1
|
Ayoub SM, Vemuri S, Hoang EB, Jha NA, Minassian A, Young JW. Beneficial and adverse effects of THC on cognition in the HIV-1 transgenic rat model: Importance of exploring task- and sex-dependent outcomes. Brain Behav Immun 2025:S0889-1591(25)00167-9. [PMID: 40286994 DOI: 10.1016/j.bbi.2025.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
HIV-associated neurocognitive impairment (NCI) is an untreated concern among people living with HIV (PLWH). Cannabis use in PLWH may complicate outcomes on cognition, with evidence to suggest function-dependent effects that are modulated by several factors including use patterns (e.g., frequency of use) and demographic influences (e.g., age). Animal studies can control for these factors. Here, we characterized the impact of the primary psychoactive ingredient in cannabis (delta-9-tetrahydrocannabinol; THC), on function-dependent cognitive outcomes in HIV-1 transgenic (Tg) rats using cross-species translatable assays. Female and male HIV-1Tg rats and their controls were tested in the rat Iowa Gambling Task (IGT; to measure risk-based decision-making), and the Probabilistic Reversal Learning Task (PRLT; to measure learning and cognitive flexibility). Rats were tested at baseline, then retested following acute and chronic exposures to THC (0, 0.3, 3 mg/kg, intraperitoneal injection). At baseline, HIV-1Tg rats took longer to make decisions, but exhibited intact cognition across tasks, suggestive of a speed-accuracy trade-off and early cognitive deficits. Both acute and chronic THC exposures produced selective effects on primary performance measures in HIV-1Tg rats, including enhanced learning performance but worsened risk-based decision-making, not observed in controls. This work confirms function-dependent effects of THC on cognitive function in an animal model of HIV using cross-species translatable tasks used in the clinic. Findings are consistent with evidence for function-dependent cannabis effects observed in HIV, and suggest THC may drive cannabis-induced changes observed on cognitive performance in PLWH. These data may serve as guidance for clinicians prescribing cannabis to patients with HIV, and for further research exploring the interactive effects of HIV and cannabinoid on cognitive function.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - Sunitha Vemuri
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - Elizabeth B Hoang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - Neal A Jha
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
2
|
Cai DC, Song P, Song F, Shi Y. Altered angular gyrus activation during the digit symbol substitution test in people living with HIV: beyond information processing speed deficits. Sci Rep 2025; 15:5808. [PMID: 39962187 PMCID: PMC11833122 DOI: 10.1038/s41598-025-89388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Speed-of-information processing (SIP) is often impaired in people living with HIV (PLWH), typically assessed through tests such as the digit symbol (DS) and symbol search, which also rely on motor and executive functions. This study aims to disentangle SIP deficits from other cognitive impairments in PLWH using an MRI-adapted digit symbol substitution test (mDSST). Fifty-seven PLWH (34.7 ± 11.2 years) and 50 age-matched people living without HIV (PLWoH, 31.8 ± 9.9 years) completed standardized neuropsychological tests and the mDSST. Behavioral performances and brain activations were compared, with correlations drawn between group-differentiating brain activations and clinical ratings of cognitive domains. Results showed that PLWH performed worse in DS and symbol search, made fewer responses, and was slower in mDSST, with performances correlating to SIP and motor ratings. Notably, PLWH showed greater deficits in attention compared to PLWoH, rather than in SIP or motor. PLWH also exhibited greater primary motor cortex activation and reduced right angular gyrus activation. These findings suggest that slower performances on SIP-related tests in PLWH may be partially linked to abnormal visuospatial attention, as reflected by reduced angular gyrus activation, with higher motor cortex activation potentially serving as a compensatory mechanism. Future studies should explore whether prefrontal regions implicated in SIP are impaired in more severely affected PLWH.
Collapse
Affiliation(s)
- Dan-Chao Cai
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Pengrui Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fengxiang Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Yuxin Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Landler KK, Schantell M, Glesinger R, Horne LK, Embury CM, Son JJ, Arif Y, Coutant AT, Garrison GM, McDonald KM, John JA, Okelberry HJ, Ward TW, Killanin AD, Kubat M, Furl RA, O'Neill J, Bares SH, May-Weeks PE, Becker JT, Wilson TW. People with HIV exhibit spectrally distinct patterns of rhythmic cortical activity serving cognitive flexibility. Neurobiol Dis 2024; 201:106680. [PMID: 39326464 PMCID: PMC11525061 DOI: 10.1016/j.nbd.2024.106680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024] Open
Abstract
Despite effective antiretroviral therapy, cognitive impairment remains prevalent among people with HIV (PWH) and decrements in executive function are particularly prominent. One component of executive function is cognitive flexibility, which integrates a variety of executive functions to dynamically adapt one's behavior in response to changing contextual demands. Though substantial work has illuminated HIV-related aberrations in brain function, it remains unclear how the neural oscillatory dynamics serving cognitive flexibility are affected by HIV-related alterations in neural functioning. Herein, 149 participants (PWH: 74; seronegative controls: 75) between the ages of 29-76 years completed a perceptual feature matching task that probes cognitive flexibility during high-density magnetoencephalography (MEG). Neural responses were decomposed into the time-frequency domain and significant oscillatory responses in the theta (4-8 Hz), alpha (10-16 Hz), and gamma (74-98 Hz) spectral windows were imaged using a beamforming approach. Whole-brain voxel-wise comparisons were then conducted on these dynamic functional maps to identify HIV-related differences in the neural oscillatory dynamics supporting cognitive flexibility. Our findings indicated group differences in alpha oscillatory activity in the cingulo-opercular cortices, and differences in gamma activity were found in the cerebellum. Across all participants, alpha and gamma activity in these regions were associated with performance on the cognitive flexibility task. Further, PWH who had been treated with antiretroviral therapy for a longer duration and those with higher current CD4 counts had alpha responses that more closely resembled those of seronegative controls, suggesting that optimal clinical management of HIV infection is associated with preserved neural dynamics supporting cognitive flexibility.
Collapse
Affiliation(s)
- Katherine K Landler
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Ryan Glesinger
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Lucy K Horne
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Grant M Garrison
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Kellen M McDonald
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Jason A John
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Thomas W Ward
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Maureen Kubat
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Renae A Furl
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Sara H Bares
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | | | - James T Becker
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
4
|
Petro NM, Rempe MP, Schantell M, Ku V, Srinivas AN, O’Neill J, Kubat ME, Bares SH, May-Weeks PE, Wilson TW. Spontaneous cortical activity is altered in persons with HIV and related to domain-specific cognitive function. Brain Commun 2024; 6:fcae228. [PMID: 39035415 PMCID: PMC11258575 DOI: 10.1093/braincomms/fcae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Whilst the average lifespan of persons with HIV now approximates that of the general population, these individuals are at a much higher risk of developing cognitive impairment with ∼35-70% experiencing at least subtle cognitive deficits. Previous works suggest that HIV impacts both low-level primary sensory regions and higher-level association cortices. Notably, multiple neuroHIV studies have reported elevated levels of spontaneous cortical activity during the pre-stimulus baseline period of task-based experiments, but only a few have examined such activity during resting-state conditions. In the current study, we examined such spontaneous cortical activity using magnetoencephalography in 79 persons with HIV and 83 demographically matched seronegative controls and related this neural activity to performance on neuropsychological assessments of cognitive function. Consistent with previous works, persons with HIV exhibited stronger spontaneous gamma activity, particularly in inferior parietal, prefrontal and superior temporal cortices. In addition, serostatus moderated the relationship between spontaneous beta activity and attention, motor and processing speed scores, with controls but not persons with HIV showing stronger beta activity with better performance. The current results suggest that HIV predominantly impacts spontaneous activity in association cortices, consistent with alterations in higher-order brain function, and may be attributable to deficient GABAergic signalling, given its known role in the generation of gamma and beta oscillations. Overall, these effects align with previous studies showing aberrant spontaneous activity in persons with HIV and provide a critical new linkage to domain-specific cognitive dysfunction.
Collapse
Affiliation(s)
- Nathan M Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Vivian Ku
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Advika N Srinivas
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Jennifer O’Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | - Maureen E Kubat
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | - Sara H Bares
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
5
|
Ayoub SM, Holloway BM, Miranda AH, Roberts BZ, Young JW, Minassian A, Ellis RJ. The Impact of Cannabis Use on Cognition in People with HIV: Evidence of Function-Dependent Effects and Mechanisms from Clinical and Preclinical Studies. Curr HIV/AIDS Rep 2024; 21:87-115. [PMID: 38602558 PMCID: PMC11129923 DOI: 10.1007/s11904-024-00698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Cannabis may have beneficial anti-inflammatory effects in people with HIV (PWH); however, given this population's high burden of persisting neurocognitive impairment (NCI), clinicians are concerned they may be particularly vulnerable to the deleterious effects of cannabis on cognition. Here, we present a systematic scoping review of clinical and preclinical studies evaluating the effects of cannabinoid exposure on cognition in HIV. RECENT FINDINGS Results revealed little evidence to support a harmful impact of cannabis use on cognition in HIV, with few eligible preclinical data existing. Furthermore, the beneficial/harmful effects of cannabis use observed on cognition were function-dependent and confounded by several factors (e.g., age, frequency of use). Results are discussed alongside potential mechanisms of cannabis effects on cognition in HIV (e.g., anti-inflammatory), and considerations are outlined for screening PWH that may benefit from cannabis interventions. We further highlight the value of accelerating research discoveries in this area by utilizing translatable cross-species tasks to facilitate comparisons across human and animal work.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA.
| | - Breanna M Holloway
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Alannah H Miranda
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Benjamin Z Roberts
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Oomen PGA, Hakkers CS, Arends JE, van der Berk GEL, Pas P, Hoepelman AIM, van Welzen BJ, du Plessis S. Underlying Neural Mechanisms of Cognitive Improvement in Fronto-striatal Response Inhibition in People Living with HIV Switching Off Efavirenz: A Randomized Controlled BOLD fMRI Trial. Infect Dis Ther 2024; 13:1067-1082. [PMID: 38642238 PMCID: PMC11098980 DOI: 10.1007/s40121-024-00966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024] Open
Abstract
INTRODUCTION It is unclear whether neurotoxicity due to the antiretroviral drug efavirenz (EFV) results in neurocognitive impairment in people living with HIV (PLWH). Previously, we found that discontinuing EFV was associated with improved processing speed and attention on neuropsychological assessment. In this imaging study, we investigate potential neural mechanisms underlying this cognitive improvement using a BOLD fMRI task assessing cortical and subcortical functioning. METHODS Asymptomatic adult PLWH stable on emtricitabine/tenofovirdisoproxil/efavirenz were randomly (1:2) assigned to continue their regimen (n = 12) or to switch to emtricitabine/tenofovirdisoproxil/rilpivirine (n = 28). At baseline and after 12 weeks, both groups performed the Stop-Signal Anticipation Task, which tests reactive and proactive inhibition (indicative of subcortical and cortical functioning, respectively), involving executive functioning, working memory, and attention. Behavior and BOLD fMRI activation levels related to processing speed and attention Z-scores were assessed in 17 pre-defined brain regions. RESULTS Both groups had comparable patient and clinical characteristics. Reactive inhibition behavioral responses improved for both groups on week 12, with other responses unchanged. Between-group activation did not differ significantly. For reactive inhibition, positive Pearson coefficients were observed for the change in BOLD fMRI activation levels and change in processing speed and attention Z-scores in all 17 regions in participants switched to emtricitabine/tenofovir disoproxil/rilpivirine, whereas in the control group, negative correlation coefficients were observed in 10/17 and 13/17 regions, respectively. No differential pattern was observed for proactive inhibition. CONCLUSION Potential neural mechanisms underlying cognitive improvement after discontinuing EFV in PLWH were found in subcortical functioning, with our findings suggesting that EFV's effect on attention and processing speed is, at least partially, mediated by reactive inhibition. TRIAL REGISTRATION Clinicaltrials.gov identifier [NCT02308332].
Collapse
Affiliation(s)
- Patrick G A Oomen
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Charlotte S Hakkers
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Joop E Arends
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Guido E L van der Berk
- Department of Internal Medicine and Infectious Diseases, Onze Lieve Vrouwe Gasthuis, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands
| | - Pascal Pas
- Department of Psychiatry, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Andy I M Hoepelman
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Berend J van Welzen
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town, 7505, South Africa
- SAMRC Genomics and Brain Disorders Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Parow, Cape Town, 7505, South Africa
| |
Collapse
|
7
|
Moschopoulos CD, Stanitsa E, Protopapas K, Kavatha D, Papageorgiou SG, Antoniadou A, Papadopoulos A. Multimodal Approach to Neurocognitive Function in People Living with HIV in the cART Era: A Comprehensive Review. Life (Basel) 2024; 14:508. [PMID: 38672778 PMCID: PMC11050956 DOI: 10.3390/life14040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Combination antiretroviral treatment (cART) has revolutionized the management of human immunodeficiency virus (HIV) and has markedly improved the disease burden and life expectancy of people living with HIV. HIV enters the central nervous system (CNS) early in the course of infection, establishes latency, and produces a pro-inflammatory milieu that may affect cognitive functions, even in the cART era. Whereas severe forms of neurocognitive impairment (NCI) such as HIV-associated dementia have declined over the last decades, milder forms have become more prevalent, are commonly multifactorial, and are associated with comorbidity burdens, mental health, cART neurotoxicity, and ageing. Since 2007, the Frascati criteria have been used to characterize and classify HIV-associated neurocognitive disorders (HAND) into three stages, namely asymptomatic neurocognitive impairment (ANI), mild neurocognitive disorder (MND), and HIV-associated dementia (HAD). These criteria are based on a comprehensive neuropsychological assessment that presupposes the availability of validated, demographically adjusted, and normative population data. Novel neuroimaging modalities and biomarkers have been proposed in order to complement NCI assessments, elucidate neuropathogenic mechanisms, and support HIV-associated NCI diagnosis, monitoring, and prognosis. By integrating neuropsychological assessments with biomarkers and neuroimaging into a holistic care approach, clinicians can enhance diagnostic accuracy, prognosis, and patient outcomes. This review interrogates the value of these modes of assessment and proposes a unified approach to NCI diagnosis.
