1
|
Terstege DJ, Ren Y, Ahn BY, Seo H, Adigun K, Galea LAM, Sargin D, Epp JR. Impaired parvalbumin interneurons in the retrosplenial cortex as the cause of sex-dependent vulnerability in Alzheimer's disease. SCIENCE ADVANCES 2025; 11:eadt8976. [PMID: 40305608 PMCID: PMC12042879 DOI: 10.1126/sciadv.adt8976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/11/2025] [Indexed: 05/02/2025]
Abstract
Alzheimer's disease is a debilitating neurodegenerative disorder with no cure and few treatment options. In early stages of Alzheimer's disease, impaired metabolism and functional connectivity of the retrosplenial cortex strongly predict future cognitive impairments. Therefore, understanding Alzheimer's disease-related deficits in the retrosplenial cortex is critical for understanding the origins of cognitive impairment and identifying early treatment targets. Using the 5xFAD mouse model, we discovered early, sex-dependent alterations in parvalbumin-interneuron transcriptomic profiles. This corresponded with impaired parvalbumin-interneuron activity, which was sufficient to induce cognitive impairments and dysregulate retrosplenial functional connectivity. In fMRI scans from patients with mild cognitive impairment and Alzheimer's disease, we observed a similar sex-dependent dysregulation of retrosplenial cortex functional connectivity and, in postmortem tissue from subjects with Alzheimer's disease, a loss of parvalbumin interneurons. Reversal of cognitive deficits by stimulation of parvalbumin interneurons in the retrosplenial cortex suggests that this may serve as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Dylan J. Terstege
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yi Ren
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Bo Young Ahn
- Applied Spatial Omics Centre, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Heewon Seo
- Applied Spatial Omics Centre, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kabirat Adigun
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Liisa A. M. Galea
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Derya Sargin
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Psychology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jonathan R. Epp
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
2
|
Wuyts FL, Deblieck C, Vandevoorde C, Durante M. Brains in space: impact of microgravity and cosmic radiation on the CNS during space exploration. Nat Rev Neurosci 2025:10.1038/s41583-025-00923-4. [PMID: 40247135 DOI: 10.1038/s41583-025-00923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/19/2025]
Abstract
Solar system exploration is a grand endeavour of humankind. Space agencies have been planning crewed missions to the Moon and Mars for several decades. However, several environmental stress factors in space, such as microgravity and cosmic radiation, confer health risks for human explorers. This Review examines the effects of microgravity and exposure to cosmic radiation on the CNS. Microgravity presents challenges for the brain, necessitating the development of adaptive movement and orientation strategies to cope with alterations in sensory information. Exposure to microgravity also affects cognitive function to a certain extent. Recent MRI results show that microgravity affects brain structure and function. Post-flight recovery from these changes is gradual, with some lasting up to a year. Regarding cosmic radiation, animal experiments suggest that the brain could be much more sensitive to this stressor than may be expected from experiences on Earth. This may be due to the presence of energetic heavy ions in space that have an impact on cognitive function, even at low doses. However, all data about space radiation risk stem from rodent experiments, and extrapolation of these data to humans carries a high degree of uncertainty. Here, after presenting an overview of current knowledge in the above areas, we provide a concise description of possible counter-measures to protect the brain against microgravity and cosmic radiation during future space missions.
Collapse
Affiliation(s)
- Floris L Wuyts
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - Choi Deblieck
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
- Institute for Condensed Matter of Physics, Technische Universität Darmstadt, Darmstadt, Germany.
- Department of Physics 'Ettore Pancini', University Federico II, Naples, Italy.
| |
Collapse
|
3
|
Hill PF, Ekstrom AD. A cognitive-motor framework for spatial navigation in aging and early-stage Alzheimer's disease. Cortex 2025; 185:133-150. [PMID: 40043550 DOI: 10.1016/j.cortex.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/19/2024] [Accepted: 02/13/2025] [Indexed: 04/13/2025]
Abstract
Spatial navigation is essential for wellbeing and independence and shows significant declines as part of age-related neurodegenerative disorders, such as Alzheimer's disease. Navigation is also one of the earliest behaviors impacted by this devastating disease. Neurobiological models of aging and spatial navigation have focused primarily on the cognitive factors that account for impaired navigation abilities during the course of healthy aging and early stages of preclinical and prodromal Alzheimer's disease. The contributions of physical factors that are essential to planning and executing movements during successful navigation, such as gait and dynamic balance, are often overlooked despite also being vulnerable to early stages of neurodegenerative disease. We review emerging evidence that spatial navigation and functional mobility each draw on highly overlapping sensory systems, cognitive processes, and brain structures that are susceptible to healthy and pathological aging processes. Based on this evidence, we provide an alternative to models that have focused primarily on spatial navigation as a higher order cognitive function dependent on brain areas such as the hippocampus and entorhinal cortex. Instead, we argue that spatial navigation may offer an ecologically valid cognitive-motor phenotype of age-related cognitive dysfunction. We propose that dual cognitive-motor deficits in spatial navigation may arise from early changes in neuromodulatory and peripheral sensory systems that precede changes in regions such as the entorhinal cortex.
Collapse
Affiliation(s)
- Paul F Hill
- Psychology Department, University of Arizona, USA.
| | - Arne D Ekstrom
- Psychology Department, University of Arizona, USA; McKnight Brain Institute, University of Arizona, USA
| |
Collapse
|
4
|
Warm D, Bassetti D, Gellèrt L, Yang JW, Luhmann HJ, Sinning A. Spontaneous mesoscale calcium dynamics reflect the development of the modular functional architecture of the mouse cerebral cortex. Neuroimage 2025; 309:121088. [PMID: 39954874 DOI: 10.1016/j.neuroimage.2025.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
The mature cerebral cortex operates through the segregation and integration of specialized functions to generate complex cognitive states. In the mouse, the anatomical and functional correlates of this organization arise during the perinatal period and are critically shaped by neural activity. Understanding how early activity patterns distribute, interact, and generate large-scale cortical dynamics is essential to elucidate the proper development of the cortex. Here, we investigate spontaneous mesoscale cortical dynamics during the first two postnatal weeks by performing wide-field calcium imaging in GCaMP6s transgenic mice. Our results demonstrate a marked change in the spatiotemporal features of spontaneous cortical activity across fine stages of postnatal development. Already after birth, the cortical hemisphere presents a primordial macroscopic organization, which undergoes a steady refinement based on the parcellation of the cortex. As calcium activity transitions from large, widespread events to swift waves between the first and second postnatal week, significant topographic differences emerge across different cortical regions. Functional connectivity profiles of the cortex gradually segregate into main subnetworks and give rise to a highly modular network topology at the end of the second postnatal week. Overall, spontaneous mesoscale activity reflects the maturation of cortical networks, and reveals critical breakpoints in the development of the functional architecture of the cortex.
Collapse
Affiliation(s)
- Davide Warm
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Davide Bassetti
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Levente Gellèrt
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
5
|
Ishihara Y, Sato F, Guinet A, Grosser S, Vida I, Kubota Y, Takayama C. Number of subfields of the rat dorsal subiculum defined by NOS and PCP4 immunoreactivity changes according to different levels of observation. Neuroscience 2025; 568:285-297. [PMID: 39755232 DOI: 10.1016/j.neuroscience.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
The subiculum is the main output part of the hippocampal formation and is important for learning and memory. According to connection studies, the distal and proximal regions of the subiculum project to brain regions related to spatial and emotional memories, respectively. Our previous morphological studies indicated that the ventral subiculum (vSub) consists of two regions, the distal subiculum (Sub1) and the proximal subiculum (Sub2), whereas the dorsal subiculum (dSub) seems to comprise only one region (Sub1). However, the connection studies have reported that the dSub contains two regions. Accordingly, we hypothesized that the dSub may indicate "one region" and "two regions" at different dorsoventral levels. To confirm this hypothesis, serial sections of the dSub were prepared and labeled for nitric oxide synthase and Purkinje cell protein 4 as markers dividing the subiculum. As a result, vSub showed two regions, Sub1 and Sub2, whereas the dorsal tip of the subiculum showed one region (Sub1), as shown in our previous studies. However, two regions were observed in the dorsal sections. Accordingly, the same dSub indicated a different number of regions at different observation levels. To avoid confusion, we propose dividing the subiculum into Sub1 and Sub2 by immunoreactivities for subicular markers, instead of a rough division into the distal/proximal parts or the dorsal/ventral parts. Furthermore, we confirmed that Sub2 projected to the lateral septum. This finding is consistent with the fact that the proximal-ventral subiculum are involved in emotional memory.
Collapse
Affiliation(s)
- Yoshihisa Ishihara
- Department of Anatomy, School of Medicine, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota, Tokyo 143-8540, Japan; Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany; Supportive Center for Brain Research, Section of Electron Microscopy, Kubota Group, National Institute for Physiological Sciences, 5-1 Higashiyama Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Molecular Anatomy, School of Medicine University of the Ryukyus, Uehara 207, Nishihara, Okinawa 903-0213, Japan.
| | - Fumi Sato
- Department of Anatomy, School of Medicine, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota, Tokyo 143-8540, Japan
| | - Alix Guinet
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Sabine Grosser
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Imre Vida
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Yoshiyuki Kubota
- Supportive Center for Brain Research, Section of Electron Microscopy, Kubota Group, National Institute for Physiological Sciences, 5-1 Higashiyama Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, School of Medicine University of the Ryukyus, Uehara 207, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
6
|
Navarro J, Ribot J, Schnebelen D, Seguin P, Ouimet MC, Reynaud E. Are Wayfinding Abilities Correlated With Specific Brain Anatomy? An Investigation on Regular Car Drivers Using a Navigational Map in an Unknown Environment. Hippocampus 2025; 35:e70000. [PMID: 39980091 DOI: 10.1002/hipo.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/10/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
The ability to navigate spatially in the physical world is a fundamental cognitive skill. This study examines the anatomical correlates of map-assisted wayfinding in an unfamiliar virtual environment using structural magnetic resonance magining (MRI). Thirty-three participants were required to reach up to seven different locations represented on a navigational map in a simulated environment, while their gazing behavior was recorded, and, in close temporal proximity, the anatomical MRI of their brain was acquired. Significant predictors of wayfinding performance were the volumes of the right hippocampus, left retrosplenial cortex, and posterior cingulate cortex-left inferior frontal gyrus, right superior frontal gyrus, and right cerebellar lobule VIIB. Detailed analyses revealed a dissociation between two clusters of gray matter density in the right hippocampus. Compared with the poorest wayfinders, the best wayfinders exhibited more gray matter density in a cluster located in the right posterior hippocampus but less gray matter density in a cluster located in the anterior section of the hippocampus. In addition, top performers spent more time gazing at the map, highlighting the benefit of using external aids during navigation tasks. Altogether, these results underscore how structural adaptations are associated with spatial navigation performance.
