1
|
Yu H, Liu W, Zhang J, Xie L, Lai A, Tian Z, Tang K, Xing H, Wang Y, Wei H, Rao Q, Gu R, Wang M, Wang H, Wang J, Qiu S. The Clinical and Molecular Characterization of Distinct Subtypes in Adult T Cell Acute Lymphoblastic Leukemia. Cancer Sci 2025; 116:1126-1138. [PMID: 39920885 PMCID: PMC11967253 DOI: 10.1111/cas.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/26/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a clonal proliferative malignant disease characterized by abnormal T-cell development. The classification of T-ALL primarily hinges on immunophenotype, encompassing early T-cell precursor (ETP)-ALL, near-ETP-ALL, and non-ETP-ALL. We summarized clinical information from 117 patients, with genetic data available for 77 patients and transcriptomic data available for 24 patients. An ETP-like score model was established based on transcriptome, aiming to address the subjectivity in the current T-ALL immunophenotype classification. The retrospective analysis indicated that ETP immunophenotype was not a prognostic factor for T-ALL patients. Compared to non-ETP-ALL patients, ETP-like patients including ETP-ALL and near-ETP-ALL were more likely to carry MED12 gene mutations, which may predict a dismal outcome. Transcriptomic analysis suggested that T-ALL patients with different immunophenotypes were in accordance with the T-cell development trajectory, while ETP-like patients exhibited characteristics of early T-cell development. Finally, we established an ETP-like score model and confirmed its efficiency across four independent cohorts, with sensitivity exceeding 80%. And T-ALL patients with high ETP-like score were associated with poor prognosis. In conclusion, our study elucidated the clinical and molecular features of distinct subtypes of T-ALL patients, providing new valuable insights for T-ALL classification.
Collapse
Affiliation(s)
- Heye Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Wenbing Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Junping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Leling Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Anli Lai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Runxia Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Shaowei Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| |
Collapse
|
2
|
Kuttikrishnan S, Ansari AW, Suleman M, Ahmad F, Prabhu KS, El‐Elimat T, Alali FQ, Al Shabeeb Akil AS, Bhat AA, Merhi M, Dermime S, Steinhoff M, Uddin S. The apoptotic and anti-proliferative effects of Neosetophomone B in T-cell acute lymphoblastic leukaemia via PI3K/AKT/mTOR pathway inhibition. Cell Prolif 2025; 58:e13773. [PMID: 39542458 PMCID: PMC11882758 DOI: 10.1111/cpr.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
The phosphatidylinositol 3-kinase/Protein Kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signalling pathway is pivotal in various cancers, including T-cell acute lymphoblastic leukaemia (T-ALL), a particularly aggressive type of leukaemia. This study investigates the effects of Neosetophomone B (NSP-B), a meroterpenoid fungal metabolite, on T-ALL cell lines, focusing on its anti-cancer mechanisms and therapeutic potential. NSP-B significantly inhibited the proliferation of T-ALL cells by inducing G0/G1 cell cycle arrest and promoting caspase-dependent apoptosis. Additionally, NSP-B led to the dephosphorylation and subsequent inactivation of the PI3K/AKT/mTOR signalling pathway, a critical pathway in cell survival and growth. Molecular docking studies revealed a strong binding affinity of NSP-B to the active site of AKT, primarily involving key residues crucial for its activity. Interestingly, NSP-B treatment also induced apoptosis and significantly reduced proliferation in phytohemagglutinin-activated primary human CD3+ T cells, accompanied by a G0/G1 cell cycle arrest. Importantly, NSP-B did not affect normal primary T cells, indicating a degree of selectivity in its action, targeting only T-ALL cells and activated T cells. In conclusion, our findings highlight the potential of NSP-B as a novel therapeutic agent for T-ALL, specifically targeting the aberrantly activated PI3K/AKT/mTOR pathway and being selective in action. These results provide a strong basis for further investigation into NSP-B's anti-cancer properties and potential application in T-ALL clinical therapies.
Collapse
Affiliation(s)
- Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- College of Pharmacy, QU HealthQatar UniversityDohaQatar
| | - Abdul W. Ansari
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
| | | | - Fareed Ahmad
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
| | - Tamam El‐Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of PharmacyJordan University of Science and TechnologyIrbidQatar
| | | | - Ammira S. Al Shabeeb Akil
- Department of Human Genetics‐Precision Medicine in Diabetes, Obesity and Cancer ProgramSidra MedicineDohaQatar
| | - Ajaz A. Bhat
- Department of Human Genetics‐Precision Medicine in Diabetes, Obesity and Cancer ProgramSidra MedicineDohaQatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and ResearchHamad Medical CorporationDohaQatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and ResearchHamad Medical CorporationDohaQatar
- College of Health SciencesQatar UniversityDohaQatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology & VenereologyHamad Medical CorporationDohaQatar
- Department of MedicineWeill Cornell Medicine‐QatarDohaQatar
- College of MedicineQatar UniversityDohaQatar
- College of Health and Life SciencesHamad Bin Khalifa UniversityDohaQatar
- Department of MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - Shahab Uddin
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Laboratory of Animal Research CenterQatar UniversityDohaQatar
| |
Collapse
|
3
|
Dashti M, Habibi MA, Nejati N, Robat-Jazi B, Ahmadpour M, Dokhani N, Nejad AR, Karami S, Alinejad E, Malekijoo AH, Ghasemzadeh A, Jadidi-Niaragh F. Clinical Efficacy and Safety of CD7-Targeted CAR T Cell Therapy for T-cell Malignancies: A Systematic Review and Meta-analysis. Anticancer Agents Med Chem 2025; 25:42-51. [PMID: 39192642 DOI: 10.2174/0118715206321313240820101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/19/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES Although T-cell malignancies are relatively less prevalent compared to B-cell malignancies, they are highly malignant, and patients usually have poor prognoses. Employing CD7-targeted chimeric antigen receptor (CAR) T cell therapy as a novel immunotherapy to treat malignant T cells faces numerous challenges and is in its early phase. To evaluate this possibility, we aimed to review and meta-analyze the related clinical trials systematically. METHODS On October 9, 2023, the online databases of PubMed, Scopus, Embase, and Web of Science were systematically searched for pertinent studies. After completing a two-step title/abstract and full-text screening process, the eligible studies were included. RESULTS We observed a pooled overall response rate (ORR) of 100%. Partial response (PR), stringent and/or complete response (sCR/CR), and relapse rate were 6%, 85%, and 18%, respectively. Additionally, the pooled rate of minimal residual disease (MRD) negativity was 85%. The most common grade ≥3 adverse events were related to hematological toxicities, including neutropenia (100%), thrombocytopenia (79%), and anemia (57%). Cytokine release syndrome (CRS) was also a frequent complication with a 100% rate; however, 81% of CRS events were low grades. No grade ≥3 GVHD was reported, and the immune effector cell-associated neurotoxicity syndrome (ICANS grade ≥3) was rare (4%). CONCLUSION CD7 is an active and safe target that shows promising results in the treatment of relapsed and/or refractory (r/r) T-cell malignancies.
Collapse
Affiliation(s)
- Mohsen Dashti
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Habibi
- Clinical Research Development Center, Qom University of Medical Sciences, Qom, Iran
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Robat-Jazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Ahmadpour
- Shahid Faghihi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Dokhani
- Cardio-Oncology Research Center, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Aida Rezaei Nejad
- Stem Cell and Regenerative Medical Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Karami
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Alinejad
- Department of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Amir H Malekijoo
- Department of Computer Engineering, Semnan University, Semnan, Iran
| | - Afsaneh Ghasemzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Gil-Kulik P, Kluz N, Przywara D, Petniak A, Wasilewska M, Frączek-Chudzik N, Cieśla M. Potential Use of Exosomal Non-Coding MicroRNAs in Leukemia Therapy: A Systematic Review. Cancers (Basel) 2024; 16:3948. [PMID: 39682135 DOI: 10.3390/cancers16233948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Leukemia is a heterogeneous group of hematological malignancies. Despite the enormous progress that has been made in the field of hemato-oncology in recent years, there are still many problems related to, among others, disease recurrence and drug resistance, which is why the search for ideal biomarkers with high clinical utility continues. Research shows that exosomes play a critical role in the biology of leukemia and are associated with the drug resistance, metastasis, and immune status of leukemias. Exosomes with their cargo of non-coding RNAs act as a kind of intermediary in intercellular communication and, at the same time, have the ability to manipulate the cell microenvironment and influence the reaction, proliferative, angiogenic, and migratory properties of cells. Exosomal ncRNAs (in particular, circRNAs and microRNAs) appear to be promising cell-free biomarkers for diagnostic, prognostic, and treatment monitoring of leukemias. This review examines the expression of exosomal ncRNAs in leukemias and their potential regulatory role in leukemia therapy but also in conditions such as disease relapse, drug resistance, metastasis, and immune status. Given the key role of ncRNAs in regulating gene networks and intracellular pathways through their ability to interact with DNA, transcripts, and proteins and identifying their specific target genes, defining potential functions and therapeutic strategies will provide valuable information.
Collapse
Affiliation(s)
- Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Natalia Kluz
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Dominika Przywara
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Małgorzata Wasilewska
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Natalia Frączek-Chudzik
- Institute of Medical Science, College of Medical Science, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Marek Cieśla
- Institute of Medical Science, College of Medical Science, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
5
|
Wang J, Zhang W, Xu X, Buglioni A, Li P, Chen X, Liu Y, Xu M, Herrick JL, Horna P, Zhang X, Song J, Jevremovic D, He R, Shi M, Yuan J. Clinicopathologic features and outcomes of acute leukemia harboring PICALM::MLLT10 fusion. Hum Pathol 2024; 151:105626. [PMID: 38971327 DOI: 10.1016/j.humpath.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The PICALM::MLLT10 fusion is a rare but recurrent cytogenetic abnormality in acute leukemia, with limited clinicopathologic and outcome data available. Herein, we analyzed 156 acute leukemia patients with PICALM::MLLT10 fusion, including 12 patients from our institutions and 144 patients from the literature. The PICALM::MLLT10 fusion preferentially manifested in pediatric and young adult patients, with a median age of 24 years. T-lymphoblastic leukemia/lymphoma (T-ALL) constituted 65% of cases, acute myeloid leukemia (AML) 27%, and acute leukemia of ambiguous lineage (ALAL) 8%. About half of T-ALL were classified as an early T-precursor (ETP)-ALL. In our institutions' cohort, mediastinum was the most common extramedullary site of involvement. Eight of 12 patients were diagnosed with T-ALL exhibiting a pro-/pre-T stage phenotype (CD4/CD8-double negative, CD7-positive), and frequent CD79a expression. NGS revealed pathogenic mutations in 5 of 6 tested cases, including NOTCH1, and genes in RAS and JAK-STAT pathways and epigenetic modifiers. Of 138 cases with follow-up, pediatric patients (<18 years) had 5-year overall survival (OS) of 71%, significantly better than adults at 33%. The 5-year OS for AML patients was 25%, notably shorter than T-ALL patients at 54%; this distinction was observed in both pediatric and adult populations. Furthermore, adult but not pediatric ETP-ALL patients demonstrated inferior survival compared to non-ETP-ALL patients. Neither karyotype complexity nor transplant status had a discernible impact on OS. In conclusion, PICALM::MLLT10 fusion is most commonly seen in T-ALL patients, particularly those with an ETP phenotype. AML and adult ETP-ALL patients had adverse prognosis. PICALM::MLTT10 fusion testing should be considered in T-ALL, AML, and ALAL patients.