Collapse
Affiliation(s)
- Charalampos D. Moschopoulos
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Evangelia Stanitsa
- 1st Department of Neurology, Medical School of Athens, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.S.); (S.G.P.)
| | - Konstantinos Protopapas
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Dimitra Kavatha
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Medical School of Athens, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.S.); (S.G.P.)
| | - Anastasia Antoniadou
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Antonios Papadopoulos
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| |
Collapse
|
8
|
Chaganti J, Gates TM, Brew BJ. Reversible large-scale network disruption correlates with neurocognitive improvement in HIV-associated minor neurocognitive disorder with combined anti-retroviral therapy intensification: a prospective longitudinal resting-state functional magnetic resonance imaging study. Neurol Sci 2023; 44:3261-3269. [PMID: 37052787 DOI: 10.1007/s10072-023-06783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
OBJECTIVE HIV-associated neurocognitive disorder (HAND) affects multiple cognitive domains and currently, the neuropsychological testing is the gold standard to identify these deficits. The aim of this longitudinal 12-month pilot study is to determine the effect of intensified combination antiretroviral therapy (cART) on rs-fMRI in virally suppressed (both in CSF and blood) patients with active HAND (those who have progressive neurocognitive impairment) and correlated with neurocognitive function tests. METHODS In this pilot study, we have evaluated sixteen patients with active HAND with viral suppression in both blood and CSF to study the effect of cART on functional connectivity. Participants underwent rs-fMRI at the baseline (time point-1 (TP-1) and 12-month visits (time point-2 (TP-2)). Connectivity in the five major networks was measured at TP-1 and TP-2 using the seed-based approach. All the participants underwent a five-domain neuropsychological battery at TP-1 and TP-2. Neurocognitive scores (NC) as well as blood and CSF markers were correlated with functional connectivity (FC). RESULTS There was a significant increase in the FC between the two time points within the executive, salience, default mode, dorsal attention, and visual networks at voxel level threshold of p < 0.001 and cluster level threshold of p < 0.05 and corrected for false detection rate (FDR). The neurocognitive scores were positively correlated with all the networks at similar cluster and voxel level thresholds. CONCLUSIONS These results indicate that rs-fMRI can be potentially used as one of the biomarkers for treatment efficacy in HAND.
Collapse
Affiliation(s)
- Joga Chaganti
- Department of Medical Imaging, St Vincent's Hospital, Sydney, Australia.
| | - Thomas M Gates
- Center for Applied Medical Research Program, St Vincent's Hospital, Sydney, Australia
| | - Bruce J Brew
- Department of Neurology, Head Neuroscience Program and Peter Duncan Neuroscience Centre for Applied Medical Research, St Vincent's Hospital, University of New South Wales, Sydney, Australia
| |
Collapse
|
9
|
Lew BJ, McCusker MC, O'Neill J, Bares SH, Wilson TW, Doucet GE. Resting state network connectivity alterations in HIV: Parallels with aging. Hum Brain Mapp 2023; 44:4679-4691. [PMID: 37417797 PMCID: PMC10400792 DOI: 10.1002/hbm.26409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
The increasing incidence of age-related comorbidities in people with HIV (PWH) has led to accelerated aging theories. Functional neuroimaging research, including functional connectivity (FC) using resting-state functional magnetic resonance imaging (rs-fMRI), has identified neural aberrations related to HIV infection. Yet little is known about the relationship between aging and resting-state FC in PWH. This study included 86 virally suppressed PWH and 99 demographically matched controls spanning 22-72 years old who underwent rs-fMRI. The independent and interactive effects of HIV and aging on FC were investigated both within- and between-network using a 7-network atlas. The relationship between HIV-related cognitive deficits and FC was also examined. We also conducted network-based statistical analyses using a brain anatomical atlas (n = 512 regions) to ensure similar results across independent approaches. We found independent effects of age and HIV in between-network FC. The age-related increases in FC were widespread, while PWH displayed further increases above and beyond aging, particularly between-network FC of the default-mode and executive control networks. The results were overall similar using the regional approach. Since both HIV infection and aging are associated with independent increases in between-network FC, HIV infection may be associated with a reorganization of the major brain networks and their functional interactions in a manner similar to aging.
Collapse
Affiliation(s)
- Brandon J. Lew
- Institute for Human NeuroscienceBoys Town National Research HospitalOmahaNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Marie C. McCusker
- Institute for Human NeuroscienceBoys Town National Research HospitalOmahaNebraskaUSA
- Interdepartmental Neuroscience ProgramYale University School of MedicineNew HavenConnecticutUSA
| | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious DiseasesUNMCOmahaNebraskaUSA
| | - Sara H. Bares
- Department of Internal Medicine, Division of Infectious DiseasesUNMCOmahaNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalOmahaNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Gaelle E. Doucet
- Institute for Human NeuroscienceBoys Town National Research HospitalOmahaNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
10
|
Chang L, Ryan MC, Liang H, Zhang X, Cunningham E, Wang J, Wilson E, Herskovits EH, Kottilil S, Ernst TM. Changes in Brain Activation Patterns During Working Memory Tasks in People With Post-COVID Condition and Persistent Neuropsychiatric Symptoms. Neurology 2023; 100:e2409-e2423. [PMID: 37185175 PMCID: PMC10256123 DOI: 10.1212/wnl.0000000000207309] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/03/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Post-COVID condition (PCC) is common and often involves neuropsychiatric symptoms. This study aimed to use blood oxygenation level-dependent fMRI (BOLD-fMRI) to assess whether participants with PCC had abnormal brain activation during working memory (WM) and whether the abnormal brain activation could predict cognitive performance, motor function, or psychiatric symptoms. METHODS The participants with PCC had documented coronavirus disease 2019 (COVID-19) at least 6 weeks before enrollment. Healthy control participants had no prior history of COVID-19 and negative tests for severe acute respiratory syndrome coronavirus 2. Participants were assessed using 3 NIH Toolbox (NIHTB) batteries for Cognition (NIHTB-CB), Emotion (NIHTB-EB), and Motor function (NIHTB-MB) and selected tests from the Patient-Reported Outcomes Measurement Information System (PROMIS). Each had BOLD-fMRI at 3T, during WM (N-back) tasks with increasing attentional/WM load. RESULTS One hundred sixty-nine participants were screened; 50 fulfilled the study criteria and had complete and usable data sets for this cross-sectional cohort study. Twenty-nine participants with PCC were diagnosed with COVID-19 242 ± 156 days earlier; they had similar ages (42 ± 12 vs 41 ± 12 years), gender proportion (65% vs 57%), racial/ethnic distribution, handedness, education, and socioeconomic status, as the 21 uninfected healthy controls. Despite the high prevalence of memory (79%) and concentration (93%) complaints, the PCC group had similar performance on the NIHTB-CB as the controls. However, participants with PCC had greater brain activation than the controls across the network (false discovery rate-corrected p = 0.003, Tmax = 4.17), with greater activation in the right superior frontal gyrus (p = 0.009, Cohen d = 0.81, 95% CI 0.15-1.46) but lesser deactivation in the default mode regions (p = 0.001, d = 1.03, 95% CI 0.61-1.99). Compared with controls, participants with PCC also had poorer dexterity and endurance on the NIHTB-MB, higher T scores for negative affect and perceived stress, but lower T scores for psychological well-being on the NIHTB-EB, as well as more pain symptoms and poorer mental and physical health on measures from the PROMIS. Greater brain activation predicted poorer scores on measures that were abnormal on the NIHTB-EB. DISCUSSION Participants with PCC and neuropsychiatric symptoms demonstrated compensatory neural processes with greater usage of alternate brain regions, and reorganized networks, to maintain normal performance during WM tasks. BOLD-fMRI was sensitive for detecting brain abnormalities that correlated with various quantitative neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Linda Chang
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore.
| | - Meghann C Ryan
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Huajun Liang
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Xin Zhang
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Eric Cunningham
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Justin Wang
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Eleanor Wilson
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Edward H Herskovits
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Shyamasundaran Kottilil
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Thomas M Ernst
- From the Diagnostic Radiology and Nuclear Medicine (L.C., M.C.R., H.L., X.Z., E.C., J.W., E.H.H., T.M.E.), and Department of Neurology (L.C.), University of Maryland School of Medicine; Department of Neurology (L.C., T.M.E.), Johns Hopkins University School of Medicine, Baltimore; Program in Neuroscience (L.C., M.C.R.), Institute of Human Virology (L.C., E.W., S.K.), and Division of Infectious Disease (E.W., S.K.), Department of Medicine, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
11
|
Sundermann EE, Campbell LM, Villers O, Bondi MW, Gouaux B, Salmon DP, Galasko D, Soontornniyomkij V, Ellis RJ, Moore DJ. Alzheimer's Disease Pathology in Middle Aged and Older People with HIV: Comparisons with Non-HIV Controls on a Healthy Aging and Alzheimer's Disease Trajectory and Relationships with Cognitive Function. Viruses 2023; 15:1319. [PMID: 37376619 PMCID: PMC10305373 DOI: 10.3390/v15061319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
We determined the prevalence of Alzheimer's disease (AD) pathological hallmarks, amyloid-β and phosphorylated-Tau, in autopsied brains of 49 people with HIV (PWH) (ages: 50-68; mean age = 57.0) from the National NeuroAIDS Tissue Consortium and in a comparative cohort of 55 people without HIV (PWoH) from the UC San Diego Alzheimer's Disease Research Center (17 controls, 14 mild cognitive impairment, 24 AD; ages: 70-102, mean age = 88.7). We examined how AD pathology relates to domain-specific cognitive functions in PWH overall and in sex-stratified samples. Amyloid-β and phosphorylated-Tau positivity (presence of pathology of any type/density) was determined via immunohistochemistry in AD-sensitive brain regions. Among PWH, amyloid-β positivity ranged from 19% (hippocampus) to 41% (frontal neocortex), and phosphorylated-Tau positivity ranged from 47% (entorhinal cortex) to 73% (transentorhinal cortex). Generally, AD pathology was significantly less prevalent, and less severe when present, in PWH versus PWoH regardless of cognitive status. Among PWH, positivity for AD pathology related most consistently to memory-related domains. Positivity for p-Tau pathology related to memory-related domains in women with HIV only, although the sample size of women with HIV was small (n = 10). Results indicate that AD pathology is present in a sizable portion of middle aged and older PWH, although not to the extent in older PWoH. Studies with better age-matched PWoH are needed to examine the effect of HIV status on AD pathology.
Collapse
Affiliation(s)
- Erin E. Sundermann
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
| | - Laura M. Campbell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Court, Suite 103, San Diego, CA 92120, USA
| | - Olivia Villers
- School of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Mark W. Bondi
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA
| | - Ben Gouaux
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
| | - David P. Salmon
- Department of Neurosciences, University of California San Diego, 9375 Gilman Dr., La Jolla, CA 92161, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego, 9375 Gilman Dr., La Jolla, CA 92161, USA
| | - Virawudh Soontornniyomkij
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
- Department of Neurosciences, University of California San Diego, 9375 Gilman Dr., La Jolla, CA 92161, USA
| | - David J. Moore
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
| |
Collapse
|
12
|
Cornea A, Lata I, Simu M, Rosca EC. Assessment and Diagnosis of HIV-Associated Dementia. Viruses 2023; 15:v15020378. [PMID: 36851592 PMCID: PMC9966987 DOI: 10.3390/v15020378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The modern combined antiretroviral treatment (cART) for human immunodeficiency virus (HIV) infection has substantially lowered the incidence of HIV-associated dementia (HAD). The dominant clinical features include deficits in cognitive processing speed, concentration, attention, and memory. As people living with HIV become older, with high rates of comorbidities and concomitant treatments, the prevalence and complexity of cognitive impairment are expected to increase. Currently, the management of HAD and milder forms of HAND is grounded on the best clinical practice, as there is no specific, evidence-based, proven intervention for managing cognitive impairment. The present article acknowledges the multifactorial nature of the cognitive impairments found in HIV patients, outlining the current concepts in the field of HAD. Major areas of interest include neuropsychological testing and neuroimaging to evaluate CNS status, focusing on greater reliability in the exclusion of associated diseases and allowing for earlier diagnosis. Additionally, we considered the evidence for neurological involvement in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the impact of the coronavirus (COVID-19) pandemic, with wider consequences to population health than can be attributed to the virus itself. The indirect effects of COVID-19, including the increased adoption of telehealth, decreased access to community resources, and social isolation, represent a significant health burden, disproportionately affecting older adults with dementia who have limited social networks and increased functional dependence on the community and health system. This synopsis reviews these aspects in greater detail, identifying key gaps and opportunities for researchers and clinicians; we provide an overview of the current concepts in the field of HAD, with suggestions for diagnosing and managing this important neurological complication, which is intended to be applicable across diverse populations, in line with clinical observations, and closely representative of HIV brain pathology.
Collapse
Affiliation(s)
- Amalia Cornea
- Department of Neurology, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Neurology, Clinical Emergency County Hospital Timisoara, Bd. Iosif Bulbuca No. 10, 300736 Timisoara, Romania
| | - Irina Lata
- Department of Neurology, Clinical Emergency County Hospital Timisoara, Bd. Iosif Bulbuca No. 10, 300736 Timisoara, Romania
| | - Mihaela Simu
- Department of Neurology, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Neurology, Clinical Emergency County Hospital Timisoara, Bd. Iosif Bulbuca No. 10, 300736 Timisoara, Romania
| | - Elena Cecilia Rosca
- Department of Neurology, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Neurology, Clinical Emergency County Hospital Timisoara, Bd. Iosif Bulbuca No. 10, 300736 Timisoara, Romania
| |
Collapse
|
13
|
Spooner RK, Taylor BK, Ahmad IM, Dyball K, Emanuel K, O'Neill J, Kubat M, Swindells S, Fox HS, Bares SH, Stauch KL, Zimmerman MC, Wilson TW. Mitochondrial redox environments predict sensorimotor brain-behavior dynamics in adults with HIV. Brain Behav Immun 2023; 107:265-275. [PMID: 36272499 PMCID: PMC10590193 DOI: 10.1016/j.bbi.2022.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Despite virologic suppression, people living with HIV (PLWH) remain at risk for developing cognitive impairment, with aberrations in motor control being a predominant symptom leading to functional dependencies in later life. While the neuroanatomical bases of motor dysfunction have recently been illuminated, the underlying molecular processes remain poorly understood. Herein, we evaluate the predictive capacity of the mitochondrial redox environment on sensorimotor brain-behavior dynamics in 40 virally-suppressed PLWH and 40 demographically-matched controls using structural equation modeling. We used state-of-the-art approaches, including Seahorse Analyzer of mitochondrial function, electron paramagnetic resonance spectroscopy to measure superoxide levels, antioxidant activity assays and dynamic magnetoencephalographic imaging to quantify sensorimotor oscillatory dynamics. We observed differential modulation of sensorimotor brain-behavior relationships by superoxide and hydrogen peroxide-sensitive features of the redox environment in PLWH, while only superoxide-sensitive features were related to optimal oscillatory response profiles and better motor performance in controls. Moreover, these divergent pathways may be attributable to immediate, separable mechanisms of action within the redox environment seen in PLWH, as evidenced by mediation analyses. These findings suggest that mitochondrial redox parameters are important modulators of healthy and pathological oscillations in motor systems and behavior, serving as potential targets for remedying HIV-related cognitive-motor dysfunction in the future.