Collapse
Affiliation(s)
- Jordan Navarro
- Laboratoire d'Etude Des Mécanismes Cognitifs (EA 3082), University Lyon 2, Lyon, France
- Institut Universitaire de France, Paris, France
| | - Jean Ribot
- Laboratoire d'Etude Des Mécanismes Cognitifs (EA 3082), University Lyon 2, Lyon, France
| | - Damien Schnebelen
- Laboratoire d'Etude Des Mécanismes Cognitifs (EA 3082), University Lyon 2, Lyon, France
| | - Perrine Seguin
- Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, CRNL, Lyon, France
| | - Marie Claude Ouimet
- Faculté De Médecine Et Des Sciences de la Santé, University of Sherbrooke, Sherbrooke, Canada
| | - Emanuelle Reynaud
- Laboratoire d'Etude Des Mécanismes Cognitifs (EA 3082), University Lyon 2, Lyon, France
| |
Collapse
|
7
|
Koc AN, Urgen BA, Afacan Y. Task-modulated neural responses in scene-selective regions of the human brain. Vision Res 2025; 227:108539. [PMID: 39733756 DOI: 10.1016/j.visres.2024.108539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/29/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
The study of scene perception is crucial to the understanding of how one interprets and interacts with their environment, and how the environment impacts various cognitive functions. The literature so far has mainly focused on the impact of low-level and categorical properties of scenes and how they are represented in the scene-selective regions in the brain, PPA, RSC, and OPA. However, higher-level scene perception and the impact of behavioral goals is a developing research area. Moreover, the selection of the stimuli has not been systematic and mainly focused on outdoor environments. In this fMRI experiment, we adopted multiple behavioral tasks, selected real-life indoor stimuli with a systematic categorization approach, and used various multivariate analysis techniques to explain the neural modulation of scene perception in the scene-selective regions of the human brain. Participants (N = 21) performed categorization and approach-avoidance tasks during fMRI scans while they were viewing scenes from built environment categories based on different affordances ((i)access and (ii)circulation elements, (iii)restrooms and (iv)eating/seating areas). ROI-based classification analysis revealed that the OPA was significantly successful in decoding scene category regardless of the task, and that the task condition affected category decoding performances of all the scene-selective regions. Model-based representational similarity analysis (RSA) revealed that the activity patterns in scene-selective regions are best explained by task. These results contribute to the literature by extending the task and stimulus content of scene perception research, and uncovering the impact of behavioral goals on the scene-selective regions of the brain.
Collapse
Affiliation(s)
- Aysu Nur Koc
- Department of Psychology, Justus Liebig University Giessen, Giessen, Germany; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey.
| | - Burcu A Urgen
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey; Aysel Sabuncu Brain Research Center and National Magnetic Resonance Imaging Center, Bilkent University, Ankara, Turkey.
| | - Yasemin Afacan
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; Department of Interior Architecture and Environmental Design, Bilkent University, Ankara, Turkey; Aysel Sabuncu Brain Research Center and National Magnetic Resonance Imaging Center, Bilkent University, Ankara, Turkey.
| |
Collapse
|
8
|
Li Y, Ren M, Liu B, Jiang T, Jia X, Zhang H, Gong H, Wang X. Dissection of the long-range circuit of the mouse intermediate retrosplenial cortex. Commun Biol 2025; 8:56. [PMID: 39814996 PMCID: PMC11736107 DOI: 10.1038/s42003-025-07463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
The retrosplenial cortex (RSP) is a complex brain region with multiple interconnected subregions that plays crucial roles in various cognitive functions, including memory, spatial navigation, and emotion. Understanding the afferent and efferent connectivity of the RSP is essential for comprehending the underlying mechanisms of its functions. Here, via viral tracing and fluorescence micro-optical sectioning tomography (fMOST), we systematically investigated the anatomical organisation of the upstream and downstream circuits of glutamatergic and GABAergic neurons in the dorsal and ventral RSP. The cortical connections of the RSP show laminar organisation in which the input neurons are distributed more in the deeper layers of the upstream cortex. Although different types of neurons have similar upstream circuits, GABAergic neurons show bidirectional connections with the hippocampus, whereas glutamatergic neurons only show unidirectional connections. Moreover, GABAergic neurons receive more inputs from the primary sensory cortex than from the prefrontal cortex and association cortex. The dorsal and ventral subregions have preferred circuits such that the dorsal RSP exhibits spatially topological connections with the dorsal visual cortex and lateral thalamus. The systematic study on long-range connections across RSP subregions and cell types may provide useful information for future revealing of RSP working mechanisms.
Collapse
Affiliation(s)
- Yuxiao Li
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China
| | - Miao Ren
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China
| | - Bimin Liu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xueyan Jia
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Haili Zhang
- School of Breeding and Multiplication, Hainan University, Sanya, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xiaojun Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China.
| |
Collapse
|
9
|
Patel K, Stotter J, Pali MC, Giannopulu I. Imagine going left versus imagine going right: whole-body motion on the lateral axis. Sci Rep 2024; 14:31558. [PMID: 39738135 PMCID: PMC11686341 DOI: 10.1038/s41598-024-57220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/15/2024] [Indexed: 01/01/2025] Open
Abstract
Unlike the conventional, embodied, and embrained whole-body movements in the sagittal forward and vertical axes, movements in the lateral/transversal axis cannot be unequivocally grounded, embodied, or embrained. When considering motor imagery for left and right directions, it is assumed that participants have underdeveloped representations due to a lack of familiarity with moving along the lateral axis. In the current study, a 32 electroencephalography (EEG) system was used to identify the oscillatory neural signature linked with lateral axis motor imagery. Following the experimental procedure, 36 healthy participants were instructed and trained to imagine moving left and right from a first-person perspective. On average, greater beta oscillatory activity in the parietal region was observed during right motor imagery compared to left motor imagery. Furthermore, lateral whole-body motion imagery is associated with the posterior multimodal somatosensory parietal areas, which showed significantly more prominent cortico-cortical interconnections when performing right than left motor imagery, as indicated by Phase-Locked Value (PLV) analysis. The findings suggest that the mental simulation of lateral movements, reflecting immature neurocognitive schemata, might engender non-grounded and non-embedded somatosensory and kinesthetic representations that would be associated with the lateralisation of the multimodal cortical vestibular network.
Collapse
Affiliation(s)
- K Patel
- School of Human Sciences and Humanities, University of Houston, Houston, 77001, USA
| | - J Stotter
- Interdisciplinary Centre for the Artificial Mind (iCAM), Robina, 4229, Australia
| | - M C Pali
- Research Centre On Stroke Rehabilitation, MUI, 6020, Innsbruck, Austria
| | - I Giannopulu
- Creative Robotics Lab, UNSW, Sydney, 2021, Australia.
- Clinical Research and Technological Innovation, 75016, Paris, France.
| |
Collapse
|
10
|
Amedi A, Shelly S, Saporta N, Catalogna M. Perceptual learning and neural correlates of virtual navigation in subjective cognitive decline: A pilot study. iScience 2024; 27:111411. [PMID: 39669432 PMCID: PMC11634985 DOI: 10.1016/j.isci.2024.111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/24/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
Spatial navigation deficits in age-related diseases involve brain changes affecting spatial memory and verbal cognition. Studies in blind and blindfolded individuals show that multisensory training can induce neuroplasticity through visual cortex recruitment. This proof-of-concept study introduces a digital navigation training protocol, integrating egocentric and allocentric strategies with multisensory stimulation and visual masking to enhance spatial cognition and brain connectivity in 17 individuals (mean age 57.2 years) with subjective cognitive decline. Results indicate improved spatial memory performance correlated with recruitment of the visual area 6-thalamic pathway and enhanced connectivity between memory, executive frontal areas, and default mode network (DMN) regions. Additionally, increased connectivity between allocentric and egocentric navigation areas via the retrosplenial complex (RSC) hub was observed. These findings suggest that this training has the potential to induce perceptual learning and neuroplasticity through key functional connectivity hubs, offering potential widespread cognitive benefits by enhancing critical brain network functions.
Collapse
Affiliation(s)
- Amir Amedi
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel
| | - Shahar Shelly
- Department of Neurology, Rambam Medical Center, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Merav Catalogna
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel
| |
Collapse
|
11
|
Subramanian DL, Miller AMP, Smith DM. The retrosplenial cortical role in delayed spatial alternation. Neurobiol Learn Mem 2024; 216:108005. [PMID: 39542201 PMCID: PMC11624974 DOI: 10.1016/j.nlm.2024.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
The retrosplenial cortex (RSC) plays an important role in spatial cognition. RSC neurons exhibit a variety of spatial firing patterns and lesion studies have found that the RSC is necessary for spatial working memory tasks. However, little is known about how RSC neurons might encode spatial memory during a delay period. In the present study, we trained control rats and rats with excitotoxic lesions of the RSC on spatial alternation task with varying delay durations and in a separate group of rats, we recorded RSC neuronal activity as the rats performed the alternation task. We found that RSC lesions significantly impaired alternation performance, particularly at the longest delay duration. We also found that RSC neurons exhibited reliably different firing patterns throughout the delay periods preceding left and right trials, consistent with a working memory signal. These differential firing patterns were absent during the delay periods preceding errors. We also found that many RSC neurons exhibit a large spike in firing rate leading up to the start of the trial. Many of these trial start responses also differentiated left and right trials, suggesting that they could play a role in priming the 'go left' or 'go right' behavioral responses. Our results suggest that these firing patterns represent critical memory information that underlies the RSC role in spatial working memory.