Collapse
Affiliation(s)
| | - Weiwei Zhang
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xinjie Xu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alessia Buglioni
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Peng Li
- Division of Hematopathology, Department of Pathology, University of Utah Health, Salt Lake City, UT, 84132, USA
| | - Xueyan Chen
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, 98195, USA
| | - Yajuan Liu
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, 98195, USA
| | - Min Xu
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, 98105, USA
| | - Jennifer L Herrick
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Pedro Horna
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiaohui Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jinming Song
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Dragan Jevremovic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rong He
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Min Shi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ji Yuan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
6
|
Ghobadi A, Aldoss I, Maude S, Bhojwani D, Wayne A, Bajel A, Dholaria B, Faramand R, Mattison R, Rijneveld A, Zwaan C, Calkoen F, Baruchel A, Boissel N, Rettig M, Wood B, Jacobs K, Christ S, Irons H, Capoccia B, Gonzalez J, Wu T, Del Rosario M, Hamil A, Bakkacha O, Muth J, Ramsey B, McNulty E, Cooper M, Baughman J, Davidson-Moncada J, DiPersio J. Anti-CD7 allogeneic WU-CART-007 in patients with relapsed/refractory T-cell acute lymphoblastic leukemia/lymphoma: a phase 1/2 trial. RESEARCH SQUARE 2024:rs.3.rs-4676375. [PMID: 39149468 PMCID: PMC11326362 DOI: 10.21203/rs.3.rs-4676375/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Relapsed/refractory T-cell acute lymphoblastic leukemia (ALL)/lymphoma (LBL) represent a significant unmet medical need. WU-CART-007 is a CD7-targeting, allogeneic, fratricide-resistant chimeric antigen receptor T cell product generated from healthy donor T cells. WU-CART-007 was evaluated in a phase 1/2 study with a 3 + 3 dose-escalation design followed by cohort expansion in relapsed/refractory T-ALL/LBL. Patients received one infusion of WU-CART-007 after standard or enhanced lymphodepleting chemotherapy. The primary objectives, to characterize safety and assess the composite complete remission rate, were met. Of 26 patients enrolled, 13 received the recommended phase 2 dose (RP2D) of 900 million cells of WU-CART-007 with enhanced lymphodepletion. The most common treatment-related adverse event was cytokine release syndrome (88.5%; 19.2% grade 3-4). Biochemical abnormalities consistent with grade 2 hemophagocytic lymphohistiocytosis were seen in one patient (3.8%). Grade 1 immune effector cell-associated neurotoxicity syndrome events (7.7%) and one grade 2 acute graft-vs-host disease event occurred. Grade 5 events (11.5%) were due to fungal infection and multi-organ failure. The composite complete remission rate was 81.8% among 11/13 patients evaluable for response at the RP2D. WU-CART-007 at the RP2D demonstrated a high response rate in patients with relapsed/refractory T-ALL/LBL and has the potential to provide a new treatment option. ClinicalTrials.gov registration: NCT04984356.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - C Zwaan
- Erasmus Medical Center-Sophia Children's Hospital
| | | | - Andre Baruchel
- University Hospital Robert Debré and University Paris Diderot
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lahera A, Vela-Martín L, Fernández-Navarro P, Llamas P, López-Lorenzo JL, Cornago J, Santos J, Fernández-Piqueras J, Villa-Morales M. PIM1 is a potential therapeutic target for the leukemogenic effects mediated by JAK/STAT pathway mutations in T-ALL/LBL. NPJ Precis Oncol 2024; 8:152. [PMID: 39033228 PMCID: PMC11271448 DOI: 10.1038/s41698-024-00638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Precursor T-cell neoplasms (T-ALL/LBL) are aggressive hematological malignancies that arise from the malignant transformation of immature thymocytes. Despite the JAK/STAT pathway is recurrently altered in these neoplasms, there are not pharmacological inhibitors officially approved for the treatment of T-ALL/LBL patients that present oncogenic JAK/STAT pathway mutations. In the effort to identify potential therapeutic targets for those patients, we followed an alternative approach and focused on their transcriptional profile. We combined the analysis of molecular data from T-ALL/LBL patients with the generation of hematopoietic cellular models to reveal that JAK/STAT pathway mutations are associated with an aberrant transcriptional profile. Specifically, we demonstrate that JAK/STAT pathway mutations induce the overexpression of the PIM1 gene. Moreover, we show that the pan-PIM inhibitor, PIM447, significantly reduces the leukemogenesis, as well as the aberrant activation of c-MYC and mTOR pathways in cells expressing different JAK/STAT pathway mutations, becoming a potential therapeutic opportunity for a relevant subset of T-ALL/LBL patients.
Collapse
Affiliation(s)
- Antonio Lahera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain.
| | - Laura Vela-Martín
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Pablo Fernández-Navarro
- Unit of Cancer and Environmental Epidemiology, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain
| | - Pilar Llamas
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - José L López-Lorenzo
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Javier Cornago
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Javier Santos
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain
- Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid) Madrid, Madrid, 28049, Spain
| | - José Fernández-Piqueras
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain.
- Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid) Madrid, Madrid, 28049, Spain.
| | - María Villa-Morales
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain.
- Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid) Madrid, Madrid, 28049, Spain.
| |
Collapse
|
8
|
Burkart M, Dinner S. Advances in the treatment of Philadelphia chromosome negative acute lymphoblastic leukemia. Blood Rev 2024; 66:101208. [PMID: 38734488 DOI: 10.1016/j.blre.2024.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
There have been major paradigm shifts in the treatment of Philadelphia chromosome negative (Ph-) acute lymphoblastic leukemia (ALL) in the last decade with the introduction of new immunotherapies and targeted agents, adoption of pediatric-type chemotherapy protocols in younger adults as well as chemotherapy light approaches in older adults and the incorporation of measurable residual disease (MRD) testing to inform clinical decision making. With this, treatment outcomes in adult Ph- ALL have improved across all age groups. However, a subset of patients will still develop relapsed disease, which can be challenging to treat and associated with poor outcomes. Here we review the treatment of Ph- ALL in both younger and older adults, including the latest advancements and future directions.
Collapse
Affiliation(s)
- Madelyn Burkart
- Wake Forest Baptist Health, Winston Salem, NC, United States of America
| | - Shira Dinner
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States of America.
| |
Collapse
|
9
|
Shen Y, Liu M, Shen D, Chu M, Li X, Zhang X, Fan Y, Chen J, Wu D, Hu S, Xu Y. Busulfan plus cyclophosphamide vs. total body irradiation plus cyclophosphamide for allogeneic hematopoietic stem cell transplantation in patients with acute T lymphoblastic leukemia: a large-scale propensity score matching-based study. Bone Marrow Transplant 2024; 59:1037-1039. [PMID: 38615141 DOI: 10.1038/s41409-024-02280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Affiliation(s)
- Yifan Shen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Minyuan Liu
- Department of Hematology, Jiangsu Children Hematology and Oncology Center Children's Hospital of Soochow University, Suzhou, PR China
| | - Danya Shen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Mengqian Chu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Xuekai Li
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Xiang Zhang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Yi Fan
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Jia Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Depei Wu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, PR China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China.
| | - Shaoyan Hu
- Department of Hematology, Jiangsu Children Hematology and Oncology Center Children's Hospital of Soochow University, Suzhou, PR China.
| | - Yang Xu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, PR China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China.
| |
Collapse
|
10
|
Xiao M, Zhou J, Zhu X, He Y, Wang F, Zhang Y, Mo X, Han W, Wang J, Wang Y, Chen H, Chen Y, Zhao X, Chang Y, Xu L, Liu K, Huang X, Zhang X. A prognostic score system in adult T-cell acute lymphoblastic leukemia after hematopoietic stem cell transplantation. Bone Marrow Transplant 2024; 59:496-504. [PMID: 38267585 DOI: 10.1038/s41409-024-02211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Adult T-cell acute lymphoblastic leukemia (T-ALL) is highly aggressive with poor prognoses, while hematopoietic stem cell transplantation (HSCT) is a curable option. However, no transplant-specific prognostic model for adult T-ALL is available. We identified 301 adult T-ALL patients who received HSCT at our hospital between 2010 and 2022. These patients were randomly assigned at a 7:3 ratio to a derivation group of 210 patients and a validation group of 91 patients. Next, we developed a prognostic risk score system for adult T-ALL with HSCT, which we named COMM, including 4 predictors (central nervous system involvement, Non-CR1 (CR2+ or NR) at HSCT, minimal residual disease (MRD) ≥ 0.01% after first induction therapy, and MRD ≥ 0.01% before HSCT). Patients were categorized into three risk groups, low-risk (0), intermediate-risk (1-4), and high-risk (5-12), and their 3-year overall survival (OS) were 87.5% (95%CI, 78-93%), 65.7% (95%CI, 53-76%) and 20% (95%CI, 10-20%; P < 0.001), respectively. The area under the subject operating characteristic curve for 2-, 3- or 5-year OS in the derivation cohort and in the validation cohort were all greater than 0.75. Based on internal validation, COMM score system proved to be a reliable prognostic model that could discriminate and calibrate well. We expect that the first prognostic model in adults T-ALL after HSCT can provide a reference of prognostic consultation for patients and families, and also contribute to future research to develop risk adapted interventions for high-risk populations.
Collapse
Affiliation(s)
- Mengyu Xiao
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jianying Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaolu Zhu
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yun He
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Fengrong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yuanyuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaodong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jingzhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yuhong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiangyu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kaiyan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
11
|
Alabed HBR, Pellegrino RM, Buratta S, Lema Fernandez AG, La Starza R, Urbanelli L, Mecucci C, Emiliani C, Gorello P. Metabolic Profiling as an Approach to Differentiate T-Cell Acute Lymphoblastic Leukemia Cell Lines Belonging to the Same Genetic Subgroup. Int J Mol Sci 2024; 25:3921. [PMID: 38612731 PMCID: PMC11011837 DOI: 10.3390/ijms25073921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive tumor mainly affecting children and adolescents. It is driven by multiple genetic mutations that together define the leukemic phenotype. Interestingly, based on genetic alterations and/or deregulated expression, at least six genetic subgroups have been recognized. The TAL/LMO subgroup is one of the most represented genetic subgroups, characterizing 30-45% of pediatric T-ALL cases. The study of lipid and metabolic profiles is increasingly recognized as a valuable tool for comprehending the development and progression of tumors. In this study, metabolic and lipidomic analysis via LC/MS have been carried out on four T-ALL cell lines belonging to the TAL/LMO subgroup (Jurkat, Molt-4, Molt-16, and CCRF-CEM) to identify new potential metabolic biomarkers and to provide a subclassification of T-ALL cell lines belonging to the same subgroup. A total of 343 metabolites were annotated, including 126 polar metabolites and 217 lipid molecules. The statistical analysis, for both metabolic and lipid profiles, shows significant differences and similarities among the four cell lines. The Molt-4 cell line is the most distant cell line and CCRF-CEM shows a high activity in specific pathways when compared to the other cell lines, while Molt-16 and Jurkat show a similar metabolic profile. Additionally, this study highlighted the pathways that differ in each cell line and the possible enzymes involved using bioinformatic tools, capable of predicting the pathways involved by studying the differences in the metabolic profiles. This experiment offers an approach to differentiate T-ALL cell lines and could open the way to verify and confirm the obtained results directly in patients.
Collapse
Affiliation(s)
- Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Anair Graciela Lema Fernandez
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.L.F.); (C.M.)
| | - Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.L.F.); (C.M.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.L.F.); (C.M.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Paolo Gorello
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
12
|
Kotemul K, Kasinrerk W, Takheaw N. CD99 tumor associated antigen is a potential target for antibody therapy of T-cell acute lymphoblastic leukemia. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:96-107. [PMID: 38468825 PMCID: PMC10925484 DOI: 10.37349/etat.2024.00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024] Open
Abstract
Monoclonal antibodies (mAbs) are an effective drug for targeted immunotherapy in several cancer types. However, so far, no antibody has been successfully developed for certain types of cancer, including T-cell acute lymphoblastic leukemia (T-ALL). T-ALL is an aggressive hematologic malignancy. T-ALL patients who are treated with chemotherapeutic drugs frequently relapse and become drug resistant. Therefore, antibody-based therapy is promising for T-ALL treatment. To successfully develop an antibody-based therapy for T-ALL, antibodies that induce death in malignant T cells but not in nonmalignant T cells are required to avoid the induction of secondary T-cell immunodeficiency. In this review, CD99 tumor associated antigen, which is highly expressed on malignant T cells and lowly expressed on nonmalignant T cells, is proposed to be a potential target for antibody therapy of T-ALL. Since certain clones of anti-CD99 mAbs induce apoptosis only in malignant T cells, these anti-CD99 mAbs might be a promising antibody drug for the treatment of T-ALL with high efficiency and low adverse effects. Moreover, over the past 25 years, many clones of anti-CD99 mAbs have been studied for their direct effects on T-ALL. These outcomes are gathered here.
Collapse
Affiliation(s)
- Kamonporn Kotemul
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Shimony S, DeAngelo DJ, Luskin MR. Nelarabine: when and how to use in the treatment of T-cell acute lymphoblastic leukemia. Blood Adv 2024; 8:23-36. [PMID: 37389830 PMCID: PMC10784681 DOI: 10.1182/bloodadvances.2023010303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023] Open
Abstract
ABSTRACT T-cell acute lymphoblastic leukemia or lymphoblastic lymphoma (T-ALL/LBL) is a rare hematologic malignancy most commonly affecting adolescent and young adult males. Outcomes are dismal for patients who relapse, thus, improvement in treatment is needed. Nelarabine, a prodrug of the deoxyguanosine analog 9-β-arabinofuranosylguanine, is uniquely toxic to T lymphoblasts, compared with B lymphoblasts and normal lymphocytes, and has been developed for the treatment of T-ALL/LBL. Based on phase 1 and 2 trials in children and adults, single-agent nelarabine is approved for treatment of patients with relapsed or refractory T-ALL/LBL, with the major adverse effect being central and peripheral neurotoxicity. Since its approval in 2005, nelarabine has been studied in combination with other chemotherapy agents for relapsed disease and is also being studied as a component of initial treatment in pediatric and adult patients. Here, we review current data on nelarabine and present our approach to the use of nelarabine in the treatment of patients with T-ALL/LBL.