Collapse
Affiliation(s)
- Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University, Düsseldorf, Germany.
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Iman M Ahmad
- College of Allied Health Professions, UNMC, Omaha, NE, USA
| | - Kelsey Dyball
- Department of Neurological Sciences, UNMC, Omaha, NE, USA
| | - Katy Emanuel
- Department of Neurological Sciences, UNMC, Omaha, NE, USA
| | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Maureen Kubat
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Howard S Fox
- Department of Neurological Sciences, UNMC, Omaha, NE, USA
| | - Sara H Bares
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Kelly L Stauch
- Department of Neurological Sciences, UNMC, Omaha, NE, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
14
|
Li R, Gao Y, Wang W, Jiao Z, Rao B, Liu G, Li H. Altered gray matter structural covariance networks in drug-naïve and treated early HIV-infected individuals. Front Neurol 2022; 13:869871. [PMID: 36203980 PMCID: PMC9530039 DOI: 10.3389/fneur.2022.869871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundWhile regional brain structure and function alterations in HIV-infected individuals have been reported, knowledge about the topological organization in gray matter networks is limited. This research aims to investigate the effects of early HIV infection and combination antiretroviral therapy (cART) on gray matter structural covariance networks (SCNs) by employing graph theoretical analysis.MethodsSixty-five adult HIV+ individuals (25–50 years old), including 34 with cART (HIV+/cART+) and 31 medication-naïve (HIV+/cART–), and 35 demographically matched healthy controls (HCs) underwent high-resolution T1-weighted images. A sliding-window method was employed to create “age bins,” and SCNs (based on cortical thickness) were constructed for each bin by calculating Pearson's correlation coefficients. The group differences of network indices, including the mean nodal path length (Nlp), betweenness centrality (Bc), number of modules, modularity, global efficiency, local efficiency, and small-worldness, were evaluated by ANOVA and post-hoc tests employing the network-based statistics method.ResultsRelative to HCs, less efficiency in terms of information transfer in the parietal and occipital lobe (decreased Bc) and a compensated increase in the frontal lobe (decreased Nlp) were exhibited in both HIV+/cART+ and HIV+/cART– individuals (P < 0.05, FDR-corrected). Compared with HIV+/cART– and HCs, less specialized function segregation (decreased modularity and small-worldness property) and stronger integration in the network (increased Eglob and little changed path length) were found in HIV+/cART+ group (P < 0.05, FDR-corrected).ConclusionEarly HIV+ individuals exhibited a decrease in the efficiency of information transmission in sensory regions and a compensatory increase in the frontal lobe. HIV+/cART+ showed a less specialized regional segregation function, but a stronger global integration function in the network.
Collapse
Affiliation(s)
- Ruili Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yuxun Gao
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zengxin Jiao
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Bo Rao
| | - Guangxue Liu
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
- Guangxue Liu
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Hongjun Li
| |
Collapse
|
15
|
Chen G, Cai DC, Song F, Zhan Y, Wei L, Shi C, Wang H, Shi Y. Morphological Changes of Frontal Areas in Male Individuals With HIV: A Deformation-Based Morphometry Analysis. Front Neurol 2022; 13:909437. [PMID: 35832184 PMCID: PMC9271794 DOI: 10.3389/fneur.2022.909437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Previous studies on HIV-infected (HIV+) individuals have revealed brain structural alterations underlying HIV-associated neurocognitive disorders. Most studies have adopted the widely used voxel-based morphological analysis of T1-weighted images or tracked-based analysis of diffusion tensor images. In this study, we investigated the HIV-related morphological changes using the deformation-based morphometry (DBM) analysis of T1-weighted images, which is another useful tool with high regional sensitivity. MATERIALS AND METHODS A total of 157 HIV+ (34.7 ± 8.5 years old) and 110 age-matched HIV-uninfected (HIV-) (33.7 ± 10.1 years old) men were recruited. All participants underwent neurocognitive assessments and brain scans, including high-resolution structural imaging and resting-state functional imaging. Structural alterations in HIV+ individuals were analyzed using DBM. Functional brain networks connected to the deformed regions were further investigated in a seed-based connectivity analysis. The correlations between imaging and cognitive or clinical measures were examined. RESULTS The DBM analysis revealed decreased values (i.e., tissue atrophy) in the bilateral frontal regions in the HIV+ group, including bilateral superior frontal gyrus, left middle frontal gyrus, and their neighboring white matter tract, superior corona radiata. The functional connectivity between the right superior frontal gyrus and the right inferior temporal region was enhanced in the HIV+ group, the connectivity strength of which was significantly correlated with the global deficit scores (r = 0.214, P = 0.034), and deficits in learning (r = 0.246, P = 0.014) and recall (r = 0.218, P = 0.031). Increased DBM indexes (i.e., tissue enlargement) of the right cerebellum were also observed in the HIV+ group. CONCLUSION The current study revealed both gray and white matter volume changes in frontal regions and cerebellum in HIV+ individuals using DBM, complementing previous voxel-based morphological studies. Structural alterations were not limited to the local regions but were accompanied by disrupted functional connectivity between them and other relevant regions. Disruptions in neural networks were associated with cognitive performance, which may be related to HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Guochao Chen
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dan-Chao Cai
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fengxiang Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yi Zhan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lei Wei
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chunzi Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Yuxin Shi
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Neurofunctional characteristics of executive control in older people with HIV infection: a comparison with Parkinson's disease. Brain Imaging Behav 2022; 16:1776-1793. [PMID: 35294979 PMCID: PMC10124990 DOI: 10.1007/s11682-022-00645-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
Abstract
Expression of executive dysfunctions is marked by substantial heterogeneity in people living with HIV infection (PLWH) and attributed to neuropathological degradation of frontostriatal circuitry with age and disease. We compared the neurophysiology of executive function in older PLWH and Parkinson's disease (PD), both affecting frontostriatal systems. Thirty-one older PLWH, 35 individuals with PD, and 28 older healthy controls underwent executive task-activated fMRI, neuropsychological testing, and a clinical motor exam. fMRI task conditions distinguished cognitive control operations, invoking a lateral frontoparietal network, and motor control operations, activating a cerebellar-precentral-medial prefrontal network. HIV-specific findings denoted a prominent sensorimotor hypoactivation during cognitive control and striatal hypoactivation during motor control related to CD4+ T cell count and HIV disease duration. Activation deficits overlapped for PLWH and PD, relative to controls, in dorsolateral frontal, medial frontal, and middle cingulate cortices for cognitive control, and in limbic, frontal, parietal, and cerebellar regions for motor control. Thus, despite well-controlled HIV infection, frontostriatal and sensorimotor activation deficits occurred during executive control in older PLWH. Overlapping activation deficits in posterior cingulate and hippocampal regions point toward similarities in mesocorticolimbic system aberrations among older PLWH and PD. The extent of pathophysiology in PLWH was associated with variations in immune system health, neural signature consistent with subclinical parkinsonism, and mild neurocognitive impairment. The failure to adequately engage these pathways could be an early sign for cognitive and motor functional decline in the aging population of PLWH.
Collapse
|
17
|
Flannery JS, Riedel MC, Salo T, Poudel R, Laird AR, Gonzalez R, Sutherland MT. HIV infection is linked with reduced error-related default mode network suppression and poorer medication management abilities. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110398. [PMID: 34224796 PMCID: PMC8380727 DOI: 10.1016/j.pnpbp.2021.110398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Brain activity linked with error processing has rarely been examined among persons living with HIV (PLWH) despite importance for monitoring and modifying behaviors that could lead to adverse health outcomes (e.g., medication non-adherence, drug use, risky sexual practices). Given that cannabis (CB) use is prevalent among PLWH and impacts error processing, we assessed the influence of HIV serostatus and chronic CB use on error-related brain activity while also considering associated implications for everyday functioning and clinically-relevant disease management behaviors. METHODS A sample of 109 participants, stratified into four groups by HIV and CB (HIV+/CB+, n = 32; HIV+/CB-, n = 27; HIV-/CB+, n = 28; HIV-/CB-, n = 22), underwent fMRI scanning while completing a modified Go/NoGo paradigm called the Error Awareness Task (EAT). Participants also completed a battery of well-validated instruments including a subjective report of everyday cognitive failures and an objective measure of medication management abilities. RESULTS Across all participants, we observed expected error-related anterior insula (aI) activation which correlated with better task performance (i.e., less errors) and, among HIV- participants, fewer self-reported cognitive failures. Regarding awareness, greater insula activation as well as greater posterior cingulate cortex (PCC) deactivation were notably linked with aware (vs. unaware) errors. Regarding group effects, unlike HIV- participants, PLWH displayed a lack of error-related deactivation in two default mode network (DMN) regions (i.e., PCC, medial prefrontal cortex [mPFC]). No CB main or interaction effects were detected. Across all participants, reduced error-related PCC deactivation correlated with reduced medication management abilities and PCC deactivation mediated the effect of HIV on such abilities. More lifetime CB use was linked with reduced error-related mPFC deactivation among HIV- participants and poorer medication management across CB users. CONCLUSIONS These results demonstrate that insufficient error-related DMN suppression linked with HIV infection, as well as chronic CB use among HIV- participants, has real-world consequences for medication management behaviors. We speculate that insufficient DMN suppression may reflect an inability to disengage task irrelevant mental operations, ultimately hindering error monitoring and behavior modification.
Collapse
Affiliation(s)
| | | | - Taylor Salo
- Department of Psychology, Florida International University, Miami, FL
| | - Ranjita Poudel
- Department of Psychology, Florida International University, Miami, FL
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL
| | - Raul Gonzalez
- Department of Psychology, Florida International University, Miami, FL
| | - Matthew T. Sutherland
- Department of Psychology, Florida International University, Miami, FL,Correspondence: Matthew T. Sutherland, Ph.D., Florida International University, Department of Psychology, AHC-4, RM 312, 11299 S.W. 8th St, Miami, FL 33199, , 305-348-7962
| |
Collapse
|
18
|
Casagrande CC, Lew BJ, Taylor BK, Schantell M, O'Neill J, May PE, Swindells S, Wilson TW. Impact of HIV-infection on human somatosensory processing, spontaneous cortical activity, and cortical thickness: A multimodal neuroimaging approach. Hum Brain Mapp 2021; 42:2851-2861. [PMID: 33738895 PMCID: PMC8127147 DOI: 10.1002/hbm.25408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/22/2022] Open
Abstract
HIV-infection has been associated with widespread alterations in brain structure and function, although few studies have examined whether such aberrations are co-localized and the degree to which clinical and cognitive metrics are related. We examine this question in the somatosensory system using high-resolution structural MRI (sMRI) and magnetoencephalographic (MEG) imaging of neural oscillatory activity. Forty-four participants with HIV (PWH) and 55 demographically-matched uninfected controls completed a paired-pulse somatosensory stimulation paradigm during MEG and underwent 3T sMRI. MEG data were transformed into the time-frequency domain; significant sensor level responses were imaged using a beamformer. Virtual sensor time series were derived from the peak responses. These data were used to compute response amplitude, sensory gating metrics, and spontaneous cortical activity power. The T1-weighted sMRI data were processed using morphological methods to derive cortical thickness values across the brain. From these, the cortical thickness of the tissue coinciding with the peak response was estimated. Our findings indicated both PWH and control exhibit somatosensory gating, and that spontaneous cortical activity was significantly stronger in PWH within the left postcentral gyrus. Interestingly, within the same tissue, PWH also had significantly reduced cortical thickness relative to controls. Follow-up analyses indicated that the reduction in cortical thickness was significantly correlated with CD4 nadir and mediated the relationship between HIV and spontaneous cortical activity within the left postcentral gyrus. These data indicate that PWH have abnormally strong spontaneous cortical activity in the left postcentral gyrus and such elevated activity is driven by locally reduced cortical gray matter thickness.
Collapse
Affiliation(s)
- Chloe C. Casagrande
- Boys Town National Research HospitalInstitute for Human NeuroscienceBoys TownNebraskaUSA
| | - Brandon J. Lew
- Boys Town National Research HospitalInstitute for Human NeuroscienceBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Brittany K. Taylor
- Boys Town National Research HospitalInstitute for Human NeuroscienceBoys TownNebraskaUSA
| | - Mikki Schantell
- Boys Town National Research HospitalInstitute for Human NeuroscienceBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious DiseasesUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Pamela E. May
- Department of Neurological SciencesUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious DiseasesUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Tony W. Wilson
- Boys Town National Research HospitalInstitute for Human NeuroscienceBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| |
Collapse
|
19
|
Britton MK, Porges EC, Bryant V, Cohen RA. Neuroimaging and Cognitive Evidence for Combined HIV-Alcohol Effects on the Central Nervous System: A Review. Alcohol Clin Exp Res 2021; 45:290-306. [PMID: 33296091 PMCID: PMC9486759 DOI: 10.1111/acer.14530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022]
Abstract
Alcohol use disorder (AUD) among people living with HIV (PLWH) is a significant public health concern. Despite the advent of effective antiretroviral therapy, up to 50% of PLWH still experience worsened neurocognition, which comorbid AUD exacerbates. We report converging lines of neuroimaging and neuropsychological evidence linking comorbid HIV/AUD to dysfunction in brain regions linked to executive function, learning and memory, processing speed, and motor control, and consequently to impairment in daily life. The brain shrinkage, functional network alterations, and brain metabolite disruption seen in individuals with HIV/AUD have been attributed to several interacting pathways: viral proteins and EtOH are directly neurotoxic and exacerbate each other's neurotoxic effects; EtOH reduces antiretroviral adherence and increases viral replication; AUD and HIV both increase gut microbial translocation, promoting systemic inflammation and HIV transport into the brain by immune cells; and HIV may compound alcohol's damaging effects on the liver, further increasing inflammation. We additionally review the neurocognitive effects of aging, Hepatitis C coinfection, obesity, and cardiovascular disease, tobacco use, and nutritional deficiencies, all of which have been shown to compound cognitive changes in HIV, AUD, and in their comorbidity. Finally, we examine emerging questions in HIV/AUD research, including genetic and cognitive protective factors, the role of binge drinking in HIV/AUD-linked cognitive decline, and whether neurocognitive and brain functions normalize after drinking cessation.