Collapse
Affiliation(s)
| | - Adam M P Miller
- Department of Psychology, Cornell University, Ithaca, NY 14853
| | - David M Smith
- Department of Psychology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
12
|
Paasonen J, Valjakka JS, Salo RA, Paasonen E, Tanila H, Michaeli S, Mangia S, Gröhn O. Whisker stimulation with different frequencies reveals non-uniform modulation of functional magnetic resonance imaging signal across sensory systems in awake rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623361. [PMID: 39605361 PMCID: PMC11601494 DOI: 10.1101/2024.11.13.623361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Primary sensory systems are classically considered to be separate units, however there is current evidence that there are notable interactions between them. We examined the cross-sensory interplay by applying a quiet and motion-tolerant zero echo time functional magnetic resonance imaging (fMRI) technique to elucidate the evoked brain-wide responses to whisker pad stimulation in awake and anesthetized rats. Specifically, characterized the brain-wide responses in core and non-core regions to whisker pad stimulation by the varying stimulation-frequency, and determined whether isoflurane-medetomidine anesthesia, traditionally used in preclinical imaging, confounded investigations related to sensory integration. We demonstrated that unilateral whisker pad stimulation not only elicited robust activity along the whisker-mediated tactile system, but also in auditory, visual, high-order, and cerebellar regions, indicative of brain-wide cross-sensory and associative activity. By inspecting the response profiles to different stimulation frequencies and temporal signal characteristics, we observed that the non-core regions responded to stimulation in a very different way compared to the primary sensory system, likely reflecting different encoding modes between the primary sensory, cross-sensory, and integrative processing. Lastly, while the activity evoked in low-order sensory structures could be reliably detected under anesthesia, the activity in high-order processing and the complex differences between primary, cross-sensory, and associative systems were visible only in the awake state. We conclude that our study reveals novel aspects of the cross-sensory interplay of whisker-mediated tactile system, and importantly, that these would be difficult to observe in anesthetized rats.
Collapse
Affiliation(s)
- Jaakko Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juha S. Valjakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Raimo A. Salo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Stanisavljević Ilić A, Filipović D. Mapping of c-Fos Expression in Rat Brain Sub/Regions Following Chronic Social Isolation: Effective Treatments of Olanzapine, Clozapine or Fluoxetine. Pharmaceuticals (Basel) 2024; 17:1527. [PMID: 39598437 PMCID: PMC11597560 DOI: 10.3390/ph17111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The c-Fos as a marker of cell activation is used to identify brain regions involved in stimuli processing. This review summarizes a pattern of c-Fos immunoreactivity and the overlapping brain sub/regions which may provide hints for the identification of neural circuits that underlie depressive- and anxiety-like behaviors of adult male rats following three and six weeks of chronic social isolation (CSIS), relative to controls, as well as the antipsychotic-like effects of olanzapine (Olz), and clozapine (Clz), and the antidepressant-like effect of fluoxetine (Flx) in CSIS relative to CSIS alone. Additionally, drug-treated controls relative to control rats were also characterized. The overlapping rat brain sub/regions with increased expression of c-Fos immunoreactivity following three or six weeks of CSIS were the retrosplenial granular cortex, c subregion, retrosplenial dysgranular cortex, dorsal dentate gyrus, paraventricular nucleus of the thalamus (posterior part, PVP), lateral/basolateral (LA/BL) complex of the amygdala, caudate putamen, and nucleus accumbens shell. Increased activity of the nucleus accumbens core following exposure of CSIS rats either to Olz, Clz, and Flx treatments was found, whereas these treatments in controls activated the LA/BL complex of the amygdala and PVP. We also outline sub/regions that might represent potential neuroanatomical targets for the aforementioned antipsychotics or antidepressant treatments.
Collapse
Affiliation(s)
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
14
|
Basu J, Nagel K. Neural circuits for goal-directed navigation across species. Trends Neurosci 2024; 47:904-917. [PMID: 39393938 PMCID: PMC11563880 DOI: 10.1016/j.tins.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024]
Abstract
Across species, navigation is crucial for finding both resources and shelter. In vertebrates, the hippocampus supports memory-guided goal-directed navigation, whereas in arthropods the central complex supports similar functions. A growing literature is revealing similarities and differences in the organization and function of these brain regions. We review current knowledge about how each structure supports goal-directed navigation by building internal representations of the position or orientation of an animal in space, and of the location or direction of potential goals. We describe input pathways to each structure - medial and lateral entorhinal cortex in vertebrates, and columnar and tangential neurons in insects - that primarily encode spatial and non-spatial information, respectively. Finally, we highlight similarities and differences in spatial encoding across clades and suggest experimental approaches to compare coding principles and behavioral capabilities across species. Such a comparative approach can provide new insights into the neural basis of spatial navigation and neural computation.
Collapse
Affiliation(s)
- Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Katherine Nagel
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
15
|
Kawakami N, Okada Y, Morihara K, Katsuse K, Kakinuma K, Matsubara S, Kanno S, Suzuki K. Long-lasting pure topographical disorientation due to heading disorientation following left retrosplenial infarction: A report of two cases. Brain Cogn 2024; 181:106211. [PMID: 39226866 DOI: 10.1016/j.bandc.2024.106211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/02/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Topographical disorientation is linked to lesions in the right hemisphere and typically resolves within a few months post-stroke. Persistent topographical disorientation is uncommon and frequently accompanied by impairments in visual memory, complicating the analysis of the underlying mechanisms. Herein, we report two cases of sustained pure topographical disorientation following cerebral hemorrhages in the left retrosplenial region. The patients exhibited disorientation in both familiar and unfamiliar settings, attributable to heading disorientation, a deficit in determining the directional relationship between one's current position and a target location or external frames. The patients struggled with reconstructing large-scale spatial frameworks and integrating new egocentric and allocentric perspectives upon changes in body orientation. There were no landmark agnosia, egocentric disorientation, or anterograde disorientation. Although mild verbal memory deficits were observed, no other cognitive impairments, including visual memory deficits, were detected. Our findings imply that lesions confined to the left retrosplenial region can induce enduring heading disorientation and suggest a significant role for this area in processing and integrating spatial information necessary for large-scale navigation. Clarifying the features of topographical disorientation will significantly impact the therapeutic approaches, enhancing the quality of life for affected patients by restoring their independence and mobility.
Collapse
Affiliation(s)
- Nobuko Kawakami
- Department of Behavioral Neurology and Cognitive Neuroscience, Graduate School of Medicine, Tohoku University, Japan.
| | - Yuri Okada
- Department of Neurology, Graduate School of Medicine, Tohoku University, Japan
| | - Keisuke Morihara
- Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Japan.
| | - Kazuto Katsuse
- Department of Behavioral Neurology and Cognitive Neuroscience, Graduate School of Medicine, Tohoku University, Japan; Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kazuo Kakinuma
- Department of Behavioral Neurology and Cognitive Neuroscience, Graduate School of Medicine, Tohoku University, Japan.
| | - Shiho Matsubara
- Department of Behavioral Neurology and Cognitive Neuroscience, Graduate School of Medicine, Tohoku University, Japan
| | - Shigenori Kanno
- Department of Behavioral Neurology and Cognitive Neuroscience, Graduate School of Medicine, Tohoku University, Japan.
| | - Kyoko Suzuki
- Department of Behavioral Neurology and Cognitive Neuroscience, Graduate School of Medicine, Tohoku University, Japan.
| |
Collapse
|
16
|
Markostamou I, Coventry KR. Age effects on processing spatial relations within different reference frames: The role of executive functions. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:1279-1295. [PMID: 36121065 DOI: 10.1080/23279095.2022.2121212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mental representations of space can be generated and communicated with respect to different reference frames and perspectives. The present study investigated the effects of age and individual differences in domain-general executive functions on people's ability to process spatial relations as expressed in language within different spatial reference frames (SRFs). Healthy adults aged between 18 and 85 completed a novel task involving self-, third-person-, object-, and environment-centered judgements of spatial relations between two objects, as well as standard tests of working memory, inhibition, and mental flexibility. A psychometric evaluation confirmed the test-retest reliability and the convergent and divergent validity of the new task. Results showed that the lifespan trajectories varied depending on the SRF. Processing from a self-centered perspective or an object-centered frame remained intact throughout the adult-lifespan. By contrast, spatial processing from a third-person-centered perspective or within an environment-centered frame declined in late adulthood. Mediation regression models showed that mental flexibility accounted for a significant part of the age-related variance in spatial processing across all allocentric SRFs. The age effects on environment-centered processing were also partially mediated by age-related changes in visuospatial working memory capacity. These findings suggest that at least partially distinct systems are involved in mentally representing space under different SRFs, which are differentially affected by typical aging. Our results also highlight that people's ability to process spatial relations across different SRFs depends on their capacity to employ domain-general effortful cognitive resources.
Collapse
Affiliation(s)
- Ioanna Markostamou
- Division of Psychology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- School of Psychology, University of East Anglia, Norwich, UK
| | | |
Collapse
|
17
|
Wei J, Xiao C, Zhang GW, Shen L, Tao HW, Zhang LI. A distributed auditory network mediated by pontine central gray underlies ultra-fast awakening in response to alerting sounds. Curr Biol 2024; 34:4597-4611.e5. [PMID: 39265569 PMCID: PMC11521200 DOI: 10.1016/j.cub.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/12/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Sleeping animals can be woken up rapidly by external threat signals, which is an essential defense mechanism for survival. However, neuronal circuits underlying the fast transmission of sensory signals for this process remain unclear. Here, we report in mice that alerting sound can induce rapid awakening within hundreds of milliseconds and that glutamatergic neurons in the pontine central gray (PCG) play an important role in this process. These neurons exhibit higher sensitivity to auditory stimuli in sleep than wakefulness. Suppressing these neurons results in reduced sound-induced awakening and increased sleep in intrinsic sleep/wake cycles, whereas their activation induces ultra-fast awakening from sleep and accelerates awakening from anesthesia. Additionally, the sound-induced awakening can be attributed to the propagation of auditory signals from the PCG to multiple arousal-related regions, including the mediodorsal thalamus, lateral hypothalamus, and ventral tegmental area. Thus, the PCG serves as an essential distribution center to orchestrate a global auditory network to promote rapid awakening.
