1
|
Droby A, Yoffe-Vasiliev A, Atias D, Fraser KB, Mabrouk OS, Omer N, Bar-Shira A, Gana-Weisz M, Goldstein O, Artzi M, Ben Bashat D, Alcalay RN, Orr-Urtreger A, Shirvan JC, Cedarbaum JM, Giladi N, Mirelman A, Thaler A. Radiological markers of CSF α-synuclein aggregation in Parkinson's disease patients. NPJ Parkinsons Dis 2025; 11:7. [PMID: 39753572 PMCID: PMC11698941 DOI: 10.1038/s41531-024-00854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025] Open
Abstract
Alpha-synuclein (αS) aggregation is a widely regarded hallmark of Parkinson's disease (PD) and can be detected through synuclein amplification assays (SAA). This study investigated the association between cerebrospinal fluid (CSF) radiological measures in 41 PD patients (14 iPD, 14 GBA1-PD, 13 LRRK2-PD) and 14 age-and-sex-matched healthy controls. Quantitative measures including striatal binding ratios (SBR), whole-brain and deep gray matter volumes, neuromelanin-MRI (NM-MRI), functional connectivity (FC), and white matter (WM) diffusion-tensor imaging (DTI) were calculated. Nine LRRK2-PD patients were SAA-negative (PD-SAA-). PD-SAA+ patients showed lower whole-brain gray matter, putamenal, brainstem, and substantia nigra volumes, reduced FC in the left caudate, and lower fractional anisotropy in the left fronto-occipital fasciculus compared to PD-SAA-. Taken together, αS aggregation was observed in iPD, GBA1-PD, and 38% of LRRK2-PD patients, and this was associated with reduced regional brain volumes, altered caudal FC, and SBRs. These changes were less pronounced in PD-SAA-, possibly suggesting a milder neurodegenerative process.
Collapse
Affiliation(s)
- Amgad Droby
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Avital Yoffe-Vasiliev
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Daniel Atias
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | | | | | - Nurit Omer
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Anat Bar-Shira
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mali Gana-Weisz
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Orly Goldstein
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Moran Artzi
- Sagol brain institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dafna Ben Bashat
- Sagol brain institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Roy N Alcalay
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avi Orr-Urtreger
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | - Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Huang CW, Tsai HY, Lin YH, Lin WW, Lin CH, Tseng MT. Striatal-cortical dysconnectivity underlies somatosensory deficits in Parkinson's disease: Insights from rhythmic auditory-motor training. Neurobiol Dis 2025; 204:106778. [PMID: 39719198 DOI: 10.1016/j.nbd.2024.106778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024] Open
Abstract
Evidence indicates that neurodegenerative diseases spread through distinct brain networks. For Parkinson's disease (PD), somatosensory abnormalities may accompany motor dysfunction in early disease stages when dopaminergic degeneration is limited to the basal ganglia. It remains unclear whether, based on the network-spread account, these abnormalities emanated from aberrant functional connectivity with the basal ganglia, and whether interventions normalizing this connectivity could reverse these abnormalities. Here, we employed functional MRI to record brain responses to tactile stimuli in patients with idiopathic PD and healthy controls before and after three-week rhythmic auditory stimulation-assisted gait (RASg) training. Consistent with the presence of striatal degeneration, patients showed right posterior putamen (pPut) hypoactivation when detecting tactile stimuli of their left leg. They also exhibited reduced functional connectivity from the right pPut to the right parietal somatosensory region (inferior parietal lobule, IPL), whose hypoactivation reflected patients' impaired tactile detectability. Importantly, this dysconnectivity predicted right IPL hypoactivation, indicating that pPut-IPL dysconnectivity underlay patients' impaired tactile detectability. Intriguingly, RASg training normalized patients' tactile detectability, which was mirrored by normalization of right IPL activation and pPut-IPL connectivity. Training-induced changes in pPut-IPL connectivity predicted changes in IPL activation during tactile detection, reinforcing the role of pPut-IPL connectivity in patients' tactile detectability. These findings suggest that somatosensory abnormalities in PD may arise from the spread of striatal pathology to relevant cortical regions. Rhythmic auditory-motor training acts to recover striatal connectivity, improving PD patients' somatosensory deficits.
Collapse
Affiliation(s)
- Cheng-Wei Huang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10048, Taiwan
| | - Hsin-Yun Tsai
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 11574, Taiwan
| | - Yi-Hsuan Lin
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 11574, Taiwan
| | - Wen-Wei Lin
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Ming-Tsung Tseng
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei 10051, Taiwan.
| |
Collapse
|
3
|
Gao L, Gaurav R, Ziegner P, Ma J, Sun J, Chen J, Fang J, Fan Y, Bao Y, Zhang D, Chan P, Yang Q, Fan Z, Lehéricy S, Wu T. Regional nigral neuromelanin degeneration in asymptomatic leucine-rich repeat kinase 2 gene carrier using MRI. Sci Rep 2024; 14:10621. [PMID: 38729969 PMCID: PMC11087650 DOI: 10.1038/s41598-024-59074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/07/2024] [Indexed: 05/12/2024] Open
Abstract
Asymptomatic Leucine-Rich Repeat Kinase 2 Gene (LRRK2) carriers are at risk for developing Parkinson's disease (PD). We studied presymptomatic substantia nigra pars compacta (SNc) regional neurodegeneration in asymptomatic LRRK2 carriers compared to idiopathic PD patients using neuromelanin-sensitive MRI technique (NM-MRI). Fifteen asymptomatic LRRK2 carriers, 22 idiopathic PD patients, and 30 healthy controls (HCs) were scanned using NM-MRI. We computed volume and contrast-to-noise ratio (CNR) derived from the whole SNc and the sensorimotor, associative, and limbic SNc regions. An analysis of covariance was performed to explore the differences of whole and regional NM-MRI values among the groups while controlling the effect of age and sex. In whole SNc, LRRK2 had significantly lower CNR than HCs but non-significantly higher volume and CNR than PD patients, and PD patients significantly lower volume and CNR compared to HCs. Inside SNc regions, there were significant group effects for CNR in all regions and for volumes in the associative region, with a trend in the sensorimotor region but no significant changes in the limbic region. PD had reduced volume and CNR in all regions compared to HCs. Asymptomatic LRRK2 carriers showed globally decreased SNc volume and CNR suggesting early nigral neurodegeneration in these subjects at risk of developing PD.
Collapse
Affiliation(s)
- Linlin Gao
- Department of General Practice, Tianjin Union Medical Center, Tianjin, China
| | - Rahul Gaurav
- Paris Brain Institute - ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France.
- Movement Investigations and Therapeutics Team (MOV'IT), Paris Brain Institute - ICM, Paris, France.
- Center for NeuroImaging Research (CENIR), Paris Brain Institute - ICM, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Pia Ziegner
- Paris Brain Institute - ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
- Center for NeuroImaging Research (CENIR), Paris Brain Institute - ICM, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
- Department of Neurology (H.J.), University Hospital of Heidelberg, Heidelberg, Germany
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Junyan Sun
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Chen
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jiliang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yangyang Fan
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Bao
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongling Zhang
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qi Yang
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhaoyang Fan
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Stéphane Lehéricy
- Paris Brain Institute - ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France.
- Movement Investigations and Therapeutics Team (MOV'IT), Paris Brain Institute - ICM, Paris, France.
- Center for NeuroImaging Research (CENIR), Paris Brain Institute - ICM, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France.
- Department of Neuroradiology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| | - Tao Wu
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
4
|
Janssen Daalen JM, Gerritsen A, Gerritse G, Gouman J, Meijerink H, Rietdijk LE, Darweesh SKL. How Lifetime Evolution of Parkinson's Disease Could Shape Clinical Trial Design: A Shared Patient-Clinician Viewpoint. Brain Sci 2024; 14:358. [PMID: 38672010 PMCID: PMC11048137 DOI: 10.3390/brainsci14040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD) has a long, heterogeneous, pre-diagnostic phase, during which pathology insidiously accumulates. Increasing evidence suggests that environmental and lifestyle factors in early life contribute to disease risk and progression. Thanks to the extensive study of this pre-diagnostic phase, the first prevention trials of PD are being designed. However, the highly heterogenous evolution of the disease across the life course is not yet sufficiently taken into account. This could hamper clinical trial success in the advent of biological disease definitions. In an interdisciplinary patient-clinician study group, we discussed how an approach that incorporates the lifetime evolution of PD may benefit the design of disease-modifying trials by impacting population, target and outcome selection. We argue that the timepoint of exposure to risk and protective factors plays a critical role in PD subtypes, influencing population selection. In addition, recent developments in differential disease mechanisms, aided by biological disease definitions, could impact optimal treatment targets. Finally, multimodal biomarker panels using this lifetime approach will likely be most sensitive as progression markers for more personalized trials. We believe that the lifetime evolution of PD should be considered in the design of clinical trials, and that such initiatives could benefit from more patient-clinician partnerships.
Collapse
Affiliation(s)
- Jules M. Janssen Daalen
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, 6525 GA Nijmegen, The Netherlands; (J.M.J.D.); (A.G.)
| | - Aranka Gerritsen
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, 6525 GA Nijmegen, The Netherlands; (J.M.J.D.); (A.G.)
| | - Gijs Gerritse
- Dutch Parkinson’s Patient Association, P.O. Box 46, 3980 CA Bunnik, The Netherlands; (G.G.); (J.G.); (H.M.); (L.E.R.)
| | - Jan Gouman
- Dutch Parkinson’s Patient Association, P.O. Box 46, 3980 CA Bunnik, The Netherlands; (G.G.); (J.G.); (H.M.); (L.E.R.)
| | - Hannie Meijerink
- Dutch Parkinson’s Patient Association, P.O. Box 46, 3980 CA Bunnik, The Netherlands; (G.G.); (J.G.); (H.M.); (L.E.R.)
| | - Leny E. Rietdijk
- Dutch Parkinson’s Patient Association, P.O. Box 46, 3980 CA Bunnik, The Netherlands; (G.G.); (J.G.); (H.M.); (L.E.R.)
| | - Sirwan K. L. Darweesh
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, 6525 GA Nijmegen, The Netherlands; (J.M.J.D.); (A.G.)
| |
Collapse
|
5
|
Johansson ME, Toni I, Kessels RPC, Bloem BR, Helmich RC. Clinical severity in Parkinson's disease is determined by decline in cortical compensation. Brain 2024; 147:871-886. [PMID: 37757883 PMCID: PMC10907095 DOI: 10.1093/brain/awad325] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Dopaminergic dysfunction in the basal ganglia, particularly in the posterior putamen, is often viewed as the primary pathological mechanism behind motor slowing (i.e. bradykinesia) in Parkinson's disease. However, striatal dopamine loss fails to account for interindividual differences in motor phenotype and rate of decline, implying that the expression of motor symptoms depends on additional mechanisms, some of which may be compensatory in nature. Building on observations of increased motor-related activity in the parieto-premotor cortex of Parkinson patients, we tested the hypothesis that interindividual differences in clinical severity are determined by compensatory cortical mechanisms and not just by basal ganglia dysfunction. Using functional MRI, we measured variability in motor- and selection-related brain activity during a visuomotor task in 353 patients with Parkinson's disease (≤5 years disease duration) and 60 healthy controls. In this task, we manipulated action selection demand by varying the number of possible actions that individuals could choose from. Clinical variability was characterized in two ways. First, patients were categorized into three previously validated, discrete clinical subtypes that are hypothesized to reflect distinct routes of α-synuclein propagation: diffuse-malignant (n = 42), intermediate (n = 128) or mild motor-predominant (n = 150). Second, we used the scores of bradykinesia severity and cognitive performance across the entire sample as continuous measures. Patients showed motor slowing (longer response times) and reduced motor-related activity in the basal ganglia compared with controls. However, basal ganglia activity did not differ between clinical subtypes and was not associated with clinical scores. This indicates a limited role for striatal dysfunction in shaping interindividual differences in clinical severity. Consistent with our hypothesis, we observed enhanced action selection-related activity in the parieto-premotor cortex of patients with a mild-motor predominant subtype, both compared to patients with a diffuse-malignant subtype and controls. Furthermore, increased parieto-premotor activity was related to lower bradykinesia severity and better cognitive performance, which points to a compensatory role. We conclude that parieto-premotor compensation, rather than basal ganglia dysfunction, shapes interindividual variability in symptom severity in Parkinson's disease. Future interventions may focus on maintaining and enhancing compensatory cortical mechanisms, rather than only attempting to normalize basal ganglia dysfunction.
