2+ channels in HCSMC by employing selective probes/inhibitors using various cellular and molecular techniques (e.g., reverse transcriptase and real-time polymerase chain reaction, cell proliferation assay, fura-2 Ca2+ fluorescence spectroscopy, enzyme-linked immuno-absorbent assay (ELISA)). MAIN OUTCOME MEASURE We have demonstrated for the first time significant interactions of NO-cGMP with the T-type (alpha1G) Ca2+ channel in HCSMC. RESULTS Our results suggest that in addition to NO-induced rapid and transient decrease in [Ca2+](i) that results in smooth muscle relaxation, NO-cGMP also enhanced mRNA expression of the T-type (alpha1G) Ca2+ channel resulting in delayed elevation of [Ca2+](i). This could be abolished by a selective T-channel blocker, NNC 55-0396. Another unique finding of this study is that dose-dependent HCSMC proliferation in vitro by NO is associated with the activation of the T-type (alpha1G) Ca2+ channel that regulates [Ca2+](i) homeostasis in these cells. CONCLUSIONS Human cavernosal cells express T-type (alpha1G) Ca2+ channels that are involved in maintaining [Ca2+](i) homeostasis and regulation of NO-cGMP-induced smooth muscle relaxation-contraction responsible for penile erection, flaccidity, and tonicity. Targeting these Ca2+ channels may (i) associate various comorbidities with the onset of erectile dysfunction; (ii) provide a biochemical basis for differences between therapeutic profiles of various phosphodiesterase type 5 inhibitors, especially in nonresponders to current therapy; and (iii) provide biochemical basis in understanding mechanism(s) of drug tolerance.
Collapse
Affiliation(s)
- Xiangbin Zeng
- Department of Urology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|