Collapse
Affiliation(s)
- Shai Shimony
- Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Rabin Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
14
|
Pinton A, Courtois L, Doublet C, Cabannes-Hamy A, Andrieu G, Smith C, Balducci E, Cieslak A, Touzart A, Simonin M, Lhéritier V, Huguet F, Balsat M, Dombret H, Rousselot P, Spicuglia S, Macintyre E, Boissel N, Asnafi V. PHF6-altered T-ALL Harbor Epigenetic Repressive Switch at Bivalent Promoters and Respond to 5-Azacitidine and Venetoclax. Clin Cancer Res 2024; 30:94-105. [PMID: 37889114 DOI: 10.1158/1078-0432.ccr-23-2159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE To assess the impact of PHF6 alterations on clinical outcome and therapeutical actionability in T-cell acute lymphoblastic leukemia (T-ALL). EXPERIMENTAL DESIGN We described PHF6 alterations in an adult cohort of T-ALL from the French trial Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003/2005 and retrospectively analyzed clinical outcomes between PHF6-altered (PHF6ALT) and wild-type patients. We also used EPIC and chromatin immunoprecipitation sequencing data of patient samples to analyze the epigenetic landscape of PHF6ALT T-ALLs. We consecutively evaluated 5-azacitidine efficacy, alone or combined with venetoclax, in PHF6ALT T-ALL. RESULTS We show that PHF6 alterations account for 47% of cases in our cohort and demonstrate that PHF6ALT T-ALL presented significantly better clinical outcomes. Integrative analysis of DNA methylation and histone marks shows that PHF6ALT are characterized by DNA hypermethylation and H3K27me3 loss at promoters physiologically bivalent in thymocytes. Using patient-derived xenografts, we show that PHF6ALT T-ALL respond to the 5-azacytidine alone. Finally, synergism with the BCL2-inhibitor venetoclax was demonstrated in refractory/relapsing (R/R) PHF6ALT T-ALL using fresh samples. Importantly, we report three cases of R/R PHF6ALT patients who were successfully treated with this combination. CONCLUSIONS Overall, our study supports the use of PHF6 alterations as a biomarker of sensitivity to 5-azacytidine and venetoclax combination in R/R T-ALL.
Collapse
Affiliation(s)
- Antoine Pinton
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Lucien Courtois
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | | | | | - Guillaume Andrieu
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Charlotte Smith
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Estelle Balducci
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Agata Cieslak
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Aurore Touzart
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Mathieu Simonin
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Véronique Lhéritier
- Coordination du Groupe Group for Research in Adult Acute Lymphoblastic Leukemia, Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
| | - Françoise Huguet
- Service d'Hématologie, CHU de Toulouse, IUCT-Oncopole, Toulouse, France
| | - Marie Balsat
- Service d'Hématologie Clinique, Hôpital Lyon Sud, Lyon, France
| | - Hervé Dombret
- Service d'Hématologie Adolescents et Jeunes Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Institut de Recherche Saint-Louis, UPR-3518, Université Paris Cité, Paris, France
| | - Philippe Rousselot
- Centre Hospitalier de Versailles, Versailles, France
- Université Versailles Saint Quentin en Yvelines Paris Saclay, INSERM U1184, Paris, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Elizabeth Macintyre
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Nicolas Boissel
- Service d'Hématologie Adolescents et Jeunes Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Institut de Recherche Saint-Louis, UPR-3518, Université Paris Cité, Paris, France
| | - Vahid Asnafi
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| |
Collapse
|
15
|
Yoon JH, Lee S. Diagnostic and therapeutic advances in adults with acute lymphoblastic leukemia in the era of gene analysis and targeted immunotherapy. Korean J Intern Med 2024; 39:34-56. [PMID: 38225824 PMCID: PMC10790045 DOI: 10.3904/kjim.2023.407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 01/17/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is one of the most rapidly changing hematological malignancies with advanced understanding of the genetic landscape, detection methods of minimal residual disease (MRD), and the development of immunotherapeutic agents with good clinical outcomes. The annual incidence of adult ALL in Korea is 300-350 patients per year. The WHO classification of ALL was revised in 2022 to reflect the molecular cytogenetic features and suggest new adverse- risk subgroups, such as Ph-like ALL and ETP-ALL. We continue to use traditional adverse-risk features and cytogenetics, with MRD-directed post-remission therapy including allogeneic hematopoietic cell transplantation. However, with the introduction of novel agents, such as ponatinib, blinatumomab, and inotuzumab ozogamicin incorporated into frontline therapy, good MRD responses have been achieved, and overall survival outcomes are improving. Accordingly, some clinical trials have suggested a possible era of chemotherapy-free or transplantation-free approaches in the near future. Nevertheless, relapse of refractory ALL still occurs, and some poor ALL subtypes, such as Ph-like ALL and ETP-ALL, are unsolved problems for which novel agents and treatment strategies are needed. In this review, we summarize the currently applied diagnostic and therapeutic practices in the era of advanced genetic analysis and targeted immunotherapies in United States and Europe and introduce real-world Korean data.
Collapse
Affiliation(s)
- Jae-Ho Yoon
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seok Lee
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
16
|
Lahera A, Vela-Martín L, Fernández-Navarro P, Llamas P, López-Lorenzo JL, Cornago J, Santos J, Fernández-Piqueras J, Villa-Morales M. The JAK3 Q988P mutation reveals oncogenic potential and resistance to ruxolitinib. Mol Carcinog 2024; 63:5-10. [PMID: 37712558 DOI: 10.1002/mc.23632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) arises from the malignant transformation of T-cell progenitors at various differentiation stages. Given that patients who relapse have a dismal prognosis, there is an urgent need to identify the molecular alterations that are present in such patients and promote leukemogenesis to implement personalized therapies with higher efficacy and fewer adverse effects. In the present manuscript, we identified the JAK3Q988P mutation in a T-ALL patient who did not achieve a durable response after the conventional treatment and whose tumor cells at relapse presented constitutive activation of the JAK/STAT pathway. Although JAK3Q988P has been previously identified in T-ALL patients from different studies, the functional consequences exerted by this mutation remain unexplored. Through the combination of different hematopoietic cellular models, we functionally characterize JAK3Q988P as an oncogenic mutation that contributes to leukemogenesis. Notably, JAK3Q988P not only promotes constitutive activation of the JAK/STAT pathway in the absence of cytokines and growth factors, as is the case for other JAK3 mutations that have been functionally characterized as oncogenic, but also functions independently of JAK1 and IL2RG, resulting in high oncogenic potential as well as resistance to ruxolitinib. Our results indicate that ruxolitinib may not be efficient for future patients bearing the JAK3Q988P mutation who instead may obtain greater benefits from treatments involving other pharmacological inhibitors such as tofacitinib.
Collapse
Affiliation(s)
- Antonio Lahera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Division of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Laura Vela-Martín
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Division of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Pablo Fernández-Navarro
- Division of Cancer and Environmental Epidemiology, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
- Division of Epidemiology and Control of Chronic Diseases, Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pilar Llamas
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - José L López-Lorenzo
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Javier Cornago
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Javier Santos
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Division of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
- Division of Genome Dynamics and Function, Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - José Fernández-Piqueras
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Division of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
- Division of Genome Dynamics and Function, Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - María Villa-Morales
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Division of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
- Division of Genome Dynamics and Function, Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
17
|
Zhang X, Wang T, Zhang Y, Wang F, Chen J, Ni J, Sun R, Wei Z, Zhang G, Li W, Li J, Lu P. Characteristics and therapeutic approaches for patients diagnosed with T-ALL/LBL exhibiting t(8;14)(q24;q11)/TCRA/D:MYC translocation. Leuk Lymphoma 2023; 64:2133-2139. [PMID: 37674391 DOI: 10.1080/10428194.2023.2254428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
T-acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) patients with t(8;14)(q24;q11)/TCRA/D::MYC translocation represent a rare subgroup, with an aggressive course. In our retrospective analysis of 14 patients, all were identified during refractory or relapsed stages (5 primary tumor, 9 relapse). Notably, extramedullary invasion was detected in most patients. Four exhibited STIL::TAL1 translocation, and six demonstrated CDKN2A/B gene loss. The therapeutic outcomes were notably poor for all seven patients who received only chemotherapy or allogeneic hematopoietic stem cell transplantation (HSCT); all eventually succumbed to the disease with a median OS of 3 months. In the application of CD7 CAR-T therapy in six patients, five achieved CR. Of the four patients who underwent HSCT following CAR-T therapy, all have remained disease-free. The prognosis for T-ALL/LBL patients with t(8;14) translocation remains bleak, but interventions involving CD7 CAR-T may offer a potential pathway to CR. HSCT following CAR-T could be a viable strategy for long-term survival.
Collapse
Affiliation(s)
- Xian Zhang
- Hebei Yanda Lu Daopei Hospital, Langfang, P.R. China
- Beijing Lu Daopei Institute of Hematology, Beijing, P.R. China
| | - Tong Wang
- Hebei Yanda Lu Daopei Hospital, Langfang, P.R. China
- Beijing Lu Daopei Institute of Hematology, Beijing, P.R. China
| | - Yang Zhang
- Hebei Yanda Lu Daopei Hospital, Langfang, P.R. China
| | - Fang Wang
- Hebei Yanda Lu Daopei Hospital, Langfang, P.R. China
| | - Jiaqi Chen
- Hebei Yanda Lu Daopei Hospital, Langfang, P.R. China
| | - Jingbo Ni
- Hebei Yanda Lu Daopei Hospital, Langfang, P.R. China
| | - Ruijuan Sun
- Hebei Yanda Lu Daopei Hospital, Langfang, P.R. China
- Beijing Lu Daopei Institute of Hematology, Beijing, P.R. China
| | - Zhijie Wei
- Hebei Yanda Lu Daopei Hospital, Langfang, P.R. China
- Beijing Lu Daopei Institute of Hematology, Beijing, P.R. China
| | - Gailing Zhang
- Hebei Yanda Lu Daopei Hospital, Langfang, P.R. China
| | - Wenqian Li
- Hebei Yanda Lu Daopei Hospital, Langfang, P.R. China
| | - Jingjing Li
- Hebei Yanda Lu Daopei Hospital, Langfang, P.R. China
- Beijing Lu Daopei Institute of Hematology, Beijing, P.R. China
| | - Peihua Lu
- Hebei Yanda Lu Daopei Hospital, Langfang, P.R. China
- Beijing Lu Daopei Institute of Hematology, Beijing, P.R. China
| |
Collapse
|
18
|
Tang J, Zhao X. Chimeric antigen receptor T cells march into T cell malignancies. J Cancer Res Clin Oncol 2023; 149:13459-13475. [PMID: 37468610 DOI: 10.1007/s00432-023-05148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
T cell malignancies represent a diverse collection of leukemia/lymphoma conditions in humans arising from aberrant T cells. Such malignancies are often associated with poor clinical prognoses, cancer relapse, as well as progressive resistance to anti-cancer treatments. While chimeric antigen receptor (CAR) T cell immunotherapy has emerged as a revolutionary treatment strategy that is highly effective for treating B cell malignancies, its application as a treatment for T cell malignancies remains to be better explored. Furthermore, the effectiveness of CAR-T treatment in T cell malignancies is significantly influenced by the quality of contamination-free CAR-T cells during the manufacturing process, as well as by multiple characteristics of such malignancies, including the sharing of antigens across normal and malignant T cells, fratricide, and T cell aplasia. In this review, we provide a detailed account of the current developments in the clinical application of CAR-T therapy to treat T cell malignancies, offer strategies for addressing current challenges, and outline a roadmap toward its effective implementation as a broad treatment option for this condition.
Collapse
Affiliation(s)
- Jie Tang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xudong Zhao
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Sears-Smith M, Knight TG. Financial Toxicity in Patients with Hematologic Malignancies: a Review and Need for Interventions. Curr Hematol Malig Rep 2023; 18:158-166. [PMID: 37490228 DOI: 10.1007/s11899-023-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Financial toxicity is a developing research area to quantify the financial stress experienced by patients and caregivers, as well as the mechanisms by which they manage the costs associated with treatment and the very real harms that this stress can inflict upon cancer care. Patients with blood malignancies experience increased costs associated with their diagnosis due to possible inpatient admissions for treatment, frequent office visits, and even more frequent lab evaluations and testing. PURPOSE OF REVIEW Multiple studies have examined the causes and effects of financial toxicity on patient care and outcomes, and there have been several validated tools developed to identify patients experiencing or at risk for financial harm. DISCUSSION However, few studies to date have focused on implementing successful interventions to assist in mitigating financial difficulties for patients diagnosed with hematologic malignancies and their families. In this review, we examine the current literature with an emphasis on levels of care, including providers, systems, and policies. Specifically, we discuss published interventions including physician education about treatment costs, financial navigation in cancer centers, and novel institutional multidisciplinary review of patients' financial concerns. We also discuss the urgent need for societal and governmental interventions to lessen financial distress experienced by these highly vulnerable blood cancer patients.
