1
|
Pham-Bui HA, Lee M. Germ granule-mediated mRNA storage and translational control. RNA Biol 2025; 22:1-11. [PMID: 39895378 PMCID: PMC11810088 DOI: 10.1080/15476286.2025.2462276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/24/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025] Open
Abstract
Germ cells depend on specialized post-transcriptional regulation for proper development and function, much of which is mediated by dynamic RNA granules. These membrane-less organelles form through the condensation of RNA and proteins, governed by multivalent biomolecular interactions. RNA granules compartmentalize cellular components, selectively enriching specific factors and modulating biochemical reactions. Over recent decades, various types of RNA granules have been identified in germ cells across species, with extensive studies uncovering their molecular roles and developmental significance. This review explores the mRNA regulatory mechanisms mediated by RNA granules in germ cells. We discuss the distinct spatial organization of specific granule components and the variations in material states of germ granules, which contribute to the regulation of mRNA storage and translation. Additionally, we highlight emerging research on how changes in these material states, during developmental stages, reflect the dynamic nature of germ granules and their critical role in development.
Collapse
Affiliation(s)
- Hoang-Anh Pham-Bui
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, Korea
| |
Collapse
|
2
|
Milano SN, Bayer LV, Ko JJ, Casella CE, Bratu DP. The role of ER exit sites in maintaining P-body organization and integrity during Drosophila melanogaster oogenesis. EMBO Rep 2025; 26:494-520. [PMID: 39653851 PMCID: PMC11772875 DOI: 10.1038/s44319-024-00344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Processing bodies (P-bodies) are cytoplasmic membrane-less organelles which host multiple mRNA processing events. While the fundamental principles of P-body organization are beginning to be elucidated in vitro, a nuanced understanding of how their assembly is regulated in vivo remains elusive. Here, we investigate the potential link between ER exit sites and P-bodies in Drosophila melanogaster egg chambers. Employing a combination of live and super-resolution imaging, we find that P-bodies associated with ER exit sites are larger and less mobile than cytoplasmic P-bodies, indicating that they constitute a distinct class of P-bodies. Moreover, we demonstrate that altering the composition of ER exit sites has differential effects on core P-body proteins (Me31B, Cup, and Trailer Hitch), suggesting a potential role for ER exit sites in P-body organization. Furthermore, we show that in the absence of ER exit sites, P-body integrity is compromised and the stability and translational repression efficiency of the maternal mRNA, oskar, are reduced. Together, our data highlights the crucial role of ER exit sites in governing P-body organization.
Collapse
Affiliation(s)
- Samantha N Milano
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Livia V Bayer
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Julie J Ko
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Caroline E Casella
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Diana P Bratu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA.
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Cho SE, Li W, Beard AM, Jackson JA, Kiernan R, Hoshino K, Martin AC, Sun J. Actomyosin contraction in the follicular epithelium provides the major mechanical force for follicle rupture during Drosophila ovulation. Proc Natl Acad Sci U S A 2024; 121:e2407083121. [PMID: 39292751 PMCID: PMC11441566 DOI: 10.1073/pnas.2407083121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024] Open
Abstract
Ovulation is critical for sexual reproduction and consists of the process of liberating fertilizable oocytes from their somatic follicle capsules, also known as follicle rupture. The mechanical force for oocyte expulsion is largely unknown in many species. Our previous work demonstrated that Drosophila ovulation, as in mammals, requires the proteolytic degradation of the posterior follicle wall and follicle rupture to release the mature oocyte from a layer of somatic follicle cells. Here, we identified actomyosin contraction in somatic follicle cells as the major mechanical force for follicle rupture. Filamentous actin (F-actin) and nonmuscle myosin II (NMII) are highly enriched in the cortex of follicle cells upon stimulation with octopamine (OA), a monoamine critical for Drosophila ovulation. Pharmacological disruption of F-actin polymerization prevented follicle rupture without interfering with the follicle wall breakdown. In addition, we demonstrated that OA induces Rho1 guanosine triphosphate (GTP)ase activation in the follicle cell cortex, which activates Ras homolog (Rho) kinase to promote actomyosin contraction and follicle rupture. All these results led us to conclude that OA signaling induces actomyosin cortex enrichment and contractility, which generates the mechanical force for follicle rupture during Drosophila ovulation. Due to the conserved nature of actomyosin contraction, this work could shed light on the mechanical force required for follicle rupture in other species including humans.