Collapse
Affiliation(s)
- Mark K. Britton
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
| | - Eric C. Porges
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
| | - Vaughn Bryant
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
- University of Florida, Department of Epidemiology, 2004 Mowry Road, Gainesville, FL 32610
| | - Ronald A. Cohen
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
| |
Collapse
|
20
|
Nguchu BA, Zhao J, Wang Y, Li Y, Wei Y, Uwisengeyimana JDD, Wang X, Qiu B, Li H. Atypical Resting-State Functional Connectivity Dynamics Correlate With Early Cognitive Dysfunction in HIV Infection. Front Neurol 2021; 11:606592. [PMID: 33519683 PMCID: PMC7841016 DOI: 10.3389/fneur.2020.606592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/01/2020] [Indexed: 01/20/2023] Open
Abstract
Purpose: Previous studies have shown that HIV affects striato-cortical regions, leading to persisting cognitive impairment in 30-70% of the infected individuals despite combination antiretroviral therapy. This study aimed to investigate brain functional dynamics whose deficits might link to early cognitive decline or immunologic deterioration. Methods: We applied sliding windows and K-means clustering to fMRI data (HIV patients with asymptomatic neurocognitive impairment and controls) to construct dynamic resting-state functional connectivity (RSFC) maps and identify states of their reoccurrences. The average and variability of dynamic RSFC, and the dwelling time and state transitioning of each state were evaluated. Results: HIV patients demonstrated greater variability in RSFC between the left pallidum and regions of right pre-central and post-central gyri, and between the right supramarginal gyrus and regions of the right putamen and left pallidum. Greater variability was also found in the frontal RSFC of pars orbitalis of the left inferior frontal gyrus and right superior frontal gyrus (medial). While deficits in learning and memory recall of HIV patients related to greater striato-sensorimotor variability, deficits in attention and working memory were associated with greater frontal variability. Greater striato-parietal variability presented a strong link with immunologic function (CD4+/CD8+ ratio). Furthermore, HIV-infected patients exhibited longer time and reduced transitioning in states typified by weaker connectivity in specific networks. CD4+T-cell counts of the HIV-patients were related to reduced state transitioning. Conclusion: Our findings suggest that HIV alters brain functional connectivity dynamics, which may underlie early cognitive impairment. These findings provide novel insights into our understanding of HIV pathology, complementing the existing knowledge.
Collapse
Affiliation(s)
- Benedictor Alexander Nguchu
- Hefei National Laboratory for Physical Sciences at the Microscale, Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Jing Zhao
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yanming Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Yu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Yarui Wei
- Hefei National Laboratory for Physical Sciences at the Microscale, Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Jean de Dieu Uwisengeyimana
- Hefei National Laboratory for Physical Sciences at the Microscale, Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Xiaoxiao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Bensheng Qiu
- Hefei National Laboratory for Physical Sciences at the Microscale, Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
21
|
Chang L, Liang H, Kandel SR, He JJ. Independent and Combined Effects of Nicotine or Chronic Tobacco Smoking and HIV on the Brain: A Review of Preclinical and Clinical Studies. J Neuroimmune Pharmacol 2020; 15:658-693. [PMID: 33108618 DOI: 10.1007/s11481-020-09963-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Tobacco smoking is highly prevalent among HIV-infected individuals. Chronic smokers with HIV showed greater cognitive deficits and impulsivity, and had more psychopathological symptoms and greater neuroinflammation than HIV non-smokers or smokers without HIV infection. However, preclinical studies that evaluated the combined effects of HIV-infection and tobacco smoking are scare. The preclinical models typically used cell cultures or animal models that involved specific HIV viral proteins or the administration of nicotine to rodents. These preclinical models consistently demonstrated that nicotine had neuroprotective and anti-inflammatory effects, leading to cognitive enhancement. Although the major addictive ingredient in tobacco smoking is nicotine, chronic smoking does not lead to improved cognitive function in humans. Therefore, preclinical studies designed to unravel the interactive effects of chronic tobacco smoking and HIV infection are needed. In this review, we summarized the preclinical studies that demonstrated the neuroprotective effects of nicotine, the neurotoxic effects of the HIV viral proteins, and the scant literature on nicotine or tobacco smoke in HIV transgenic rat models. We also reviewed the clinical studies that evaluated the neurotoxic effects of tobacco smoking, HIV infection and their combined effects on the brain, including studies that evaluated the cognitive and behavioral assessments, as well as neuroimaging measures. Lastly, we compared the different approaches between preclinical and clinical studies, identified some gaps and proposed some future directions. Graphical abstract Independent and combined effects of HIV and tobacco/nicotine. Left top and bottom panels: Both clinical studies of HIV infected persons and preclinical studies using viral proteins in vitro or in vivo in animal models showed that HIV infection could lead to neurotoxicity and neuroinflammation. Right top and bottom panels: While clinical studies of tobacco smoking consistently showed deleterious effects of smoking, clinical and preclinical studies that used nicotine show mild cognitive enhancement, neuroprotective and possibly anti-inflammatory effects. In the developing brain, however, nicotine is neurotoxic. Middle overlapping panels: Clinical studies of persons with HIV who were smokers typically showed additive deleterious effects of HIV and tobacco smoking. However, in the preclinical studies, when nicotine was administered to the HIV-1 Tg rats, the neurotoxic effects of HIV were attenuated, but tobacco smoke worsened the inflammatory cascade.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA.
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA
| | - Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA.
| |
Collapse
|
22
|
The age-related trajectory of visual attention neural function is altered in adults living with HIV: A cross-sectional MEG study. EBioMedicine 2020; 61:103065. [PMID: 33099087 PMCID: PMC7585051 DOI: 10.1016/j.ebiom.2020.103065] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background Despite living a normal lifespan, at least 35% of persons with HIV (PWH) in resource-rich countries develop HIV-associated neurocognitive disorder (HAND). This high prevalence of cognitive decline may reflect accelerated ageing in PWH, but the evidence supporting an altered ageing phenotype in PWH has been mixed. Methods We examined the impact of ageing on the orienting of visual attention in PWH using dynamic functional mapping with magnetoencephalography (MEG) in 173 participants age 22–72 years-old (94 uninfected controls, 51 cognitively-unimpaired PWH, and 28 with HAND). All MEG data were imaged using a state-of-the-art beamforming approach and neural oscillatory responses during attentional orienting were examined for ageing, HIV, and cognitive status effects. Findings All participants responded slower during trials that required attentional reorienting. Our functional mapping results revealed HIV-by-age interactions in left prefrontal theta activity, alpha oscillations in the left parietal, right cuneus, and right frontal eye-fields, and left dorsolateral prefrontal beta activity (p<.005). Critically, within PWH, we observed a cognitive status-by-age interaction, which revealed that ageing impacted the oscillatory gamma activity serving attentional reorienting differently in cognitively-normal PWH relative to those with HAND in the left temporoparietal, inferior frontal gyrus, and right prefrontal cortices (p<.005). Interpretation This study provides key evidence supporting altered ageing trajectories across vital attention circuitry in PWH, and further suggests that those with HAND exhibit unique age-related changes in the oscillatory dynamics serving attention function. Additionally, our neural findings suggest that age-related changes in PWH may serve a compensatory function. Funding National Institutes of Health, USA.
Collapse
|
23
|
Abstract
Both Alzheimer’s disease (AD) and HIV-associated neurocognitive disorders (HAND) could progress to dementia, a severe consequence of neurodegenerative diseases. Cumulating evidence suggests that the β-amyloid (Aβ) theory, currently thought to be the predominant mechanism underlying AD and AD-related dementia (ADRD), needs re-evaluation, considering all treatments and new drug trials based upon this theory have been unsuccessful. Similar intention for treating HAND, including HIV-associated dementia (HAD), has also failed. Thus, novel theory, hypothesis, and therapeutic strategies are desperately needed for future study and effective treatments of AD/ADRD and HAND. There are numerous potential upstream mechanisms that may cause AD and/or HAND; but it is unrealistic to identify all of them. However, it is realistic and feasible to intervene the downstream mechanism of these two devastating neurodegenerative diseases by blocking the final common path to neurotoxicity mediated by overactivation of NMDA receptors (NMDARs) and voltage-gated calcium channels (VGCCs). Such a combined pharmacological intervention will likely ameliorate neuronal Ca2+ homeostasis by diminishing overactivated NMDAR and VGCC-mediated Ca2+ dysregulation (i.e., by reducing excessive Ca2+ influx and intracellular levels, [Ca2+]in)-induced hyperactivity, injury, and death of neurons in the critical brain regions that regulate neurocognition in the context of AD/ADRD or HAND, especially during aging. Here we present a novel theoretical concept, hypothesis, and working model for switching the battlefield from searching-and-fighting the original mechanism that may cause AD or HAND, to abolishing AD- and neuroHIV-induced neurotoxicity mediated by NMDAR and VGCC over activation, which may ultimately improve the therapeutic strategies for treating AD and HAND.
Collapse
Affiliation(s)
- Xiu-Ti Hu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, USA
| |
Collapse
|
24
|
Bak Y, Nah Y, Han S, Lee SK, Shin NY. Altered neural substrates within cognitive networks of postpartum women during working memory process and resting-state. Sci Rep 2020; 10:9110. [PMID: 32499565 PMCID: PMC7272423 DOI: 10.1038/s41598-020-66058-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Postpartum working memory decline has been investigated mostly with neuropsychological tests, but neural evidence is almost unknown. Here we investigated task-related neural alterations during working memory task (n-back) and intrinsic alterations during resting-state (rs) in postpartum women using functional MRI (fMRI). Behaviorally, postpartum women showed comparable working memory performances to the controls although there was a tendency of prolonged response time. fMRI analysis results showed hyper-activation in regions belong to the task positive network (TPN) during the task and hypo-rsfMRI values in the default mode network (DMN) regions during rest in postpartum women. Based on these results, we performed network connectivity analysis using nodes of the TPN and DMN. As a result, the DMN showed a tendency of decreased connectivity in postpartum women during the working memory process compared to the controls. Our results suggest that postpartum women might have functional alterations in the DMN, and that hyper-activation in the TPN during a task might be a compensatory mechanism to maintain working memory performance in postpartum women.
Collapse
Affiliation(s)
- Yunjin Bak
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Yoonjin Nah
- Department of Psychology, Yonsei University, Seoul, 03722, Korea
| | - Sanghoon Han
- Department of Psychology, Yonsei University, Seoul, 03722, Korea
| | - Seung-Koo Lee
- Department of Radiology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Na-Young Shin
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
25
|
Toniolo S, Cercignani M, Mora-Peris B, Underwood J, Alagaratnam J, Bozzali M, Boffito M, Nelson M, Winston A, Vera JH. Changes in functional connectivity in people with HIV switching antiretroviral therapy. J Neurovirol 2020; 26:754-763. [PMID: 32500477 PMCID: PMC7532134 DOI: 10.1007/s13365-020-00853-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/14/2020] [Accepted: 05/12/2020] [Indexed: 11/24/2022]
Abstract
We assessed changes in functional connectivity by fMRI (functional magnetic resonance imaging) and cognitive measures in otherwise neurologically asymptomatic people with HIV (PWH) switching combination antiretroviral therapy (cART). In a prospective study (baseline and follow-up after at least 4 months), virologically suppressed PWH switched non-nuclease reverse-transcriptase inhibitors (NNRTI; tenofovir-DF/emtricitabine with efavirenz to rilpivirine) and integrase-strand-transfer inhibitors (INSTI; tenofovir-DF/emtricitabine with raltegravir to dolutegravir). PWH were assessed by resting-state fMRI and stop-signal reaction time (SSRT) task fMRI as well as with a cognitive battery (CogState™) at baseline and follow-up. Switching from efavirenz to rilpivirine (n = 10) was associated with increased functional connectivity in the dorsal attention network (DAN) and a reduction in SSRTs (p = 0.025) that positively correlated with the time previously on efavirenz (mean = 4.8 years, p = 0.02). Switching from raltegravir to dolutegravir (n = 12) was associated with increased connectivity in the left DAN and bilateral sensory-motor and associative visual networks. In the NNRTI study, significant improvements in the cognitive domains of executive function, working memory and speed of visual processing were observed, whereas no significant changes in cognitive function were observed in the INSTI study. Changes in fMRI are evident in PWH without perceived neuropsychiatric complaints switching cART. fMRI may be a useful tool in assisting to elucidate the underlying pathogenic mechanisms of cART-related neuropsychiatric effects.