Collapse
Affiliation(s)
- Megan Sears-Smith
- Levine Cancer Institute, Atrium Health, 1020 Morehead Medical Drive, Charlotte, NC, 28204, USA
| | - Thomas G Knight
- Levine Cancer Institute, Atrium Health, 1021 Morehead Medical Drive, LCI Building 2, Suite 60100, Charlotte, NC, 28204, USA.
| |
Collapse
|
20
|
Jinwala P, Patidar R, Bansal S, Asati V, Shrivastava S, Elhence A, Patel S, Chitalkar P. Initial Experiences in Adolescents and Young Adults with T-Cell Acute Lymphoblastic Leukemia/Lymphoma Treated with the Modified BFM 2002 Protocol in a Resource-Constrained Setting. South Asian J Cancer 2023; 12:378-383. [PMID: 38130284 PMCID: PMC10733054 DOI: 10.1055/s-0043-1776040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Prutha Jinwala T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma (T-ALL/LBL) in adolescents and young adults (AYAs) is a clinically aggressive malignancy and life-threatening at diagnosis. Intensive chemotherapy protocols, inspired by the Berlin-Frankfurt-Münster (BFM) regimen, along with central nervous system (CNS) prophylaxis, have achieved a 75 to 85% 5-year disease-free survival rate. However, in cases of marrow and CNS relapses, second-line chemotherapy is usually ineffective. This study aimed to assess the safety and efficacy of the BFM 2002 protocol and to correlate clinical profiles and prognostic factors with survival outcomes in AYA T-ALL/LBL patients. We retrospectively analyzed data from T-ALL/LBL patients treated at the Department of Medical Oncology, Sri Aurobindo Institute of Medical Sciences (SAIMS), Indore, between 2018 and 2021. Twenty-one patients aged 15 to 29 years were studied for their clinical course and laboratory parameters over 36 months. Diagnosis and risk stratification were performed following the guidelines of the BFM 2002 protocol. All patients received treatment and monitoring according to this pediatric-inspired protocol. The median age of the patients was 17 years (range: 15-28 years). Eleven patients presented with mediastinal lymph node enlargement, 10% exhibited CNS involvement, and none had testicular involvement. Eleven patients had marrow blasts greater than 25%, indicative of acute lymphoblastic leukemia. All 21 patients were treated according to the intensive modified BFM 2002 protocol and achieved morphological remission after a median follow-up of 24 months (range: 18-36 months). Seventeen patients achieved minimal residual disease (MRD) negativity post-induction. MRD at day 33 showed a significant association with the probability of disease relapse ( p = 0.0015). There were five deaths (24%), one due to toxicity and four due to relapse. The study recorded an 18-month overall survival of 76%. These results were achieved despite financial constraints. Data were entered into a spreadsheet, and statistical analysis was performed using IBM SPSS version 23. Continuous data are presented as ranges and medians, while categorical variables are shown as percentages and numbers. A chi-squared test for association, with a significance level set at p < 0.05, was conducted as indicated. AYA T-ALL/LBL requires intensive treatment regimens. With biological characterization of LBL/ALL and close therapy monitoring, encouraging outcomes can be achieved even in resource-limited settings.
Collapse
Affiliation(s)
- Prutha Jinwala
- Department of Medical Oncology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
| | - Rajesh Patidar
- Department of Medical Oncology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
| | - Shashank Bansal
- Department of Medical Oncology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
| | - Vikas Asati
- Department of Medical Oncology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
| | - S.P. Shrivastava
- Department of Medical Oncology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
| | - Aditya Elhence
- Department of Medical Oncology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
| | - Swati Patel
- Department of Pediatrics, Division of Pediatric Hemato-oncology, Sri Aurobindo Institute of Medical Sciences, Indore-Ujjain highway, Indore, Madhya Pradesh, India
| | - P.G. Chitalkar
- Department of Medical Oncology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
| |
Collapse
|
21
|
Jamal M, Lei Y, He H, Zeng X, Bangash HI, Xiao D, Shao L, Zhou F, Zhang Q. CCR9 overexpression promotes T-ALL progression by enhancing cholesterol biosynthesis. Front Pharmacol 2023; 14:1257289. [PMID: 37745085 PMCID: PMC10512069 DOI: 10.3389/fphar.2023.1257289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy of the lymphoid progenitor cells, contributing to ∼ 20% of the total ALL cases, with a higher prevalence in adults than children. Despite the important role of human T-ALL cell lines in understanding the pathobiology of the disease, a detailed comparison of the tumorigenic potentials of two commonly used T-ALL cell lines, MOLT4 and JURKAT cells, is still lacking. Methodology: In the present study, NOD-Prkdc scid IL2rgd ull (NTG) mice were intravenously injected with MOLT4, JURKAT cells, and PBS as a control. The leukemiac cell homing/infiltration into the bone marrow, blood, liver and spleen was investigated for bioluminescence imaging, flow cytometry, and immunohistochemistry staining. Gene expression profiling of the two cell lines was performed via RNA-seq to identify the differentially expressed genes (DEGs). CCR9 identified as a DEG, was further screened for its role in invasion and metastasis in both cell lines in vitro. Moreover, a JURKAT cell line with overexpressed CCR9 (Jurkat-OeCCR9) was investigated for T-ALL formation in the NTG mice as compared to the GFP control. Jurkat-OeCCR9 cells were then subjected to transcriptome analysis to identify the genes and pathways associated with the upregulation of CCR9 leading to enhanced tumirogenesis. The DEGs of the CCR9-associated upregulation were validated both at mRNA and protein levels. Simvastatin was used to assess the effect of cholesterol biosynthesis inhibition on the aggressiveness of T-ALL cells. Results: Comparison of the leukemogenic potentials of the two T-ALL cell lines showed the relatively higher leukemogenic potential of MOLT4 cells, characterized by their enhanced tissue infiltration in NOD-PrkdcscidIL2rgdull (NTG) mice. Transcriptmoe analysis of the two cell lines revealed numerous DEGs, including CCR9, enriched in vital signaling pathways associated with growth and proliferation. Notably, the upregulation of CCR9 also promoted the tissue infiltration of JURKAT cells in vitro and in NTG mice. Transcriptome analysis revealed that CCR9 overexpression facilitated cholesterol production by upregulating the expression of the transcriptional factor SREBF2, and the downstream genes: MSMO1, MVD, HMGCS1, and HMGCR, which was then corroborated at the protein levels. Notably, simvastatin treatment reduced the migration of the CCR9-overexpressing JURKAT cells, suggesting the importance of cholesterol in T-ALL progression. Conclusions: This study highlights the distinct tumorigenic potentials of two T-ALL cell lines and reveals CCR9-regulated enhanced cholesterol biosynthesis in T-ALL.
Collapse
Affiliation(s)
- Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yufei Lei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hengjing He
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xingruo Zeng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hina Iqbal Bangash
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Di Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Quiping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Jiang J, Chen J, Liao C, Duan Y, Wang Y, Shang K, Huang Y, Tang Y, Gao X, Gu Y, Sun J. Inserting EF1α-driven CD7-specific CAR at CD7 locus reduces fratricide and enhances tumor rejection. Leukemia 2023; 37:1660-1670. [PMID: 37391486 DOI: 10.1038/s41375-023-01948-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
CAR-T therapies to treat T-cell malignancies face unique hurdles. Normal and malignant T cells usually express the same target for CAR, leading to fratricide. CAR-T cells targeting CD7, which is expressed in various malignant T cells, have limited expansion due to fratricide. Using CRISPR/Cas9 to knockout CD7 can reduce the fratricide. Here we developed a 2-in-1 strategy to insert EF1α-driven CD7-specific CAR at the disrupted CD7 locus and compared it to two other known strategies: one was random integration of CAR by a retrovirus and the other was site-specific integration at T-cell receptor alpha constant (TRAC) locus, both in the context of CD7 disruption. All three types of CD7 CAR-T cells with reduced fratricide could expand well and displayed potent cytotoxicity to both CD7+ tumor cell lines and patient-derived primary tumors. Moreover, EF1α-driven CAR expressed at the CD7 locus enhances tumor rejection in a mouse xenograft model of T-cell acute lymphoblastic leukemia (T-ALL), suggesting great clinical application potential. Additionally, this 2-in-1 strategy was adopted to generate CD7-specific CAR-NK cells as NK also expresses CD7, which would prevent contamination from malignant cells. Thus, our synchronized antigen-knockout CAR-knockin strategy could reduce the fratricide and enhance anti-tumor activity, advancing clinical CAR-T treatment of T-cell malignancies.
Collapse
Affiliation(s)
- Jie Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, Zhejiang, China
| | - Jiangqing Chen
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, Zhejiang, China
| | - Chan Liao
- Department of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanting Duan
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, Zhejiang, China
| | - Yajie Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, Zhejiang, China
| | - Kai Shang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, Zhejiang, China
| | - Yanjie Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310058, China
| | - Yongming Tang
- Department of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofei Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310058, China
| | - Ying Gu
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, 310009, China.
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, 310058, China.
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
23
|
Huang YH, Wan CL, Dai HP, Xue SL. Targeted therapy and immunotherapy for T cell acute lymphoblastic leukemia/lymphoma. Ann Hematol 2023; 102:2001-2013. [PMID: 37227492 DOI: 10.1007/s00277-023-05286-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
T cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) is an aggressive malignancy of progenitor T cells. Despite significant improvements in survival of T-ALL/LBL over the past decades, treatment of relapsed and refractory T-ALL (R/R T-ALL/LBL) remains extremely challenging. The prognosis of R/R T-ALL/LBL patients who are intolerant to intensive chemotherapy remains poor. Therefore, innovative approaches are needed to further improve the survival of R/R T-ALL/LBL patients. With the widespread use of next-generation sequencing in T-ALL/LBL, a range of new therapeutic targets such as NOTCH1 inhibitors, JAK-STAT inhibitors, and tyrosine kinase inhibitors have been identified. These findings led to pre-clinical studies and clinical trials of molecular targeted therapy in T-ALL/LBL. Furthermore, immunotherapies such as CD7 CAR T cell therapy and CD5 CAR T cell therapy have shown profound response rate in R/R T-ALL/LBL. Here, we review the progress of targeted therapies and immunotherapies for T-ALL/LBL, and look at the future directions and challenges for the further use of these therapies in T-ALL/LBL.
Collapse
Affiliation(s)
- Yuan-Hong Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Chao-Ling Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China.
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
24
|
Villa-Morales M, Pérez-Gómez L, Pérez-Gómez E, López-Nieva P, Fernández-Navarro P, Santos J. Identification of NRF2 Activation as a Prognostic Biomarker in T-Cell Acute Lymphoblastic Leukaemia. Int J Mol Sci 2023; 24:10350. [PMID: 37373496 DOI: 10.3390/ijms241210350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The standard-of-care treatment of T-cell acute lymphoblastic leukaemia (T-ALL) with chemotherapy usually achieves reasonable rates of initial complete response. However, patients who relapse or do not respond to conventional therapy show dismal outcomes, with cure rates below 10% and limited therapeutic options. To ameliorate the clinical management of these patients, it is urgent to identify biomarkers able to predict their outcomes. In this work, we investigate whether NRF2 activation constitutes a biomarker with prognostic value in T-ALL. Using transcriptomic, genomic, and clinical data, we found that T-ALL patients with high NFE2L2 levels had shorter overall survival. Our results demonstrate that the PI3K-AKT-mTOR pathway is involved in the oncogenic signalling induced by NRF2 in T-ALL. Furthermore, T-ALL patients with high NFE2L2 levels displayed genetic programs of drug resistance that may be provided by NRF2-induced biosynthesis of glutathione. Altogether, our results indicate that high levels of NFE2L2 may be a predictive biomarker of poor treatment response in T-ALL patients, which would explain the poor prognosis associated with these patients. This enhanced understanding of NRF2 biology in T-ALL may allow a more refined stratification of patients and the proposal of targeted therapies, with the ultimate goal of improving the outcome of relapsed/refractory T-ALL patients.
Collapse
Affiliation(s)
- María Villa-Morales
- Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, 28040 Madrid, Spain
- Institute for Molecular Biology-IUBM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Pérez-Gómez
- Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
| | - Eduardo Pérez-Gómez
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Pilar López-Nieva
- Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, 28040 Madrid, Spain
- Institute for Molecular Biology-IUBM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pablo Fernández-Navarro
- Unit of Cancer and Environmental Epidemiology, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Networking Biomedical Research Centre of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Javier Santos
- Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, 28040 Madrid, Spain
- Institute for Molecular Biology-IUBM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
25
|
Duarte A, Montagna DR, Pastorini M, Alemán M. Apoptosis-mediated inhibition of human T-cell acute lymphoblastic leukemia upon treatment with Staphylococus Aureus enterotoxin-superantigen. Front Immunol 2023; 14:1176432. [PMID: 37377961 PMCID: PMC10291079 DOI: 10.3389/fimmu.2023.1176432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Patients with relapsed T cell acute lymphoblastic leukemia (T-ALL) have limited therapeutic options and poor prognosis. The finding of efficient strategies against this refractory neoplasm is a medical priority. Superantigens (SAgs) are viral and bacterial proteins that bind to major histocompatibility complex class II molecules as unprocessed proteins and subsequently interact with a high number of T cells expressing particular T cell receptor Vβ chains. Although on mature T cells, SAgs usually trigger massive cell proliferation producing deleterious effects on the organism, in contrast, on immature T cells, they may trigger their death by apoptosis. On this basis, it was hypothesized that SAgs could also induce apoptosis in neoplastic T cells that are usually immature cells that probably conserve their particular Vβ chains. In this work, we investigated the effect of the SAg Staphylococcus aureus enterotoxin E (SEE) (that specifically interacts with cells that express Vβ8 chain), on human Jurkat T- leukemia line, that expresses Vβ8 in its T receptor and it is a model of the highly aggressive recurrent T-ALL. Our results demonstrated that SEE could induce apoptosis in Jurkat cells in vitro. The induction of apoptosis was specific, correlated to the down regulation of surface Vβ8 TCR expression and was triggered, at least in part, through the Fas/FasL extrinsic pathway. The apoptotic effect induced by SEE on Jurkat cells was therapeutically relevant. In effect, upon transplantation of Jurkat cells in the highly immunodeficient NSG mice, SEE treatment reduced dramatically tumor growth, decreased the infiltration of neoplastic cells in the bloodstream, spleen and lymph nodes and, most importantly, increased significantly the survival of mice. Taken together, these results raise the possibility that this strategy can be, in the future, a useful option for the treatment of recurrent T-ALL.