Collapse
Affiliation(s)
- Martin E Johansson
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Centre of Expertise for Parkinson & Movement Disorders, 6525 EN Nijmegen, The Netherlands
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Roy P C Kessels
- Department of Medical Psychology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Radboudumc Alzheimer Center, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Vincent van Gogh Institute for Psychiatry, 5803 AC Venray, The Netherlands
| | - Bastiaan R Bloem
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Centre of Expertise for Parkinson & Movement Disorders, 6525 EN Nijmegen, The Netherlands
| | - Rick C Helmich
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Centre of Expertise for Parkinson & Movement Disorders, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
6
|
Zhang D, Zhou L, Yao J, Shi Y, He H, Wei H, Tong Q, Liu J, Wu T. Increased Free Water in the Putamen in Idiopathic REM Sleep Behavior Disorder. Mov Disord 2023; 38:1645-1654. [PMID: 37342973 DOI: 10.1002/mds.29499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND It has been suggested that the loss of nigrostriatal dopaminergic axon terminals occurs before the loss of dopaminergic neurons in the substantia nigra (SN) in Parkinson's disease (PD). This study aimed to use free-water imaging to evaluate microstructural changes in the dorsoposterior putamen (DPP) of idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) patients, which is considered a prodromal stage of synucleinopathies. METHODS Free water values in the DPP, dorsoanterior putamen (DAP), and posterior SN were compared between the healthy controls (n = 48), iRBD (n = 43) and PD (n = 47) patients. In iRBD patients, the relationships between baseline and longitudinal free water values and clinical manifestations or dopamine transporter (DAT) striatal binding ratio (SBR) were analyzed. RESULTS Free water values were significantly higher in the DPP and posterior substantia nigra (pSN), but not in the DAP, in the iRBD and PD groups than in controls. In iRBD patients, free water values in the DPP were progressively increased and correlated with the progression of clinical manifestations and the striatal DAT SBR. Baseline free water in the DPP was negatively correlated with striatal DAT SBR and hyposmia and positively correlated with motor deficits. CONCLUSIONS This study demonstrates that free water values in the DPP are increased cross-sectionally and longitudinally and associated with clinical manifestations and the function of the dopaminergic system in the prodromal stage of synucleinopathies. Our findings indicate that free-water imaging of the DPP has the potential to be a valid marker of early diagnosis and progression of synucleinopathies. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junye Yao
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Zhejiang, China
| | - Yuting Shi
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Zhejiang, China
- School of Physics, Zhejiang University, Zhejiang, China
| | - Hongjiang Wei
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiqi Tong
- Research Center for Healthcare Data Science, Zhejiang Lab, Zhejiang, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Droby A, Thaler A, Mirelman A. Imaging Markers in Genetic Forms of Parkinson's Disease. Brain Sci 2023; 13:1212. [PMID: 37626568 PMCID: PMC10452191 DOI: 10.3390/brainsci13081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by motor symptoms such as bradykinesia, rigidity, and resting tremor. While the majority of PD cases are sporadic, approximately 15-20% of cases have a genetic component. Advances in neuroimaging techniques have provided valuable insights into the pathophysiology of PD, including the different genetic forms of the disease. This literature review aims to summarize the current state of knowledge regarding neuroimaging findings in genetic PD, focusing on the most prevalent known genetic forms: mutations in the GBA1, LRRK2, and Parkin genes. In this review, we will highlight the contributions of various neuroimaging modalities, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI), in elucidating the underlying pathophysiological mechanisms and potentially identifying candidate biomarkers for genetic forms of PD.
Collapse
Affiliation(s)
- Amgad Droby
- Laboratory for Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6801298, Israel; (A.T.); (A.M.)
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 39040, Israel
| | - Avner Thaler
- Laboratory for Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6801298, Israel; (A.T.); (A.M.)
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 39040, Israel
| | - Anat Mirelman
- Laboratory for Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6801298, Israel; (A.T.); (A.M.)
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 39040, Israel
| |
Collapse
|
8
|
Bates S, Dumoulin SO, Folkers PJM, Formisano E, Goebel R, Haghnejad A, Helmich RC, Klomp D, van der Kolk AG, Li Y, Nederveen A, Norris DG, Petridou N, Roell S, Scheenen TWJ, Schoonheim MM, Voogt I, Webb A. A vision of 14 T MR for fundamental and clinical science. MAGMA (NEW YORK, N.Y.) 2023; 36:211-225. [PMID: 37036574 PMCID: PMC10088620 DOI: 10.1007/s10334-023-01081-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/11/2023]
Abstract
OBJECTIVE We outline our vision for a 14 Tesla MR system. This comprises a novel whole-body magnet design utilizing high temperature superconductor; a console and associated electronic equipment; an optimized radiofrequency coil setup for proton measurement in the brain, which also has a local shim capability; and a high-performance gradient set. RESEARCH FIELDS The 14 Tesla system can be considered a 'mesocope': a device capable of measuring on biologically relevant scales. In neuroscience the increased spatial resolution will anatomically resolve all layers of the cortex, cerebellum, subcortical structures, and inner nuclei. Spectroscopic imaging will simultaneously measure excitatory and inhibitory activity, characterizing the excitation/inhibition balance of neural circuits. In medical research (including brain disorders) we will visualize fine-grained patterns of structural abnormalities and relate these changes to functional and molecular changes. The significantly increased spectral resolution will make it possible to detect (dynamic changes in) individual metabolites associated with pathological pathways including molecular interactions and dynamic disease processes. CONCLUSIONS The 14 Tesla system will offer new perspectives in neuroscience and fundamental research. We anticipate that this initiative will usher in a new era of ultra-high-field MR.
Collapse
Affiliation(s)
- Steve Bates
- Tesla Engineering Ltd., Water Lane, Storrington, West Sussex, RH20 3EA, UK
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Experimental and Applied Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
- Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | | | - Elia Formisano
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
| | | | - Rick C Helmich
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dennis Klomp
- Radiology Department, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anja G van der Kolk
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yi Li
- Independent Researcher, Magdeburg, Germany
| | - Aart Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.
- Erwin L. Hahn Institute for Magnetic Resonance Imaging UNESCO World Cultural Heritage Zollverein, Kokereiallee 7, Building C84, 45141, Essen, Germany.
- Department of Clinical Neurophysiology (CNPH), Faculty Science and Technology, University of Twente, Enschede, The Netherlands.
| | - Natalia Petridou
- Radiology Department, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan Roell
- Neoscan Solutions GmbH, Joseph-von-Fraunhofer-Str. 6, 39106, Magdeburg, Germany
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Ingmar Voogt
- Wavetronica, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Andrew Webb
- Department of Radiology, C.J. Gorter MRI Centre, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
9
|
The challenging quest of neuroimaging: From clinical to molecular-based subtyping of Parkinson disease and atypical parkinsonisms. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:231-258. [PMID: 36796945 DOI: 10.1016/b978-0-323-85538-9.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The current framework of Parkinson disease (PD) focuses on phenotypic classification despite its considerable heterogeneity. We argue that this method of classification has restricted therapeutic advances and therefore limited our ability to develop disease-modifying interventions in PD. Advances in neuroimaging have identified several molecular mechanisms relevant to PD, variation within and between clinical phenotypes, and potential compensatory mechanisms with disease progression. Magnetic resonance imaging (MRI) techniques can detect microstructural changes, disruptions in neural pathways, and metabolic and blood flow alterations. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging have informed the neurotransmitter, metabolic, and inflammatory dysfunctions that could potentially distinguish disease phenotypes and predict response to therapy and clinical outcomes. However, rapid advancements in imaging techniques make it challenging to assess the significance of newer studies in the context of new theoretical frameworks. As such, there needs to not only be a standardization of practice criteria in molecular imaging but also a rethinking of target approaches. In order to harness precision medicine, a coordinated shift is needed toward divergent rather than convergent diagnostic approaches that account for interindividual differences rather than similarities within an affected population, and focus on predictive patterns rather than already lost neural activity.
Collapse
|
10
|
Jeong SH, Park CW, Lee HS, Kim YJ, Yun M, Lee PH, Sohn YH, Chung SJ. Patterns of striatal dopamine depletion and motor deficits in de novo Parkinson's disease. J Neural Transm (Vienna) 2023; 130:19-28. [PMID: 36462096 DOI: 10.1007/s00702-022-02571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022]
Abstract
The background of this study is to investigate whether striatal dopamine depletion patterns (selective involvement in the sensorimotor striatum or asymmetry) are associated with motor deficits in Parkinson's disease (PD). We enrolled 404 drug-naïve patients with early stage PD who underwent dopamine transporter (DAT) imaging. After quantifying DAT availability in each striatal sub-region, principal component (PC) analysis was conducted to yield PCs representing the spatial patterns of striatal dopamine depletion. Subsequently, multivariate linear regression analysis was conducted to investigate the relationship between striatal dopamine depletion patterns and motor deficits assessed using the Unified PD Rating Scale Part III (UPDRS-III). Mediation analyses were used to evaluate whether dopamine deficiency in the posterior putamen mediated the association between striatal dopamine depletion patterns and parkinsonian motor deficits. Three PCs indicated patterns of striatal dopamine depletion: PC1 (overall striatal dopamine deficiency), PC2 (selective dopamine loss in the sensorimotor striatum), and PC3 (symmetric dopamine loss in the striatum). Multivariate linear regression analysis revealed that PC1 (β = - 1.605, p < 0.001) and PC2 (β = 3.201, p < 0.001) were associated with motor deficits (i.e., higher UPDRS-III scores in subjects with severe dopamine depletion throughout the whole striatum or more selective dopamine loss in the sensorimotor striatum), whereas PC3 was not (β = - 0.016, p = 0.992). Mediation analyses demonstrated that the effects of PC1 and PC2 on UPDRS-III scores were indirectly mediated by DAT availability in the posterior putamen, with a non-significant direct effect. Dopamine deficiency in the posterior putamen was most relevant to the severity of motor deficits in patients with PD, while the spatial patterns of striatal dopamine depletion were not a key determinant.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea.,Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Chan Wook Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, 363 Dongbaekjukjeon-daero Giheung-gu, Yongin-si, Gyeonggi-do, 16995, South Korea.,YONSEI BEYOND LAB, Yongin, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea. .,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, 363 Dongbaekjukjeon-daero Giheung-gu, Yongin-si, Gyeonggi-do, 16995, South Korea. .,YONSEI BEYOND LAB, Yongin, South Korea.
| |
Collapse
|
11
|
Jeong SH, Lee EC, Chung SJ, Lee HS, Jung JH, Sohn YH, Seong JK, Lee PH. Local striatal volume and motor reserve in drug-naïve Parkinson's disease. NPJ Parkinsons Dis 2022; 8:168. [PMID: 36470876 PMCID: PMC9722895 DOI: 10.1038/s41531-022-00429-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Motor reserve (MR) may explain why individuals with similar pathological changes show marked differences in motor deficits in Parkinson's disease (PD). In this study, we investigated whether estimated individual MR was linked to local striatal volume (LSV) in PD. We analyzed data obtained from 333 patients with drug naïve PD who underwent dopamine transporter scans and high-resolution 3-tesla T1-weighted structural magnetic resonance images. Using a residual model, we estimated individual MRs on the basis of initial UPDRS-III score and striatal dopamine depletion. We performed a correlation analysis between MR estimates and LSV. Furthermore, we assessed the effect of LSV, which is correlated with MR estimates, on the longitudinal increase in the levodopa-equivalent dose (LED) during the 4-year follow-up period using a linear mixed model. After controlling for intracranial volume, there was a significant positive correlation between LSV and MR estimates in the bilateral caudate, anterior putamen, and ventro-posterior putamen. The linear mixed model showed that the large local volume of anterior and ventro-posterior putamen was associated with the low requirement of LED initially and accelerated LED increment thereafter. The present study demonstrated that LSV is crucial to MR in early-stage PD, suggesting LSV as a neural correlate of MR in PD.