Collapse
Affiliation(s)
- Sofia Toniolo
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Knightsgate Road, Falmer Campus, Brighton, BN1 9RR, UK. .,Nuffield Department of Clinical Neurosciences, University of Oxford, New Radcliffe House, Walton St., Oxford, OX2 6BW, UK.
| | - Mara Cercignani
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Knightsgate Road, Falmer Campus, Brighton, BN1 9RR, UK
| | - Borja Mora-Peris
- Department of Infectious Disease, Faculty of Medicine, St Mary's Campus, Imperial College London, Praed Street, London, W2 1NY, UK.,Division of Infection and Immunity, School of Medicine, Cardiff University, UHW Main Building, Heath Park, Cardiff, CF14 4XN, UK
| | - Jonathan Underwood
- Department of Infectious Disease, Faculty of Medicine, St Mary's Campus, Imperial College London, Praed Street, London, W2 1NY, UK
| | - Jasmini Alagaratnam
- Department of Infectious Disease, Faculty of Medicine, St Mary's Campus, Imperial College London, Praed Street, London, W2 1NY, UK
| | - Marco Bozzali
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Knightsgate Road, Falmer Campus, Brighton, BN1 9RR, UK
| | - Marta Boffito
- Department of Infectious Disease, Faculty of Medicine, St Mary's Campus, Imperial College London, Praed Street, London, W2 1NY, UK.,Department of HIV Medicine, Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London, SW10 9NH, UK
| | - Mark Nelson
- Department of HIV Medicine, Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London, SW10 9NH, UK
| | - Alan Winston
- Department of Infectious Disease, Faculty of Medicine, St Mary's Campus, Imperial College London, Praed Street, London, W2 1NY, UK
| | - Jaime H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, BN1 9PX, UK
| |
Collapse
|
26
|
Lew BJ, O'Neill J, Rezich MT, May PE, Fox HS, Swindells S, Wilson TW. Interactive effects of HIV and ageing on neural oscillations: independence from neuropsychological performance. Brain Commun 2020; 2:fcaa015. [PMID: 32322820 PMCID: PMC7158235 DOI: 10.1093/braincomms/fcaa015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/23/2019] [Accepted: 01/17/2020] [Indexed: 01/24/2023] Open
Abstract
HIV infection is associated with increased age-related co-morbidities including cognitive deficits, leading to hypotheses of HIV-related premature or accelerated ageing. Impairments in selective attention and the underlying neural dynamics have been linked to HIV-associated neurocognitive disorder; however, the effect of ageing in this context is not yet understood. Thus, the current study aimed to identify the interactive effects of ageing and HIV on selective attention processing. A total of 165 participants (92 controls, 73 participants with HIV) performed a visual selective attention task while undergoing magnetoencephalography and were compared cross-sectionally. Spectrally specific oscillatory neural responses during task performance were imaged and linked with selective attention function. Reaction time on the task and regional neural activity were analysed with analysis of covariance (ANCOVA) models aimed at examining the age-by-HIV interaction term. Finally, these metrics were evaluated with respect to clinical measures such as global neuropsychological performance, duration of HIV infection and medication regimen. Reaction time analyses showed a significant HIV-by-age interaction, such that in controls older age was associated with greater susceptibility to attentional interference, while in participants with HIV, such susceptibility was uniformly high regardless of age. In regard to neural activity, theta-specific age-by-HIV interaction effects were found in the prefrontal and posterior parietal cortices. In participants with HIV, neuropsychological performance was associated with susceptibility to attentional interference, while time since HIV diagnosis was associated with parietal activity above and beyond global neuropsychological performance. Finally, current efavirenz therapy was also related to increased parietal interference activity. In conclusion, susceptibility to attentional interference in younger participants with HIV approximated that of older controls, suggesting evidence of HIV-related premature ageing. Neural activity serving attention processing indicated compensatory recruitment of posterior parietal cortex as participants with HIV infection age, which was related to the duration of HIV infection and was independent of neuropsychological performance, suggesting an altered trajectory of neural function.
Collapse
Affiliation(s)
- Brandon J Lew
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael T Rezich
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pamela E May
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
27
|
Nedelcovych MT, Kim BH, Zhu X, Lovell LE, Manning AA, Kelschenbach J, Hadas E, Chao W, Prchalová E, Dash RP, Wu Y, Alt J, Thomas AG, Rais R, Kamiya A, Volsky DJ, Slusher BS. Glutamine Antagonist JHU083 Normalizes Aberrant Glutamate Production and Cognitive Deficits in the EcoHIV Murine Model of HIV-Associated Neurocognitive Disorders. J Neuroimmune Pharmacol 2019; 14:391-400. [PMID: 31209775 DOI: 10.1007/s11481-019-09859-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) have been linked to dysregulation of glutamate metabolism in the central nervous system (CNS) culminating in elevated extracellular glutamate and disrupted glutamatergic neurotransmission. Increased glutamate synthesis via upregulation of glutaminase (GLS) activity in brain immune cells has been identified as one potential source of excess glutamate in HAND. However, direct evidence for this hypothesis in an animal model is lacking, and the viability of GLS as a drug target has not been explored. In this brief report, we demonstrate that GLS inhibition with the glutamine analogue 6-diazo-5-oxo-L-norleucine (DON) can reverse cognitive impairment in the EcoHIV-infected mouse model of HAND. However, due to peripheral toxicity DON is not amenable to clinical use in a chronic disease such as HAND. We thus tested JHU083, a novel, brain penetrant DON prodrug predicted to exhibit improved tolerability. Systemic administration of JHU083 reversed cognitive impairment in EcoHIV-infected mice similarly to DON, and simultaneously normalized EcoHIV-induced increases in cerebrospinal fluid (CSF) glutamate and GLS activity in microglia-enriched brain CD11b + cells without observed toxicity. These studies support the mechanistic involvement of elevated microglial GLS activity in HAND pathogenesis, and identify JHU083 as a potential treatment option. Graphical Abstract Please provide Graphical Abstract caption.Glutamine Antagonist JHU083 Normalizes Aberrant Glutamate Production and Cognitive Deficits in the EcoHIV Murine Model of HIV-Associated Neurocognitive Disorders .
Collapse
Affiliation(s)
- Michael T Nedelcovych
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Boe-Hyun Kim
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building Floor 21, Room 42, 1468 Madison Ave, New York, NY, 10029, USA
| | - Xiaolei Zhu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lyndah E Lovell
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arena A Manning
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Jennifer Kelschenbach
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building Floor 21, Room 42, 1468 Madison Ave, New York, NY, 10029, USA
| | - Eran Hadas
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building Floor 21, Room 42, 1468 Madison Ave, New York, NY, 10029, USA
| | - Wei Chao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building Floor 21, Room 42, 1468 Madison Ave, New York, NY, 10029, USA
| | - Eva Prchalová
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ranjeet P Dash
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ying Wu
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atsushi Kamiya
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Volsky
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building Floor 21, Room 42, 1468 Madison Ave, New York, NY, 10029, USA.
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Du Plessis S, Perez A, Fouche JP, Phillips N, Joska JA, Vink M, Myer L, Zar HJ, Stein DJ, Hoare J. Efavirenz is associated with altered fronto-striatal function in HIV+ adolescents. J Neurovirol 2019; 25:783-791. [PMID: 31165369 DOI: 10.1007/s13365-019-00764-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 01/11/2023]
Abstract
Neurotoxicity associated with the antiretroviral efavirenz (EFV) has been documented in HIV-infected adults, but there are no data on the impact of EFV on brain function in adolescents. We investigated potential alterations in fronto-striatal function associated with EFV use in adolescents. A total of 86 adolescents underwent a Stop Signal Anticipation Task (SSAT) during functional MRI (fMRI), 39 HIV+ adolescents receiving EFV, 27 HIV+ adolescents on antiretroviral therapy without EFV (matched on age, gender, education, CD4 cell count and HIV viral load) and 20 HIV- matched controls (matched on age and gender). The task required participants to give timed GO responses with occasional STOP signals at fixed probabilities. Reactive inhibition was modelled as a correct STOP response and proactive inhibition was modelled after response slowing as the STOP probability increases. A priori mask-based regions associated with reactive and proactive inhibition were entered into two respective multivariate ANOVAs. The EFV treatment group showed significantly blunted proactive inhibitory behavioural responses compared to HIV+ adolescents not receiving EFV. There was no difference in reactive inhibition between treatment groups. We also demonstrated a significant effect of EFV treatment on BOLD signal in proactive inhibition regions. There was no difference in regions involved in reactive inhibition. We found no differences between adolescents not receiving EFV and HIV- controls, showing that functional and behavioural differences were unique to the EFV group. Here, we demonstrate for the first time a potential adverse impact of EFV on higher cortical function in young HIV+ adolescents.
Collapse
Affiliation(s)
- Stéfan Du Plessis
- Department of Psychiatry, Faculty of Heath Sciences, Stellenbosch University, Francie van Zijl Avenue, Tygerberg, Cape Town, South Africa.
| | - Alexander Perez
- Division of Epidemiology and Biostatistics, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Jean-Paul Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Nicole Phillips
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - John A Joska
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Matthijs Vink
- Departments of Experimental and Developmental Psychology, Utrecht University, Utrecht, The Netherlands
| | - Landon Myer
- Division of Epidemiology and Biostatistics, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Disease Epidemiology and Research, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Pediatrics & Child Health, Red Cross Children's Hospital, UCT, Cape Town, South Africa
- SA Medical Research Council Unit on Child & Adolescent Health, Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- SA Medical Research Council Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Jacqueline Hoare
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
29
|
Wilson TW, Lew BJ, Spooner RK, Rezich MT, Wiesman AI. Aberrant brain dynamics in neuroHIV: Evidence from magnetoencephalographic (MEG) imaging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:285-320. [PMID: 31481167 DOI: 10.1016/bs.pmbts.2019.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Magnetoencephalography (MEG) is a noninvasive, silent, and totally passive neurophysiological imaging method with excellent temporal resolution (~1ms) and good spatial precision (~3-5mm). While MEG studies of neuroHIV remain relatively rare, the number of studies per year has sharply increased recently and this trend will likely continue into the foreseeable future. The current in-depth review focuses on the studies that have been conducted to date, which include investigations of somatosensory and visual modalities, resting-state, as well as motor control and higher-level functions such as working memory and visual attention. The review begins with an introduction to the principles and methods of MEG, and then transitions to a review of each of the empirical studies that have been conducted to date, separated by sensory modality for the basic studies and cognitive domain for the higher-level investigations. As such, this review attempts to be exhaustive in its coverage of empirical MEG studies of neuroHIV. Across studies major themes emerge including aberrant neural oscillatory activity in HIV-infected adults, both in primary sensory regions of the brain and higher-order executive regions. Many studies have also connected the amplitude of neural oscillations to behavioral and/or neuropsychological function in the study population, making a vital connection to performance and improving the veracity of the findings. One conspicuous emerging area is the use of MEG to distinguish cognitively-impaired from unimpaired HIV-infected adults, with major success reported and future studies sure to come. The review concludes with a summary of findings and suggested focus areas for future studies.
Collapse
Affiliation(s)
- Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, United States; Center for Magnetoencephalography, UNMC, Omaha, NE, United States.
| | - Brandon J Lew
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, United States; Center for Magnetoencephalography, UNMC, Omaha, NE, United States
| | - Rachel K Spooner
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, United States; Center for Magnetoencephalography, UNMC, Omaha, NE, United States
| | - Michael T Rezich
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, United States; Center for Magnetoencephalography, UNMC, Omaha, NE, United States
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, United States; Center for Magnetoencephalography, UNMC, Omaha, NE, United States
| |
Collapse
|
30
|
Cutuli D, de Guevara-Miranda DL, Castilla-Ortega E, Santín L, Sampedro-Piquero P. Highlighting the Role of Cognitive and Brain Reserve in the Substance use Disorder Field. Curr Neuropharmacol 2019; 17:1056-1070. [PMID: 31204624 PMCID: PMC7052825 DOI: 10.2174/1570159x17666190617100707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/17/2019] [Accepted: 05/31/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Cognitive reserve (CR) refers to the ability of an individual to cope with brain pathology remaining free of cognitive symptoms. This protective factor has been related to compensatory and more efficient brain mechanisms involved in resisting brain damage. For its part, Brain reserve (BR) refers to individual differences in the structural properties of the brain which could also make us more resilient to suffer from neurodegenerative and mental diseases. OBJECTIVE This review summarizes how this construct, mainly mediated by educational level, occupational attainment, physical and mental activity, as well as successful social relationships, has gained scientific attention in the last years with regard to diseases, such as neurodegenerative diseases, stroke or traumatic brain injury. Nevertheless, although CR has been studied in a large number of disorders, few researches have addressed the role of this concept in drug addiction. METHODS We provide a selective overview of recent literature about the role of CR and BR in preventing substance use onset. Likewise, we will also discuss how variables involved in CR (healthy leisure, social support or job-related activities, among others) could be trained and included as complementary activities of substance use disorder treatments. RESULTS Evidence about this topic suggests a preventive role of CR and BR on drug use onset and when drug addiction is established, these factors led to less severe addiction-related problems, as well as better treatment outcomes. CONCLUSION CR and BR are variables not taken yet into account in drug addiction. However, they could give us a valuable information about people at risk, as well as patient's prognosis.
Collapse
Affiliation(s)
| | | | | | - L.J. Santín
- Address correspondence to these authors at the Instituto de Investigación Biomédica de Málaga (IBIMA), Doctor Miguel Díaz Recio, 28 Málaga 29010, Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Campus de Teatinos S/N, 29071 Málaga, Spain; E-mails: (P. Sampedro-Piquero) and (L.J. Santín)
| | - P. Sampedro-Piquero
- Address correspondence to these authors at the Instituto de Investigación Biomédica de Málaga (IBIMA), Doctor Miguel Díaz Recio, 28 Málaga 29010, Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Campus de Teatinos S/N, 29071 Málaga, Spain; E-mails: (P. Sampedro-Piquero) and (L.J. Santín)
| |
Collapse
|
31
|
Zhao J, Chen F, Ren M, Li L, Li A, Jing B, Li H. Low-frequency fluctuation characteristics in rhesus macaques with SIV infection: a resting-state fMRI study. J Neurovirol 2018; 25:141-149. [PMID: 30478797 DOI: 10.1007/s13365-018-0694-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
Simian immunodeficiency virus (SIV)-infected macaque is a widely used model to study human immunodeficiency virus. The purpose of the study is to discover the amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) changes in SIV-infected macaques. Seven rhesus macaques were involved in the longitudinal MRI scans: (1) baseline (healthy state); (2) SIV infection stage (12 weeks after SIV inoculation). ALFF and fALFF were subsequently computed and compared to ascertain the changes caused by SIV infection. Whole-brain correlation analysis was further used to explore the possible associations between ALFF/fALFF values and immune status parameters (CD4+ T cell counts, CD4/CD8 ratio and virus load). Compared with the baseline, macaques in SIV infection stage displayed strengthened ALFF values in left precuneus, postcentral gyrus, and temporal gyrus, and weakened ALFF values in orbital gyrus and inferior temporal gyrus. Meanwhile, increased fALFF values were found in left superior frontal gyrus, right precentral gyrus, and superior temporal gyrus, while decreased fALFF values existed in left hippocampus, left caudate, and right inferior frontal gyrus. Furthermore, ALFF and fALFF values in several brain regions showed significant relationships with CD4+ T cell counts, CD4/CD8 ratio, and plasma virus load. Our findings could promote the understanding of neuroAIDS caused by HIV infection, which may provide supplementary evidences for the future therapy study in SIV model.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, You An MenWai, Feng Tai District, Beijing, 100069, China
| | - Feng Chen
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, You An MenWai, Feng Tai District, Beijing, 100069, China
| | - Meiji Ren
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, You An MenWai, Feng Tai District, Beijing, 100069, China
| | - Li Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, You An MenWai, Feng Tai District, Beijing, 100069, China
| | - Aixin Li
- Department of Infectious Diseases, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, You An Men Wai, Feng Tai District, Beijing, 10069, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, No.10, Xi Tou Tiao, You An Men Wai, Feng Tai District, Beijing, 100069, China.