Collapse
Affiliation(s)
- Stella E. Cho
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06269
| | - Wei Li
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06269
| | - Andrew M. Beard
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06269
| | - Jonathan A. Jackson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Graduate Program in Biophysics, Harvard University, Boston, MA02115
| | - Risa Kiernan
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06269
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT06269
| | - Adam C. Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06269
- Institute for Systems Genomics, University of Connecticut, Storrs, CT06269
| |
Collapse
|
4
|
Abstract
Wolbachia are successful Gram-negative bacterial endosymbionts, globally infecting a large fraction of arthropod species and filarial nematodes. Efficient vertical transmission, the capacity for horizontal transmission, manipulation of host reproduction and enhancement of host fitness can promote the spread both within and between species. Wolbachia are abundant and can occupy extraordinary diverse and evolutionary distant host species, suggesting that they have evolved to engage and manipulate highly conserved core cellular processes. Here, we review recent studies identifying Wolbachia-host interactions at the molecular and cellular levels. We explore how Wolbachia interact with a wide array of host cytoplasmic and nuclear components in order to thrive in a diversity of cell types and cellular environments. This endosymbiont has also evolved the ability to precisely target and manipulate specific phases of the host cell cycle. The remarkable diversity of cellular interactions distinguishes Wolbachia from other endosymbionts and is largely responsible for facilitating its global propagation through host populations. Finally, we describe how insights into Wolbachia-host cellular interactions have led to promising applications in controlling insect-borne and filarial nematode-based diseases.
Collapse
Affiliation(s)
- Jillian Porter
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
5
|
Radousky YA, Hague MTJ, Fowler S, Paneru E, Codina A, Rugamas C, Hartzog G, Cooper BS, Sullivan W. Distinct Wolbachia localization patterns in oocytes of diverse host species reveal multiple strategies of maternal transmission. Genetics 2023; 224:iyad038. [PMID: 36911919 PMCID: PMC10474932 DOI: 10.1093/genetics/iyad038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
A broad array of endosymbionts radiate through host populations via vertical transmission, yet much remains unknown concerning the cellular basis, diversity, and routes underlying this transmission strategy. Here, we address these issues, by examining the cellular distributions of Wolbachia strains that diverged up to 50 million years ago in the oocytes of 18 divergent Drosophila species. This analysis revealed 3 Wolbachia distribution patterns: (1) a tight clustering at the posterior pole plasm (the site of germline formation); (2) a concentration at the posterior pole plasm, but with a significant bacteria population distributed throughout the oocyte; and (3) a distribution throughout the oocyte, with none or very few located at the posterior pole plasm. Examination of this latter class indicates Wolbachia accesses the posterior pole plasm during the interval between late oogenesis and the blastoderm formation. We also find that 1 Wolbachia strain in this class concentrates in the posterior somatic follicle cells that encompass the pole plasm of the developing oocyte. In contrast, strains in which Wolbachia concentrate at the posterior pole plasm generally exhibit no or few Wolbachia in the follicle cells associated with the pole plasm. Taken together, these studies suggest that for some Drosophila species, Wolbachia invade the germline from neighboring somatic follicle cells. Phylogenomic analysis indicates that closely related Wolbachia strains tend to exhibit similar patterns of posterior localization, suggesting that specific localization strategies are a function of Wolbachia-associated factors. Previous studies revealed that endosymbionts rely on 1 of 2 distinct routes of vertical transmission: continuous maintenance in the germline (germline-to-germline) or a more circuitous route via the soma (germline-to-soma-to-germline). Here, we provide compelling evidence that Wolbachia strains infecting Drosophila species maintain the diverse arrays of cellular mechanisms necessary for both of these distinct transmission routes. This characteristic may account for its ability to infect and spread globally through a vast range of host insect species.
Collapse
Affiliation(s)
- Yonah A Radousky
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael T J Hague
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Sommer Fowler
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Eliza Paneru
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Adan Codina
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Cecilia Rugamas
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Grant Hartzog
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
6
|
Abstract
During organismal development, organs and systems are built following a genetic blueprint that produces structures capable of performing specific physiological functions. Interestingly, we have learned that the physiological activities of developing tissues also contribute to their own morphogenesis. Specifically, physiological activities such as fluid secretion and cell contractility generate hydrostatic pressure that can act as a morphogenetic force. Here, we first review the role of hydrostatic pressure in tube formation during animal development and discuss mathematical models of lumen formation. We then illustrate specific roles of the notochord as a hydrostatic scaffold in anterior-posterior axis development in chordates. Finally, we cover some examples of how fluid flows influence morphogenetic processes in other developmental contexts. Understanding how fluid forces act during development will be key for uncovering the self-organizing principles that control morphogenesis.