Collapse
Affiliation(s)
- Jinxing Wei
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cuiyu Xiao
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Guang-Wei Zhang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li Shen
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
18
|
Sun H, Cai R, Li R, Li M, Gao L, Li X. Conjunctive processing of spatial border and locomotion in retrosplenial cortex during spatial navigation. J Physiol 2024; 602:5017-5038. [PMID: 39216077 DOI: 10.1113/jp286434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Spatial information and dynamic locomotor behaviours are equally important for achieving locomotor goals during spatial navigation. However, it remains unclear how spatial and locomotor information is integrated during the processing of self-initiated spatial navigation. Anatomically, the retrosplenial cortex (RSC) has reciprocal connections with brain regions related to spatial processing, including the hippocampus and para-hippocampus, and also receives inputs from the secondary motor cortex. In addition, RSC is functionally associated with allocentric and egocentric spatial targets and head-turning. So, RSC may be a critical region for integrating spatial and locomotor information. In this study, we first examined the role of RSC in spatial navigation using the Morris water maze and found that mice with inactivated RSC took a longer time and distance to reach their destination. Then, by imaging neuronal activity in freely behaving mice within two open fields of different sizes, we identified a large proportion of border cells, head-turning cells and locomotor speed cells in the superficial layer of RSC. Interestingly, some RSC neurons exhibited conjunctive coding for both spatial and locomotor signals. Furthermore, these conjunctive neurons showed higher prediction accuracy compared with simple spatial or locomotor neurons in special navigator scenes using the border, turning and positive-speed conjunctive cells. Our study reveals that the RSC is an important conjunctive brain region that processes spatial and locomotor information during spatial navigation. KEY POINTS: Retrosplenial cortex (RSC) is indispensable during spatial navigation, which was displayed by the longer time and distance of mice to reach their destination after the inactivation of RSC in a water maze. The superficial layer of RSC has a larger population of spatial-related border cells, and locomotion-related head orientation and speed cells; however, it has few place cells in two-dimensional spatial arenas. Some RSC neurons exhibited conjunctive coding for both spatial and locomotor signals, and the conjunctive neurons showed higher prediction accuracy compared with simple spatial or locomotor neurons in special navigation scenes. Our study reveals that the RSC is an important conjunctive brain region that processes both spatial and locomotor information during spatial navigation.
Collapse
Affiliation(s)
- Hao Sun
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Ruolan Cai
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
19
|
Naveilhan C, Saulay-Carret M, Zory R, Ramanoël S. Spatial Contextual Information Modulates Affordance Processing and Early Electrophysiological Markers of Scene Perception. J Cogn Neurosci 2024; 36:2084-2099. [PMID: 39023371 DOI: 10.1162/jocn_a_02223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Scene perception allows humans to extract information from their environment and plan navigation efficiently. The automatic extraction of potential paths in a scene, also referred to as navigational affordance, is supported by scene-selective regions (SSRs) that enable efficient human navigation. Recent evidence suggests that the activity of these SSRs can be influenced by information from adjacent spatial memory areas. However, it remains unexplored how this contextual information could influence the extraction of bottom-up information, such as navigational affordances, from a scene and the underlying neural dynamics. Therefore, we analyzed ERPs in 26 young adults performing scene and spatial memory tasks in artificially generated rooms with varying numbers and locations of available doorways. We found that increasing the number of navigational affordances only impaired performance in the spatial memory task. ERP results showed a similar pattern of activity for both tasks, but with increased P2 amplitude in the spatial memory task compared with the scene memory. Finally, we reported no modulation of the P2 component by the number of affordances in either task. This modulation of early markers of visual processing suggests that the dynamics of SSR activity are influenced by a priori knowledge, with increased amplitude when participants have more contextual information about the perceived scene. Overall, our results suggest that prior spatial knowledge about the scene, such as the location of a goal, modulates early cortical activity associated with SSRs, and that this information may interact with bottom-up processing of scene content, such as navigational affordances.
Collapse
Affiliation(s)
| | | | - Raphaël Zory
- LAMHESS, Université Côte d'Azur, Nice, France
- Institut Universitaire de France (IUF)
| | - Stephen Ramanoël
- LAMHESS, Université Côte d'Azur, Nice, France
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| |
Collapse
|
20
|
Brooks IA, Jedrasiak-Cape I, Rybicki-Kler C, Ekins TG, Ahmed OJ. Unique Transcriptomic Cell Types of the Granular Retrosplenial Cortex are Preserved Across Mice and Rats Despite Dramatic Changes in Key Marker Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613545. [PMID: 39345493 PMCID: PMC11429737 DOI: 10.1101/2024.09.17.613545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The granular retrosplenial cortex (RSG) supports key functions ranging from memory consolidation to spatial navigation. The mouse RSG contains several cell types that are remarkably distinct from those found in other cortical regions. This includes the physiologically and transcriptomically unique low rheobase neuron that is the dominant cell-type in RSG layers 2/3 (L2/3 LR), as well as the similarly exclusive pyramidal cells that comprise much of RSG layer 5a (L5a RSG). While the functions of the RSG are extensively studied in both mice and rats, it remains unknown if the transcriptomically unique cell types of the mouse RSG are evolutionarily conserved in rats. Here, we show that mouse and rat RSG not only contain the same cell types, but key subtypes including the L2/3 LR and L5a RSG neurons are amplified in their representations in rats compared to mice. This preservation of cell types in male and female rats happens despite dramatic changes in key cell-type-specific marker genes, with the Scnn1a expression that selectively tags mouse L5a RSG neurons completely absent in rats. Important for Cre-driver line development, we identify alternative, cross-species genes that can be used to selectively target the cell types of the RSG in both mice and rats. Our results show that the unique cell types of the RSG are evolutionarily conserved across millions of years of evolution between mice and rats, but also emphasize stark species-specific differences in marker genes that need to be considered when making cell-type-specific transgenic lines of mice versus rats.
Collapse
Affiliation(s)
- Isla A.W. Brooks
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | | | - Chloe Rybicki-Kler
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Tyler G. Ekins
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Omar J. Ahmed
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
21
|
Balcerek E, Włodkowska U, Czajkowski R. FOS mapping reveals two complementary circuits for spatial navigation in mouse. Sci Rep 2024; 14:21252. [PMID: 39261637 PMCID: PMC11391074 DOI: 10.1038/s41598-024-72272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Here, we show that during continuous navigation in a dynamic external environment, mice are capable of developing a foraging strategy based exclusively on changing distal (allothetic) information and that this process may involve two alternative components of the spatial memory circuit: the hippocampus and retrosplenial cortex. To this end, we designed a novel custom apparatus and implemented a behavioral protocol based on the figure-8-maze paradigm with two goal locations associated with distinct contexts. We assessed whether mice are able to learn to retrieve a sequence of rewards guided exclusively by the changing context. We found out that training mice in the apparatus leads to change in strategy from the internal tendency to alternate into navigation based exclusively on visual information. This effect could be achieved using two different training protocols: prolonged alternation training, or a flexible protocol with unpredictable turn succession. Based on the c-FOS mapping we also provide evidence of opposing levels of engagement of hippocampus and retrosplenial cortex after training of mice in these two different regimens. This supports the hypothesis of the existence of parallel circuits guiding spatial navigation, one based on the well-described hippocampal representation, and another, RSC-dependent.
Collapse
Affiliation(s)
- Edyta Balcerek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Urszula Włodkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Rafał Czajkowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland.
| |
Collapse
|
22
|
Orti R, Coello Y, Ruotolo F, Vincent M, Bartolo A, Iachini T, Ruggiero G. Cortical Correlates of Visuospatial Switching Processes Between Egocentric and Allocentric Frames of Reference: A fNIRS Study. Brain Topogr 2024; 37:712-730. [PMID: 38315347 PMCID: PMC11393019 DOI: 10.1007/s10548-023-01032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Human beings represent spatial information according to egocentric (body-to-object) and allocentric (object-to-object) frames of reference. In everyday life, we constantly switch from one frame of reference to another in order to react effectively to the specific needs of the environment and task demands. However, to the best of our knowledge, no study to date has investigated the cortical activity of switching and non-switching processes between egocentric and allocentric spatial encodings. To this aim, a custom-designed visuo-spatial memory task was administered and the cortical activities underlying switching vs non-switching spatial processes were investigated. Changes in concentrations of oxygenated and deoxygenated haemoglobin were measured using functional near-infrared spectroscopy (fNIRS). Participants were asked to memorize triads of geometric objects and then make two consecutive judgments about the same triad. In the non-switching condition, both spatial judgments considered the same frame of reference: only egocentric or only allocentric. In the switching condition, if the first judgment was egocentric, the second one was allocentric (or vice versa). The results showed a generalized activation of the frontal regions during the switching compared to the non-switching condition. Additionally, increased cortical activity was found in the temporo-parietal junction during the switching condition compared to the non-switching condition. Overall, these results illustrate the cortical activity underlying the processing of switching between body position and environmental stimuli, showing an important role of the temporo-parietal junction and frontal regions in the preparation and switching between egocentric and allocentric reference frames.
Collapse
Affiliation(s)
- Renato Orti
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy
| | - Yann Coello
- UMR 9193, SCALab, Sciences Cognitives et Sciences Affectives, Université de Lille, 59000, Lille, France
| | - Francesco Ruotolo
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy
| | - Marion Vincent
- UMR 9193, SCALab, Sciences Cognitives et Sciences Affectives, Université de Lille, 59000, Lille, France
| | - Angela Bartolo
- UMR 9193, SCALab, Sciences Cognitives et Sciences Affectives, Université de Lille, 59000, Lille, France
| | - Tina Iachini
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy
| | - Gennaro Ruggiero
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy.
| |
Collapse
|
23
|
Qiu Y, Lian YN, Wu C, Liu L, Zhang C, Li XY. Coordination between midcingulate cortex and retrosplenial cortex in pain regulation. Front Mol Neurosci 2024; 17:1405532. [PMID: 39165718 PMCID: PMC11333351 DOI: 10.3389/fnmol.2024.1405532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction The cingulate cortex, with its subregions ACC, MCC, and RSC, is key in pain processing. However, the detailed interactions among these regions in modulating pain sensation have remained unclear. Methods In this study, chemogenetic tools were employed to selectively activate or inhibit neuronal activity in the MCC and RSC of rodents to elucidate their roles in pain regulation.Results: Our results showed that chemogenetic activation in both the RSC and MCC heightened pain sensitivity. Suppression of MCC activity disrupted the RSC's regulation of both mechanical and thermal pain, while RSC inhibition specifically affected the MCC's regulation of thermal pain. Discussion The findings indicate a complex interplay between the MCC and RSC, with the MCC potentially governing the RSC's pain regulatory mechanisms. The RSC, in turn, is crucial for the MCC's control over thermal sensation, revealing a collaborative mechanism in pain processing. Conclusion This study provides evidence for the MCC and RSC's collaborative roles in pain regulation, highlighting the importance of their interactions for thermal and mechanical pain sensitivity. Understanding these mechanisms could aid in developing targeted therapies for pain disorders.