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, You An MenWai, Feng Tai District, Beijing, 100069, China.
| |
Collapse
|
32
|
Lew BJ, McDermott TJ, Wiesman AI, O'Neill J, Mills MS, Robertson KR, Fox HS, Swindells S, Wilson TW. Neural dynamics of selective attention deficits in HIV-associated neurocognitive disorder. Neurology 2018; 91:e1860-e1869. [PMID: 30333162 PMCID: PMC6260195 DOI: 10.1212/wnl.0000000000006504] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/02/2018] [Indexed: 11/18/2022] Open
Abstract
Objective To identify the neural markers of attention dysfunction in patients with HIV-associated neurocognitive disorder (HAND). Methods Sixty participants, including 40 HIV-infected adults (half with HAND) and 20 demographically matched controls performed a visual selective attention task while undergoing high-density magnetoencephalography. Neuronal activity related to selective attention processing was quantified and compared across the 3 groups, and correlated with neuropsychological measures of attention and executive function. Spontaneous neural activity was also extracted from these attention-related cortical areas and examined with respect to HAND status. Results HIV-infected participants with and without HAND exhibited behavioral selective attention deficits on the magnetoencephalography task, as indicated by an increased flanker effect. Neuronal measures of flanker interference activity in the alpha and theta range revealed differential dynamics in attention-related brain areas across the 3 groups, especially in those with HAND. In addition, theta range flanker interference activity in the left inferior frontal and dorsolateral prefrontal cortex was associated with executive function and attention composite scores, respectively. Progressively stronger spontaneous alpha and theta activity was also found in unimpaired HIV-infected and HAND participants relative to controls across brain regions implicated in different components of attention processing. Conclusions Behavioral and neuronal metrics of selective attention performance distinguish participants with HAND from controls and unimpaired HIV-infected participants. These metrics, along with measures of local spontaneous neural activity, may hold promise as early markers of cognitive decline in participants with HIV infection and be useful prognostic indicators for HAND.
Collapse
Affiliation(s)
- Brandon J Lew
- From the Departments of Neurological Sciences (B.J.L., T.J.M., A.I.W., M.S.M., T.W.W.), Internal Medicine (J.O., S.S.), and Pharmacology and Experimental Neuroscience (H.S.F.), University of Nebraska Medical Center, Omaha; and Department of Neurology (K.R.R.), University of North Carolina School of Medicine, Chapel Hill
| | - Timothy J McDermott
- From the Departments of Neurological Sciences (B.J.L., T.J.M., A.I.W., M.S.M., T.W.W.), Internal Medicine (J.O., S.S.), and Pharmacology and Experimental Neuroscience (H.S.F.), University of Nebraska Medical Center, Omaha; and Department of Neurology (K.R.R.), University of North Carolina School of Medicine, Chapel Hill
| | - Alex I Wiesman
- From the Departments of Neurological Sciences (B.J.L., T.J.M., A.I.W., M.S.M., T.W.W.), Internal Medicine (J.O., S.S.), and Pharmacology and Experimental Neuroscience (H.S.F.), University of Nebraska Medical Center, Omaha; and Department of Neurology (K.R.R.), University of North Carolina School of Medicine, Chapel Hill
| | - Jennifer O'Neill
- From the Departments of Neurological Sciences (B.J.L., T.J.M., A.I.W., M.S.M., T.W.W.), Internal Medicine (J.O., S.S.), and Pharmacology and Experimental Neuroscience (H.S.F.), University of Nebraska Medical Center, Omaha; and Department of Neurology (K.R.R.), University of North Carolina School of Medicine, Chapel Hill
| | - Mackenzie S Mills
- From the Departments of Neurological Sciences (B.J.L., T.J.M., A.I.W., M.S.M., T.W.W.), Internal Medicine (J.O., S.S.), and Pharmacology and Experimental Neuroscience (H.S.F.), University of Nebraska Medical Center, Omaha; and Department of Neurology (K.R.R.), University of North Carolina School of Medicine, Chapel Hill
| | - Kevin R Robertson
- From the Departments of Neurological Sciences (B.J.L., T.J.M., A.I.W., M.S.M., T.W.W.), Internal Medicine (J.O., S.S.), and Pharmacology and Experimental Neuroscience (H.S.F.), University of Nebraska Medical Center, Omaha; and Department of Neurology (K.R.R.), University of North Carolina School of Medicine, Chapel Hill
| | - Howard S Fox
- From the Departments of Neurological Sciences (B.J.L., T.J.M., A.I.W., M.S.M., T.W.W.), Internal Medicine (J.O., S.S.), and Pharmacology and Experimental Neuroscience (H.S.F.), University of Nebraska Medical Center, Omaha; and Department of Neurology (K.R.R.), University of North Carolina School of Medicine, Chapel Hill
| | - Susan Swindells
- From the Departments of Neurological Sciences (B.J.L., T.J.M., A.I.W., M.S.M., T.W.W.), Internal Medicine (J.O., S.S.), and Pharmacology and Experimental Neuroscience (H.S.F.), University of Nebraska Medical Center, Omaha; and Department of Neurology (K.R.R.), University of North Carolina School of Medicine, Chapel Hill
| | - Tony W Wilson
- From the Departments of Neurological Sciences (B.J.L., T.J.M., A.I.W., M.S.M., T.W.W.), Internal Medicine (J.O., S.S.), and Pharmacology and Experimental Neuroscience (H.S.F.), University of Nebraska Medical Center, Omaha; and Department of Neurology (K.R.R.), University of North Carolina School of Medicine, Chapel Hill.
| |
Collapse
|
33
|
Bui KD, Johnson MJ. Designing robot-assisted neurorehabilitation strategies for people with both HIV and stroke. J Neuroeng Rehabil 2018; 15:75. [PMID: 30107849 PMCID: PMC6092818 DOI: 10.1186/s12984-018-0418-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 07/27/2018] [Indexed: 01/01/2023] Open
Abstract
There is increasing evidence that HIV is an independent risk factor for stroke, resulting in an emerging population of people living with both HIV and stroke all over the world. However, neurorehabilitation strategies for the HIV-stroke population are distinctly lacking, which poses an enormous global health challenge. In order to address this gap, a better understanding of the HIV-stroke population is needed, as well as potential approaches to design effective neurorehabilitation strategies for this population. This review goes into the mechanisms, manifestations, and treatment options of neurologic injury in stroke and HIV, the additional challenges posed by the HIV-stroke population, and rehabilitation engineering approaches for both high and low resource areas. The aim of this review is to connect the underlying neurologic properties in both HIV and stroke to rehabilitation engineering. It reviews what is currently known about the association between HIV and stroke and gaps in current treatment strategies for the HIV-stroke population. We highlight relevant current areas of research that can help advance neurorehabilitation strategies specifically for the HIV-stroke population. We then explore how robot-assisted rehabilitation combined with community-based rehabilitation could be used as a potential approach to meet the challenges posed by the HIV-stroke population. We include some of our own work exploring a community-based robotic rehabilitation exercise system. The most relevant strategies will be ones that not only take into account the individual status of the patient but also the cultural and economic considerations of their respective environment.
Collapse
Affiliation(s)
- Kevin D. Bui
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
- Rehabilitation Robotics Lab (a GRASP Lab), University of Pennsylvania, 1800 Lombard Street, Philadelphia, 19146 USA
| | - Michelle J. Johnson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
- Rehabilitation Robotics Lab (a GRASP Lab), University of Pennsylvania, 1800 Lombard Street, Philadelphia, 19146 USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
34
|
Spooner RK, Wiesman AI, Mills MS, O'Neill J, Robertson KR, Fox HS, Swindells S, Wilson TW. Aberrant oscillatory dynamics during somatosensory processing in HIV-infected adults. Neuroimage Clin 2018; 20:85-91. [PMID: 30094159 PMCID: PMC6070689 DOI: 10.1016/j.nicl.2018.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/27/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022]
Abstract
While the arrival of combination antiretroviral therapy significantly decreased the prevalence of HIV-associated dementia, between 35 and 70% of all infected adults continue to develop some form of cognitive impairment. These deficits appears to affect multiple neural subsystems, but the mechanisms and extent of damage are not fully understood. In the current study, we utilized magnetoencephalography (MEG), advanced oscillatory analysis methods, and a paired-pulse somatosensory stimulation paradigm to interrogate pre-attentive inhibitory processing in 43 HIV-infected adults and 28 demographically-matched uninfected controls. MEG responses were imaged using a beamformer, and time series data were extracted from the peak voxel in grand-averaged functional brain images to quantify the dynamics of sensory gating, oscillatory power, spontaneous power, and other neural indices. We found a significantly weakened response to the second stimulation compared to the first across groups, indicating significant sensory gating irrespective of HIV-infection. Interestingly, HIV-infected participants exhibited reduced neural responses in the 20-75 Hz gamma range to each somatosensory stimulation compared to uninfected controls, and exhibited significant alterations in peak gamma frequency in response to the second stimulation. Finally, HIV-infected participants also had significantly stronger spontaneous activity in the gamma range (i.e., 20-75 Hz) during the baseline period before stimulation onset. In conclusion, while HIV-infected participants had the capacity to efficiently gate somatosensory input, their overall oscillatory responses were weaker, spontaneous baseline activity was stronger, and their response to the second stimulation had an altered peak gamma frequency. We propose that this pattern of deficits suggests dysfunction in the somatosensory cortices, which is potentially secondary to accelerated aging.
Collapse
Affiliation(s)
- Rachel K Spooner
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| | - Mackenzie S Mills
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Kevin R Robertson
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, NE, USA
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA.
| |
Collapse
|
35
|
Ventura N, Douw L, Correa DG, Netto TM, Cabral RF, Lopes FCR, Gasparetto EL. Increased posterior cingulate cortex efficiency may predict cognitive impairment in asymptomatic HIV patients. Neuroradiol J 2018; 31:372-378. [PMID: 29895218 DOI: 10.1177/1971400918782327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Despite antiretroviral therapy, approximately half of individuals with human immunodeficiency virus (HIV) will develop HIV-associated neurocognitive disorder (HAND). Efficiency of brain networks is of great importance for cognitive functioning, since functional networks may reorganize or compensate to preserve normal cognition. This study aims to compare efficiency of the posterior cingulate cortex (PCC) between patients with and without HAND and controls. We hypothesize HAND negative (HAND-) patients will show higher PCC efficiency than HAND positive (HAND+) patients. Methods A total of 10 HAND + patients were compared with 9 HAND- patients and 17 gender-, age-, and education-matched controls. Resting-state functional MRI was acquired with a 3 Tesla scanner. Local efficiency, a measure of network functioning, was investigated for PCC. Network differences among HAND + , HAND- patients and controls were tested as well as correlations between network parameters and cognitive test performance in different domains. Results HAND- patients showed significantly increased PCC efficiency compared with healthy controls ( p = 0.015). No differences were observed between HAND + patients and either controls ( p = 0.327) or HAND- patients ( p = 0.152). In HAND- patients, PCC efficiency was positively related with cognitive performance in the attention/working memory domain ( p = 0.003). Conversely, in HAND + patients, PCC efficiency was negatively correlated with performance in the abstraction/executive domain ( p = 0.002). Conclusion HAND- patients showed a higher level of PCC efficiency compared with healthy subjects, and PCC efficiency was positively related to cognitive performance. These results support the functional reorganization hypothesis, that increased PCC efficiency is a compensation technique to maintain cognitive functioning.
Collapse
Affiliation(s)
- Nina Ventura
- 1 Department of Radiology, Federal University of Rio de Janeiro, Brazil.,2 CDPI Clinics Rio de Janeiro, Brazil
| | - Linda Douw
- 3 Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging/MGH, Charlestown, USA.,4 Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Diogo G Correa
- 1 Department of Radiology, Federal University of Rio de Janeiro, Brazil.,2 CDPI Clinics Rio de Janeiro, Brazil
| | - Tania M Netto
- 1 Department of Radiology, Federal University of Rio de Janeiro, Brazil
| | - Rafael F Cabral
- 1 Department of Radiology, Federal University of Rio de Janeiro, Brazil.,2 CDPI Clinics Rio de Janeiro, Brazil
| | | | - Emerson L Gasparetto
- 1 Department of Radiology, Federal University of Rio de Janeiro, Brazil.,2 CDPI Clinics Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Wang H, Li R, Zhou Y, Wang Y, Cui J, Nguchu BA, Qiu B, Wang X, Li H. Altered cerebro-cerebellum resting-state functional connectivity in HIV-infected male patients. J Neurovirol 2018; 24:587-596. [PMID: 29785582 DOI: 10.1007/s13365-018-0649-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/21/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022]
Abstract
In addition to the role of planning and executing movement, the cerebellum greatly contributes to cognitive process. Numerous studies have reported structural and functional abnormalities in the cerebellum for HIV-infected patients, but little is known about the altered functional connectivity of particular cerebellar subregions and the cerebrum. Therefore, this study aimed to explore the resting-state functional connectivity (rsFC) changes of the cerebellum and further analyze the relationship between the rsFC changes and the neuropsychological evaluation. The experiment involved 26 HIV-infected men with asymptomatic neurocognitive impairment (ANI) and 28 healthy controls (HC). We selected bilateral hemispheric lobule VI and lobule IX as seed regions and mapped the whole-brain rsFC for each subregion. Results revealed that right lobule VI showed significant increased rsFC with the anterior cingulate cortex (ACC) in HIV-infected subjects. In addition, the correlation analysis on HIV-infected subjects illustrated the increased rsFC was negatively correlated with the attention/working memory score. Moreover, significantly increased cerebellar rsFCs were also observed in HIV-infected patients related to right inferior frontal gyrus (IFG) and right superior medial gyrus (SMG) while decreased rsFC was just found between right lobule VI and the left hippocampus (HIP). These findings suggested that, abnormalities of cerebro-cerebellar functional connectivity might be associated with cognitive dysfunction in HIV-infected men, particularly working memory impairment. It could also be the underlying mechanism of ANI, providing further evidence for early injury in the neural substrate of HIV-infected patients.