Collapse
Affiliation(s)
- Alejandra Duarte
- Institute of Experimental Medicine, National Council of Scientific and Technical Research, National Medicine Academy (IMEX-CONICET-ANM), Buenos Aires, Argentina
- Fundación Héctor Alejandro (H.A.) Barceló, Instituto Universitario de Ciencias de la Salud, Buenos Aires, Argentina
| | - Daniela R. Montagna
- Institute of Experimental Medicine, National Council of Scientific and Technical Research, National Medicine Academy (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Mercedes Pastorini
- Institute of Experimental Medicine, National Council of Scientific and Technical Research, National Medicine Academy (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Mercedes Alemán
- Institute of Experimental Medicine, National Council of Scientific and Technical Research, National Medicine Academy (IMEX-CONICET-ANM), Buenos Aires, Argentina
| |
Collapse
|
26
|
Ashry MSE, Radwan E, Abdellateif MS, Arafah O, Hassan NM. Clinical features, laboratory characteristics, and outcome of ETP and TCRA/D aberrations in pediatric patients with T-acute lymphoblastic leukemia. J Egypt Natl Canc Inst 2023; 35:17. [PMID: 37303010 DOI: 10.1186/s43046-023-00176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/06/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy with few accepted prognostic factors that limit the efficiency of therapy. The aim of the current study was to assess the clinical and laboratory features of T-cell receptor (TCR) aberrations and early T-cell precursor (ETP) subtype as well as their outcome to therapy. METHODS Sixty-three newly diagnosed pediatric T-ALL patients were assessed for the ETP status using immunophenotyping. Screening of TCRA/D aberrations was done by fluorescent in situ hybridization (FISH). The data were correlated to the patients' clinical features, response to treatment, and survival rates. RESULTS Seven patients (11%) had ETP-ALL. The ETP-ALL patients were older (P = 0.013), presented with lower white blood cell (WBC) count (P = 0.001) and lower percentage of peripheral blood (PB) blast cells (P = 0.037), more likely to have hyperdiploid karyotype (P = 0.009), and had been associated with TCRA/D gene amplification (P = 0.014) compared to other T-ALL patients. Of note, the same associations had been significantly observed in patients with TCRA/D gene amplification. Patients with TCRA/D amplification frequently coincided with TCRβ aberrations (P = 0.025). TCR-β aberrations were significantly associated with negative MRD at the end of induction compared to TCR-β-negative patients. There was a nonsignificant trend of ETP-positive cases to have lower overall survival (OS) (P = 0.06). Patients with TCR aberrations had no significant differences regarding disease-free survival (DFS) or OS rates compared to those with normal TCR. CONCLUSION ETP-ALL patients tend to have increased mortalities. There was no significant impact of TCR aberrations on the survival rates of the patients.
Collapse
Affiliation(s)
- Mona S El Ashry
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Enas Radwan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Omar Arafah
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
27
|
Donor CD7 Chimeric Antigen Receptor T Cell Bridging to Allogeneic Hematopoietic Stem Cell Transplantation for T Cell Hematologic Malignancy. Transplant Cell Ther 2023; 29:167-173. [PMID: 36427783 DOI: 10.1016/j.jtct.2022.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
It is crucial to quickly bridge to allogeneic hematopoietic stem cell transplantation (allo-HSCT) for hematopoietic reconstitution. Here we report on the efficacy and safety of donor CD7 chimeric antigen receptor (CAR) T cell therapy (CAR-T) bridging to allo-HSCT in treating 12 patients with relapsed/refractory (r/r) T-ALL or T-cell lymphoblastic lymphoma (T-LBL). The median time from CAR-T infusion to allo-HSCT was 33.5 days (range, 30 to 55 days). With reduced-intensity conditioning, all patients except 1 successfully engrafted. With a mean follow-up of 301 days (range, 238 to 351 days), the remaining 11 patients were alive and disease-free at their last follow-up. Acute graft-versus-host disease (GVHD) was observed in 3 patients, and chronic GVHD developed in 3 patients, all with a limited pattern. Under the current protocol, infection was the main complication post-transplantation, and all infections were well controlled except in 1 patient, who died of multiple organ failure caused by an infection-induced inflammatory cytokine storm at days 14 post-transplantation. One patient relapsed (CD7+), and 3 patients became minimal residual disease (MRD) positive (CD7+ in 1, CD7- in 1, fusion gene positive only in 1). Subsequently, all 3 of these patients achieved an MRD-negative complete remission with either CD7 CAR-T reinfusion or immunosuppressive agent withdrawal. Our study shows for the first time that a novel strategy of donor CD7 CAR-T bridging to allo-HSCT can be highly effective and feasible in improving disease-free survival for patients with r/r T-ALL or T-LBL.
Collapse
|
28
|
IgD/FcδR is involved in T-cell acute lymphoblastic leukemia and regulated by IgD-Fc-Ig fusion protein. Pharmacol Res 2023; 189:106686. [PMID: 36746360 DOI: 10.1016/j.phrs.2023.106686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) has a poor prognosis as a result of severe immunosuppression and rapid tumor progression with resistance to conventional chemotherapy. Excessive IgD may play a role in T cell activation via IgD Fc receptor (FcδR). Here we aimed to investigate the effects of IgD in T-ALL and demonstrated the potential benefit by targeting IgD/FcδR in T-ALL patients with IgD-Fc-Ig fusion protein. In T-ALL patients' blood samples and cell lines, the level of IgD, the percentage of FcδR expressing cells and the binding affinity were determined by flow cytometry. T cell viability, proliferation and apoptosis were analyzed. A mouse xenograft model was used to evaluate the in vivo effect of IgD-Fc-Ig, an IgD-FcδR blocker. The levels of serum IgD and FcδR were abnormally increased in part of T-ALL patients and IgD could induce over-proliferation and inhibit apoptosis of T-ALL cells in vitro. FcδR was constitutively expressed on T-ALL cells. IgD-Fc-Ig showed similar binding affinity to FcδR and selectively blocked the stimulation effect of IgD on T-ALL cells in vitro. In vivo study exhibited that IgD-Fc-Ig may also have therapeutic benefit. IgD-Fc-Ig administration inhibited human T-ALL growth and extended survival in xenograft T-ALL mice. In conclusion, this work supports the idea of targeting IgD/FcδR in T-ALL patients with excessive IgD. IgD-Fc-Ig fusion protein might be a potential biological drug with high selectivity for T-ALL treatment.
Collapse
|
29
|
Aljabry MS. Myeloid and lymphoid neoplasm with novel complex translocation: unusual case report with T-lymphoblastic lymphoma, myeloid hyperplasia, eosinophilia, basophilia, and t(1;8;10)( (p31;q24;q11.2). J Hematop 2023; 16:27-31. [PMID: 38175368 DOI: 10.1007/s12308-022-00528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Myeloid and lymphoid neoplasms with eosinophilia (M/Ls-Eo) encompass heterogeneous but aggressive hematopoietic disorders triggered by fusion genes or mutations that typically lead to constitutive overexpression of tyrosine kinase. The occurrence of T-lymphoblastic lymphoma in the setting of M/Ls-Eo has been reported rarely in the literature. Herein, we present an unusual case of a 28-year-old male patient who presented with massive lymphadenopathy and T-lymphoblastic lymphoma in the lymph node occurring concurrently with myeloid hyperplasia, eosinophilia and basophilia in peripheral blood and bone marrow biopsy. The syndrome was associated with a novel complex karyotype involving der(8)t(1;8;10)(p31;q24;q11.2). The FISH study was negative for BCR::ABL1, JAK2, PDGFRA, PDGFRB, and FGFR1 rearrangements. The patient's clinical course was aggressive and resistant to multiple lines of intensive chemotherapy regimens. Therefore, he underwent allogenic stem cell transplantation with a fully matched donor. A brief review of the occurrence of T-LBL in conjunction with M/Ls-Eo neoplasm was made with a special focus on molecular aspects.
Collapse
Affiliation(s)
- Mansour S Aljabry
- Pathology Department, College of Medicine and King Saud University Medical College, King Saud University, P.O Box2925, Riyadh, 11461, Kingdom of Saudi Arabia.
| |
Collapse
|
30
|
Lahera A, López-Nieva P, Alarcón H, Marín-Rubio JL, Cobos-Fernández MÁ, Fernández-Navarro P, Fernández AF, Vela-Martín L, Sastre I, Ruiz-García S, Llamas P, López-Lorenzo JL, Cornago J, Santos J, Fernández-Piqueras J, Villa-Morales M. SOCS3 deregulation contributes to aberrant activation of the JAK/STAT pathway in precursor T-cell neoplasms. Br J Haematol 2023; 201:718-724. [PMID: 36786170 DOI: 10.1111/bjh.18694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Despite the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway being frequently altered in T-ALL/LBL, no specific therapy has been approved for T-ALL/LBL patients with constitutive signalling by JAK/STAT, so there is an urgent need to identify pathway members that may be potential therapeutic targets. In the present study, we searched for JAK/STAT pathway members potentially modulated through aberrant methylation and identified SOCS3 hypermethylation as a recurrent event in T-ALL/LBL. Additionally, we explored the implications of SOCS3 deregulation in T-ALL/LBL and demonstrated that SOCS3 counteracts the constitutive activation of the JAK/STAT pathway through different molecular mechanisms. Therefore, SOCS3 emerges as a potential therapeutic target in T-ALL/LBL.
Collapse
Affiliation(s)
- Antonio Lahera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Pilar López-Nieva
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain.,Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - Hernán Alarcón
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - José L Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - María Á Cobos-Fernández
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain.,Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - Pablo Fernández-Navarro
- Unit of Cancer and Environmental Epidemiology, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain.,Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Agustín F Fernández
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), University of Oviedo, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Oviedo, Spain
| | - Laura Vela-Martín
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Isabel Sastre
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Sara Ruiz-García
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Pilar Llamas
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - José L López-Lorenzo
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Javier Cornago
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Javier Santos
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain.,Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - José Fernández-Piqueras
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain.,Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - María Villa-Morales
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain.,Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
31
|
Smith JK, Zhang X, Machnicki SC, Azhar S, Vojnic M. Mature Type T-Lymphoblastic Leukemia/Lymphoma Presenting With Isolated Central Nervous System Symptomatology in a Patient With Giant Cell Arteritis on Long-Term Steroid Treatment. J Hematol 2023; 12:42-48. [PMID: 36895291 PMCID: PMC9990713 DOI: 10.14740/jh1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/12/2023] [Indexed: 02/26/2023] Open
Abstract
T-lymphoblastic leukemia/lymphoma (T-ALL/T-LBL) is a malignancy comprised of T-lymphoblasts that can present as one of four clinical subtypes (pro-T, pre-T, cortical T, and mature T). Clinical presentation is typically characterized by leukocytosis with diffuse lymphadenopathy and/or hepatosplenomegaly. Beyond clinical presentation, specific immunophenotypic and cytogenetic classifications are utilized to diagnose mature T-ALL. In later disease stages it can spread to the central nervous system (CNS); however, presentation of mature T-ALL by way of CNS pathology and clinical symptomatology alone is rare. Even more rare is the presence of poor prognostic factors without correlating significant clinical presentation. We present a case of mature T-ALL in an elderly female with isolated CNS symptoms in combination with poor prognostic factors including terminal deoxynucleotidyl transferase (TdT) negativity and a complex karyotype. Our patient lacked the classical symptomatology and laboratory findings of mature T-ALL but deteriorated quickly upon diagnosis due to the aggressive genetic profile of her cancer.
Collapse
Affiliation(s)
- John Kolton Smith
- Department of Medicine, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Xinmin Zhang
- Department of Pathology, Northwell Health, Greenvale, NY, USA
| | - Stephen C Machnicki
- Department of Radiology, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Salman Azhar
- Department of Neurology, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Morana Vojnic
- Department of Medicine, Lenox Hill Hospital, Northwell Health, New York, NY, USA.,Division of Hematology and Oncology, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| |
Collapse
|
32
|
Chen C, Zhou L, Zhu L, Luo G, Wang L, Zeng C, Zhou H, Li Y. TNFAIP3 mutation is an independent poor overall survival factor for patients with T-cell acute lymphoblastic leukemia. Cancer Med 2023; 12:3952-3961. [PMID: 36056685 PMCID: PMC9972139 DOI: 10.1002/cam4.5196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND It is imperative to explore potential biomarkers for predicting clinical outcome and developing targeted therapies for T-cell acute lymphoblastic leukemia (T-ALL). This study aimed to investigate the mutation patterns of tumor necrosis factor-alpha-inducing protein 3 (TNFAIP3, also known as A20) and its role in the prognosis of T-ALL patients. METHODS Polymerase chain reaction (PCR) and Sanger sequencing data from T-ALL (n = 49, JNU) and targeted sequencing data from T-ALL (n = 54, NFH) in our clinical center and a publicly available dataset (n = 121, PRJCA002270), were used to detect TNFAIP3 mutation. RESULTS Three TNFAIP3 single nucleotide polymorphisms (SNPs; g.3033 C > T, g.3910 G > A, and g.3904 A > G) were detected in T-ALL in the JNU dataset, and g.3033 C > T accounted for the highest proportion, reaching 60% (6/10). Interestingly, TNFAIP3 mutation mainly occurred in adults but not pediatric patients in all three datasets (JNU, NFH, and PRJCA002270). T-ALL patients carrying a TNFAIP3 mutation were associated with a trend of poor overall survival (OS) (p = 0.092). Moreover, TNFAIP3 mutation was also an independent factor for OS for T-ALL patients (p = 0.008). Further subgroup analysis suggested that TNFAIP3 mutation predicted poor OS for T-ALL patients who underwent chemotherapy only (p < 0.001), and it was positively correlated with high risk and early T-cell precursor ALL (ETP-ALL) in two independent validation datasets (NFH and PRJCA002270). CONCLUSION TNFAIP3 mutation mainly occurs in adult T-ALL patients, and it was associated with adverse clinical outcomes for T-ALL patients; thus, it might be a biomarker for prognostic stratification.