Collapse
Affiliation(s)
- Yunya Qiu
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Psychiatry, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Yan-Na Lian
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Psychiatry, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Cheng Wu
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Psychiatry, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Li Liu
- Core Facilities of the School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Zhang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Beijing Key Laboratory of Neural Regeneration and Repair & Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Xiang-Yao Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Psychiatry, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
24
|
Dubanet O, Higley MJ. Retrosplenial inputs drive visual representations in the medial entorhinal cortex. Cell Rep 2024; 43:114470. [PMID: 38985682 PMCID: PMC11300029 DOI: 10.1016/j.celrep.2024.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
The importance of visual cues for navigation and goal-directed behavior is well established, although the neural mechanisms supporting sensory representations in navigational circuits are largely unknown. Navigation is fundamentally dependent on the medial entorhinal cortex (MEC), which receives direct projections from neocortical visual areas, including the retrosplenial cortex (RSC). Here, we perform high-density recordings of MEC neurons in awake, head-fixed mice presented with simple visual stimuli and assess the dynamics of sensory-evoked activity. We find that a large fraction of neurons exhibit robust responses to visual input. Visually responsive cells are located primarily in layer 3 of the dorsal MEC and can be separated into subgroups based on functional and molecular properties. Furthermore, optogenetic suppression of RSC afferents within the MEC strongly reduces visual responses. Overall, our results demonstrate that the MEC can encode simple visual cues in the environment that may contribute to neural representations of location necessary for accurate navigation.
Collapse
Affiliation(s)
- Olivier Dubanet
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
25
|
Subramanian DL, Miller AMP, Smith DM. The Retrosplenial Cortical Role in Delayed Spatial Alternation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599656. [PMID: 38948695 PMCID: PMC11212980 DOI: 10.1101/2024.06.18.599656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The retrosplenial cortex (RSC) plays an important role in spatial cognition. RSC neurons exhibit a variety of spatial firing patterns and lesion studies have found that the RSC is necessary for spatial working memory tasks. However, little is known about how RSC neurons might encode spatial memory during a delay period. In the present study, we trained control rats and rats with excitotoxic lesions of the RSC on spatial alternation task with varying delay durations and in a separate group of rats, we recorded RSC neuronal activity as the rats performed the alternation task. We found that RSC lesions significantly impaired alternation performance, particularly at the longest delay duration. We also found that RSC neurons exhibited reliably different firing patterns throughout the delay periods preceding left and right trials, consistent with a working memory signal. These differential firing patterns were absent during the delay periods preceding errors. We also found that many RSC neurons exhibit a large spike in firing rate leading up to the start of the trial. Many of these trial start responses also differentiated left and right trials, suggesting that they could play a role in priming the 'go left' or 'go right' behavioral responses. Our results suggest that these firing patterns represent critical memory information that underlies the RSC role in spatial working memory.
Collapse
Affiliation(s)
| | - Adam M P Miller
- Department of Psychology, Cornell University, Ithaca, NY 14853
| | - David M Smith
- Department of Psychology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
26
|
Zabegalov KN, Costa FV, Kolesnikova TO, de Abreu MS, Petersen EV, Yenkoyan KB, Kalueff AV. Can we gain translational insights into the functional roles of cerebral cortex from acortical rodent and naturally acortical zebrafish models? Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110964. [PMID: 38354895 DOI: 10.1016/j.pnpbp.2024.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/11/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Cerebral cortex is found only in mammals and is particularly prominent and developed in humans. Various rodent models with fully or partially ablated cortex are commonly used to probe the role of cortex in brain functions and its multiple subcortical projections, including pallium, thalamus and the limbic system. Various rodent models are traditionally used to study the role of cortex in brain functions. A small teleost fish, the zebrafish (Danio rerio), has gained popularity in neuroscience research, and albeit (like other fishes) lacking cortex, its brain performs well some key functions (e.g., memory, consciousness and motivation) with complex, context-specific and well-defined behaviors. Can rodent and zebrafish models help generate insights into the role of cortex in brain functions, and dissect its cortex-specific (vs. non-cortical) functions? To address this conceptual question, here we evaluate brain functionality in intact vs. decorticated rodents and further compare it in the zebrafish, a naturally occurring acortical species. Overall, comparing cortical and acortical rodent models with naturally acortical zebrafish reveals both distinct and overlapping contributions of neocortex and 'precortical' zebrafish telencephalic regions to higher brain functions. Albeit morphologically different, mammalian neocortex and fish pallium may possess more functional similarities than it is presently recognized, calling for further integrative research utilizing both cortical and decorticated/acortical vertebrate model organisms.
Collapse
Affiliation(s)
- Konstantin N Zabegalov
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan; Life Improvement by Future Technologies (LIFT) Center, LLC, Moscow, Russia
| | - Fabiano V Costa
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | | | | | | | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University named after M. Heratsi, Yerevan, Armenia; Department of Biochemistry, Yerevan State Medical University named after M. Heratsi, Yerevan, Armenia.
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
| |
Collapse
|
27
|
Franco-Pérez J. Mechanisms Underlying Memory Impairment Induced by Fructose. Neuroscience 2024; 548:27-38. [PMID: 38679409 DOI: 10.1016/j.neuroscience.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Fructose consumption has increased over the years, especially in adolescents living in urban areas. Growing evidence indicates that daily fructose consumption leads to some pathological conditions, including memory impairment. This review summarizes relevant data describing cognitive deficits after fructose intake and analyzes the underlying neurobiological mechanisms. Preclinical experiments show sex-related deficits in spatial memory; that is, while males exhibit significant imbalances in spatial processing, females seem unaffected by dietary supplementation with fructose. Recognition memory has also been evaluated; however, only female rodents show a significant decline in the novel object recognition test performance. According to mechanistic evidence, fructose intake induces neuroinflammation, mitochondrial dysfunction, and oxidative stress in the short term. Subsequently, these mechanisms can trigger other long-term effects, such as inhibition of neurogenesis, downregulation of trophic factors and receptors, weakening of synaptic plasticity, and long-term potentiation decay. Integrating all these neurobiological mechanisms will help us understand the cellular and molecular processes that trigger the memory impairment induced by fructose.
Collapse
Affiliation(s)
- Javier Franco-Pérez
- Laboratorio Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Insurgentes Sur 3877, Col. La Fama, C.P. 14269, CDMX, México, Mexico.
| |
Collapse
|
28
|
Weerasekera A, Ion-Mărgineanu A, Nolan GP, Mody M. Subcortical-cortical white matter connectivity in adults with autism spectrum disorder and schizophrenia patients. Psychiatry Res Neuroimaging 2024; 340:111806. [PMID: 38508025 DOI: 10.1016/j.pscychresns.2024.111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
Autism spectrum disorder (ASD) and schizophrenia (SZ) are neuropsychiatric disorders that overlap in symptoms associated with social-cognitive impairment. Alterations of the cingulate cortex, subcortical, medial-temporal, and orbitofrontal structures are frequently reported in both disorders. In this study, we examined white-matter connectivity between these structures in adults with ASD and SZ patients compared with their respective neurotypical controls and indirectly with each other, using probabilistic and local DTI tractography. This exploratory study utilized publicly available neuroimaging databases, of adults with ASD (ABIDE II; n = 28) and SZ (COBRE; n = 38), age-gender matched neurotypicals (NT) and associated phenotypic data. Tractography was performed using Freesurfer and MRtrix software, and diffusion metrics of white-matter tracts between cingulate-, orbitofrontal- cortices, subcortical structures, parahippocampal, entorhinal cortex were assessed. In ASD, atypical diffusivity parameters were found in the isthmus cingulate and parahippocampal connectivity to subcortical and rostral-anterior cingulate, which were also associated with IQ and social skills (SRS). In contrast, atypical diffusivity parameters were observed between the medial-orbitofrontal cortex and subcortical structures in SZ, and were associated with executive function (i.e., IQ, processing speed) and emotional regulation. Overall, the results suggest that defects in the isthmus cingulate, medial-orbitofrontal, and striato-limbic white matter connectivity may help unravel the neural underpinnings of executive and social-emotional dysfunction at the core of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Akila Weerasekera
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Adrian Ion-Mărgineanu
- ESAT - STADIUS, KU Leuven, Leuven. Belgium; Biomed Artificial Intelligence LLC, Bucharest, Romania
| | - Garry P Nolan
- Department of Microbiology & Immunology, Stanford University School of Medicine, United States
| | - Maria Mody
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Sheppard PAS, Oomen CA, Bussey TJ, Saksida LM. The Granular Retrosplenial Cortex Is Necessary in Male Rats for Object-Location Associative Learning and Memory, But Not Spatial Working Memory or Visual Discrimination and Reversal, in the Touchscreen Operant Chamber. eNeuro 2024; 11:ENEURO.0120-24.2024. [PMID: 38844347 PMCID: PMC11208985 DOI: 10.1523/eneuro.0120-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
The retrosplenial cortex (RSC) is a hub of diverse afferent and efferent projections thought to be involved in associative learning. RSC shows early pathology in mild cognitive impairment and Alzheimer's disease (AD), which impairs associative learning. To understand and develop therapies for diseases such as AD, animal models are essential. Given the importance of human RSC in object-location associative learning and the success of object-location associative paradigms in human studies and in the clinic, it would be of considerable value to establish a translational model of object-location learning for the rodent. For this reason, we sought to test the role of RSC in object-location learning in male rats using the object-location paired-associates learning (PAL) touchscreen task. First, increased cFos immunoreactivity was observed in granular RSC following PAL training when compared with extended pretraining controls. Following this, RSC lesions following PAL acquisition were used to explore the necessity of the RSC in object-location associative learning and memory and two tasks involving only one modality: trial-unique nonmatching-to-location for spatial working memory and pairwise visual discrimination/reversal. RSC lesions impaired both memory for learned paired-associates and learning of new object-location associations but did not affect performance in either the spatial or visual single-modality tasks. These findings provide evidence that RSC is necessary for object-location learning and less so for learning and memory involving the individual modalities therein.