Collapse
Affiliation(s)
- Huijuan Wang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ruili Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, Youanmen Wai, Feng Tai District, Beijing, 10069, China
| | - Yawen Zhou
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanming Wang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jin Cui
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Benedictor Alexander Nguchu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoxiao Wang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, Youanmen Wai, Feng Tai District, Beijing, 10069, China.
| |
Collapse
|
37
|
The role of catecholamines in HIV neuropathogenesis. Brain Res 2018; 1702:54-73. [PMID: 29705605 DOI: 10.1016/j.brainres.2018.04.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
The success of anti-retroviral therapy has improved the quality of life and lifespan of HIV + individuals, transforming HIV infection into a chronic condition. These improvements have come with a cost, as chronic HIV infection and long-term therapy have resulted in the emergence of a number of new pathologies. This includes a variety of the neuropathological and neurocognitive effects collectively known as HIVassociated neurocognitive disorders (HAND) or NeuroHIV. These effects persist even in the absence of viral replication, suggesting that they are mediated the long-term changes in the CNS induced by HIV infection rather than by active replication. Among these effects are significant changes in catecholaminergic neurotransmission, especially in dopaminergic brain regions. In HIV-infected individuals not treated with ARV show prominent neuropathology is common in dopamine-rich brain regions and altered autonomic nervous system activity. Even infected individuals on therapy, there is significant dopaminergic neuropathology, and elevated stress and norepinephrine levels correlate with a decreased effectiveness of antiretroviral drugs. As catecholamines function as immunomodulatory factors, the resultant dysregulation of catecholaminergic tone could substantially alter the development of HIVassociated neuroinflammation and neuropathology. In this review, we discuss the role of catecholamines in the etiology of HIV neuropathogenesis. Providing a comprehensive examination of what is known about these molecules in the context of HIV-associated disease demonstrates the importance of further studies in this area, and may open the door to new therapeutic strategies that specifically ameliorate the effects of catecholaminergic dysregulation on NeuroHIV.
Collapse
|
38
|
Hobson H, Hogeveen J, Brewer R, Catmur C, Gordon B, Krueger F, Chau A, Bird G, Grafman J. Language and alexithymia: Evidence for the role of the inferior frontal gyrus in acquired alexithymia. Neuropsychologia 2018; 111:229-240. [PMID: 29360519 PMCID: PMC8478116 DOI: 10.1016/j.neuropsychologia.2017.12.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 11/08/2017] [Accepted: 12/22/2017] [Indexed: 11/25/2022]
Abstract
The clinical relevance of alexithymia, a condition associated with difficulties identifying and describing one's own emotion, is becoming ever more apparent. Increased rates of alexithymia are observed in multiple psychiatric conditions, and also in neurological conditions resulting from both organic and traumatic brain injury. The presence of alexithymia in these conditions predicts poorer regulation of one's emotions, decreased treatment response, and increased burden on carers. While clinically important, the aetiology of alexithymia is still a matter of debate, with several authors arguing for multiple 'routes' to impaired understanding of one's own emotions, which may or may not result in distinct subtypes of alexithymia. While previous studies support the role of impaired interoception (perceiving bodily states) in the development of alexithymia, the current study assessed whether acquired language impairment following traumatic brain injury, and damage to language regions, may also be associated with an increased risk of alexithymia. Within a sample of 129 participants with penetrating brain injury and 33 healthy controls, neuropsychological testing revealed that deficits in a non-emotional language task, object naming, were associated with alexithymia, specifically with difficulty identifying one's own emotions. Both region-of-interest and whole-brain lesion analyses revealed that damage to language regions in the inferior frontal gyrus was associated with the presence of both this language impairment and alexithymia. These results are consistent with a framework for acquired alexithymia that incorporates both interoceptive and language processes, and support the idea that brain injury may result in alexithymia via impairment in any one of a number of more basic processes.
Collapse
Affiliation(s)
- Hannah Hobson
- Department of Psychology, Social Work and Counselling, University of Greenwich, Avery Hill Road, Eltham, London SE9 2UG, UK
| | - Jeremy Hogeveen
- University of California Davis, M.I.N.D. Institute, 2825 50th St, Sacramento, CA 95817, USA
| | - Rebecca Brewer
- Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham TW20 0EX, UK
| | - Caroline Catmur
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Barry Gordon
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cognitive Science Department, Johns Hopkins University, Baltimore, MD, USA
| | - Frank Krueger
- Molecular Neuroscience Department, George Mason University, Fairfax, VA, USA
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Aileen Chau
- Cognitive Neuroscience Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Geoffrey Bird
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AF, UK
- Department of Experimental Psychology, University of Oxford, 5 Parks Rd, Oxford OX1 3PH, UK
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
39
|
Abstract
Human immunodeficiency virus (HIV) enters the brain early after infecting humans and may remain in the central nervous system despite successful antiretroviral treatment. Many neuroimaging techniques were used to study HIV+ patients with or without opportunistic infections. These techniques assessed abnormalities in brain structures (using computed tomography, structural magnetic resonance imaging (MRI), diffusion MRI) and function (using functional MRI at rest or during a task, and perfusion MRI with or without a contrast agent). In addition, single-photon emission computed tomography with various tracers (e.g., thallium-201, Tc99-HMPAO) and positron emission tomography with various agents (e.g., [18F]-dexoyglucose, [11C]-PiB, and [11C]-TSPO tracers), were applied to study opportunistic infections or HIV-associated neurocognitive disorders. Neuroimaging provides diagnoses and biomarkers to quantitate the severity of brain injury or to monitor treatment effects, and may yield insights into the pathophysiology of HIV infection. As the majority of antiretroviral-stable HIV+ patients are living longer, age-related comorbid disorders (e.g., additional neuroinflammation, cerebrovascular disorders, or other dementias) will need to be considered. Other highly prevalent conditions, such as substance use disorders, psychiatric illnesses, and the long-term effects of combined antiretroviral therapy, all may lead to additional brain injury. Neuroimaging studies could provide knowledge regarding how these comorbid conditions impact the HIV-infected brain. Lastly, specific molecular imaging agents may be needed to assess the central nervous system viral reservoir.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Medicine and Department of Neurology, John A. Burns School of Medicine, University of Hawaii, Manoa, United States.
| | - Dinesh K Shukla
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
40
|
Corrêa DG, Zimmermann N, Ventura N, Tukamoto G, Doring T, Leite SC, Fonseca RP, Bahia PR, Lopes FC, Gasparetto EL. Longitudinal evaluation of resting-state connectivity, white matter integrity and cortical thickness in stable HIV infection: Preliminary results. Neuroradiol J 2017; 30:535-545. [PMID: 29068256 DOI: 10.1177/1971400917739273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose The objectives of this study were to determine if HIV-infected patients treated with highly active antiretroviral therapy (HAART), without dementia, suffer from longitudinal gray matter (GM) volume loss, changes in white matter (WM) integrity and deterioration in functional connectivity at rest, in an average interval of 30 months. Methods Clinically stable HIV-positive patients (on HAART, CD4 + T lymphocyte > 200 cells/μl, and viral loads <50 copies/μl) were recruited. None of them had HIV-associated dementia. Each patient underwent two scans, performed in a 1.5-T magnetic resonance imaging (MRI) scanner. FreeSurfer was used to perform cortical volumetric reconstruction and segmentation of GM structures. WM integrity was assessed using tract-based spatial statistics to post-process diffusion tensor imaging data, and FMRIB's Software Library tools were used to post-process resting-state functional magnetic resonance imaging (RS-fMRI). Results There were no significant differences in cortical thickness, deep GM volumes, or diffusivity parameters between the scans at the two time points. Five resting-state networks were identified in our patients. In the second MRI, HIV-positive patients presented increased areas of functional connectivity in visual pathways, frontoparietal and cerebellar networks, compared with the first MRI (considering p < 0.05). Conclusions RS-fMRI revealed potentially compensatory longitudinal alterations in the brains of HIV-positive patients, attempting to compensate for brain damage related to the infection.
Collapse
Affiliation(s)
- Diogo G Corrêa
- 1 Department of Radiology, Hospital Universitário Clementino Fraga Filho, 28125 Federal University of Rio de Janeiro , Brazil
- 2 499470 Clínica de Diagnóstico por Imagem (CDPI) , Brazil
| | - Nicolle Zimmermann
- 1 Department of Radiology, Hospital Universitário Clementino Fraga Filho, 28125 Federal University of Rio de Janeiro , Brazil
- 3 Department of Psychology, Pontifical Catholic University of Rio Grande do Sul, Brazil
| | - Nina Ventura
- 2 499470 Clínica de Diagnóstico por Imagem (CDPI) , Brazil
- 4 Department of Radiology, Hospital Universitário Antônio Pedro, Federal Fluminense University, Brazil
| | | | - Thomas Doring
- 2 499470 Clínica de Diagnóstico por Imagem (CDPI) , Brazil
| | - Sarah Cb Leite
- 1 Department of Radiology, Hospital Universitário Clementino Fraga Filho, 28125 Federal University of Rio de Janeiro , Brazil
| | - Rochele P Fonseca
- 1 Department of Radiology, Hospital Universitário Clementino Fraga Filho, 28125 Federal University of Rio de Janeiro , Brazil
- 3 Department of Psychology, Pontifical Catholic University of Rio Grande do Sul, Brazil
| | - Paulo Rv Bahia
- 1 Department of Radiology, Hospital Universitário Clementino Fraga Filho, 28125 Federal University of Rio de Janeiro , Brazil
| | - Fernanda Cr Lopes
- 2 499470 Clínica de Diagnóstico por Imagem (CDPI) , Brazil
- 4 Department of Radiology, Hospital Universitário Antônio Pedro, Federal Fluminense University, Brazil
| | - Emerson L Gasparetto
- 1 Department of Radiology, Hospital Universitário Clementino Fraga Filho, 28125 Federal University of Rio de Janeiro , Brazil
- 2 499470 Clínica de Diagnóstico por Imagem (CDPI) , Brazil
| |
Collapse
|
41
|
Rahimian P, He JJ. HIV/neuroAIDS biomarkers. Prog Neurobiol 2017; 157:117-132. [PMID: 27084354 PMCID: PMC5705228 DOI: 10.1016/j.pneurobio.2016.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/01/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
HIV infection often causes neurological symptoms including cognitive and motor dysfunction, which have been collectively termed HIV/neuroAIDS. Neuropsychological assessment and clinical symptoms have been the primary diagnostic criteria for HIV/neuroAIDS, even for the mild cognitive and motor disorder, the most prevalent form of HIV/neuroAIDS in the era of combination antiretroviral therapy. Those performance-based assessments and symptoms are generally descriptive and do not have the sensitivity and specificity to monitor the diagnosis, progression, and treatment response of the disease when compared to objective and quantitative laboratory-based biological markers, or biomarkers. In addition, effects of demographics and comorbidities such as substance abuse, psychiatric disease, nutritional deficiencies, and co-infection on HIV/neuroAIDS could be more readily determined using biomarkers than using neuropsychological assessment and clinical symptoms. Thus, there have been great efforts in identification of HIV/neuroAIDS biomarkers over the past two decades. The need for reliable biomarkers of HIV/neuroAIDS is expected to increase as the HIV-infected population ages and their vulnerability to neurodegenerative diseases, particularly Alzheimer's disease increases. Currently, three classes of HIV/neuroAIDS biomarkers are being pursued to establish objective laboratory-based definitions of HIV-associated neurologic injury: cerebrospinal fluid biomarkers, blood biomarkers, and neuroimaging biomarkers. In this review, we will focus on the current knowledge in the field of HIV/neuroAIDS biomarker discovery.
Collapse
Affiliation(s)
- Pejman Rahimian
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Johnny J He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
42
|
Motor-related brain abnormalities in HIV-infected patients: a multimodal MRI study. Neuroradiology 2017; 59:1133-1142. [PMID: 28889255 DOI: 10.1007/s00234-017-1912-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE It is generally believed that HIV infection could cause HIV-associated neurocognitive disorders (HAND) across a broad range of functional domains. Some of the most common findings are deficits in motor control. However, to date no neuroimaging studies have evaluated basic motor control in HIV-infected patients using a multimodal approach. METHODS In this study, we utilized high-resolution structural imaging and task-state functional magnetic resonance imaging (fMRI) to assess brain structure and motor function in a homogeneous cohort of HIV-infected patients. RESULTS We found that HIV-infected patients had significantly reduced gray matter (GM) volume in cortical regions, which are involved in motor control, including the bilateral posterior insula cortex, premotor cortex, and supramarginal gyrus. Increased activation in bilateral posterior insula cortices was also demonstrated by patients during hand movement tasks compared with healthy controls. More importantly, the reduced GM in bilateral posterior insula cortices was spatially coincident with abnormal brain activation in HIV-infected patients. In addition, the results of partial correlation analysis indicated that GM reduction in bilateral posterior insula cortices and premotor cortices was significantly correlated with immune system deterioration. CONCLUSION This study is the first to demonstrate spatially coincident GM reduction and abnormal activation during motor performance in HIV-infected patients. Although it remains unknown whether the brain deficits can be recovered, our findings may yield new insights into neurologic injury underlying motor dysfunction in HAND.