Collapse
Affiliation(s)
- Seong Ho Jeong
- grid.15444.300000 0004 0470 5454Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea ,grid.411627.70000 0004 0647 4151Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Eun-Chong Lee
- grid.222754.40000 0001 0840 2678School of Biomedical Engineering, Korea University, Seoul, South Korea
| | - Seok Jong Chung
- grid.15444.300000 0004 0470 5454Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea ,grid.413046.40000 0004 0439 4086Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Hye Sun Lee
- grid.15444.300000 0004 0470 5454Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- grid.411625.50000 0004 0647 1102Department of Neurology, Inje University Busan Paik Hospital, Seoul, South Korea
| | - Young H. Sohn
- grid.15444.300000 0004 0470 5454Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Joon-Kyung Seong
- grid.222754.40000 0001 0840 2678School of Biomedical Engineering, Korea University, Seoul, South Korea ,grid.222754.40000 0001 0840 2678Department of Artificial Intelligence, Korea University, Seoul, South Korea
| | - Phil Hyu Lee
- grid.15444.300000 0004 0470 5454Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea ,grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Xenias HS, Chen C, Kang S, Cherian S, Situ X, Shanmugasundaram B, Liu G, Scesa G, Chan CS, Parisiadou L. R1441C and G2019S LRRK2 knockin mice have distinct striatal molecular, physiological, and behavioral alterations. Commun Biol 2022; 5:1211. [PMID: 36357506 PMCID: PMC9649688 DOI: 10.1038/s42003-022-04136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
LRRK2 mutations are closely associated with Parkinson's disease (PD). Convergent evidence suggests that LRRK2 regulates striatal function. Here, by using knock-in mouse lines expressing the two most common LRRK2 pathogenic mutations-G2019S and R1441C-we investigated how LRRK2 mutations altered striatal physiology. While we found that both R1441C and G2019S mice displayed reduced nigrostriatal dopamine release, hypoexcitability in indirect-pathway striatal projection neurons, and alterations associated with an impaired striatal-dependent motor learning were observed only in the R1441C mice. We also showed that increased synaptic PKA activities in the R1441C and not G2019S mice underlie the specific alterations in motor learning deficits in the R1441C mice. In summary, our data argue that LRRK2 mutations' impact on the striatum cannot be simply generalized. Instead, alterations in electrochemical, electrophysiological, molecular, and behavioral levels were distinct between LRRK2 mutations. Our findings offer mechanistic insights for devising and optimizing treatment strategies for PD patients.
Collapse
Affiliation(s)
- Harry S Xenias
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chuyu Chen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shuo Kang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Suraj Cherian
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xiaolei Situ
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Guoxiang Liu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Giuseppe Scesa
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Loukia Parisiadou
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
13
|
Genetic stratification of motor and QoL outcomes in Parkinson's disease in the EARLYSTIM study. Parkinsonism Relat Disord 2022; 103:169-174. [PMID: 36117018 DOI: 10.1016/j.parkreldis.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE The decision for subthalamic deep brain stimulation (STN-DBS) in Parkinson's disease (PD) relies on clinical predictors. Whether genetic variables could predict favourable or unfavourable decisions is under investigation. OBJECTIVE First, we aimed to reproduce the previous observation that SNCA rs356220 was associated with favourable STN-DBS motor response. In additional exploratory analyses, we studied if other PD risk and progression variants from the latest GWAS are associated with therapeutic outcome. Further, we evaluated the predictive value of polygenic risk scores. METHODS We comprehensively genotyped patients from the EarlyStim cohort using NeuroChip, and assessed the clinico-genetic associations with longitudinal outcome parameters. RESULTS The SNCA rs356220 variant did not predict UPDRS III outcomes. However, it was associated with quality of life improvement in secondary analyses. Several polymorphisms from previously identified GWAS hits predicted motor or quality of life outcomes in DBS patients. Polygenic risk scores did not predict any outcome parameter. CONCLUSIONS Our findings support the hypothesis that different common genetic markers are associated with favourable quality of life outcomes of STN-DBS in PD. These findings can be the basis for further validation in larger and independent cohorts.
Collapse
|
14
|
Hussein A, Tielemans A, Baxter MG, Benson DL, Huntley GW. Cognitive deficits and altered cholinergic innervation in young adult male mice carrying a Parkinson's disease Lrrk2 G2019S knockin mutation. Exp Neurol 2022; 355:114145. [PMID: 35732218 PMCID: PMC9338764 DOI: 10.1016/j.expneurol.2022.114145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 01/29/2023]
Abstract
Impaired executive function is a common and debilitating non-motor symptom of idiopathic and hereditary Parkinson's disease (PD), but there is little understanding of the underlying pathophysiological mechanisms and circuits. The G2019S mutation in the kinase domain of leucine-rich repeat kinase 2 (LRRK2) greatly increases risk for late-onset PD, and non-manifesting LRRK2G2019S carriers can also exhibit early and significant cognitive impairment. Here, we subjected young adult male mice carrying a Lrrk2G2019S knockin mutation to touchscreen-based operant tasks that measure attention, goal-directed learning and cognitive flexibility, all of which rely on frontal-striatal connectivity and are strongly modulated by cholinergic innervation. In a visuospatial attention task, mutant mice exhibited significantly more omissions and longer response latencies than controls that could not be attributed to deficits in motivation, visual sensory perception per se or locomotion, thereby suggesting impairments in divided attention and/or action-selection as well as generally slower information processing speed. Pretreating mice with the acetylcholinesterase inhibitor donepezil normalized both higher omission rates and longer response latencies in the mutants, but did not affect any performance metric in controls. Strikingly, cholinergic fiber density in cortical areas PL/IL and DMS (dorsomedial striatum) was significantly sparser in mutants than in controls, while further behavioral interrogation of the mutants revealed significant impairments in action-outcome associations but preserved cognitive flexibility. These data suggest that the Lrrk2G2019S mutation negatively impacts cholinergic innervation anatomically and functionally by young adulthood, impairing corticostriatal network function in ways that may contribute to early PD-associated executive function deficits.
Collapse
|
15
|
Zhang D, Yao J, Ma J, Gao L, Sun J, Fang J, He H, Wu T. Connectivity of corticostriatal circuits in nonmanifesting LRRK2 G2385R and R1628P carriers. CNS Neurosci Ther 2022; 28:2024-2031. [PMID: 35934920 PMCID: PMC9627388 DOI: 10.1111/cns.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Neuroimaging studies have shown that the functional connectivity (FC) of corticostriatal circuits in nonmanifesting leucine-rich repeat kinase 2 (LRRK2) G2019S mutation carriers mirrors neural changes in idiopathic Parkinson's disease (PD). In contrast, neural network changes in LRRK2 G2385R and R1628P mutations are unclear. We aimed to investigate the FC of corticostriatal circuits in nonmanifesting LRRK2 G2385R and R1628P mutation carriers (NMCs). METHODS Twenty-three NMCs, 28 PD patients, and 29 nonmanifesting noncarriers (NMNCs) were recruited. LRRK2 mutation analysis was performed on all participants. Clinical evaluation included MDS-UPDRS. RESULTS When compared to NMNCs, NMCs showed significantly reduced FC between the caudate nucleus and superior frontal gyrus and cerebellum, and between the nucleus accumbens and parahippocampal gyrus, amygdala, and insula. We also found increased striatum-cortical FC in NMCs. CONCLUSIONS Although the corticostriatal circuits have characteristic changes similar to PD, the relatively intact function of the sensorimotor striatum-cortical loop may result in less possibility of developing parkinsonian motor symptoms for the NMCs. This study helps explain why LRRK2 G2385R and R1628P mutations are risk factors rather than pathogenic mutations for PD and suggests that various LRRK2 mutations have distinct effects on neural networks.
Collapse
Affiliation(s)
- Dongling Zhang
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Junye Yao
- Center for Brain Imaging Science and TechnologyCollege of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Jinghong Ma
- Department of Neurobiology, Beijing Institute of GeriatricsXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Linlin Gao
- Department of Neurobiology, Beijing Institute of GeriatricsXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Junyan Sun
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jiliang Fang
- Department of Radiology, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Hongjian He
- Center for Brain Imaging Science and TechnologyCollege of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Tao Wu
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijingChina,Parkinson's Disease Center, Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
16
|
Droby A, Artzi M, Lerman H, Hutchison RM, Bashat DB, Omer N, Gurevich T, Orr-Urtreger A, Cohen B, Cedarbaum JM, Sapir EE, Giladi N, Mirelman A, Thaler A. Aberrant dopamine transporter and functional connectivity patterns in LRRK2 and GBA mutation carriers. NPJ Parkinsons Dis 2022; 8:20. [PMID: 35241697 PMCID: PMC8894349 DOI: 10.1038/s41531-022-00285-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/01/2022] [Indexed: 12/28/2022] Open
Abstract
Non-manifesting carriers (NMCs) of Parkinson’s disease (PD)-related mutations such as LRRK2 and GBA are at an increased risk for developing PD. Dopamine transporter (DaT)-spectral positron emission computed tomography is widely used for capturing functional nigrostriatal dopaminergic activity. However, it does not reflect other ongoing neuronal processes; especially in the prodromal stages of the disease. Resting-state fMRI (rs-fMRI) has been proposed as a mode for assessing functional alterations associated with PD, but its relation to dopaminergic deficiency remains unclear. We aimed to study the association between presynaptic striatal dopamine uptake and functional connectivity (FC) patterns among healthy first-degree relatives of PD patients with mutations in LRRK2 and GBA genes. N = 85 healthy first-degree subjects were enrolled and genotyped. All participants underwent DaT and rs-fMRI scans, as well as a comprehensive clinical assessment battery. Between-group differences in FC within striatal regions were investigated and compared with striatal binding ratios (SBR). N = 26 GBA-NMCs, N = 25 LRRK2-NMCs, and N = 34 age-matched nonmanifesting noncarriers (NM-NCs) were included in each study group based on genetic status. While genetically-defined groups were similar across clinical measures, LRRK2-NMCs demonstrated lower SBR in the right putamen compared with NM-NCs, and higher right putamen FC compared to GBA-NMCs. In this group, higher striatal FC was associated with increased risk for PD. The observed differential SBR and FC patterns among LRRK2-NMCs and GBA-NMCs indicate that DaTscan and FC assessments might offer a more sensitive prediction of the risk for PD in the pre-clinical stages of the disease.
Collapse
Affiliation(s)
- Amgad Droby
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel. .,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Moran Artzi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hedva Lerman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Nuclear Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Dafna Ben Bashat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nurit Omer
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avi Orr-Urtreger
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Batsheva Cohen
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | | | - Einat Even Sapir
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Nuclear Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Mining imaging and clinical data with machine learning approaches for the diagnosis and early detection of Parkinson's disease. NPJ Parkinsons Dis 2022; 8:13. [PMID: 35064123 PMCID: PMC8783003 DOI: 10.1038/s41531-021-00266-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is a common, progressive, and currently incurable neurodegenerative movement disorder. The diagnosis of PD is challenging, especially in the differential diagnosis of parkinsonism and in early PD detection. Due to the advantages of machine learning such as learning complex data patterns and making inferences for individuals, machine-learning techniques have been increasingly applied to the diagnosis of PD, and have shown some promising results. Machine-learning-based imaging applications have made it possible to help differentiate parkinsonism and detect PD at early stages automatically in a number of neuroimaging studies. Comparative studies have shown that machine-learning-based SPECT image analysis applications in PD have outperformed conventional semi-quantitative analysis in detecting PD-associated dopaminergic degeneration, performed comparably well as experts’ visual inspection, and helped improve PD diagnostic accuracy of radiologists. Using combined multi-modal (imaging and clinical) data in these applications may further enhance PD diagnosis and early detection. To integrate machine-learning-based diagnostic applications into clinical systems, further validation and optimization of these applications are needed to make them accurate and reliable. It is anticipated that machine-learning techniques will further help improve differential diagnosis of parkinsonism and early detection of PD, which may reduce the error rate of PD diagnosis and help detect PD at pre-motor stage to make it possible for early treatments (e.g., neuroprotective treatment) to slow down PD progression, prevent severe motor symptoms from emerging, and relieve patients from suffering.
Collapse
|
18
|
Cognitive Impairment in Genetic Parkinson's Disease. PARKINSON'S DISEASE 2022; 2021:8610285. [PMID: 35003622 PMCID: PMC8739522 DOI: 10.1155/2021/8610285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Cognitive impairment is common in idiopathic Parkinson's disease (PD). Knowledge of the contribution of genetics to cognition in PD is increasing in the last decades. Monogenic forms of genetic PD show distinct cognitive profiles and rate of cognitive decline progression. Cognitive impairment is higher in GBA- and SNCA-associated PD, lower in Parkin- and PINK1-PD, and possibly milder in LRRK2-PD. In this review, we summarize data regarding cognitive function on clinical studies, neuroimaging, and biological markers of cognitive decline in autosomal dominant PD linked to mutations in LRRK2 and SNCA, autosomal recessive PD linked to Parkin and PINK1, and also PD linked to GBA mutations.