Collapse
Affiliation(s)
- Paul A S Sheppard
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Charlotte A Oomen
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- MRC and Wellcome Trust Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Timothy J Bussey
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- MRC and Wellcome Trust Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Lisa M Saksida
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- MRC and Wellcome Trust Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
30
|
Cisek P, Green AM. Toward a neuroscience of natural behavior. Curr Opin Neurobiol 2024; 86:102859. [PMID: 38583263 DOI: 10.1016/j.conb.2024.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
One of the most exciting new developments in systems neuroscience is the progress being made toward neurophysiological experiments that move beyond simplified laboratory settings and address the richness of natural behavior. This is enabled by technological advances such as wireless recording in freely moving animals, automated quantification of behavior, and new methods for analyzing large data sets. Beyond new empirical methods and data, however, there is also a need for new theories and concepts to interpret that data. Such theories need to address the particular challenges of natural behavior, which often differ significantly from the scenarios studied in traditional laboratory settings. Here, we discuss some strategies for developing such novel theories and concepts and some example hypotheses being proposed.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada.
| | - Andrea M Green
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada
| |
Collapse
|
31
|
Satish A, Keller VG, Raza S, Fitzpatrick S, Horner AJ. Theta and alpha oscillations in human hippocampus and medial parietal cortex support the formation of location-based representations. Hippocampus 2024; 34:284-301. [PMID: 38520305 DOI: 10.1002/hipo.23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Our ability to navigate in a new environment depends on learning new locations. Mental representations of locations are quickly accessible during navigation and allow us to know where we are regardless of our current viewpoint. Recent functional magnetic resonance imaging (fMRI) research using pattern classification has shown that these location-based representations emerge in the retrosplenial cortex and parahippocampal gyrus, regions theorized to be critically involved in spatial navigation. However, little is currently known about the oscillatory dynamics that support the formation of location-based representations. We used magnetoencephalogram (MEG) recordings to investigate region-specific oscillatory activity in a task where participants could form location-based representations. Participants viewed videos showing that two perceptually distinct scenes (180° apart) belonged to the same location. This "overlap" video allowed participants to bind the two distinct scenes together into a more coherent location-based representation. Participants also viewed control "non-overlap" videos where two distinct scenes from two different locations were shown, where no location-based representation could be formed. In a post-video behavioral task, participants successfully matched the two viewpoints shown in the overlap videos, but not the non-overlap videos, indicating they successfully learned the locations in the overlap condition. Comparing oscillatory activity between the overlap and non-overlap videos, we found greater theta and alpha/beta power during the overlap relative to non-overlap videos, specifically at time-points when we expected scene integration to occur. These oscillations localized to regions in the medial parietal cortex (precuneus and retrosplenial cortex) and the medial temporal lobe, including the hippocampus. Therefore, we find that theta and alpha/beta oscillations in the hippocampus and medial parietal cortex are likely involved in the formation of location-based representations.
Collapse
Affiliation(s)
- Akul Satish
- Department of Psychology, University of York, York, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Sumaiyah Raza
- Department of Psychology, University of York, York, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Aidan J Horner
- Department of Psychology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
32
|
Hegarty BE, Gruenhagen GW, Johnson ZV, Baker CM, Streelman JT. Spatially resolved cell atlas of the teleost telencephalon and deep homology of the vertebrate forebrain. Commun Biol 2024; 7:612. [PMID: 38773256 PMCID: PMC11109250 DOI: 10.1038/s42003-024-06315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
The telencephalon has undergone remarkable diversification and expansion throughout vertebrate evolution, exhibiting striking variations in structural and functional complexity. Nevertheless, fundamental features are shared across vertebrate taxa, such as the presence of distinct regions including the pallium, subpallium, and olfactory structures. Teleost fishes have a uniquely "everted" telencephalon, which has confounded comparisons of their brain regions to other vertebrates. Here we combine spatial transcriptomics and single nucleus RNA-sequencing to generate a spatially-resolved transcriptional atlas of the Mchenga conophorus cichlid fish telencephalon. We then compare cell-types and anatomical regions in the cichlid telencephalon with those in amphibians, reptiles, birds, and mammals. We uncover striking transcriptional similarities between cell-types in the fish telencephalon and subpallial, hippocampal, and cortical cell-types in tetrapods, and find support for partial eversion of the teleost telencephalon. Ultimately, our work lends new insights into the organization and evolution of conserved cell-types and regions in the vertebrate forebrain.
Collapse
Affiliation(s)
- Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30329, USA
| | - Cristina M Baker
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
33
|
Rogers SA, Heller EA, Corder G. Psilocybin-enhanced fear extinction linked to bidirectional modulation of cortical ensembles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578811. [PMID: 38352491 PMCID: PMC10862786 DOI: 10.1101/2024.02.04.578811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The serotonin 2 receptor (5HT2R) agonist psilocybin displays rapid and persistent therapeutic efficacy across neuropsychiatric disorders characterized by cognitive inflexibility. However, the impact of psilocybin on patterns of neural activity underlying sustained changes in behavioral flexibility has not been characterized. To test the hypothesis that psilocybin enhances behavioral flexibility by altering activity in cortical neural ensembles, we performed longitudinal single-cell calcium imaging in the retrosplenial cortex across a five-day trace fear learning and extinction assay. A single dose of psilocybin induced ensemble turnover between fear learning and extinction days while oppositely modulating activity in fear- and extinction- active neurons. The acute suppression of fear-active neurons and delayed recruitment of extinction-active neurons were predictive of psilocybin-enhanced fear extinction. A computational model revealed that acute inhibition of fear-active neurons by psilocybin is sufficient to explain its neural and behavioral effects days later. These results align with our hypothesis and introduce a new mechanism involving the suppression of fear-active populations in the retrosplenial cortex.
Collapse
Affiliation(s)
- Sophie A. Rogers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A. Heller
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Corder
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Tononi G, Boly M, Cirelli C. Consciousness and sleep. Neuron 2024; 112:1568-1594. [PMID: 38697113 PMCID: PMC11105109 DOI: 10.1016/j.neuron.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Sleep is a universal, essential biological process. It is also an invaluable window on consciousness. It tells us that consciousness can be lost but also that it can be regained, in all its richness, when we are disconnected from the environment and unable to reflect. By considering the neurophysiological differences between dreaming and dreamless sleep, we can learn about the substrate of consciousness and understand why it vanishes. We also learn that the ongoing state of the substrate of consciousness determines the way each experience feels regardless of how it is triggered-endogenously or exogenously. Dreaming consciousness is also a window on sleep and its functions. Dreams tell us that the sleeping brain is remarkably lively, recombining intrinsic activation patterns from a vast repertoire, freed from the requirements of ongoing behavior and cognitive control.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
| |
Collapse
|
35
|
Igloi K, Marin Bosch B, Kuenzi N, Thomas A, Lauer E, Bringard A, Schwartz S. Interactions between physical exercise, associative memory, and genetic risk for Alzheimer's disease. Cereb Cortex 2024; 34:bhae205. [PMID: 38802684 PMCID: PMC11129939 DOI: 10.1093/cercor/bhae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
The ε4 allele of the APOE gene heightens the risk of late onset Alzheimer's disease. ε4 carriers, may exhibit cognitive and neural changes early on. Given the known memory-enhancing effects of physical exercise, particularly through hippocampal plasticity via endocannabinoid signaling, here we aimed to test whether a single session of physical exercise may benefit memory and underlying neurophysiological processes in young ε3 carriers (ε3/ε4 heterozygotes, risk group) compared with a matched control group (homozygotes for ε3). Participants underwent fMRI while learning picture sequences, followed by cycling or rest before a memory test. Blood samples measured endocannabinoid levels. At the behavioral level, the risk group exhibited poorer associative memory performance, regardless of the exercising condition. At the brain level, the risk group showed increased medial temporal lobe activity during memory retrieval irrespective of exercise (suggesting neural compensatory effects even at baseline), whereas, in the control group, such increase was only detectable after physical exercise. Critically, an exercise-related endocannabinoid increase correlated with task-related hippocampal activation in the control group only. In conclusion, healthy young individuals carrying the ε4 allele may present suboptimal associative memory performance (when compared with homozygote ε3 carriers), together with reduced plasticity (and functional over-compensation) within medial temporal structures.
Collapse
Affiliation(s)
- Kinga Igloi
- Department of Fundamental Neurosciences, University of Geneva, CH-1211 Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Blanca Marin Bosch
- Department of Fundamental Neurosciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Noémie Kuenzi
- Department of Fundamental Neurosciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Aurélien Thomas
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, CH-1011 Geneva, Switzerland
| | - Estelle Lauer
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, CH-1011 Geneva, Switzerland
| | - Aurélien Bringard
- Department of Pneumology, Geneva University Hospitals, CH-1011 Geneva, Switzerland
| | - Sophie Schwartz
- Department of Fundamental Neurosciences, University of Geneva, CH-1211 Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, CH-1211 Geneva, Switzerland
- Geneva Neuroscience Center, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
36
|
Hayashi T, Sato N. Contribution of the retrosplenial cortex to route selection in a complex maze. Neurosci Res 2024; 202:52-59. [PMID: 38043596 DOI: 10.1016/j.neures.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The retrosplenial cortex (RSC) is a region involved in navigation. In this study, we investigated the role of the RSC in navigation in a large-scale environment where the destination is not visible from the current location. We used a large maze where the routes could be freely designed by inserting and removing plates. In Experiment 1, rats learned a specific route in the maze and then were tested with a shortcut route in addition to the learned route. The rats with RSC lesions utilized the shortcut faster than those in the control group. In Experiment 2, rats were initially trained to follow a specific route, and subsequently, we tested the effects of a small change in the environment on their route-following behavior. In the test, the rats with RSC lesions demonstrated more errors than those in the control group. This suggests that lesions in the RSC make navigation to a goal unstable. These findings suggest that the RSC may be involved in the ability to perform appropriate behavior at a segment on a learned route in a large-scale environment, which drives habitually following the learned route.
Collapse
Affiliation(s)
- Tomohiro Hayashi
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan
| | - Nobuya Sato
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan; Center for Applied Psychological Science (CAPS), Kwansei Gakuin University, Japan.
| |
Collapse
|
37
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
38
|
Arndt KC, Gilbert ET, Klaver LMF, Kim J, Buhler CM, Basso JC, McKenzie S, English DF. Granular retrosplenial cortex layer 2/3 generates high-frequency oscillations dynamically coupled with hippocampal rhythms across brain states. Cell Rep 2024; 43:113910. [PMID: 38461414 DOI: 10.1016/j.celrep.2024.113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/20/2023] [Accepted: 02/17/2024] [Indexed: 03/12/2024] Open
Abstract
The granular retrosplenial cortex (gRSC) exhibits high-frequency oscillations (HFOs; ∼150 Hz), which can be driven by a hippocampus-subiculum pathway. How the cellular-synaptic and laminar organization of gRSC facilitates HFOs is unknown. Here, we probe gRSC HFO generation and coupling with hippocampal rhythms using focal optogenetics and silicon-probe recordings in behaving mice. ChR2-mediated excitation of CaMKII-expressing cells in L2/3 or L5 induces HFOs, but spontaneous HFOs are found only in L2/3, where HFO power is highest. HFOs couple to CA1 sharp wave-ripples (SPW-Rs) during rest and the descending phase of theta. gRSC HFO current sources and sinks are the same for events during both SPW-Rs and theta oscillations. Independent component analysis shows that high gamma (50-100 Hz) in CA1 stratum lacunosum moleculare is comodulated with HFO power. HFOs may thus facilitate interregional communication of a multisynaptic loop between the gRSC, hippocampus, and medial entorhinal cortex during distinct brain and behavioral states.