Collapse
Affiliation(s)
- Cunte Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Lingling Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lihua Zhu
- Department of Rheumatism and Immunology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Gengxin Luo
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liang Wang
- Department of Oncology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chengwu Zeng
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
33
|
CAR T-Cell Immunotherapy Treating T-ALL: Challenges and Opportunities. Vaccines (Basel) 2023; 11:vaccines11010165. [PMID: 36680011 PMCID: PMC9861718 DOI: 10.3390/vaccines11010165] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL), a form of T-cell malignancy, is a typically aggressive hematological malignancy with high rates of disease relapse and a poor prognosis. Current guidelines do not recommend any specific treatments for these patients, and only allogeneic stem cell transplant, which is associated with potential risks and toxicities, is a curative therapy. Recent clinical trials showed that immunotherapies, including monoclonal antibodies, checkpoint inhibitors, and CAR T therapies, are successful in treating hematologic malignancies. CAR T cells, which specifically target the B-cell surface antigen CD19, have demonstrated remarkable efficacy in the treatment of B-cell acute leukemia, and some progress has been made in the treatment of other hematologic malignancies. However, the development of CAR T-cell immunotherapy targeting T-cell malignancies appears more challenging due to the potential risks of fratricide, T-cell aplasia, immunosuppression, and product contamination. In this review, we discuss the current status of and challenges related to CAR T-cell immunotherapy for T-ALL and review potential strategies to overcome these limitations.
Collapse
|
34
|
Zhou Y, Ji M, Xia Y, Han X, Li M, Li W, Sun T, Zhang J, Lu F, Sun Y, Liu N, Li J, Ma D, Ye J, Ji C. Silencing of IRF8 Mediated by m6A Modification Promotes the Progression of T-Cell Acute Lymphoblastic Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2201724. [PMID: 36478193 PMCID: PMC9839875 DOI: 10.1002/advs.202201724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/11/2022] [Indexed: 06/17/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a poor prognosis, urging for novel therapeutic targets and treatment strategies. N6-methyladenosine (m6A) is a crucial methylation modification that affects the pathogenesis of leukemia by regulating the mRNA of key genes. Interferon regulatory factor 8 (IRF8) is a crucial transcription factor for hematological lineage commitment, but its role in T-ALL is unclear. Here, IRF8 is shown to suppress T-ALL. The expression of IRF8 is abnormally silenced in patients with T-ALL. Knockout of Irf8 significantly hastens the progression of Notch1-induced T-ALL in vivo. Overexpression of IRF8 suppresses the proliferation and invasion of T-ALL cells by inhibiting the phosphatidylinositol 3-kinase/AKT signaling pathway. The fat mass- and obesity-associated protein (FTO), an m6A demethylase, is responsible for directly binding to m6A sites in 3' untranslated region of IRF8 messenger RNA (mRNA) and inducing mRNA degradation via m6A modification. Targeting the FTO-IRF8 axis is used as a proof of concept therapy; inhibition of FTO's demethylase activity drastically alleviates the proliferation of leukemic cells and prolongs the survival of T-ALL mice by restoring IRF8 expression. This study elucidates the pathogenesis of T-ALL from the perspective of epitranscriptomics and provides new insight into the genetic mechanisms and targeted therapy of T-ALL.
Collapse
Affiliation(s)
- Ying Zhou
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Min Ji
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Yuan Xia
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Xiaoyu Han
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Mingying Li
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Wei Li
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Tao Sun
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
- Key Laboratory of ImmunohematologyQilu HospitalShandong UniversityJinan250012P. R. China
| | - Jingru Zhang
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Fei Lu
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Yanping Sun
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Na Liu
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Jingxin Li
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Daoxin Ma
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
- Key Laboratory of ImmunohematologyQilu HospitalShandong UniversityJinan250012P. R. China
| | - Jingjing Ye
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Chunyan Ji
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| |
Collapse
|
35
|
Jiménez-Reinoso A, Tirado N, Martinez-Moreno A, Díaz VM, García-Peydró M, Hangiu O, Díez-Alonso L, Albitre Á, Penela P, Toribio ML, Menéndez P, Álvarez-Vallina L, Sánchez Martínez D. Efficient preclinical treatment of cortical T cell acute lymphoblastic leukemia with T lymphocytes secreting anti-CD1a T cell engagers. J Immunother Cancer 2022; 10:jitc-2022-005333. [PMID: 36564128 PMCID: PMC9791403 DOI: 10.1136/jitc-2022-005333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The dismal clinical outcome of relapsed/refractory (R/R) T cell acute lymphoblastic leukemia (T-ALL) highlights the need for innovative targeted therapies. Although chimeric antigen receptor (CAR)-engineered T cells have revolutionized the treatment of B cell malignancies, their clinical implementation in T-ALL is in its infancy. CD1a represents a safe target for cortical T-ALL (coT-ALL) patients, and fratricide-resistant CD1a-directed CAR T cells have been preclinically validated as an immunotherapeutic strategy for R/R coT-ALL. Nonetheless, T-ALL relapses are commonly very aggressive and hyperleukocytic, posing a challenge to recover sufficient non-leukemic effector T cells from leukapheresis in R/R T-ALL patients. METHODS We carried out a comprehensive study using robust in vitro and in vivo assays comparing the efficacy of engineered T cells either expressing a second-generation CD1a-CAR or secreting CD1a x CD3 T cell-engaging Antibodies (CD1a-STAb). RESULTS We show that CD1a-T cell engagers bind to cell surface expressed CD1a and CD3 and induce specific T cell activation. Recruitment of bystander T cells endows CD1a-STAbs with an enhanced in vitro cytotoxicity than CD1a-CAR T cells at lower effector:target ratios. CD1a-STAb T cells are as effective as CD1a-CAR T cells in cutting-edge in vivo T-ALL patient-derived xenograft models. CONCLUSIONS Our data suggest that CD1a-STAb T cells could be an alternative to CD1a-CAR T cells in coT-ALL patients with aggressive and hyperleukocytic relapses with limited numbers of non-leukemic effector T cells.
Collapse
Affiliation(s)
- Anaïs Jiménez-Reinoso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain,H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Néstor Tirado
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | | | | | | | - Oana Hangiu
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Laura Díez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain,H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Ángela Albitre
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Madrid, Spain,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Petronila Penela
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Madrid, Spain,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Maria L Toribio
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Madrid, Spain
| | - Pablo Menéndez
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain,Red Española de Terapias Avanzadas (TERAV) - Instituto de Salud Carlos III (ISCII) (RICORS, RD21/0017/0029-RD21; RD21/0017/0030), Madrid, Spain,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain,School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain,H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain,Red Española de Terapias Avanzadas (TERAV) - Instituto de Salud Carlos III (ISCII) (RICORS, RD21/0017/0029-RD21; RD21/0017/0030), Madrid, Spain
| | | |
Collapse
|
36
|
Jin Q, Gutierrez Diaz B, Pieters T, Zhou Y, Narang S, Fijalkwoski I, Borin C, Van Laere J, Payton M, Cho BK, Han C, Sun L, Serafin V, Yacu G, Von Loocke W, Basso G, Veltri G, Dreveny I, Ben-Sahra I, Goo YA, Safgren SL, Tsai YC, Bornhauser B, Suraneni PK, Gaspar-Maia A, Kandela I, Van Vlierberghe P, Crispino JD, Tsirigos A, Ntziachristos P. Oncogenic deubiquitination controls tyrosine kinase signaling and therapy response in acute lymphoblastic leukemia. SCIENCE ADVANCES 2022; 8:eabq8437. [PMID: 36490346 PMCID: PMC9733937 DOI: 10.1126/sciadv.abq8437] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Dysregulation of kinase signaling pathways favors tumor cell survival and therapy resistance in cancer. Here, we reveal a posttranslational regulation of kinase signaling and nuclear receptor activity via deubiquitination in T cell acute lymphoblastic leukemia (T-ALL). We observed that the ubiquitin-specific protease 11 (USP11) is highly expressed and associates with poor prognosis in T-ALL. USP11 ablation inhibits leukemia progression in vivo, sparing normal hematopoiesis. USP11 forms a complex with USP7 to deubiquitinate the oncogenic lymphocyte cell-specific protein-tyrosine kinase (LCK) and enhance its activity. Impairment of LCK activity leads to increased glucocorticoid receptor (GR) expression and glucocorticoids sensitivity. Genetic knockout of USP7 improved the antileukemic efficacy of glucocorticoids in vivo. The transcriptional activation of GR target genes is orchestrated by the deubiquitinase activity and mediated via an increase in enhancer-promoter interaction intensity. Our data unveil how dysregulated deubiquitination controls leukemia survival and drug resistance, suggesting previously unidentified therapeutic combinations toward targeting leukemia.
Collapse
Affiliation(s)
- Qi Jin
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Blanca Gutierrez Diaz
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Yalu Zhou
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sonali Narang
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University School of Medicine, New York, NY, USA
| | - Igor Fijalkwoski
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Cristina Borin
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jolien Van Laere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
| | - Monique Payton
- Division of Experimental Hematology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Byoung-Kyu Cho
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Cuijuan Han
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Limin Sun
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Valentina Serafin
- Oncohematology Laboratory, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
- Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy
| | - George Yacu
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Wouter Von Loocke
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Giuseppe Basso
- Oncohematology Laboratory, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
- Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy
| | - Giulia Veltri
- Oncohematology Laboratory, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Ingrid Dreveny
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Young Ah Goo
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Stephanie L. Safgren
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Yi-Chien Tsai
- University Children’s Hospital, Division of Pediatric Oncology, University of Zurich, Zurich, Switzerland
| | - Beat Bornhauser
- University Children’s Hospital, Division of Pediatric Oncology, University of Zurich, Zurich, Switzerland
| | | | - Alexandre Gaspar-Maia
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Irawati Kandela
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - John D. Crispino
- Division of Experimental Hematology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University School of Medicine, New York, NY, USA
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
37
|
Zhdanovskaya N, Lazzari S, Caprioglio D, Firrincieli M, Maioli C, Pace E, Imperio D, Talora C, Bellavia D, Checquolo S, Mori M, Screpanti I, Minassi A, Palermo R. Identification of a Novel Curcumin Derivative Influencing Notch Pathway and DNA Damage as a Potential Therapeutic Agent in T-ALL. Cancers (Basel) 2022; 14:cancers14235772. [PMID: 36497257 PMCID: PMC9736653 DOI: 10.3390/cancers14235772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy considered curable by modern clinical management. Nevertheless, the prognosis for T-ALL high-risk cases or patients with relapsed and refractory disease is still dismal. Therefore, there is a keen interest in developing more efficient and less toxic therapeutic approaches. T-ALL pathogenesis is associated with Notch signaling alterations, making this pathway a highly promising target in the fight against T-ALL. Here, by exploring the anti-leukemic capacity of the natural polyphenol curcumin and its derivatives, we found that curcumin exposure impacts T-ALL cell line viability and decreases Notch signaling in a dose- and time-dependent fashion. However, our findings indicated that curcumin-mediated cell outcomes did not depend exclusively on Notch signaling inhibition, but might be mainly related to compound-induced DNA-damage-associated cell death. Furthermore, we identified a novel curcumin-based compound named CD2066, endowed with potentiated anti-proliferative activity in T-ALL compared to the parent molecule curcumin. At nanomolar concentrations, CD2066 antagonized Notch signaling, favored DNA damage, and acted synergistically with the CDK1 inhibitor Ro3306 in T-ALL cells, thus representing a promising novel candidate for developing therapeutic agents against Notch-dependent T-ALL.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza Università di Roma, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza Università di Roma, 00161 Rome, Italy
| | - Diego Caprioglio
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | | | - Chiara Maioli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza Università di Roma, 00161 Rome, Italy
| | - Daniela Imperio
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza Università di Roma, 00161 Rome, Italy
| | - Diana Bellavia
- Department of Molecular Medicine, Sapienza Università di Roma, 00161 Rome, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza Università di Roma, 04100 Latina, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza Università di Roma, 00161 Rome, Italy
| | - Alberto Minassi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
- Correspondence: (A.M.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza Università di Roma, 00161 Rome, Italy
- Correspondence: (A.M.); (R.P.)
| |
Collapse
|
38
|
Zhang L, Zhou L, Wang Y, Li C, Liao P, Zhong L, Geng S, Lai P, Du X, Weng J. Deep learning-based transcriptome model predicts survival of T-cell acute lymphoblastic leukemia. Front Oncol 2022; 12:1057153. [DOI: 10.3389/fonc.2022.1057153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Identifying subgroups of T-cell acute lymphoblastic leukemia (T-ALL) with poor survival will significantly influence patient treatment options and improve patient survival expectations. Current efforts to predict T-ALL survival expectations in multiple patient cohorts are lacking. A deep learning (DL)-based model was developed to determine the prognostic staging of T-ALL patients. We used transcriptome sequencing data from TARGET to build a DL-based survival model using 265 T-ALL patients. We found that patients could be divided into two subgroups (K0 and K1) with significant difference (P< 0.0001) in survival rate. The more malignant subgroup was significantly associated with some tumor-related signaling pathways, such as PI3K-Akt, cGMP-PKG and TGF-beta signaling pathway. DL-based model showed good performance in a cohort of patients from our clinical center (P = 0.0248). T-ALL patients survival was successfully predicted using a DL-based model, and we hope to apply it to clinical practice in the future.