Collapse
|
19
|
Johansson ME, Cameron IGM, van der Kolk NM, De Vries NM, Klimars E, Toni I, Bloem BR, Helmich RC. Aerobic exercise alters brain function and structure in Parkinson's disease a randomized controlled trial. Ann Neurol 2021; 91:203-216. [PMID: 34951063 PMCID: PMC9306840 DOI: 10.1002/ana.26291] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/07/2021] [Accepted: 12/19/2021] [Indexed: 11/18/2022]
Abstract
Objective Randomized clinical trials have shown that aerobic exercise attenuates motor symptom progression in Parkinson's disease, but the underlying neural mechanisms are unclear. Here, we investigated how aerobic exercise influences disease‐related functional and structural changes in the corticostriatal sensorimotor network, which is involved in the emergence of motor deficits in Parkinson's disease. Additionally, we explored effects of aerobic exercise on tissue integrity of the substantia nigra, and on behavioral and cerebral indices of cognitive control. Methods The Park‐in‐Shape trial is a single‐center, double‐blind randomized controlled trial in 130 Parkinson's disease patients who were randomly assigned (1:1 ratio) to aerobic exercise (stationary home trainer) or stretching (active control) interventions (duration = 6 months). An unselected subset from this trial (exercise, n = 25; stretching, n = 31) underwent resting‐state functional and structural magnetic resonance imaging (MRI), and an oculomotor cognitive control task (pro‐ and antisaccades), at baseline and at 6‐month follow‐up. Results Aerobic exercise, but not stretching, led to increased functional connectivity of the anterior putamen with the sensorimotor cortex relative to the posterior putamen. Behaviorally, aerobic exercise also improved cognitive control. Furthermore, aerobic exercise increased functional connectivity in the right frontoparietal network, proportionally to fitness improvements, and it reduced global brain atrophy. Interpretation MRI, clinical, and behavioral results converge toward the conclusion that aerobic exercise stabilizes disease progression in the corticostriatal sensorimotor network and enhances cognitive performance. ANN NEUROL 2022;91:203–216
Collapse
Affiliation(s)
- M E Johansson
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands.,Radboud University Medical Centre; Donders Institute for Brain, Cognition and Behaviour, Centre for Medical Neuroscience; Department of Neurology; Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - I G M Cameron
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,University of Twente, Faculty of Electrical Engineering, Mathematics and Computer Science, Enschede, The Netherlands.,OnePlanet Research Center, Nijmegen, The Netherlands
| | - N M van der Kolk
- Radboud University Medical Centre; Donders Institute for Brain, Cognition and Behaviour, Centre for Medical Neuroscience; Department of Neurology; Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - N M De Vries
- Radboud University Medical Centre; Donders Institute for Brain, Cognition and Behaviour, Centre for Medical Neuroscience; Department of Neurology; Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - E Klimars
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands.,Radboud University Medical Centre; Donders Institute for Brain, Cognition and Behaviour, Centre for Medical Neuroscience; Department of Neurology; Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - I Toni
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - B R Bloem
- Radboud University Medical Centre; Donders Institute for Brain, Cognition and Behaviour, Centre for Medical Neuroscience; Department of Neurology; Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - R C Helmich
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands.,Radboud University Medical Centre; Donders Institute for Brain, Cognition and Behaviour, Centre for Medical Neuroscience; Department of Neurology; Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Genetic factors affecting dopaminergic deterioration during the premotor stage of Parkinson disease. NPJ Parkinsons Dis 2021; 7:104. [PMID: 34836969 PMCID: PMC8626486 DOI: 10.1038/s41531-021-00250-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
To estimate dopaminergic dysfunction in patients with Parkinson disease (PD) during the premotor stage and to investigate the effect of genetic factors on the trajectories. Using longitudinal dopamine transporter single-photon emission computed tomography data from 367 sporadic PD (sPD), 72 LRRK2 (G2019S), and 39 GBA (N370S) PD patients in the Parkinson's Progression Markers Initiative (PPMI) study, we estimated the temporal trajectories of putaminal-specific binding ratios using an integrating function between baseline values and their annual change rates. In order to test reproducibility, we computed another trajectory for sPD using positron emission tomography data of 38 sPD patients at Gangnam Severance Hospital (GSH). Temporal trajectories of sPD were compared between the groups separated by age at onset (AAO) and polygenic load for common PD risk variants, and also compared with genetic PD. sPD patients in both the PPMI and GSH cohorts showed similar onset of dopaminergic degeneration around 10 years before motor onset. Early-onset PD patients exhibited later onset of degeneration and a faster decline in dopaminergic activity during the premotor period than late-onset patients. sPD patients with high polygenic load were associated with earlier onset and slower progression of dopaminergic dysfunction. Compared to the sPD and LRRK2 PD groups, GBA PD patients exhibited faster deterioration of dopaminergic function during the premotor stage. Dopaminergic dysfunction in PD appears to start about 10 years before motor onset. Genetic factors may be contributing to the heterogeneity of dopaminergic deterioration during the premotor stage.
Collapse
|
21
|
Meles SK, Oertel WH, Leenders KL. Circuit imaging biomarkers in preclinical and prodromal Parkinson's disease. Mol Med 2021; 27:111. [PMID: 34530732 PMCID: PMC8447708 DOI: 10.1186/s10020-021-00327-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
Parkinson's disease (PD) commences several years before the onset of motor features. Pathophysiological understanding of the pre-clinical or early prodromal stages of PD are essential for the development of new therapeutic strategies. Two categories of patients are ideal to study the early disease stages. Idiopathic rapid eye movement sleep behavior disorder (iRBD) represents a well-known prodromal stage of PD in which pathology is presumed to have reached the lower brainstem. The majority of patients with iRBD will develop manifest PD within years to decades. Another category encompasses non-manifest mutation carriers, i.e. subjects without symptoms, but with a known mutation or genetic variant which gives an increased risk of developing PD. The speed of progression from preclinical or prodromal to full clinical stages varies among patients and cannot be reliably predicted on the individual level. Clinical trials will require inclusion of patients with a predictable conversion within a limited time window. Biomarkers are necessary that can confirm pre-motor PD status and can provide information regarding lead time and speed of progression. Neuroimaging changes occur early in the disease process and may provide such a biomarker. Studies have focused on radiotracer imaging of the dopaminergic nigrostriatal system, which can be assessed with dopamine transporter (DAT) single photon emission computed tomography (SPECT). Loss of DAT binding represents an effect of irreversible structural damage to the nigrostriatal system. This marker can be used to monitor disease progression and identify individuals at specific risk for phenoconversion. However, it is known that changes in neuronal activity precede structural changes. Functional neuro-imaging techniques, such as 18F-2-fluoro-2-deoxy-D-glucose Positron Emission Tomography (18F-FDG PET) and functional magnetic resonance imaging (fMRI), can be used to model the effects of disease on brain networks when combined with advanced analytical methods. Because these changes occur early in the disease process, functional imaging studies are of particular interest in prodromal PD diagnosis. In addition, fMRI and 18F-FDG PET may be able to predict a specific future phenotype in prodromal cohorts, which is not possible with DAT SPECT. The goal of the current review is to discuss the network-level brain changes in pre-motor PD.
Collapse
Affiliation(s)
- Sanne K Meles
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
| | - Wolfgang H Oertel
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany.,Institute for Neurogenomics, Helmholtz Center for Health and Environment, Munich, Germany
| | - Klaus L Leenders
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Pachi I, Koros C, Simitsi AM, Papadimitriou D, Bougea A, Prentakis A, Papagiannakis N, Bozi M, Antonelou R, Angelopoulou E, Beratis I, Stamelou M, Trapali XG, Papageorgiou SG, Stefanis L. Apathy: An underestimated feature in GBA and LRRK2 non-manifesting mutation carriers. Parkinsonism Relat Disord 2021; 91:1-8. [PMID: 34425330 DOI: 10.1016/j.parkreldis.2021.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Higher prevalence of motor and non-motor features has been observed in non-manifesting mutation carriers of Parkinson's Disease (PD) compared to Healthy Controls (HC). The aim was to detect the differences between GBA and LRRK2 mutation carriers without PD and HC on neuropsychiatric symptoms. METHODS This is a cross-sectional retrospective study of non-manifesting GBA and LRRK2 mutation carriers and HC enrolled into Parkinson's Progression Markers Initiative (PPMI). Data extracted from the PPMI database contained: demographics and performance in MoCA scale and MDS-UPDRS scale part 1A (neuropsychiatric symptoms). All six features were treated as both continuous (MDS-UPDRS individual scores) and categorical variables (MDS-UPDRS individual score>0 and MDS-UPDRS individual score = 0). Logistic regression analyses were applied to evaluate the association between mutation carrying status and neuropsychiatric symptoms. RESULTS In this study, the neuropsychiatric evaluation was performed in 285 GBA non-manifesting carriers, 369 LRRK2 non-manifesting carriers and 195 HC. We found that GBA non-manifesting mutation carriers were 2.6 times more likely to present apathy compared to HC, even after adjustment for covariates (adjusted OR = 2.6, 95% CI = 1.1-6.3, p = 0.031). The higher percentage of apathy for LRRK2 carriers compared to HC was marginally non-significant. GBA carriers were 1.5 times more likely to develop features of anxiety compared to LRRK2 carriers (adjusted OR = 1.5, 95% CI = 1.1-2.2, p = 0.015). Other neuropsychiatric symptoms, such as psychotic or depressive manifestations, did not differ between groups. CONCLUSION Symptoms of apathy could be present in the prediagnostic period of non-manifesting mutation carriers, especially, GBA. Longitudinal data, including detailed neuropsychiatric evaluation and neuroimaging, would be essential to further investigate the pathophysiological basis of this finding.
Collapse
Affiliation(s)
- Ioanna Pachi
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Koros
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina M Simitsi
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nikolaos Papagiannakis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Bozi
- 2nd Department of Neurology, "Attikon" University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Roubina Antonelou
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ion Beratis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Stamelou
- Parkinson's Disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece; School of Medicine, European University of Cyprus, Nicosia, Cyprus
| | | | - Sokratis G Papageorgiou
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
23
|
Hyder R, Jensen M, Højlund A, Kimppa L, Bailey CJ, Schaldemose JL, Kinnerup MB, Østergaard K, Shtyrov Y. Functional connectivity of spoken language processing in early-stage Parkinson's disease: An MEG study. NEUROIMAGE-CLINICAL 2021; 32:102718. [PMID: 34455187 PMCID: PMC8403765 DOI: 10.1016/j.nicl.2021.102718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/01/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, well-known for its motor symptoms; however, it also adversely affects cognitive functions, including language, a highly important human ability. PD pathology is associated, even in the early stage of the disease, with alterations in the functional connectivity within cortico-subcortical circuitry of the basal ganglia as well as within cortical networks. Here, we investigated functional cortical connectivity related to spoken language processing in early-stage PD patients. We employed a patient-friendly passive attention-free paradigm to probe neurophysiological correlates of language processing in PD patients without confounds related to active attention and overt motor responses. MEG data were recorded from a group of newly diagnosed PD patients and age-matched healthy controls who were passively presented with spoken word stimuli (action and abstract verbs, as well as grammatically correct and incorrect inflectional forms) while focussing on watching a silent movie. For each of the examined linguistic aspects, a logistic regression classifier was used to classify participants as either PD patients or healthy controls based on functional connectivity within the temporo-fronto-parietal cortical language networks. Classification was successful for action verbs (accuracy = 0.781, p-value = 0.003) and, with lower accuracy, for abstract verbs (accuracy = 0.688, p-value = 0.041) and incorrectly inflected forms (accuracy = 0.648, p-value = 0.021), but not for correctly inflected forms (accuracy = 0.523, p-value = 0.384). Our findings point to quantifiable differences in functional connectivity within the cortical systems underpinning language processing in newly diagnosed PD patients compared to healthy controls, which arise early, in the absence of clinical evidence of deficits in cognitive or general language functions. The techniques presented here may aid future work on establishing neurolinguistic markers to objectively and noninvasively identify functional changes in the brain's language networks even before clinical symptoms emerge.