Collapse
Affiliation(s)
- Kaiser C Arndt
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | - Earl T Gilbert
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | | | - Jongwoon Kim
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Chelsea M Buhler
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | - Julia C Basso
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA; Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24060, USA; Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Sam McKenzie
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
39
|
van der Goes MSH, Voigts J, Newman JP, Toloza EHS, Brown NJ, Murugan P, Harnett MT. Coordinated head direction representations in mouse anterodorsal thalamic nucleus and retrosplenial cortex. eLife 2024; 13:e82952. [PMID: 38470232 PMCID: PMC10932540 DOI: 10.7554/elife.82952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
The sense of direction is critical for survival in changing environments and relies on flexibly integrating self-motion signals with external sensory cues. While the anatomical substrates involved in head direction (HD) coding are well known, the mechanisms by which visual information updates HD representations remain poorly understood. Retrosplenial cortex (RSC) plays a key role in forming coherent representations of space in mammals and it encodes a variety of navigational variables, including HD. Here, we use simultaneous two-area tetrode recording to show that RSC HD representation is nearly synchronous with that of the anterodorsal nucleus of thalamus (ADn), the obligatory thalamic relay of HD to cortex, during rotation of a prominent visual cue. Moreover, coordination of HD representations in the two regions is maintained during darkness. We further show that anatomical and functional connectivity are consistent with a strong feedforward drive of HD information from ADn to RSC, with anatomically restricted corticothalamic feedback. Together, our results indicate a concerted global HD reference update across cortex and thalamus.
Collapse
Affiliation(s)
- Marie-Sophie H van der Goes
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Jakob Voigts
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Open-Ephys IncAtlantaUnited States
- HHMI Janelia Research CampusAshburnUnited States
| | - Jonathan P Newman
- Open-Ephys IncAtlantaUnited States
- Department of Brain & Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Enrique HS Toloza
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Physics, Massachusetts Institute of TechnologyCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Norma J Brown
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Pranav Murugan
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Mark T Harnett
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
40
|
Mayne P, Das J, Zou S, Sullivan RKP, Burne THJ. Perineuronal nets are associated with decision making under conditions of uncertainty in female but not male mice. Behav Brain Res 2024; 461:114845. [PMID: 38184206 DOI: 10.1016/j.bbr.2024.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Biological sex influences decision-making processes in significant ways, differentiating the responses animals choose when faced with a range of stimuli. The neurobiological underpinnings that dictate sex differences in decision-making tasks remains an important open question, yet single-sex studies of males form most studies in behavioural neuroscience. Here we used female and male BALB/c mice on two spatial learning and memory tasks and examined the expression of perineuronal nets (PNNs) and parvalbumin interneurons (PV) in regions correlated with spatial memory. Mice underwent the aversive active place avoidance (APA) task or the appetitive trial-unique nonmatching-to-location (TUNL) touchscreen task. Mice in the APA cohort learnt to avoid the foot-shock and no differences were observed on key measures of the task nor in the number and intensity of PNNs and PV. On the delay but not separation manipulation in the TUNL task, females received more incorrect trials and less correct trials compared to males. Furthermore, females in this cohort exhibited higher intensity PNNs and PV cells in the agranular and granular retrosplenial cortex, compared to males. These data show that female and male mice perform similarly on spatial learning tasks. However, sex differences in neural circuitry may underly differences in making decisions under conditions of uncertainty on an appetitive task. These data emphasise the importance of using mice of both sexes in studies of decision-making neuroscience.
Collapse
Affiliation(s)
- Phoebe Mayne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Joyosmita Das
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simin Zou
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Robert K P Sullivan
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD 4076, Australia.
| |
Collapse
|
41
|
Jeffery KJ. The mosaic structure of the mammalian cognitive map. Learn Behav 2024; 52:19-34. [PMID: 38231426 PMCID: PMC10923978 DOI: 10.3758/s13420-023-00618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/18/2024]
Abstract
The cognitive map, proposed by Tolman in the 1940s, is a hypothetical internal representation of space constructed by the brain to enable an animal to undertake flexible spatial behaviors such as navigation. The subsequent discovery of place cells in the hippocampus of rats suggested that such a map-like representation does exist, and also provided a tool with which to explore its properties. Single-neuron studies in rodents conducted in small singular spaces have suggested that the map is founded on a metric framework, preserving distances and directions in an abstract representational format. An open question is whether this metric structure pertains over extended, often complexly structured real-world space. The data reviewed here suggest that this is not the case. The emerging picture is that instead of being a single, unified construct, the map is a mosaic of fragments that are heterogeneous, variably metric, multiply scaled, and sometimes laid on top of each other. Important organizing factors within and between fragments include boundaries, context, compass direction, and gravity. The map functions not to provide a comprehensive and precise rendering of the environment but rather to support adaptive behavior, tailored to the species and situation.
Collapse
Affiliation(s)
- Kate J Jeffery
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
42
|
Rekers S, Finke C. Translating spatial navigation evaluation from experimental to clinical settings: The virtual environments navigation assessment (VIENNA). Behav Res Methods 2024; 56:2033-2048. [PMID: 37166580 PMCID: PMC10991013 DOI: 10.3758/s13428-023-02134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 05/12/2023]
Abstract
Spatial navigation abilities are frequently impaired in neurological disorders and they also decline with normal aging. Researchers and clinicians therefore need valid and easy-to-use spatial navigation assessment tools to study the impact of different neuropathologies and prevent relevant cognitive impairments from going undetected. However, current experimental paradigms rarely address which cognitive processes they recruit, often have resource-intensive setups, and usually require active navigation, e.g., using a joystick or keyboard, thus confounding cognitive performance with fine motor skills. Yet, for clinical feasibility, time-efficient paradigms are needed that are informative and easy to administer in participants with limited technical experience and diverging impairments. Here, we introduce the virtual environments navigation assessment (VIENNA), a virtual adaptation of a brief, standardized, and intuitive spatial navigation paradigm ( https://osf.io/kp4c5/ ). VIENNA is designed to assess spatial navigation without episodic memory demands, requires no interface device, and takes about 16 min to complete. We evaluated VIENNA in 79 healthy middle-aged to older participants (50-85 years) and provide evidence for its feasibility and construct validity. Tests of visuospatial and executive functions, but not episodic memory or selective attention, were identified as cognitive correlates of VIENNA, even when controlling for participant age and overall cognitive performance. Furthermore, VIENNA scores correlated with subjective navigation ability and age, but not with depressiveness, cognitive complaints, or education. The straightforward administration of VIENNA allows for its integration into routine neuropsychological assessments and enables differentiated evaluation of spatial navigation performance in patients with motor impairments and episodic memory deficits.
Collapse
Affiliation(s)
- Sophia Rekers
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
43
|
Lee J, Park S. Multi-modal Representation of the Size of Space in the Human Brain. J Cogn Neurosci 2024; 36:340-361. [PMID: 38010320 DOI: 10.1162/jocn_a_02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
To estimate the size of an indoor space, we must analyze the visual boundaries that limit the spatial extent and acoustic cues from reflected interior surfaces. We used fMRI to examine how the brain processes the geometric size of indoor scenes when various types of sensory cues are presented individually or together. Specifically, we asked whether the size of space is represented in a modality-specific way or in an integrative way that combines multimodal cues. In a block-design study, images or sounds that depict small- and large-sized indoor spaces were presented. Visual stimuli were real-world pictures of empty spaces that were small or large. Auditory stimuli were sounds convolved with different reverberations. By using a multivoxel pattern classifier, we asked whether the two sizes of space can be classified in visual, auditory, and visual-auditory combined conditions. We identified both sensory-specific and multimodal representations of the size of space. To further investigate the nature of the multimodal region, we specifically examined whether it contained multimodal information in a coexistent or integrated form. We found that angular gyrus and the right medial frontal gyrus had modality-integrated representation, displaying sensitivity to the match in the spatial size information conveyed through image and sound. Background functional connectivity analysis further demonstrated that the connection between sensory-specific regions and modality-integrated regions increases in the multimodal condition compared with single modality conditions. Our results suggest that spatial size perception relies on both sensory-specific and multimodal representations, as well as their interplay during multimodal perception.
Collapse
|
44
|
Cheng HY, Overington DW, Jeffery KJ. A configural context signal simultaneously but separably drives positioning and orientation of hippocampal place fields. Hippocampus 2024; 34:73-87. [PMID: 38041644 PMCID: PMC10952416 DOI: 10.1002/hipo.23589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Effective self-localization requires that the brain can resolve ambiguities in incoming sensory information arising from self-similarities (symmetries) in the environment structure. We investigated how place cells use environmental cues to resolve the ambiguity of a rotationally symmetric environment, by recording from hippocampal CA1 in rats exploring a "2-box." This apparatus comprises two adjacent rectangular compartments, identical but with directionally opposed layouts (cue card at one end and central connecting doorway) and distinguished by their odor contexts (lemon vs. vanilla). Despite the structural and visual rotational symmetry of the boxes, no place cells rotated their place fields. The majority changed their firing fields (remapped) between boxes but some repeated them, maintaining a translational symmetry and thus adopting a relationship to the layout that was conditional on the odor. In general, the place field ensemble maintained a stable relationship to environment orientation as defined by the odors, but sometimes the whole ensemble rotated its firing en bloc, decoupling from the odor context cues. While the individual elements of these observations-odor remapping, place field repetition, ensemble rotation, and decoupling from context-have been reported in isolation, the combination in the one experiment is incompletely explained within current models. We redress this by proposing a model in which odor cues enter into a three-way association with layout cues and head direction, creating a configural context signal that facilitates two separate processes: place field orientation and place field positioning. This configuration can subsequently still function in the absence of one of its components, explaining the ensemble decoupling from odor. We speculate that these interactions occur in retrosplenial cortex, because it has previously been implicated in context processing, and all the relevant signals converge here.