Collapse
|
39
|
Latchmansingh KA, Wang X, Verdun RE, Marques-Piubelli ML, Vega F, You MJ, Chapman J, Lossos IS. LMO2 expression is frequent in T-lymphoblastic leukemia and correlates with survival, regardless of T-cell stage. Mod Pathol 2022; 35:1220-1226. [PMID: 35322192 PMCID: PMC9427670 DOI: 10.1038/s41379-022-01063-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
T- lymphoblastic leukemia/lymphoma (T-LL) is an aggressive malignancy of immature T-cells with poor overall survival (OS) and in need of new therapies. LIM-domain only 2 (LMO2) is a critical regulator of hematopoietic cell development that can be overexpressed in T-LL due to chromosomal abnormalities. Deregulated LMO2 expression contributes to T-LL development by inducing block of T-cell differentiation and continuous thymocyte self-renewal. However, LMO2 expression and its biologic significance in T-LL remain largely unknown. We analyzed LMO2 expression in 100 initial and follow-up biopsies of T-LL from 67 patients, including 31 (46%) early precursor T-cell (ETP)-ALL, 26 (39%) cortical and 10 (15%) medullary type. LMO2 expression was present in 50 (74.6%) initial biopsies with an average of 87% positive tumor cells (range 30-100%). LMO2 expression in ETP, medullary and cortical T-LLs was not statistically different. In patients with biopsies after initial therapy, LMO2 expression was stable. LMO2 expression was associated with longer OS (p = 0.048) regardless of T-lymphoblast stage or other clinicopathologic features. These findings indicate that LMO2 is a promising new prognostic marker that could predict patients' outcomes and potentially be targeted for novel chemotherapy, i.e. PARP1/2 inhibitors, which have been shown to enhance chemotherapy sensitivity in LMO2 expressing diffuse large B cell lymphoma (DLBCL) tumors by decreasing DNA repair efficiency.
Collapse
Affiliation(s)
- Kerri-Ann Latchmansingh
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, University of Miami/Sylvester Comprehensive Cancer Center & Jackson Memorial Hospital, Miami, FL, USA
| | - Xiaoqiong Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ramiro E. Verdun
- Department of Medicine, Division of Hematology, University of Miami / Sylvester Comprehensive Cancer Center & Jackson Memorial Hospital, Miami, FL, USA
| | - Mario L. Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M. James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Chapman
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, University of Miami/Sylvester Comprehensive Cancer Center & Jackson Memorial Hospital, Miami, FL, USA
| | - Izidore S. Lossos
- Department of Medicine, Division of Hematology, University of Miami / Sylvester Comprehensive Cancer Center & Jackson Memorial Hospital, Miami, FL, USA
| |
Collapse
|
40
|
Ma W, Wan Y, Zhang J, Yao J, Wang Y, Lu J, Liu H, Huang X, Zhang X, Zhou H, He Y, Wu D, Wang J, Zhao Y. Growth arrest‐specific protein 2 (
GAS2
) interacts with
CXCR4
to promote T‐cell leukemogenesis partially via
c‐MYC. Mol Oncol 2022; 16:3720-3734. [PMID: 36054080 PMCID: PMC9580887 DOI: 10.1002/1878-0261.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Although growth arrest‐specific protein 2 (GAS2) promotes the growth of T‐cell acute lymphoblastic leukemia (T‐ALL) cells in culture, the effect of GAS2 on T‐cell leukemogenesis has not been studied, and the mechanism remains unclear. In the present study, xenograft studies showed that GAS2 silencing impaired T‐cell leukemogenesis and decreased leukemic cell infiltration. Mechanistically, GAS2 regulated the protein expression of C‐X‐C chemokine receptor type 4 (CXCR4) rather than its transcript expression. Immunoprecipitation revealed that GAS2 interacted with CXCR4, and confocal analysis showed that GAS2 was partially co‐expressed with CXCR4, which provided a strong molecular basis for GAS2 to regulate CXCR4 expression. Importantly, CXCR4 overexpression alleviated the inhibitory effect of GAS2 silencing on the growth and migration of T‐ALL cells. Moreover, GAS2 or CXCR4 silencing inhibited the expression of NOTCH1 and c‐MYC. Forced expression of c‐MYC rescued the growth suppression induced by GAS2 or CXCR4 silencing. Meanwhile, GAS2 deficiency, specifically in blood cells, had a mild effect on normal hematopoiesis, including T‐cell development, and GAS2 silencing did not affect the growth of normal human CD3+ or CD34+ cells. Overall, our data indicate that GAS2 promotes T‐cell leukemogenesis through its interaction with CXCR4 to activate NOTCH1/c‐MYC, whereas impaired GAS2 expression has a mild effect on normal hematopoiesis. Therefore, our study suggests that targeting the GAS2/CXCR4 axis is a potential therapeutic strategy for T‐ALL.
Collapse
Affiliation(s)
- Wenjuan Ma
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Yan Wan
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Jianxiang Zhang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Jianan Yao
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Yifei Wang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Jinchang Lu
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Hong Liu
- The First Affiliated Hospital of Soochow University Key Laboratory of Thrombosis and Hemostasis, Ministry of Health Suzhou 215006 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
| | - Xiaorui Huang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Xiuyan Zhang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
| | - Haixia Zhou
- The First Affiliated Hospital of Soochow University Key Laboratory of Thrombosis and Hemostasis, Ministry of Health Suzhou 215006 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
| | - Yulong He
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
- Cam‐Su Genomic Resources Center Soochow University Suzhou 215123 China
- State Key Laboratory of Radiation Medicine and Radioprotection Soochow University Suzhou 215123 China
- MOE Engineering Center of Hematological Disease Soochow University Suzhou 215123 China
| | - Depei Wu
- The First Affiliated Hospital of Soochow University Key Laboratory of Thrombosis and Hemostasis, Ministry of Health Suzhou 215006 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
- MOE Engineering Center of Hematological Disease Soochow University Suzhou 215123 China
| | - Jianrong Wang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
- State Key Laboratory of Radiation Medicine and Radioprotection Soochow University Suzhou 215123 China
- MOE Engineering Center of Hematological Disease Soochow University Suzhou 215123 China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology Suzhou 215123 China
| | - Yun Zhao
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology Soochow University Suzhou 215123 China
- National Clinical Research Center for Hematologic Diseases Suzhou 215006 China
- MOE Engineering Center of Hematological Disease Soochow University Suzhou 215123 China
| |
Collapse
|
41
|
Abu Rous F, Gutta R, Chacko R, Kuriakose P, Dabak V. Unusual Presentation of T-cell Large Granular Lymphocytic Leukemia. Cureus 2022; 14:e26742. [PMID: 35967149 PMCID: PMC9364958 DOI: 10.7759/cureus.26742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Large granular lymphocytic (LGL) leukemia is a rare chronic lymphoproliferative disorder that can arise from T- or natural killer-cell lineages. It is an indolent disease that typically occurs in the sixth decade of life. Most cases of T-cell LGL leukemia (T-LGL) are associated with autoimmune disorders. Patients with T-LGL are generally asymptomatic; however, they can present with symptoms related to neutropenia, infections, and autoimmune disorders. Here, we report two cases of T-LGL in which the patients presented with liver dysfunction.
Collapse
|
42
|
Maciocia PM, Wawrzyniecka PA, Maciocia NC, Burley A, Karpanasamy T, Devereaux S, Hoekx M, O'Connor D, Leon T, Rapoz-D'Silva T, Pocock R, Rahman S, Gritti G, Yánez DC, Ross S, Crompton T, Williams O, Lee L, Pule MA, Mansour MR. Anti-CCR9 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia. Blood 2022; 140:25-37. [PMID: 35507686 DOI: 10.1182/blood.2021013648] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature T lymphocytes, associated with higher rates of induction failure compared with those in B cell acute lymphoblastic leukemia. The potent immunotherapeutic approaches applied in B cell acute lymphoblastic leukemia, which have revolutionized the treatment paradigm, have proven more challenging in T-ALL, largely due to a lack of target antigens expressed on malignant but not healthy T cells. Unlike B cell depletion, T-cell aplasia is highly toxic. Here, we show that the chemokine receptor CCR9 is expressed in >70% of cases of T-ALL, including >85% of relapsed/refractory disease, and only on a small fraction (<5%) of normal T cells. Using cell line models and patient-derived xenografts, we found that chimeric antigen receptor (CAR) T-cells targeting CCR9 are resistant to fratricide and have potent antileukemic activity both in vitro and in vivo, even at low target antigen density. We propose that anti-CCR9 CAR-T cells could be a highly effective treatment strategy for T-ALL, avoiding T cell aplasia and the need for genome engineering that complicate other approaches.
Collapse
Affiliation(s)
- Paul M Maciocia
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Patrycja A Wawrzyniecka
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Nicola C Maciocia
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Amy Burley
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Thaneswari Karpanasamy
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Sam Devereaux
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Malika Hoekx
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - David O'Connor
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Theresa Leon
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Tanya Rapoz-D'Silva
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Rachael Pocock
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Sunniyat Rahman
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Giuseppe Gritti
- Department of Haematology, Ospedale Papa Giovanni XXIII, Bergamo, Italy; and
| | - Diana C Yánez
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Susan Ross
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Tessa Crompton
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Owen Williams
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Lydia Lee
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Martin A Pule
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Marc R Mansour
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
43
|
Perbellini O, Cavallini C, Chignola R, Galasso M, Scupoli MT. Phospho-Specific Flow Cytometry Reveals Signaling Heterogeneity in T-Cell Acute Lymphoblastic Leukemia Cell Lines. Cells 2022; 11:cells11132072. [PMID: 35805156 PMCID: PMC9266179 DOI: 10.3390/cells11132072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Several signaling pathways are aberrantly activated in T-ALL due to genetic alterations of their components and in response to external microenvironmental cues. To functionally characterize elements of the signaling network in T-ALL, here we analyzed ten signaling proteins that are frequently altered in T-ALL -namely Akt, Erk1/2, JNK, Lck, NF-κB p65, p38, STAT3, STAT5, ZAP70, Rb- in Jurkat, CEM and MOLT4 cell lines, using phospho-specific flow cytometry. Phosphorylation statuses of signaling proteins were measured in the basal condition or under modulation with H2O2, PMA, CXCL12 or IL7. Signaling profiles are characterized by a high variability across the analyzed T-ALL cell lines. Hierarchical clustering analysis documents that higher intrinsic phosphorylation of Erk1/2, Lck, ZAP70, and Akt, together with ZAP70 phosphorylation induced by H2O2, identifies Jurkat cells. In contrast, CEM are characterized by higher intrinsic phosphorylation of JNK and Rb and higher responsiveness of Akt to external stimuli. MOLT4 cells are characterized by higher basal STAT3 phosphorylation. These data document that phospho-specific flow cytometry reveals a high variability in intrinsic as well as modulated signaling networks across different T-ALL cell lines. Characterizing signaling network profiles across individual leukemia could provide the basis to identify molecular targets for personalized T-ALL therapy.
Collapse
Affiliation(s)
- Omar Perbellini
- Department of Cell Therapy and Hematology, San Bortolo Hospital, Viale Ferdinando Rodolfi, 37, 36100 Vicenza, Italy;
| | - Chiara Cavallini
- Research Center LURM, Interdepartmental Laboratory of Medical Research, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy;
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Marilisa Galasso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy;
| | - Maria T. Scupoli
- Research Center LURM, Interdepartmental Laboratory of Medical Research, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy;
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy;
- Correspondence: ; Tel.: +39-045-8128-425
| |
Collapse
|
44
|
Inhibition of DEK Enhances Doxorubicin-Induced Apoptosis and Cell Cycle Arrest in T-Cell Acute Lymphoblastic Leukemia Cells. DISEASE MARKERS 2022; 2022:9312971. [PMID: 35769815 PMCID: PMC9236779 DOI: 10.1155/2022/9312971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/24/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a serious hematological tumor derived from early T-cell progenitors, which is extremely resistant to chemotherapy. Classically, doxorubicin (DOX) is an effective first-line drug for the treatment of T-ALL; however, DOX resistance limits its clinical effect. The DEK proto-oncogene (DEK) has been involved in neoplasms but remains unexplored in T-ALL. We silenced DEK on Jurkat cells and detected cell proliferation with cell counting and colony formation assay. Then, we detected DEK's drug sensitivity to DOX with CCK-8, cell cycle, and apoptosis with DOX treatment. Western blot analysis was performed to determine protein expression of apoptosis and cell cycle-related genes, including BCL2L1, caspase-3, and cyclin-dependent kinases (CDK). Finally, the tumorigenic ability of DEK was analyzed using a BALB/C nude mouse model. In this study, DEK was highly expressed in Jurkat cells. Inhibition of DEK can lead to decreased cell proliferation and proportion of S-phase cells in the cell cycle and more cell apoptosis, and the effect is more obvious after DOX treatment. Western blot results showed that DOX treatment leads to cell cycle arrest, reduction of cyclin-dependent kinase 6 (CDK6) protein, accumulation of CDKN1A protein, and DOX-induced apoptosis accompanied by reductions in protein levels of BCL2L1, as well as increases in protein level of caspase-3. Furthermore, DEK-silenced Jurkat cells generated a significantly smaller tumor mass in mice. Our study found that DEK is a novel, potential therapeutic target for overcoming DOX resistance in T-ALL.