Collapse
Affiliation(s)
- Rasha Hyder
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Mads Jensen
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Research Unit for Robophilosophy and Integrative Social Robotics, Aarhus University, Denmark
| | - Andreas Højlund
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lilli Kimppa
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Christopher J Bailey
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jeppe L Schaldemose
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Martin B Kinnerup
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Karen Østergaard
- Sano Private Hospital, Denmark; Department of Neurology, Aarhus University Hospital (AUH), Denmark
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russian Federation.
| |
Collapse
|
24
|
Pischedda F, Piccoli G. LRRK2 at the pre-synaptic site: A 16-years perspective. J Neurochem 2021; 157:297-311. [PMID: 33206398 DOI: 10.1111/jnc.15240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a common neurodegenerative disorder and is clinically characterized by bradykinesia, rigidity, and resting tremor. Missense mutations in the leucine-rich repeat protein kinase-2 gene (LRRK2) are a recognized cause of inherited Parkinson's disease. The physiological and pathological impact of LRRK2 is still obscure, but accumulating evidence indicates that LRRK2 orchestrates diverse aspects of membrane trafficking, such as membrane fusion and vesicle formation and transport along actin and tubulin tracks. In the present review, we focus on the special relation between LRRK2 and synaptic vesicles. LRRK2 binds and phosphorylates key actors within the synaptic vesicle cycle. Accordingly, alterations in dopamine and glutamate transmission have been described upon LRRK2 manipulations. However, the different modeling strategies and phenotypes observed require a critical approach to decipher the outcome of LRRK2 at the pre-synaptic site.
Collapse
Affiliation(s)
- Francesca Pischedda
- CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| | - Giovanni Piccoli
- CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| |
Collapse
|
25
|
Sezgin M, Kicik A, Bilgic B, Kurt E, Bayram A, Hanagası H, Tepgec F, Toksoy G, Gurvit H, Uyguner O, Gokcay G, Demiralp T, Emre M. Functional Connectivity Analysis in Heterozygous Glucocerebrosidase Mutation Carriers. JOURNAL OF PARKINSONS DISEASE 2021; 11:559-568. [PMID: 33492243 DOI: 10.3233/jpd-202295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND There is evidence that alterations in functional connectivity (FC) of the striatocortical circuits may appear before the onset of clinical symptoms of Parkinson's disease (PD). OBJECTIVE The aim of this study was to investigate FC of the striatocortical circuitry in asymptomatic carriers of heterozygous glucocerebrosidase (GBA) mutations, which pose a significant risk for developing PD. METHODS Twenty-one parents of confirmed Gaucher disease patients who were carrying heterozygous GBA mutations and 18 healthy individuals matched for age and gender were included. GBA mutation analysis was performed in all participants. Clinical evaluation included neurological examination, Mini Mental State Examination, and UPDRS Part III. Structural and functional MRI data of 18 asymptomatic GBA mutation carriers (asGBAmc) and 17 healthy controls (HC) were available. FC was analyzed with seed-based approach. RESULTS Eleven asymptomatic mutation carriers had heterozygous p.L483P mutation, 6 subjects heterozygous p.N409S mutation and 1 subject heterozygous p.R392G mutation in GBA gene. Mini-Mental State Examination mean score was 28.77 (±1.16) and 29.64 (±0.70) in asGBAmc and HC groups, respectively (p = 0.012). Significant increased connectivityConclusion:Our results suggest that alterations in striatocortical FC can be detected in asymptomatic heterozygous GBA mutation carriers who are at risk of developing PD. These findings may provide insight into network changes during the asymptomatic phase of PD.
Collapse
Affiliation(s)
- Mine Sezgin
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | - Ani Kicik
- Istanbul University, Hulusi Behcet Life Sciences Research Laboratory, Istanbul, Turkey.,Istanbul Bilim University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Basar Bilgic
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | - Elif Kurt
- Istanbul University, Hulusi Behcet Life Sciences Research Laboratory, Istanbul, Turkey.,Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ali Bayram
- Istanbul University, Hulusi Behcet Life Sciences Research Laboratory, Istanbul, Turkey.,Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hasmet Hanagası
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | - Fatih Tepgec
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul, Turkey
| | - Guven Toksoy
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul, Turkey
| | - Hakan Gurvit
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | - Oya Uyguner
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul, Turkey
| | - Gulden Gokcay
- Istanbul University, Istanbul Medical Faculty, Department of Pediatrics, Division of Pediatric Nutrition and Metabolism, Istanbul, Turkey
| | - Tamer Demiralp
- Istanbul University, Hulusi Behcet Life Sciences Research Laboratory, Istanbul, Turkey.,Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Murat Emre
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| |
Collapse
|
26
|
Chittoor-Vinod VG, Nichols RJ, Schüle B. Genetic and Environmental Factors Influence the Pleomorphy of LRRK2 Parkinsonism. Int J Mol Sci 2021; 22:1045. [PMID: 33494262 PMCID: PMC7864502 DOI: 10.3390/ijms22031045] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/25/2022] Open
Abstract
Missense mutations in the LRRK2 gene were first identified as a pathogenic cause of Parkinson's disease (PD) in 2004. Soon thereafter, a founder mutation in LRRK2, p.G2019S (rs34637584), was described, and it is now estimated that there are approximately 100,000 people worldwide carrying this risk variant. While the clinical presentation of LRRK2 parkinsonism has been largely indistinguishable from sporadic PD, disease penetrance and age at onset can be quite variable. In addition, its neuropathological features span a wide range from nigrostriatal loss with Lewy body pathology, lack thereof, or atypical neuropathology, including a large proportion of cases with concomitant Alzheimer's pathology, hailing LRRK2 parkinsonism as the "Rosetta stone" of parkinsonian disorders, which provides clues to an understanding of the different neuropathological trajectories. These differences may result from interactions between the LRRK2 mutant protein and other proteins or environmental factors that modify LRRK2 function and, thereby, influence pathobiology. This review explores how potential genetic and biochemical modifiers of LRRK2 function may contribute to the onset and clinical presentation of LRRK2 parkinsonism. We review which genetic modifiers of LRRK2 influence clinical symptoms, age at onset, and penetrance, what LRRK2 mutations are associated with pleomorphic LRRK2 neuropathology, and which environmental modifiers can augment LRRK2 mutant pathophysiology. Understanding how LRRK2 function is influenced and modulated by other interactors and environmental factors-either increasing toxicity or providing resilience-will inform targeted therapeutic development in the years to come. This will allow the development of disease-modifying therapies for PD- and LRRK2-related neurodegeneration.
Collapse
Affiliation(s)
| | - R. Jeremy Nichols
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Birgitt Schüle
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| |
Collapse
|
27
|
Chipika RH, Siah WF, McKenna MC, Li Hi Shing S, Hardiman O, Bede P. The presymptomatic phase of amyotrophic lateral sclerosis: are we merely scratching the surface? J Neurol 2020; 268:4607-4629. [PMID: 33130950 DOI: 10.1007/s00415-020-10289-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Presymptomatic studies in ALS have consistently captured considerable disease burden long before symptom manifestation and contributed important academic insights. With the emergence of genotype-specific therapies, however, there is a pressing need to address practical objectives such as the estimation of age of symptom onset, phenotypic prediction, informing the optimal timing of pharmacological intervention, and identifying a core panel of biomarkers which may detect response to therapy. Existing presymptomatic studies in ALS have adopted striking different study designs, relied on a variety of control groups, used divergent imaging and electrophysiology methods, and focused on different genotypes and demographic groups. We have performed a systematic review of existing presymptomatic studies in ALS to identify common themes, stereotyped shortcomings, and key learning points for future studies. Existing presymptomatic studies in ALS often suffer from sample size limitations, lack of disease controls and rarely follow their cohort until symptom manifestation. As the characterisation of presymptomatic processes in ALS serves a multitude of academic and clinical purposes, the careful review of existing studies offers important lessons for future initiatives.
Collapse
Affiliation(s)
- Rangariroyashe H Chipika
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland.
| |
Collapse
|
28
|
Chen C, Soto G, Dumrongprechachan V, Bannon N, Kang S, Kozorovitskiy Y, Parisiadou L. Pathway-specific dysregulation of striatal excitatory synapses by LRRK2 mutations. eLife 2020; 9:58997. [PMID: 33006315 PMCID: PMC7609054 DOI: 10.7554/elife.58997] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
LRRK2 is a kinase expressed in striatal spiny projection neurons (SPNs), cells which lose dopaminergic input in Parkinson’s disease (PD). R1441C and G2019S are the most common pathogenic mutations of LRRK2. How these mutations alter the structure and function of individual synapses on direct and indirect pathway SPNs is unknown and may reveal pre-clinical changes in dopamine-recipient neurons that predispose toward disease. Here, R1441C and G2019S knock-in mice enabled thorough evaluation of dendritic spines and synapses on pathway-identified SPNs. Biochemical synaptic preparations and super-resolution imaging revealed increased levels and altered organization of glutamatergic AMPA receptors in LRRK2 mutants. Relatedly, decreased frequency of miniature excitatory post-synaptic currents accompanied changes in dendritic spine nano-architecture, and single-synapse currents, evaluated using two-photon glutamate uncaging. Overall, LRRK2 mutations reshaped synaptic structure and function, an effect exaggerated in R1441C dSPNs. These data open the possibility of new neuroprotective therapies aimed at SPN synapse function, prior to disease onset. Parkinson’s disease is caused by progressive damage to regions of the brain that regulate movement. This leads to a loss in nerve cells that produce a signaling molecule called dopamine, and causes patients to experience shakiness, slow movement and stiffness. When dopamine is released, it travels to a part of the brain known as the striatum, where it is received by cells called spiny projection neurons (SPNs), which are rich in a protein called LRRK2. Mutations in this protein have been shown to cause the motor impairments associated with Parkinson’s disease. SPNs send signals to other regions of the brain either via a ‘direct’ route, which promotes movement, or an ‘indirect’ route, which suppresses movement. Previous studies suggest that mutations in the gene for LRRK2 influence the activity of these pathways even before dopamine signaling has been lost. Yet, it remained unclear how different mutations independently affected each pathway. To investigate this further, Chen et al. studied two of the mutations most commonly found in the human gene for LRRK2, known as G2019S and R1441C. This involved introducing one of these mutations in to the genetic code of mice, and using fluorescent proteins to mark single SPNs in either the direct or indirect pathway. The experiments showed that both mutations disrupted the connections between SPNs in the direct and indirect pathway, which altered the activity of nerve cells in the striatum. Chen et al. found that individual connections were more strongly affected by the R1441C mutation. Further experiments showed that this was caused by the re-organization of a receptor protein in the nerve cells of the direct pathway, which increased how SPNs responded to inputs from other nerve cells. These findings suggest that LRRK2 mutations disrupt neural activity in the striatum before dopamine levels become depleted. This discovery could help researchers identify new therapies for treating the early stages of Parkinson’s disease before the symptoms of dopamine loss arise.
Collapse
Affiliation(s)
- Chuyu Chen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Giulia Soto
- Department of Neurobiology, Northwestern University, Chicago, United States
| | | | - Nicholas Bannon
- Department of Neurobiology, Northwestern University, Chicago, United States
| | - Shuo Kang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | | | - Loukia Parisiadou
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
29
|
Tessitore A, Cirillo M, De Micco R. Functional Connectivity Signatures of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 9:637-652. [PMID: 31450512 PMCID: PMC6839494 DOI: 10.3233/jpd-191592] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Resting-state functional magnetic resonance imaging (RS-fMRI) studies have been extensively applied to analyze the pathophysiology of neurodegenerative disorders such as Parkinson’s disease (PD). In the present narrative review, we attempt to summarize the most recent RS-fMRI findings highlighting the role of brain networks re-organization and adaptation in the course of PD. We also discuss limitations and potential definition of early functional connectivity signatures to track and predict future PD progression. Understanding the neural correlates and potential predisposing factors of clinical progression and complication will be crucial to guide novel clinical trials and to foster preventive strategies.
Collapse
Affiliation(s)
- Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
30
|
Alpha-Synuclein and LRRK2 in Synaptic Autophagy: Linking Early Dysfunction to Late-Stage Pathology in Parkinson's Disease. Cells 2020; 9:cells9051115. [PMID: 32365906 PMCID: PMC7290471 DOI: 10.3390/cells9051115] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
The lack of effective disease-modifying strategies is the major unmet clinical need in Parkinson’s disease. Several experimental approaches have attempted to validate cellular targets and processes. Of these, autophagy has received considerable attention in the last 20 years due to its involvement in the clearance of pathologic protein aggregates and maintenance of neuronal homeostasis. However, this strategy mainly addresses a very late stage of the disease, when neuropathology and neurodegeneration have likely “tipped over the edge” and disease modification is extremely difficult. Very recently, autophagy has been demonstrated to modulate synaptic activity, a process distinct from its catabolic function. Abnormalities in synaptic transmission are an early event in neurodegeneration with Leucine-Rich Repeat Kinase 2 (LRRK2) and alpha-synuclein strongly implicated. In this review, we analyzed these processes separately and then discussed the unification of these biomolecular fields with the aim of reconstructing a potential “molecular timeline” of disease onset and progression. We postulate that the elucidation of these pathogenic mechanisms will form a critical basis for the design of novel, effective disease-modifying therapies that could be applied early in the disease process.