Collapse
Affiliation(s)
- Han Yin Cheng
- Institute of Behavioural Neuroscience, Division of Psychology & Language SciencesUniversity College LondonLondonUK
- Present address:
Department of Psychological ScienceUniversity of VermontBurlingtonVermontUSA
| | - Dorothy W. Overington
- Institute of Behavioural Neuroscience, Division of Psychology & Language SciencesUniversity College LondonLondonUK
- Present address:
The Purple AgencyBasingstokeUK
| | - Kate J. Jeffery
- Institute of Behavioural Neuroscience, Division of Psychology & Language SciencesUniversity College LondonLondonUK
- School of Psychology and NeuroscienceCollege of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
| |
Collapse
|
45
|
Coolidge FL. A neurological foundation for peaceful negotiations. Behav Brain Sci 2024; 47:e6. [PMID: 38224069 DOI: 10.1017/s0140525x23002674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Glowacki explored the conditions required for peace and argued its preconditions arose only within the last 100,000 years. The present commentary addresses some major brain changes that occurred only in Homo sapiens within that period of time and the verbal and nonverbal cognitive sequelae of those neurological changes that may have aided the diplomatic negotiations required for peaceful solutions.
Collapse
Affiliation(s)
- Frederick L Coolidge
- Psychology Department, University of Colorado, Colorado Springs, CO, USA ://psychology.uccs.edu/fred-coolidge
| |
Collapse
|
46
|
Wang JH, Wu C, Lian YN, Cao XW, Wang ZY, Dong JJ, Wu Q, Liu L, Sun L, Chen W, Chen WJ, Zhang Z, Zhuo M, Li XY. Single-cell RNA sequencing uncovers the cell type-dependent transcriptomic changes in the retrosplenial cortex after peripheral nerve injury. Cell Rep 2023; 42:113551. [PMID: 38048224 DOI: 10.1016/j.celrep.2023.113551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/14/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
The retrosplenial cortex (RSC) is a vital area for storing remote memory and has recently been found to undergo broad changes after peripheral nerve injury. However, little is known about the role of RSC in pain regulation. Here, we examine the involvement of RSC in the pain of mice with nerve injury. Notably, reducing the activities of calcium-/calmodulin-dependent protein kinase type II-positive splenial neurons chemogenetically increases paw withdrawal threshold and extends thermal withdrawal latency in mice with nerve injury. The single-cell or single-nucleus RNA-sequencing results predict enhanced excitatory synaptic transmissions in RSC induced by nerve injury. Local infusion of 1-naphthyl acetyl spermine into RSC to decrease the excitatory synaptic transmissions relieves pain and induces conditioned place preference. Our data indicate that RSC is critical for regulating physiological and neuropathic pain. The cell type-dependent transcriptomic information would help understand the molecular basis of neuropathic pain.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Cheng Wu
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China; Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JU, UK
| | - Yan-Na Lian
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Wen Cao
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zi-Yue Wang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jia-Jun Dong
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Qin Wu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Li Liu
- Core Facilities of the School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li Sun
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Wen-Juan Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Zhi Zhang
- Key Laboratory of Brain Functions and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xiang-Yao Li
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China; Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JU, UK.
| |
Collapse
|
47
|
Ding SL. A novel subdivision of the bed nucleus of stria terminalis in monkey, rat, and mouse brains. J Comp Neurol 2023; 531:2121-2145. [PMID: 36583448 PMCID: PMC11406555 DOI: 10.1002/cne.25446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
The bed nucleus of stria terminalis (BST) is a critical structure that mediates sustained vigilant responses to contextual, diffuse, and unpredictable threats. Dysfunction of the BST could lead to excessive anxiety and hypervigilance, which are often observed in posttraumatic stress disorder and anxiety disorders. Vigilance of potential future threats from the external environment is a basic brain function and probably requires rapid and/or short neural circuits, which enable both quick detection of the potential threats and fast adaptive responses. However, the BST in literature does not appear to receive spatial information directly from earlier visual or spatial processing structures. In this study, a novel subdivision of the BST is uncovered in monkey, rat, and mouse brains based on the human equivalent and is found in mouse to receive direct inputs from the ventral lateral geniculate nucleus and pretectal nucleus as well as from the spatial processing structures such as subiculum, presubiculum, and medial entorhinal cortex. This new subdivision, termed spindle-shaped small cell subdivision (BSTsc), is located between the known BST and the anterior thalamus. In addition to the unique afferent connections and cell morphology, the BSTsc also displays unique molecular signature (e.g., positive for excitatory markers) compared with other BST subdivisions, which are mostly composed of inhibitory GABAergic neurons. The BSTsc appears to have largely overlapping efferent projections with other BST subdivisions such as the projections to the amygdala, hypothalamus, nucleus accumbens, septum, and brainstem. Together, the present study suggests that the BSTsc is poised to serve as a shortcut bridge directly linking spatial information from the environment to vigilant adaptive internal responses.
Collapse
Affiliation(s)
- Song-Lin Ding
- Allen Institute for Brain Science, Seattle, Washington, USA
| |
Collapse
|
48
|
Lande AS, Garvert AC, Ebbesen NC, Jordbræk SV, Vervaeke K. Representations of tactile object location in the retrosplenial cortex. Curr Biol 2023; 33:4599-4610.e7. [PMID: 37774708 DOI: 10.1016/j.cub.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/23/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023]
Abstract
How animals use tactile sensation to detect important objects and remember their location in a world-based coordinate system is unclear. Here, we hypothesized that the retrosplenial cortex (RSC), a key network for contextual memory and spatial navigation, represents the location of objects based on tactile sensation. We studied mice palpating objects with their whiskers while navigating in a tactile virtual reality in darkness. Using two-photon Ca2+ imaging, we discovered that a population of neurons in the agranular RSC signal the location of objects. Responses to objects do not simply reflect the sensory stimulus. Instead, they are highly position, task, and context dependent and often predict the upcoming object before it is within reach. In addition, a large fraction of neurons encoding object location maintain a memory trace of the object's location. These data show that the RSC encodes the location and arrangement of tactile objects in a spatial reference frame.
Collapse
Affiliation(s)
- Andreas Sigstad Lande
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Anna Christina Garvert
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Nora Cecilie Ebbesen
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Sondre Valentin Jordbræk
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Koen Vervaeke
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway.
| |
Collapse
|
49
|
Moon HJ, Wu HP, De Falco E, Blanke O. Physical Body Orientation Impacts Virtual Navigation Experience and Performance. eNeuro 2023; 10:ENEURO.0218-23.2023. [PMID: 37932043 PMCID: PMC10683533 DOI: 10.1523/eneuro.0218-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Most human navigation studies in MRI rely on virtual navigation. However, the necessary supine position in MRI makes it fundamentally different from daily ecological navigation. Nonetheless, until now, no study has assessed whether differences in physical body orientation (BO) affect participants' experienced BO during virtual navigation. Here, combining an immersive virtual reality navigation task with subjective BO measures and implicit behavioral measures, we demonstrate that physical BO (either standing or supine) modulates experienced BO. Also, we show that standing upright BO is preferred during spatial navigation: participants were more likely to experience a standing BO and were better at spatial navigation when standing upright. Importantly, we report that showing a supine virtual agent reduces the conflict between the preferred BO and physical supine BO. Our study provides critical, but missing, information regarding experienced BO during virtual navigation, which should be considered cautiously when designing navigation studies, especially in MRI.
Collapse
Affiliation(s)
- Hyuk-June Moon
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Hsin-Ping Wu
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Emanuela De Falco
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Olaf Blanke
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Department of Clinical Neurosciences, University Hospital Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
50
|
Scherer M, Harmsen IE, Samuel N, Elias GJB, Germann J, Boutet A, MacLeod CE, Giacobbe P, Rowland NC, Lozano AM, Milosevic L. Oscillatory network markers of subcallosal cingulate deep brain stimulation for depression. Brain Stimul 2023; 16:1764-1775. [PMID: 38061548 PMCID: PMC10947774 DOI: 10.1016/j.brs.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Identifying functional biomarkers related to treatment success can aid in expediting therapy optimization, as well as contribute to a better understanding of the neural mechanisms of the treatment-resistant depression (TRD) and subcallosal cingulate deep brain stimulation (SCC-DBS). Magnetoencephalography data were obtained from 16 individuals with SCC-DBS for TRD and 25 healthy subjects. The first objective of the study was to identify region-specific oscillatory modulations that both (i) discriminate individuals with TRD (with SCC-DBS OFF) from healthy controls, and (ii) discriminate TRD treatment responders from non-responders (with SCC-DBS ON). The second objective of this work was to further explore the effects of stimulation intensity and frequency on oscillatory activity in the identified brain regions of interest. Oscillatory power analyses led to the identification of brain regions that differentiated responders from non-responders based on modulations of increased alpha (8-12 Hz) and decreased gamma (32-116 Hz) power within nodes of the default mode, central executive, and somatomotor networks, Broca's area, and lingual gyrus. Within these nodes, it was also found that low stimulation frequency had stronger effects on oscillatory modulation than increased stimulation intensity. The identified functional network biomarkers implicate modulation of TRD-related activity in brain regions involved in emotional control/processing, motor control, and the interaction between speech, vision, and memory, which have all been implicated in depression. These electrophysiological biomarkers have the potential to be used as functional proxies for therapy optimization. Additional stimulation parameter analyses revealed that oscillatory modulations can be strengthened by increasing stimulation intensity or reducing frequency, which may represent potential avenues of direction in non-responders.
Collapse
Affiliation(s)
- M Scherer
- Krembil Brain Institute, University Health Network, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - I E Harmsen
- Krembil Brain Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; Mitchell Goldhar MEG Unit, University Health Network, Toronto, Canada
| | - N Samuel
- Krembil Brain Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - G J B Elias
- Krembil Brain Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - J Germann
- Krembil Brain Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - A Boutet
- Krembil Brain Institute, University Health Network, Toronto, Canada; Joint Department of Medical Imaging, University of Toronto, Canada
| | - C E MacLeod
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - P Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences, University of Toronto, Toronto, Ontario, Canada
| | - N C Rowland
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA; Murray Center for Research on Parkinson's Disease and Related Disorders, Medical University of South Carolina, Charleston, SC, USA
| | - A M Lozano
- Krembil Brain Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Canada
| | - L Milosevic
- Krembil Brain Institute, University Health Network, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Canada; KITE Research Institute, University Health Network, Toronto, Canada.
| |
Collapse
|