Collapse
|
45
|
Othman T, Moskoff BN, Ho G, Tenold ME, Azenkot T, Krackeler ML, Fisch SC, Potter LA, Kaesberg PR, Welborn JL, Wun T, Esteghamat NS, Hoeg RT, Rosenberg AS, Abedi M, Tuscano JM, Jonas BA. Clinical experience with frontline Hyper-CVAD-based regimens, including Hyper-CVAD plus ponatinib, in patients with acute lymphoblastic leukemia treated at a comprehensive cancer center. Leuk Res 2022; 119:106885. [PMID: 35738024 DOI: 10.1016/j.leukres.2022.106885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Hyper-CVAD is an established regimen for adult ALL that was developed at the MD Anderson Cancer Center (MDACC). However, results can vary across different institutions given the heterogeneity of patient populations and institutional practices. Moreover, while a MDACC study demonstrated that the combination of ponatinib plus hyper-CVAD produced remarkable activity in untreated Ph+ ALL, it remains to be externally validated. We sought to validate those findings in previously untreated adult patients with Ph+ ALL. METHODS This was a retrospective study analyzing the outcomes of previously untreated adult ALL patients treated with hyper-CVAD, with a focus on Ph+ ALL patients treated with ponatinib plus hyper-CVAD. RESULTS 82 patients were included. The median age was 51 years. The median follow-up was 2.62 years. The 5-year overall survival (OS) and event-free survival (EFS) were 39.5 % and 28.2 %, respectively. For Ph+ ALL patients (n = 13) receiving ponatinib plus hyper-CVAD, 3-year OS and EFS were both 92.3 %. Univariate analysis showed a high WBC and poor-risk cytogenetics to be associated with inferior outcomes, while CD20 + predicted favorable outcomes in B-ALL patients. On multivariate analysis, CD20 + retained significance for Philadelphia-negative (Ph-) ALL. For Ph+ ALL, ponatinib was associated with better OS and EFS on univariate and multivariate analysis. CONCLUSION Our data supports the use of ponatinib plus hyper-CVAD as a standard of care regimen for Ph+ ALL. Our outcomes for Ph-ALL and T-cell ALL (T-ALL) show that advances are still needed in the frontline setting, and clinical trial enrollment is recommended.
Collapse
Affiliation(s)
- Tamer Othman
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Benjamin N Moskoff
- Pharmacy Department, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Gwendolyn Ho
- Department of Hematology Oncology, The Permanente Medical Group, Kaiser Permanente, Sacramento, CA, USA
| | - Matthew E Tenold
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Tali Azenkot
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Margaret L Krackeler
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Samantha C Fisch
- University of California Davis School of Medicine, Sacramento, CA, USA
| | - Laura A Potter
- University of California Davis School of Medicine, Sacramento, CA, USA
| | - Paul R Kaesberg
- Pharmacy Department, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jeanna L Welborn
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ted Wun
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Naseem S Esteghamat
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Rasmus T Hoeg
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Aaron S Rosenberg
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Mehrdad Abedi
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Joseph M Tuscano
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Brian A Jonas
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
46
|
Wang H, Zhang D, Cui X, Dai Y, Wang C, Feng W, Lv X, Li Y, Wang L, Ru Y, Zhang Y, Ren Q, Zheng G. Loss of IRF7 accelerates acute myeloid leukemia progression and induces VCAM1-VLA-4 mediated intracerebral invasion. Oncogene 2022; 41:2303-2314. [PMID: 35256780 PMCID: PMC9010288 DOI: 10.1038/s41388-022-02233-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 01/06/2023]
Abstract
Interferon regulatory factor 7 (IRF7) is widely studied in inflammatory models. Its effects on malignant progression have been documented mainly from the perspective of the microenvironment. However, its role in leukemia has not been established. Here we used MLL-AF9-induced acute myeloid leukemia (AML) mouse models with IRF7 knockout or overexpression and xenograft mouse models to explore the intrinsic effects of IRF7 in AML. AML-IRF7−/− mice exhibited accelerated disease progression with intracerebral invasion of AML cells. AML-IRF7−/− cells showed increased proliferation and elevated leukemia stem cell (LSC) levels. Overexpression of IRF7 in AML cells decreased cell proliferation and LSC levels. Furthermore, overexpression of transforming growth-interacting factor 1 (TGIF1) rescued the enhanced proliferation and high LSC levels caused by IRF7 deficiency. Moreover, upregulation of vascular cell adhesion molecule 1 (VCAM1), which correlated with high LSC levels, was detected in AML-IRF7−/− cells. In addition, blocking VCAM1-very late antigen 4 (VLA-4) axis delayed disease progression and attenuated intracerebral invasion of AML cells. Therefore, our findings uncover the intrinsic effects of IRF7 in AML and provide a potential strategy to control central nervous system myeloid leukemia.
Collapse
|
47
|
Zhou Y, Petrovic J, Zhao J, Zhang W, Bigdeli A, Zhang Z, Berger SL, Pear WS, Faryabi RB. EBF1 nuclear repositioning instructs chromatin refolding to promote therapy resistance in T leukemic cells. Mol Cell 2022; 82:1003-1020.e15. [PMID: 35182476 PMCID: PMC8897266 DOI: 10.1016/j.molcel.2022.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
Chromatin misfolding has been implicated in cancer pathogenesis; yet, its role in therapy resistance remains unclear. Here, we systematically integrated sequencing and imaging data to examine the spatial and linear chromatin structures in targeted therapy-sensitive and -resistant human T cell acute lymphoblastic leukemia (T-ALL). We found widespread alterations in successive layers of chromatin organization including spatial compartments, contact domain boundaries, and enhancer positioning upon the emergence of targeted therapy resistance. The reorganization of genome folding structures closely coincides with the restructuring of chromatin activity and redistribution of architectural proteins. Mechanistically, the derepression and repositioning of the B-lineage-determining transcription factor EBF1 from the heterochromatic nuclear envelope to the euchromatic interior instructs widespread genome refolding and promotes therapy resistance in leukemic T cells. Together, our findings suggest that lineage-determining transcription factors can instruct changes in genome topology as a driving force for epigenetic adaptations in targeted therapy resistance.
Collapse
Affiliation(s)
- Yeqiao Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jelena Petrovic
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jingru Zhao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Wu Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ashkan Bigdeli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhen Zhang
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Zhou Y, Guan L, Li W, Jia R, Jia L, Zhang Y, Wen X, Meng S, Ma D, Zhang N, Ji M, Liu Y, Ji C. DT7 peptide-modified lecithin nanoparticles co-loaded with γ-secretase inhibitor and dexamethasone efficiently inhibit T-cell acute lymphoblastic leukemia and reduce gastrointestinal toxicity. Cancer Lett 2022; 533:215608. [PMID: 35240234 DOI: 10.1016/j.canlet.2022.215608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a serious hematologic malignancy and glucocorticoid resistance is the main recurrent cause for a high relapsed and death rate. Here, we proposed an effective therapeutic regimen of combining gamma-secretase inhibitors (GSIs) with dexamethasone (DEX) to overcome glucocorticoid resistance. Moreover, the bone marrow targeting DT7 peptide-modified lecithin nanoparticles co-loaded with DEX and GSI (TLnp/D&G) were developed to enhance T-ALL cells recognition and endocytosis. In vitro cytotoxicity studies showed that TLnp/D&G significantly inhibited cell survival and promoted apoptosis of T-ALL cells. Mechanically, we found that GSIs promoted DEX-induced cell apoptosis by two main synergetic mechanisms: 1) GSIs significantly upregulated glucocorticoid receptor (GR) expression in T-ALL and restored the glucocorticoid-induced pro-apoptotic response. 2) Both DEX and GSI synergistically inhibited BCL2 and suppressed the survival of T-ALL cells. Furthermore, in vivo studies demonstrated that TLnp/D&G showed high bone marrow accumulation and better antileukemic efficacy both in leukemia bearing models and in systemic Notch1-induced T-ALL models, with excellent biosafety and reduced gastrointestinal toxicity. Overall, our study provides new strategies for the treatment of T-ALL and promising bone marrow targeting systems with high transformation potential.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Li Guan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wei Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ruinan Jia
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lejiao Jia
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuanyuan Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xin Wen
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Sibo Meng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Min Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
49
|
Liu Y, Fang B, Feng X, Jiang Y, Zeng Y, Jiang J. Mechanism of IDH1-R132H mutation in T cell acute lymphoblastic leukemia mouse model via the Notch1 pathway. Tissue Cell 2022; 74:101674. [PMID: 34814054 DOI: 10.1016/j.tice.2021.101674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a clonal malignant disease. Isocitrate Dehydrogenase 1-R123 (IDH1-R132 H) is related to T-ALL progression. This study explored the role of IDH1-R132H in T-ALL. Molt-4 cells with IDH1-R132H mutation were constructed by retroviral transfection of IDH1-R132H and T-ALL xenotransplantation mouse model was established by injection of Molt-4 cells through the tail vein. Infiltration of the liver, spleen, and bone marrow and the percentage of CD45-positive T-ALL cells in them were detected. Cell proliferation, apoptosis, and invasion were evaluated after the intervention of Notch1, PTEN, or PI3K expression. The leukocyte number was increased, the spleen was enlarged, infiltration in bone marrow, spleen, and liver tissue was worsened and the percentage of hCD45-positive T-ALL cells was increased by IDH1-R132H mutation, which promoted T-ALL deterioration. IDH1-R132H mutation promoted proliferation, invasion, and inhibited apoptosis of T-ALL cells, which were reversed by inhibition of Notch1. IDH1-R132H mutation upregulated HES1 expression and downregulated PTEN expression by activating the Notch1 pathway, while inhibition of Notch1 reversed these changes. PTEN inhibited the PI3K/AKT pathway activation. PTEN overexpression reversed IDH1-R132H mutation effect on promoting malignant behaviors of T-ALL cells. IDH1-R132H mutation inhibited PTEN expression by activating the Notch1/HES1 pathway, activated the PI3K/AKT pathway, thus promoting malignant behaviors of T-ALL cells.
Collapse
Affiliation(s)
- Yonghua Liu
- Department of Hematology, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15, Dazhong Road, Liandu District, Lishui, Zhejiang 323000, China
| | - Bingmu Fang
- Department of Hematology, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15, Dazhong Road, Liandu District, Lishui, Zhejiang 323000, China
| | - Xiaoning Feng
- Department of Hematology, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15, Dazhong Road, Liandu District, Lishui, Zhejiang 323000, China
| | - Yu Jiang
- Department of Hematology, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15, Dazhong Road, Liandu District, Lishui, Zhejiang 323000, China
| | - Yuxiao Zeng
- Department of Hematology, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15, Dazhong Road, Liandu District, Lishui, Zhejiang 323000, China
| | - Jinhong Jiang
- Department of Hematology, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15, Dazhong Road, Liandu District, Lishui, Zhejiang 323000, China.
| |
Collapse
|
50
|
Solayappan M, Azlan A, Khor KZ, Yik MY, Khan M, Yusoff NM, Moses EJ. Utilization of CRISPR-Mediated Tools for Studying Functional Genomics in Hematological Malignancies: An Overview on the Current Perspectives, Challenges, and Clinical Implications. Front Genet 2022; 12:767298. [PMID: 35154242 PMCID: PMC8834884 DOI: 10.3389/fgene.2021.767298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
Hematological malignancies (HM) are a group of neoplastic diseases that are usually heterogenous in nature due to the complex underlying genetic aberrations in which collaborating mutations enable cells to evade checkpoints that normally safeguard it against DNA damage and other disruptions of healthy cell growth. Research regarding chromosomal structural rearrangements and alterations, gene mutations, and functionality are currently being carried out to understand the genomics of these abnormalities. It is also becoming more evident that cross talk between the functional changes in transcription and proteins gives the characteristics of the disease although specific mutations may induce unique phenotypes. Functional genomics is vital in this aspect as it measures the complete genetic change in cancerous cells and seeks to integrate the dynamic changes in these networks to elucidate various cancer phenotypes. The advent of CRISPR technology has indeed provided a superfluity of benefits to mankind, as this versatile technology enables DNA editing in the genome. The CRISPR-Cas9 system is a precise genome editing tool, and it has revolutionized methodologies in the field of hematology. Currently, there are various CRISPR systems that are used to perform robust site-specific gene editing to study HM. Furthermore, experimental approaches that are based on CRISPR technology have created promising tools for developing effective hematological therapeutics. Therefore, this review will focus on diverse applications of CRISPR-based gene-editing tools in HM and its potential future trajectory. Collectively, this review will demonstrate the key roles of different CRISPR systems that are being used in HM, and the literature will be a representation of a critical step toward further understanding the biology of HM and the development of potential therapeutic approaches.
Collapse
Affiliation(s)
- Maheswaran Solayappan
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Malaysia
| | - Adam Azlan
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Kang Zi Khor
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Mot Yee Yik
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Matiullah Khan
- Department of Pathology, Faculty of Medicine, AIMST University, Bedong, Malaysia
| | - Narazah Mohd Yusoff
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Emmanuel Jairaj Moses
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|