Collapse
Affiliation(s)
- Michel Bagnat
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Bijoy Daga
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Stefano Di Talia
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
7
|
Marchais M, Gilbert I, Bastien A, Macaulay A, Robert C. Mammalian cumulus-oocyte complex communication: a dialog through long and short distance messaging. J Assist Reprod Genet 2022; 39:1011-1025. [PMID: 35499777 PMCID: PMC9107539 DOI: 10.1007/s10815-022-02438-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
Communications are crucial to ovarian follicle development and to ovulation, and while both folliculogenesis and oogenesis are distinct processes, they share highly interdependent signaling pathways. Signals from distant organs such as the brain must be processed and compartments within the follicle have to be synchronized. The hypothalamic–pituitary–gonadal (HPG) axis relies on long-distance signalling analogous to wireless communication by which data is disseminated in the environment and cells equipped with the appropriate receptors receive and interpret the messages. In contrast, direct cell-to-cell transfer of molecules is a very targeted, short distance messaging system. Numerous signalling pathways have been identified and proven to be essential for the production of a developmentally competent egg. The development of the cumulus-oocyte complex relies largely on short distance communications or direct transfer type via extensions of corona radiata cells through the zona pellucida. The type of information transmitted through these transzonal projections is still largely uncharacterized. This review provides an overview of current understanding of the mechanisms by which the gamete receives and transmits information within the follicle. Moreover, it highlights the fact that in addition to the well-known systemic long-distance based communications from the HPG axis, these mechanisms acting more locally should also be considered as important targets for controlling/optimizing oocyte quality.
Collapse
Affiliation(s)
- Mathilde Marchais
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Alexandre Bastien
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Angus Macaulay
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Claude Robert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada.
| |
Collapse
|
8
|
Jang S, Lee J, Mathews J, Ruess H, Williford AO, Rangan P, Betrán E, Buszczak M. The Drosophila ribosome protein S5 paralog RpS5b promotes germ cell and follicle cell differentiation during oogenesis. Development 2021; 148:272089. [PMID: 34495316 DOI: 10.1242/dev.199511] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/01/2021] [Indexed: 01/15/2023]
Abstract
Emerging evidence suggests that ribosome heterogeneity may have important functional consequences in the translation of specific mRNAs within different cell types and under various conditions. Ribosome heterogeneity comes in many forms, including post-translational modification of ribosome proteins (RPs), absence of specific RPs and inclusion of different RP paralogs. The Drosophila genome encodes two RpS5 paralogs: RpS5a and RpS5b. While RpS5a is ubiquitously expressed, RpS5b exhibits enriched expression in the reproductive system. Deletion of RpS5b results in female sterility marked by developmental arrest of egg chambers at stages 7-8, disruption of vitellogenesis and posterior follicle cell (PFC) hyperplasia. While transgenic rescue experiments suggest functional redundancy between RpS5a and RpS5b, molecular, biochemical and ribo-seq experiments indicate that RpS5b mutants display increased rRNA transcription and RP production, accompanied by increased protein synthesis. Loss of RpS5b results in microtubule-based defects and in mislocalization of Delta and Mindbomb1, leading to failure of Notch pathway activation in PFCs. Together, our results indicate that germ cell-specific expression of RpS5b promotes proper egg chamber development by ensuring the homeostasis of functional ribosomes.