Collapse
|
31
|
Huntley GW, Benson DL. Origins of Parkinson's Disease in Brain Development: Insights From Early and Persistent Effects of LRRK2-G2019S on Striatal Circuits. Front Neurosci 2020; 14:265. [PMID: 32273839 PMCID: PMC7113397 DOI: 10.3389/fnins.2020.00265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Late-onset Parkinson's disease (PD) is dominated clinically and experimentally by a focus on dopamine neuron degeneration and ensuing motor system abnormalities. There are, additionally, a number of non-motor symptoms - including cognitive and psychiatric - that can appear much earlier in the course of the disease and also significantly impair quality of life. The neurobiology of such cognitive and psychiatric non-motor symptoms is poorly understood. The recognition of genetic forms of late-onset PD, which are clinically similar to idiopathic forms in both motor and non-motor symptoms, raises the perspective that brain cells and circuits - and the behaviors they support - differ in significant ways from normal by virtue of the fact that these mutations are carried throughout life, including especially early developmental critical periods where circuit structure and function is particularly susceptible to the influence of experience-dependent activity. In this focused review, we support this central thesis by highlighting studies of LRRK2-G2019S mouse models. We describe work that shows that in G2019S mutants, corticostriatal activity and plasticity are abnormal by P21, the end of a period of excitatory synaptogenesis in striatum. Moreover, by young adulthood, impaired striatal synaptic and non-synaptic forms of plasticity likely underlie altered and variable performance by mutant mice in validated tasks that test for depression-like and anhedonia-like behaviors. Mechanistically, deficits in cellular, synaptic and behavioral plasticity may be unified by mutation-linked defects in trafficking of AMPAR subunits and other membrane channels, which in turn may reflect impairment in the function of the Rab family of GTPases, a major target of LRRK2 phosphorylation. These findings underscore the need to better understand how PD-related mutant proteins influence brain structure and function during an extended period of brain development, and offer new clues for future therapeutic strategies to target non-motor cognitive or psychiatric symptoms of PD.
Collapse
Affiliation(s)
- George W. Huntley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Deanna L. Benson
- Nash Family Department of Neuroscience, Friedman Brain Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
32
|
Ruppert MC, Greuel A, Tahmasian M, Schwartz F, Stürmer S, Maier F, Hammes J, Tittgemeyer M, Timmermann L, van Eimeren T, Drzezga A, Eggers C. Network degeneration in Parkinson’s disease: multimodal imaging of nigro-striato-cortical dysfunction. Brain 2020; 143:944-959. [DOI: 10.1093/brain/awaa019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/21/2019] [Accepted: 12/11/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
The spreading hypothesis of neurodegeneration assumes an expansion of neural pathologies along existing neural pathways. Multimodal neuroimaging studies have demonstrated distinct topographic patterns of cerebral pathologies in neurodegeneration. For Parkinson’s disease the hypothesis so far rests largely on histopathological evidence of α-synuclein spreading in a characteristic pattern and progressive nigrostriatal dopamine depletion. Functional consequences of nigrostriatal dysfunction on cortical activity remain to be elucidated. Our goal was to investigate multimodal imaging correlates of degenerative processes in Parkinson’s disease by assessing dopamine depletion and its potential effect on striatocortical connectivity networks and cortical metabolism in relation to parkinsonian symptoms. We combined 18F-DOPA-PET, 18F-fluorodeoxyglucose (FDG)-PET and resting state functional MRI to multimodally characterize network alterations in Parkinson’s disease. Forty-two patients with mild-to-moderate stage Parkinson’s disease and 14 age-matched healthy control subjects underwent a multimodal imaging protocol and comprehensive clinical examination. A voxel-wise group comparison of 18F-DOPA uptake identified the exact location and extent of putaminal dopamine depletion in patients. Resulting clusters were defined as seeds for a seed-to-voxel functional connectivity analysis. 18F-FDG metabolism was compared between groups at a whole-brain level and uptake values were extracted from regions with reduced putaminal connectivity. To unravel associations between dopaminergic activity, striatocortical connectivity, glucose metabolism and symptom severity, correlations between normalized uptake values, seed-to-cluster β-values and clinical parameters were tested while controlling for age and dopaminergic medication. Aside from cortical hypometabolism, 18F-FDG-PET data for the first time revealed a hypometabolic midbrain cluster in patients with Parkinson’s disease that comprised caudal parts of the bilateral substantia nigra pars compacta. Putaminal dopamine synthesis capacity was significantly reduced in the bilateral posterior putamen and correlated with ipsilateral nigral 18F-FDG uptake. Resting state functional MRI data indicated significantly reduced functional connectivity between the dopamine depleted putaminal seed and cortical areas primarily belonging to the sensorimotor network in patients with Parkinson’s disease. In the inferior parietal cortex, hypoconnectivity in patients was significantly correlated with lower metabolism (left P = 0.021, right P = 0.018). Of note, unilateral network alterations quantified with different modalities corresponded with contralateral motor impairments. In conclusion, our results support the hypothesis that degeneration of nigrostriatal fibres functionally impairs distinct striatocortical connections, disturbing the efficient interplay between motor processing areas and impairing motor control in patients with Parkinson’s disease. The present study is the first to reveal trimodal evidence for network-dependent degeneration in Parkinson’s disease by outlining the impact of functional nigrostriatal pathway impairment on striatocortical functional connectivity networks and cortical metabolism.
Collapse
Affiliation(s)
- Marina C Ruppert
- Department of Neurology, University Hospital of Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| | - Andrea Greuel
- Department of Neurology, University Hospital of Marburg, Germany
| | - Masoud Tahmasian
- Institue of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Frank Schwartz
- Department of Neurology, Hospital of the Brothers of Mercy, Trier, Germany
| | - Sophie Stürmer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Neurology, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
| | - Franziska Maier
- Department of Psychiatry, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Jochen Hammes
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| | - Thilo van Eimeren
- Department of Neurology, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Germany
| | - Alexander Drzezga
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-2), Research Center Jülich, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital of Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| |
Collapse
|
33
|
Tolosa E, Vila M, Klein C, Rascol O. LRRK2 in Parkinson disease: challenges of clinical trials. Nat Rev Neurol 2020; 16:97-107. [PMID: 31980808 DOI: 10.1038/s41582-019-0301-2] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
One of the most common monogenic forms of Parkinson disease (PD) is caused by mutations in the LRRK2 gene that encodes leucine-rich repeat kinase 2 (LRRK2). LRRK2 mutations, and particularly the most common mutation Gly2019Ser, are observed in patients with autosomal dominant PD and in those with apparent sporadic PD, who are clinically indistinguishable from those with idiopathic PD. The discoveries that pathogenic mutations in the LRRK2 gene increase LRRK2 kinase activity and that small-molecule LRRK2 kinase inhibitors can be neuroprotective in preclinical models of PD have placed LRRK2 at the centre of disease modification efforts in PD. Recent investigations also suggest that LRRK2 has a role in the pathogenesis of idiopathic PD and that LRRK2 therapies might, therefore, be beneficial in this common subtype of PD. In this Review, we describe the characteristics of LRRK2-associated PD that are most relevant to the development of LRRK2-targeted therapies and the design and implementation of clinical trials. We highlight strategies for correcting the effects of mutations in the LRRK2 gene, focusing on how to identify which patients are the optimal candidates and how to decide on the timing of such trials. In addition, we discuss challenges in implementing trials of disease-modifying treatment in people who carry LRRK2 mutations.
Collapse
Affiliation(s)
- Eduardo Tolosa
- Parkinson and Movement Disorders Unit, Neurology Service, Hospital Clinic of Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain. .,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
| | - Miquel Vila
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Departments of Clinical Pharmacology and Neurosciences, NS-Park/FCRIN network and NeuroToul Center of Excellence for Neurodegeneration, INSERM, University Hospital of Toulouse and University of Toulouse, Toulouse, France
| |
Collapse
|
34
|
Altered reward-related neural responses in non-manifesting carriers of the Parkinson disease related LRRK2 mutation. Brain Imaging Behav 2020; 13:1009-1020. [PMID: 29971685 DOI: 10.1007/s11682-018-9920-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Disturbances in reward processing occur in Parkinson's disease (PD) however it is unclear whether these are solely drug-related. We applied an event-related fMRI gambling task to a group of non-manifesting carriers (NMC) of the G2019S mutation in the LRRK2 gene, in order to assess the reward network in an "at risk" population for future development of PD. Sixty-eight non-manifesting participants, 32 of which were non-manifesting non-carriers (NMNC), performed a gambling task which included defined intervals of anticipation and response to both reward and punishment in an fMRI setup. Behavior and cerebral activations were measured using both hypothesis driven and whole brain analysis. NMC demonstrated higher trait anxiety scores (p = 0.04) compared to NMNC. Lower activations were detected among NMC during risky anticipation in the left nucleus accumbens (NAcc) (p = 0.05) and during response to punishment in the right insula (p = 0.02), with higher activations among NMC during safe anticipation in the right insula (p = 0.02). Psycho-Physiological Interaction (PPI) analysis from the NAcc and insula revealed differential connectivity patterns. Whole brain analysis demonstrated divergent between-group activations in distributed cortical regions, bilateral caudate, left midbrain, when participants were required to press the response button upon making their next chosen move. Abnormal neural activity in both the reward and motor networks were detected in NMC indicating involvement of the ventral striatum regardless of medication use in "at risk" individuals for future development of PD.
Collapse
|
35
|
Schindlbeck KA, Vo A, Nguyen N, Tang CC, Niethammer M, Dhawan V, Brandt V, Saunders-Pullman R, Bressman SB, Eidelberg D. LRRK2 and GBA Variants Exert Distinct Influences on Parkinson's Disease-Specific Metabolic Networks. Cereb Cortex 2019; 30:2867-2878. [PMID: 31813991 DOI: 10.1093/cercor/bhz280] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
The natural history of idiopathic Parkinson's disease (PD) varies considerably across patients. While PD is generally sporadic, there are known genetic influences: the two most common, mutations in the LRRK2 or GBA1 gene, are associated with slower and more aggressive progression, respectively. Here, we applied graph theory to metabolic brain imaging to understand the effects of genotype on the organization of previously established PD-specific networks. We found that closely matched PD patient groups with the LRRK2-G2019S mutation (PD-LRRK2) or GBA1 variants (PD-GBA) expressed the same disease networks as sporadic disease (sPD), but PD-LRRK2 and PD-GBA patients exhibited abnormal increases in network connectivity that were not present in sPD. Using a community detection strategy, we found that the location and modular distribution of these connections differed strikingly across genotypes. In PD-LRRK2, connections were gained within the network core, with the formation of distinct functional pathways linking the cerebellum and putamen. In PD-GBA, by contrast, the majority of functional connections were formed outside the core, involving corticocortical pathways at the network periphery. Strategically localized connections within the core in PD-LRRK2 may maintain PD network activity at lower levels than in PD-GBA, resulting in a less aggressive clinical course.