Collapse
|
43
|
Yuan W, Leach J, Maloney T, Altaye M, Smith D, Gubanich PJ, Barber Foss KD, Thomas S, DiCesare CA, Kiefer AW, Myer GD. Neck Collar with Mild Jugular Vein Compression Ameliorates Brain Activation Changes during a Working Memory Task after a Season of High School Football. J Neurotrauma 2017; 34:2432-2444. [PMID: 28437225 DOI: 10.1089/neu.2016.4834] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence indicates that repetitive head impacts, even at a sub-concussive level, may result in exacerbated or prolonged neurological deficits in athletes. This study aimed to: 1) quantify the effect of repetitive head impacts on the alteration of neuronal activity based on functional magnetic resonance imaging (fMRI) of working memory after a high school football season; and 2) determine whether a neck collar that applies mild jugular vein compression designed to reduce brain energy absorption in head impact through "slosh" mitigation can ameliorate the altered fMRI activation during a working memory task. Participants were recruited from local high school football teams with 27 and 25 athletes assigned to the non-collar and collar group, respectively. A standard N-Back task was used to engage working memory in the fMRI at both pre- and post-season. The two study groups experienced similar head impact frequency and magnitude during the season (all p > 0.05). fMRI blood oxygen level dependent (BOLD) signal response (a reflection of the neuronal activity level) during the working memory task increased significantly from pre- to post-season in the non-collar group (corrected p < 0.05), but not in the collar group. Areas displaying less activation change in the collar group (corrected p < 0.05) included the precuneus, inferior parietal cortex, and dorsal lateral prefrontal cortex. Additionally, BOLD response in the non-collar group increased significantly in direct association with the total number of impacts and total g-force (p < 0.05). Our data provide initial neuroimaging evidence for the effect of repetitive head impacts on the working memory related brain activity, as well as a potential protective effect that resulted from the use of the purported brain slosh reducing neck collar in contact sports.
Collapse
Affiliation(s)
- Weihong Yuan
- 1 Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
- 4 College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - James Leach
- 2 Division of Radiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
- 4 College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Thomas Maloney
- 1 Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Mekibib Altaye
- 3 Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
- 4 College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - David Smith
- 5 Division of Sports Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Paul J Gubanich
- 5 Division of Sports Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
- 6 Department of Pediatrics, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Kim D Barber Foss
- 5 Division of Sports Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
- 7 The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
- 8 Division of Health Sciences, Department of Athletic Training, Mount St. Joseph University , Cincinnati, Ohio
- 9 Rocky Mountain University of Health Professions , Provo, Utah
| | - Staci Thomas
- 5 Division of Sports Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
- 7 The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Christopher A DiCesare
- 5 Division of Sports Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
- 7 The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Adam W Kiefer
- 5 Division of Sports Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
- 6 Department of Pediatrics, College of Medicine, University of Cincinnati , Cincinnati, Ohio
- 7 The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
- 10 Center for Cognition, Action and Perception, Department of Psychology, University of Cincinnati , Cincinnati, Ohio
| | - Gregory D Myer
- 5 Division of Sports Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
- 6 Department of Pediatrics, College of Medicine, University of Cincinnati , Cincinnati, Ohio
- 7 The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
- 11 Department of Orthopaedics, University of Pennsylvania , Philadelphia, Pennsylvania
- 12 The Micheli Center for Sports Injury Prevention , Waltham, Massachusetts
- 13 Department of Orthopaedic Surgery, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW As of the year 2016, an estimated 50% of the United States' HIV-Positive population is aged 50 years or older. Due to a combination of increased rates of infection in older adults, and successful anti-retroviral (ART) regimens allowing HIV-positive adults to survive for decades with the disease, we are now faced with a steadily graying HIV-positive population, with only limited knowledge of how the cognitive and physiological effects of aging intersect with those of chronic HIV-infection. RECENT FINDINGS Age-related changes to mood, cognition, and neurological health may be experienced differently in those living with HIV, and research concerning quality of life, mental health, and cognitive aging needs to account for and explore these factors more carefully in the coming years. SUMMARY This review will explore the topic of cognitive aging with HIV: 1. Central nervous system (CNS) infection of HIV and how the virus affects brain integrity and function; 2. Cognitive and behavioral symptoms of HIV-Associated Neurocognitive Disorders (HAND); 3. Neurobiological theories of Cognitive Aging and how these processes may be exacerbated by HIV-infection; 4: Clinical implications and complications of aging with HIV and factors that may result in poorer cognitive outcomes.
Collapse
Affiliation(s)
| | - Paul Newhouse
- Vanderbilt University Center for Cognitive Medicine.,Veterans Affairs Tennessee Valley Healthcare System Geriatric Research, Education, and Clinical Center (VA TVHS GRECC)
| |
Collapse
|
45
|
Zhan Y, Buckey JC, Fellows AM, Shi Y. Magnetic Resonance Imaging Evidence for Human Immunodeficiency Virus Effects on Central Auditory Processing: A Review. ACTA ACUST UNITED AC 2017; 8. [PMID: 28890843 PMCID: PMC5589342 DOI: 10.4172/2155-6113.1000708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
New research suggests that individuals with human immunodeficiency virus (HIV) have central auditory processing deficits. To review the evidence for HIV affecting parts of the central nervous system involved in central auditory processing, we performed a systematic review of the literature. The objective was to determine whether existing studies show evidence for damage to structures associated with central auditory pathways in HIV. We searched PubMed for papers that used structural magnetic resonance imaging (MRI), diffusion tensor imaging, magnetic resonance spectroscopy or functional MRI in individuals infected with HIV. The review showed that HIV affects several areas involved in central auditory processing particularly the thalamus, internal capsule and temporal cortex. These findings support the idea that HIV can affect central auditory pathways and support the potential use of central auditory tests as a way to assess central nervous system effects of HIV.
Collapse
Affiliation(s)
- Yi Zhan
- Department of Radiology, Shanghai Public Health Clinic Center, Fudan University, Shanghai, China
| | - Jay C Buckey
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinic Center, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Walker KA, Brown GG. HIV-associated executive dysfunction in the era of modern antiretroviral therapy: A systematic review and meta-analysis. J Clin Exp Neuropsychol 2017; 40:357-376. [PMID: 28689493 DOI: 10.1080/13803395.2017.1349879] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE While some reports suggest that HIV+ individuals continue to display executive function (EF) impairment in the era of cART, findings have been contradictory and appear to differ based on the aspect of EF being measured. To improve the understanding of how discrete executive abilities may be differentially affected or spared in the context of HIV infection, we conducted a systematic review and meta-analysis to (a) determine whether and to what extent HIV+ adults experience deficits in EFs, and (b) understand how demographic and clinical characteristics may modify the associations between HIV infection and executive abilities. METHOD Studies comparing HIV+ and HIV-uninfected groups on measures of working memory, set-shifting, inhibition, decision-making, and apathy between 2000 and 2017 were identified from three databases. Effect sizes (Cohen's d) were calculated using inverse variance weighted random effects models. Meta-regression was used to examine the moderating effect of demographic and clinical variables. RESULTS Thirty-seven studies (n = 3935 HIV+; n = 2483 HIV-uninfected) were included in the meta-analysis. Pooled effect sizes for deficits associated with HIV infection were small for domains of set-shifting (d = -0.34, 95% CI [-0.47, -0.20]) and inhibition (d = -0.31, 95% CI [-0.40, -0.21]), somewhat larger for measures of decision-making (d = -0.41, 95% CI [-0.53, -0.28]) and working memory (d = -0.42, 95% CI [-0.59, -0.29]), and largest for apathy (d = -0.87, 95% CI [-1.09, -0.66]). Meta-regression demonstrated that age, sex, education, current CD4 count, and substance dependence differentially moderated the effects of HIV infection on specific EFs. However, lower nadir CD4 count was the only variable associated with greater deficits in nearly all EF domains. CONCLUSIONS Our results suggest that discrete domains of EF may be differentially affected by HIV infection and moderating demographic and clinical variables. These findings have implications for the development of targeted cognitive remediation strategies.
Collapse
Affiliation(s)
- Keenan A Walker
- a Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Gregory G Brown
- b Department of Psychiatry , University of California San Diego , San Diego , CA , USA
| |
Collapse
|
47
|
Hillary FG, Grafman JH. Injured Brains and Adaptive Networks: The Benefits and Costs of Hyperconnectivity. Trends Cogn Sci 2017; 21:385-401. [PMID: 28372878 PMCID: PMC6664441 DOI: 10.1016/j.tics.2017.03.003] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 01/15/2023]
Abstract
A common finding in human functional brain-imaging studies is that damage to neural systems paradoxically results in enhanced functional connectivity between network regions, a phenomenon commonly referred to as 'hyperconnectivity'. Here, we describe the various ways that hyperconnectivity operates to benefit a neural network following injury while simultaneously negotiating the trade-off between metabolic cost and communication efficiency. Hyperconnectivity may be optimally expressed by increasing connections through the most central and metabolically efficient regions (i.e., hubs). While adaptive in the short term, we propose that chronic hyperconnectivity may leave network hubs vulnerable to secondary pathological processes over the life span due to chronically elevated metabolic stress. We conclude by offering novel, testable hypotheses for advancing our understanding of the role of hyperconnectivity in systems-level brain plasticity in neurological disorders.
Collapse
Affiliation(s)
- Frank G Hillary
- Pennsylvania State University, University Park, PA, USA; Social Life and Engineering Sciences Imaging Center, University Park, PA, USA; Department of Neurology, Hershey Medical Center, Hershey, PA, USA.
| | - Jordan H Grafman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
48
|
Aberrant Neuronal Dynamics during Working Memory Operations in the Aging HIV-Infected Brain. Sci Rep 2017; 7:41568. [PMID: 28155864 PMCID: PMC5290733 DOI: 10.1038/srep41568] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/20/2016] [Indexed: 11/08/2022] Open
Abstract
Impairments in working memory are among the most prevalent features of HIV-associated neurocognitive disorders (HAND), yet their origins are unknown, with some studies arguing that encoding operations are disturbed and others supporting deficits in memory maintenance. The current investigation directly addresses this issue by using a dynamic mapping approach to identify when and where processing in working memory circuits degrades. HIV-infected older adults and a demographically-matched group of uninfected controls performed a verbal working memory task during magnetoencephalography (MEG). Significant oscillatory neural responses were imaged using a beamforming approach to illuminate the spatiotemporal dynamics of neuronal activity. HIV-infected patients were significantly less accurate on the working memory task and their neuronal dynamics indicated that encoding operations were preserved, while memory maintenance processes were abnormal. Specifically, no group differences were detected during the encoding period, yet dysfunction in occipital, fronto-temporal, hippocampal, and cerebellar cortices emerged during memory maintenance. In addition, task performance in the controls covaried with occipital alpha synchronization and activity in right prefrontal cortices. In conclusion, working memory impairments are common and significantly impact the daily functioning and independence of HIV-infected patients. These impairments likely reflect deficits in the maintenance of memory representations, not failures to adequately encode stimuli.
Collapse
|
49
|
Hakkers CS, Arends JE, Barth RE, Du Plessis S, Hoepelman AIM, Vink M. Review of functional MRI in HIV: effects of aging and medication. J Neurovirol 2016; 23:20-32. [PMID: 27718211 PMCID: PMC5329077 DOI: 10.1007/s13365-016-0483-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/12/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) is a frequently occurring comorbidity of HIV infection. Evidence suggests this condition starts subclinical before a progression to a symptomatic stage. Blood oxygenated level dependent (BOLD) fMRI has shown to be a sensitive tool to detect abnormal brain function in an early stage and might therefore be useful to evaluate the effect of HIV infection on brain function. An extensive literature search was performed in June 2015. Eligibility criteria for included studies were as follows: (1) conducting with HIV-positive patients, (2) using BOLD fMRI, and (3) including a HIV-negative control group. A total of 19 studies were included in the review including 931 participants. Differences in activation between HIV-positive and -negative participants were found when testing multiple domains, i.e., attention, (working) memory, and especially executive functioning. Overall, HIV-positive patients showed hyperactivation in task-related brain regions despite equal performances as controls. Task performance was degraded only for the most complex tasks. A few studies investigated the effect of aging on fMRI, and most of them found no interaction with HIV infection. Only three studies evaluated the effect of combination antiretroviral therapy (cART) on functional data suggesting an increase in activation with the use of cART. fMRI is a sensitive instrument to detect subtle cognitive changes in HIV patients. Open questions remain regarding the effects of cART on fMRI and the effects of aging on fMRI.
Collapse
Affiliation(s)
- C S Hakkers
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
| | - J E Arends
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - R E Barth
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - S Du Plessis
- Department of Psychiatry, University of Stellenbosch, Cape Town, South Africa
| | - A I M Hoepelman
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - M Vink
- Department of Psychiatry, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
50
|
Colangeli S, Boccia M, Verde P, Guariglia P, Bianchini F, Piccardi L. Cognitive Reserve in Healthy Aging and Alzheimer's Disease: A Meta-Analysis of fMRI Studies. Am J Alzheimers Dis Other Demen 2016; 31:443-9. [PMID: 27307143 PMCID: PMC10852844 DOI: 10.1177/1533317516653826] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Cognitive reserve (CR) has been defined as the ability to optimize or maximize performance through differential recruitment of brain networks. In the present study, we aimed at providing evidence for a consistent brain network underpinning CR in healthy and pathological aging. To pursue this aim, we performed a coordinate-based meta-analysis of 17 functional magnetic resonance imaging studies on CR proxies in healthy aging, Alzheimer's disease (AD), and mild cognitive impairment (MCI). We found that different brain areas were associated with CR proxies in healthy and pathological aging. A wide network of areas, including medial and lateral frontal areas, that is, anterior cingulate cortex and dorsolateral prefrontal cortex, as well as precuneus, was associated with proxies of CR in healthy elderly patients. The CR proxies in patients with AD and amnesic-MCI were associated with activation in the anterior cingulate cortex. These results were discussed hypothesizing the existence of possible compensatory mechanisms in healthy and pathological aging.
Collapse
Affiliation(s)
- Stefano Colangeli
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Maddalena Boccia
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy Neuropsychology Unit, IRCCS Fondazione Santa Lucia of Rome, Rome, Italy
| | - Paola Verde
- Italian Air Force Experimental Flight Center, Aerospace Medicine Department, Pratica di Mare, Rome, Italy
| | - Paola Guariglia
- Dipartimento Scienze dell'Uomo e della Società, Università degli Studi Kore Enna, Enna, Italy
| | - Filippo Bianchini
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Laura Piccardi
- Neuropsychology Unit, IRCCS Fondazione Santa Lucia of Rome, Rome, Italy Department of Life, Health and Environmental Sciences, L'Aquila University, L'Aquila, Italy
| |
Collapse
|