Collapse
Affiliation(s)
- Katharina A Schindlbeck
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 10030, USA
| | - An Vo
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 10030, USA
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chris C Tang
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 10030, USA
| | - Martin Niethammer
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 10030, USA
| | - Vijay Dhawan
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 10030, USA
| | - Vicky Brandt
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 10030, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel, Mount Sinai Hospital, New York, NY 10003, USA
| | - Susan B Bressman
- Department of Neurology, Mount Sinai Beth Israel, Mount Sinai Hospital, New York, NY 10003, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 10030, USA
| |
Collapse
|
36
|
Vaillancourt DE, Lehericy S. Illuminating basal ganglia and beyond in Parkinson's disease. Mov Disord 2019; 33:1373-1375. [PMID: 30311976 DOI: 10.1002/mds.27483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- David E Vaillancourt
- Department of Applied Physiology and Kinesiology, Biomedical Engineering, Neurology, University of Florida, Gainesville, Florida, USA
| | - Stéphane Lehericy
- Institut du Cerveau et de la Moelle - ICM, Centre de NeuroImagerie de Recherche - CENIR, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| |
Collapse
|
37
|
Jacob Y, Rosenberg-Katz K, Gurevich T, Helmich RC, Bloem BR, Orr-Urtreger A, Giladi N, Mirelman A, Hendler T, Thaler A. Network abnormalities among non-manifesting Parkinson disease related LRRK2 mutation carriers. Hum Brain Mapp 2019; 40:2546-2555. [PMID: 30793410 DOI: 10.1002/hbm.24543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/13/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Non-manifesting carriers (NMC) of the G2019S mutation in the LRRK2 gene represent an "at risk" group for future development of Parkinson's disease (PD) and have demonstrated task related fMRI changes. However, resting-state networks have received less research focus, thus this study aimed to assess the integrity of the motor, default mode (DMN), salience (SAL), and dorsal attention (DAN) networks among this unique population by using two different connectivity measures: interregional functional connectivity analysis and Dependency network analysis (DEP NA). Machine learning classification methods were used to distinguish connectivity between the two groups of participants. Forty-four NMC and 41 non-manifesting non-carriers (NMNC) participated in this study; while no behavioral differences on standard questionnaires could be detected, NMC demonstrated lower connectivity measures in the DMN, SAL, and DAN compared to NMNC but not in the motor network. Significant correlations between NMC connectivity measures in the SAL and attention were identified. Machine learning classification separated NMC from NMNC with an accuracy rate above 0.8. Reduced integrity of non-motor networks was detected among NMC of the G2019S mutation in the LRRK2 gene prior to identifiable changes in connectivity of the motor network, indicating significant non-motor cerebral changes among populations "at risk" for future development of PD.
Collapse
Affiliation(s)
- Yael Jacob
- Translational and Molecular Imaging Institute, Icahn School of Medicine, Mount Sinai Medical Center, New York, New York.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel
| | | | - Tanya Gurevich
- Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rick C Helmich
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.,Department of Neurology and Parkinson Centre, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.,Department of Neurology and Parkinson Centre, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Avi Orr-Urtreger
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Tel-Aviv Medical Center, Genetic Institute, Tel-Aviv, Israel
| | - Nir Giladi
- Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Mirelman
- Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Talma Hendler
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Avner Thaler
- Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
38
|
Functional and behavioral consequences of Parkinson's disease-associated LRRK2-G2019S mutation. Biochem Soc Trans 2018; 46:1697-1705. [PMID: 30514770 DOI: 10.1042/bst20180468] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022]
Abstract
LRRK2 mutation is the most common inherited, autosomal dominant cause of Parkinson's disease (PD) and has also been observed in sporadic cases. Most mutations result in increased LRRK2 kinase activity. LRRK2 is highly expressed in brain regions that receive dense, convergent innervation by dopaminergic and glutamatergic axons, and its levels rise developmentally coincident with glutamatergic synapse formation. The onset and timing of expression suggests strongly that LRRK2 regulates the development, maturation and function of synapses. Several lines of data in mice show that LRRK2-G2019S, the most common LRRK2 mutation, produces an abnormal gain of pathological function that affects synaptic activity, spine morphology, persistent forms of synapse plasticity and behavioral responses to social stress. Effects of the mutation can be detected as early as the second week of postnatal development and can last or have consequences that extend into adulthood and occur in the absence of dopamine loss. These data suggest that the generation of neural circuits that support complex behaviors is modified by LRRK2-G2019S. Whether such alterations impart vulnerability to neurons directly or indirectly, they bring to the forefront the idea that neural circuits within which dopamine neurons eventually degenerate are assembled and utilized in ways that are distinct from circuits that lack this mutation and may contribute to non-motor symptoms observed in humans with PD.
Collapse
|
39
|
Abstract
Even before the success of combined positron emission tomography and computed tomography (PET/CT), the neuroimaging community was conceiving the idea to integrate the positron emission tomography (PET), with very high molecular quantitative data but low spatial resolution, and magnetic resonance imaging (MRI), with high spatial resolution. Several technical limitations have delayed the use of a hybrid scanner in neuroimaging studies, including the full integration of the PET detector ring within the MRI system, the optimization of data acquisition, and the implementation of reliable methods for PET attenuation, motion correction, and joint image reconstruction. To be valid and useful in clinical and research settings, this instrument should be able to simultaneously acquire PET and MRI, and generate quantitative parametric PET images comparable to PET-CT. While post hoc co-registration of combined PET and MRI data acquired separately became the most reliable technique for the generation of "fused" PET-MRI images, only hybrid PET-MRI approach allows merging these measurements naturally and correlating them in a temporal manner. Furthermore, hybrid PET-MRI represents the most accurate tool to investigate in vivo the interplay between molecular and functional aspects of brain pathophysiology. Hybrid PET-MRI technology is still in the early stages in the movement disorders field, due to the limited availability of scanners with integrated optimized methodological models. This technology is ideally suited to investigate interactions between resting-state functional/arterial spin labeling MRI and [18F]FDG PET glucose metabolism in the evaluation of the brain "hubs" particularly vulnerable to neurodegeneration, areas with a high degree of connectivity and associated with an efficient synaptic neurotransmission. In Parkinson's disease, hybrid PET-MRI is also the ideal instrument to deeper explore the relationship between resting-state functional MRI and dopamine release at [11C]raclopride PET challenge, in the identification of early drug-naïve Parkinson's disease patients at higher risk of motor complications and in the evaluation of the efficacy of novel neuroprotective treatment able to restore at the same time the altered resting state and the release of dopamine. In this chapter, we discuss the key methodological aspects of hybrid PET-MRI; the evidence in movement disorders of the key resting-state functional and perfusion MRI; [18F]FDG PET and [11C]raclopride PET challenge studies; the potential advantages of using hybrid PET-MRI to investigate the pathophysiology of movement disorders and neurodegenerative diseases. Future directions of hybrid PET-MRI will be discussed alongside with up-to-date technological innovations on hybrid systems.
Collapse
|
40
|
Abstract
The past decade has seen tremendous efforts in biomarker discovery and validation for neurodegenerative diseases. The source and type of biomarkers has continued to grow for central nervous system diseases, from biofluid-based biomarkers (blood or cerebrospinal fluid (CSF)), to nucleic acids, tissue, and imaging. While DNA remains a predominant biomarker used to identify familial forms of neurodegenerative diseases, various types of RNA have more recently been linked to familial and sporadic forms of neurodegenerative diseases during the past few years. Imaging approaches continue to evolve and are making major contributions to target engagement and early diagnostic biomarkers. Incorporation of biomarkers into drug development and clinical trials for neurodegenerative diseases promises to aid in the development and demonstration of target engagement and drug efficacy for neurologic disorders. This review will focus on recent advancements in developing biomarkers for clinical utility in Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
| | - Robert Bowser
- Iron Horse Diagnostics, Inc., Scottsdale, AZ, 85255, USA.
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ, 85013, USA.
| |
Collapse
|
41
|
Strafella AP, Bohnen NI, Pavese N, Vaillancourt DE, van Eimeren T, Politis M, Tessitore A, Ghadery C, Lewis S. Imaging Markers of Progression in Parkinson's Disease. Mov Disord Clin Pract 2018; 5:586-596. [PMID: 30637278 DOI: 10.1002/mdc3.12673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Background Parkinson's disease (PD) is the second-most common neurodegenerative disorder after Alzheimer's disease; however, to date, there is no approved treatment that stops or slows down disease progression. Over the past decades, neuroimaging studies, including molecular imaging and MRI are trying to provide insights into the mechanisms underlying PD. Methods This work utilized a literature review. Results It is now becoming clear that these imaging modalities can provide biomarkers that can objectively detect brain changes related to PD and monitor these changes as the disease progresses, and these biomarkers are required to establish a breakthrough in neuroprotective or disease-modifying therapeutics. Conclusions Here, we provide a review of recent observations deriving from PET, single-positron emission tomography, and MRI studies exploring PD and other parkinsonian disorders.
Collapse
Affiliation(s)
- Antonio P Strafella
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN University of Toronto Toronto Ontario Canada.,Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, UHN University of Toronto Toronto Ontario Canada.,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
| | - Nico I Bohnen
- Department of Radiology & Neurology University of Michigan Ann Arbor Michigan USA.,Veterans Administration Ann Arbor Healthcare System Ann Arbor Michigan USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research University of Michigan Ann Arbor Michigan USA
| | - Nicola Pavese
- Newcastle Magnetic Resonance Centre & Positron Emission Tomography Centre Newcastle University, Campus for Ageing & Vitality Newcastle upon Tyne United Kingdom
| | - David E Vaillancourt
- Applied Physiology and Kinesiology, Biomedical Engineering, and Neurology University of Florida Gainesville Florida USA
| | - Thilo van Eimeren
- Department of Nuclear Medicine and Department of Neurology University of Cologne Cologne Germany.,Institute for Cognitive Neuroscience, Jülich Research Centre Jülich Germany.,German Center for Neurodegenerative Diseases (DZNE) Bonn-Cologne Bonn Germany
| | - Marios Politis
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London London United Kingdom
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences-MRI Research Center SUN-FISM University of Campania "Luigi Vanvitelli" Naples Italy
| | - Christine Ghadery
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN University of Toronto Toronto Ontario Canada.,Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, UHN University of Toronto Toronto Ontario Canada.,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
| | - Simon Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre University of Sydney Sydney NSW Australia
| | | |
Collapse
|
42
|
Thaler A. Structural and Functional MRI in Familial Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:261-287. [PMID: 30409255 DOI: 10.1016/bs.irn.2018.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Between 10 and 15% of Parkinson disease (PD) cases can be traced to a genetically identified causative mutation which currently number over 40. This enables the study of both "at risk" populations for future development of PD and a unique sub-group of genetically determined patient population. Structural and functional magnetic imaging has the potential of assisting diagnosis, early detection and disease progression as it is relatively cheap and easy to implement. However, the large variety of imaging options and different analytical approaches hamper the pursuit of a unified imaging biomarker. This chapter details the current imaging options and summarizes the findings among both genetically determined patients with PD and their non-manifesting first degree relatives, speculating on possible compensational mechanisms while mapping future directions in order to better utilize MRI in the research of genetic PD.
Collapse
Affiliation(s)
- Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
43
|
Tozzi A, Durante V, Bastioli G, Mazzocchetti P, Novello S, Mechelli A, Morari M, Costa C, Mancini A, Di Filippo M, Calabresi P. Dopamine D2 receptor activation potently inhibits striatal glutamatergic transmission in a G2019S LRRK2 genetic model of Parkinson's disease. Neurobiol Dis 2018; 118:1-8. [DOI: 10.1016/j.nbd.2018.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022] Open
|
44
|
Cerebral Imaging Markers of GBA and LRRK2 Related Parkinson's Disease and Their First-Degree Unaffected Relatives. Brain Topogr 2018; 31:1029-1036. [PMID: 29846835 DOI: 10.1007/s10548-018-0653-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/26/2018] [Indexed: 12/12/2022]
Abstract
Cerebral atrophy has been detected in patients with Parkinson's disease (PD) both with and without dementia, however differentiation based on genetic status has thus far not yielded robust findings. We assessed cortical thickness and subcortical volumes in a cohort of PD patients and healthy controls carriers of the G2019S mutation in the LRRK2 gene and the common GBA mutations, in an attempt to determine whether genetic status influences structural indexes. Cortical thickness and subcortical volumes were computed and compared between six groups of participants; idiopathic PD, GBA-PD, LRRK2-PD, non-manifesting non-carriers (NMNC), GBA-non-manifesting carriers (NMC) and LRRK2-NMC utilizing the FreeSurfer software program. All participants were cognitively intact based on a computerized cognitive assessment battery. Fifty-seven idiopathic PD patients, 9 LRRK2-PD, 12 GBA-PD, 49 NMNC, 41 LRRK2-NMC and 14 GBA-NMC participated in this study. Lower volumes among patients with PD compared to unaffected participants were detected in bilateral hippocampus, nucleus accumbens, caudate, thalamus, putamen and amygdala and the right pallidum (p = 0.016). PD patients demonstrated lower cortical thickness indexes in a majority of regions assessed compared with non-manifesting participants. No differences in cortical thickness and subcortical volumes were detected within each of the groups of participants based on genetic status. Mutations in the GBA and LRRK2 genes are not important determinants of cortical thickness and subcortical volumes in both patients with PD and non-manifesting participants. PD is associated with a general reduction in cortical thickness and sub-cortical atrophy even in cognitively intact patients.
Collapse
|
45
|
Peterson AC, Li CSR. Noradrenergic Dysfunction in Alzheimer's and Parkinson's Diseases-An Overview of Imaging Studies. Front Aging Neurosci 2018; 10:127. [PMID: 29765316 PMCID: PMC5938376 DOI: 10.3389/fnagi.2018.00127] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Noradrenergic dysfunction contributes to cognitive impairment in Alzheimer's Disease (AD) and Parkinson's Disease (PD). Conventional therapeutic strategies seek to enhance cholinergic and dopaminergic neurotransmission in AD and PD, respectively, and few studies have examined noradrenergic dysfunction as a target for medication development. We review the literature of noradrenergic dysfunction in AD and PD with a focus on human imaging studies that implicate the locus coeruleus (LC) circuit. The LC sends noradrenergic projections diffusely throughout the cerebral cortex and plays a critical role in attention, learning, working memory, and cognitive control. The LC undergoes considerable degeneration in both AD and PD. Advances in magnetic resonance imaging have facilitated greater understanding of how structural and functional alteration of the LC may contribute to cognitive decline in AD and PD. We discuss the potential roles of the noradrenergic system in the pathogenesis of AD and PD with an emphasis on postmortem anatomical studies, structural MRI studies, and functional MRI studies, where we highlight changes in LC connectivity with the default mode network (DMN). LC degeneration may accompany deficient capacity in suppressing DMN activity and increasing saliency and task control network activities to meet behavioral challenges. We finish by proposing potential and new directions of research to address noradrenergic dysfunction in AD and PD.
Collapse
Affiliation(s)
- Andrew C Peterson
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, United States.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
46
|
Altered intrinsic brain functional connectivity in drug-naïve Parkinson's disease patients with LRRK2 mutations. Neurosci Lett 2018; 675:145-151. [PMID: 29567424 DOI: 10.1016/j.neulet.2018.03.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/24/2018] [Accepted: 03/18/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Leucine-rich repeat kinase 2 (LRRK2) has been recently identified as a causative gene of Parkinson's disease (PD), and the LRRK2 R1628P and G2385R mutations are common in ethnic Han-Chinese PD patients. However, the pathogenic mechanism of LRRK2 mutations in PD remains largely unknown. METHODS Resting-state functional MRI (fMRI) was used to assess the functional connectivity (FC) of the striatal subregions of 11 ethnic Han-Chinese drug-naïve PD patients with the LRRK2 R1628P or G2385R mutations, 11 ethnic Han-Chinese drug-naïve PD patients without such mutations, and 22 healthy control (HC) subjects. RESULTS Compared with the HC subjects, both subgroups of the PD patients showed alterations in the FC within the sensorimotor-striatal and posterior putamen-striatal circuits. In addition, relative to the subgroup of PD patients without the LRRK2 mutations, the subgroup of PD patients with the LRRK2 mutation exhibited decreased FC between the putamen and the bilateral superior frontal gyri, precuneus and calcarine gyri. The FC between the putamen and the bilateral superior frontal gyri decreased with age in the LRRK2 mutation carriers but not in the non-carriers. CONCLUSION Differences in the FC between ethnic Han-Chinese drug-naïve PD patients with and without the LRRK2 mutation may provide new insights into the understanding of the neural functional changes in ethnic Han-Chinese PD patients with LRRK2 mutations. However, our results are preliminary, and further investigations are needed.
Collapse
|
47
|
Volta M, Beccano-Kelly DA, Paschall SA, Cataldi S, MacIsaac SE, Kuhlmann N, Kadgien CA, Tatarnikov I, Fox J, Khinda J, Mitchell E, Bergeron S, Melrose H, Farrer MJ, Milnerwood AJ. Initial elevations in glutamate and dopamine neurotransmission decline with age, as does exploratory behavior, in LRRK2 G2019S knock-in mice. eLife 2017; 6:28377. [PMID: 28930069 PMCID: PMC5633343 DOI: 10.7554/elife.28377] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/15/2017] [Indexed: 01/10/2023] Open
Abstract
LRRK2 mutations produce end-stage Parkinson’s disease (PD) with reduced nigrostriatal dopamine, whereas, asymptomatic carriers have increased dopamine turnover and altered brain connectivity. LRRK2 pathophysiology remains unclear, but reduced dopamine and mitochondrial abnormalities occur in aged G2019S mutant knock-in (GKI) mice. Conversely, cultured GKI neurons exhibit increased synaptic transmission. We assessed behavior and synaptic glutamate and dopamine function across a range of ages. Young GKI mice exhibit more vertical exploration, elevated glutamate and dopamine transmission, and aberrant D2-receptor responses. These phenomena decline with age, but are stable in littermates. In young GKI mice, dopamine transients are slower, independent of dopamine transporter (DAT), increasing the lifetime of extracellular dopamine. Slowing of dopamine transients is observed with age in littermates, suggesting premature ageing of dopamine synapses in GKI mice. Thus, GKI mice exhibit early, but declining, synaptic and behavioral phenotypes, making them amenable to investigation of early pathophysiological, and later parkinsonian-like, alterations. This model will prove valuable in efforts to develop neuroprotection for PD.
Collapse
Affiliation(s)
- Mattia Volta
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, Canada
| | | | - Sarah A Paschall
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, Canada.,Graduate Program in Neurosciences, University of British Columbia, Vancouver, Canada
| | - Stefano Cataldi
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, Canada.,Graduate Program in Neurosciences, University of British Columbia, Vancouver, Canada
| | - Sarah E MacIsaac
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, Canada.,Graduate Program in Neurosciences, University of British Columbia, Vancouver, Canada
| | - Naila Kuhlmann
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, Canada.,Graduate Program in Neurosciences, University of British Columbia, Vancouver, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Chelsie A Kadgien
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, Canada.,Graduate Program in Neurosciences, University of British Columbia, Vancouver, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Igor Tatarnikov
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, Canada
| | - Jesse Fox
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, Canada
| | - Jaskaran Khinda
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, Canada
| | - Emma Mitchell
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, Canada
| | - Sabrina Bergeron
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, Canada
| | | | - Matthew J Farrer
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, Canada
| | - Austen J Milnerwood
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
48
|
Picillo M, Barone P, Pellecchia MT. Merging Clinical and Imaging Biomarkers to Tackle Parkinson's Disease. Mov Disord Clin Pract 2017; 4:652-662. [PMID: 30363377 DOI: 10.1002/mdc3.12521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 02/05/2023] Open
Abstract
Background In Parkinson's disease, biomarkers represent tools that are potentially suitable for either clinical or research settings and are useful in predicting onset, confirming diagnosis, detecting progression, and evaluating response to potential disease-modifying treatments. The range of available biomarkers in Parkinson's disease is fast expanding and includes an increasing amount of laboratory, clinical, and imaging data. Indeed, the latter 2 represent the cornerstones of the diagnostic criteria for Parkinson's disease recently proposed by the International Parkinson and Movement Disorders Society Task Force on the definition of Parkinson's disease. Methods and Results In this review, we describe current knowledge and emerging findings on clinical (with emphasis on nonmotor symptoms) and imaging biomarkers for Parkinson's disease, with a focus on prodromal, diagnostic, and middle/advanced phases. Conclusion An increasing body of evidence suggests that merging clinical and imaging biomarkers through disease stages may be the best, fastest track to tackle Parkinson's disease.
Collapse
Affiliation(s)
- Marina Picillo
- Neuroscience Section Department of Medicine and Surgery Center for Neurodegenerative Diseases (CMAND) University of Salerno Salerno Italy
| | - Paolo Barone
- Neuroscience Section Department of Medicine and Surgery Center for Neurodegenerative Diseases (CMAND) University of Salerno Salerno Italy
| | - Maria Teresa Pellecchia
- Neuroscience Section Department of Medicine and Surgery Center for Neurodegenerative Diseases (CMAND) University of Salerno Salerno Italy
| |
Collapse
|
49
|
Altered Development of Synapse Structure and Function in Striatum Caused by Parkinson's Disease-Linked LRRK2-G2019S Mutation. J Neurosci 2017; 36:7128-41. [PMID: 27383589 DOI: 10.1523/jneurosci.3314-15.2016] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/26/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) can cause Parkinson's disease (PD), and the most common disease-associated mutation, G2019S, increases kinase activity. Because LRRK2 expression levels rise during synaptogenesis and are highest in dorsal striatal spiny projection neurons (SPNs), we tested the hypothesis that the LRRK2-G2019S mutation would alter development of excitatory synaptic networks in dorsal striatum. To circumvent experimental confounds associated with LRRK2 overexpression, we used mice expressing LRRK2-G2019S or D2017A (kinase-dead) knockin mutations. In whole-cell recordings, G2019S SPNs exhibited a fourfold increase in sEPSC frequency compared with wild-type SPNs in postnatal day 21 mice. Such heightened neural activity was increased similarly in direct- and indirect-pathway SPNs, and action potential-dependent activity was particularly elevated. Excitatory synaptic activity in D2017A SPNs was similar to wild type, indicating a selective effect of G2019S. Acute exposure to LRRK2 kinase inhibitors normalized activity, supporting that excessive neural activity in G2019S SPNs is mediated directly and is kinase dependent. Although dendritic arborization and densities of excitatory presynaptic terminals and postsynaptic dendritic spines in G2019S SPNs were similar to wild type, G2019S SPNs displayed larger spines that were matched functionally by a shift toward larger postsynaptic response amplitudes. Acutely isolating striatum from overlying neocortex normalized sEPSC frequency in G2019S mutants, supporting that abnormal corticostriatal activity is involved. These findings indicate that the G2019S mutation imparts a gain-of-abnormal function to SPN activity and morphology during a stage of development when activity can permanently modify circuit structure and function. SIGNIFICANCE STATEMENT Mutations in the kinase domain of leucine-rich repeat kinase 2 (LRRK2) follow Parkinson's disease (PD) heritability. How such mutations affect brain function is poorly understood. LRRK2 expression levels rise after birth at a time when synapses are forming and are highest in dorsal striatum, suggesting that LRRK2 regulates development of striatal circuits. During a period of postnatal development when activity plays a large role in permanently shaping neural circuits, our data show how the most common PD-causing LRRK2 mutation dramatically alters excitatory synaptic activity and the shape of postsynaptic structures in striatum. These findings provide new insight into early functional and structural aberrations in striatal connectivity that may predispose striatal circuitry to both motor and nonmotor dysfunction later in life.
Collapse
|
50
|
Belghali M, Chastan N, Cignetti F, Davenne D, Decker LM. Loss of gait control assessed by cognitive-motor dual-tasks: pros and cons in detecting people at risk of developing Alzheimer's and Parkinson's diseases. GeroScience 2017; 39:305-329. [PMID: 28551877 DOI: 10.1007/s11357-017-9977-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/02/2017] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's and Parkinson's diseases are age-related progressive neurodegenerative diseases of increasing prevalence worldwide. In the absence of curative therapy, current research is interested in prevention, by identifying subtle signs of early-stage neurodegeneration. Today, the field of behavioral neuroscience has emerged as one of the most promising areas of research on this topic. Recently, it has been shown that the exacerbation of gait disorders under dual-task conditions (i.e., simultaneous performance of cognitive and motor tasks) could be a characteristic feature of Alzheimer's and Parkinson's diseases. The cognitive-motor dual-task paradigm during walking allows to assess whether (i) executive attention is abnormally impaired in prodromal Alzheimer's disease or (ii) compensation strategies are used in order to preserve gait function when the basal ganglia system is altered in prodromal Parkinson's disease. This review aims at (i) identifying patterns of dual-task-related gait changes that are specific to Alzheimer's and Parkinson's diseases, respectively, (ii) demonstrating that these changes could potentially be used as prediagnostic markers for disease onset, (iii) reviewing pros and cons of existing dual-task studies, and (iv) proposing future directions for clinical research.
Collapse
Affiliation(s)
- Maroua Belghali
- Normandie Univ, UNICAEN, INSERM, COMETE, 14000, Caen, France
| | - Nathalie Chastan
- Normandie Univ, UNICAEN, INSERM, COMETE, 14000, Caen, France.,Department of Neurophysiology, UNIROUEN, Rouen University Hospital-Charles Nicolle, Normandie Univ, 76000, Rouen, France
| | - Fabien Cignetti
- CNRS, LNC UMR 7291, Aix-Marseille Univ, 13331, Marseille, France
| | - Damien Davenne
- Normandie Univ, UNICAEN, INSERM, COMETE, 14000, Caen, France
| | - Leslie M Decker
- Normandie Univ, UNICAEN, INSERM, COMETE, 14000, Caen, France.
| |
Collapse
|