Collapse
Affiliation(s)
- Seoyeon Jang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeon Lee
- Lydia Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeremy Mathews
- Lydia Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Holly Ruess
- Lydia Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anna O Williford
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Prashanth Rangan
- RNA Institute, Department of Biological Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Imran Alsous J, Romeo N, Jackson JA, Mason FM, Dunkel J, Martin AC. Dynamics of hydraulic and contractile wave-mediated fluid transport during Drosophila oogenesis. Proc Natl Acad Sci U S A 2021; 118:e2019749118. [PMID: 33658367 PMCID: PMC7958293 DOI: 10.1073/pnas.2019749118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
From insects to mice, oocytes develop within cysts alongside nurse-like sister germ cells. Prior to fertilization, the nurse cells' cytoplasmic contents are transported into the oocyte, which grows as its sister cells regress and die. Although critical for fertility, the biological and physical mechanisms underlying this transport process are poorly understood. Here, we combined live imaging of germline cysts, genetic perturbations, and mathematical modeling to investigate the dynamics and mechanisms that enable directional and complete cytoplasmic transport in Drosophila melanogaster egg chambers. We discovered that during "nurse cell (NC) dumping" most cytoplasm is transported into the oocyte independently of changes in myosin-II contractility, with dynamics instead explained by an effective Young-Laplace law, suggesting hydraulic transport induced by baseline cell-surface tension. A minimal flow-network model inspired by the famous two-balloon experiment and motivated by genetic analysis of a myosin mutant correctly predicts the directionality, intercellular pattern, and time scale of transport. Long thought to trigger transport through "squeezing," changes in actomyosin contractility are required only once NC volume has become comparable to nuclear volume, in the form of surface contractile waves that drive NC dumping to completion. Our work thus demonstrates how biological and physical mechanisms cooperate to enable a critical developmental process that, until now, was thought to be mainly biochemically regulated.
Collapse
Affiliation(s)
- Jasmin Imran Alsous
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nicolas Romeo
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jonathan A Jackson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138
| | - Frank M Mason
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139;
| |
Collapse
|
10
|
Cartwright EL, Lott SE. Evolved Differences in cis and trans Regulation Between the Maternal and Zygotic mRNA Complements in the Drosophila Embryo. Genetics 2020; 216:805-821. [PMID: 32928902 PMCID: PMC7648588 DOI: 10.1534/genetics.120.303626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 08/26/2020] [Indexed: 11/18/2022] Open
Abstract
How gene expression can evolve depends on the mechanisms driving gene expression. Gene expression is controlled in different ways in different developmental stages; here we ask whether different developmental stages show different patterns of regulatory evolution. To explore the mode of regulatory evolution, we used the early stages of embryonic development controlled by two different genomes, that of the mother and that of the zygote. During embryogenesis in all animals, initial developmental processes are driven entirely by maternally provided gene products deposited into the oocyte. The zygotic genome is activated later, when developmental control is handed off from maternal gene products to the zygote during the maternal-to-zygotic transition. Using hybrid crosses between sister species of Drosophila (Dsimulans, D. sechellia, and D. mauritiana) and transcriptomics, we find that the regulation of maternal transcript deposition and zygotic transcription evolve through different mechanisms. We find that patterns of transcript level inheritance in hybrids, relative to parental species, differ between maternal and zygotic transcripts, and maternal transcript levels are more likely to be conserved. Changes in transcript levels occur predominantly through differences in trans regulation for maternal genes, while changes in zygotic transcription occur through a combination of both cis and trans regulatory changes. Differences in the underlying regulatory landscape in the mother and the zygote are likely the primary determinants for how maternal and zygotic transcripts evolve.
Collapse
Affiliation(s)
- Emily L Cartwright
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Susan E Lott
- Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
11
|
Komatsu K, Masubuchi S. Mouse oocytes connect with granulosa cells by fusing with cell membranes and form a large complex during follicle development. Biol Reprod 2019; 99:527-535. [PMID: 29590310 PMCID: PMC6134206 DOI: 10.1093/biolre/ioy072] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/23/2018] [Indexed: 12/12/2022] Open
Abstract
Proper development and maturation of oocytes requires interaction with granulosa cells. Previous reports have indicated that mammalian oocytes connect with cumulus cells through gap junctions at the tip of transzonal projections that extend from the cells. Although the gap junctions between oocytes and transzonal projections provide a pathway through which small molecules (<1 kDa) can travel, it is unclear how molecules >1 kDa are transported between the oocytes and cumulus cells. In this study, we presented new connections between oocytes and granulosa cells. The green fluorescein protein Aequorea coerulescens green fluorescein protein (AcGFP1) localizing in oocyte cell membrane, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate and dextran conjugates (10,000 MW) injected into the oocytes, which were unable to pass through gap junctions, were diffused from the oocytes into the surrounding granulosa cells through these connections. These connect an oocyte to the surrounding cumulus and granulosa cells by fusing with the cell membranes and forming a large complex during follicle development. Furthermore, we show two characteristics of these connections during follicle development—the localization of growth and differentiation factor-9 within the connections and the dynamics of the connections at ovulation. This article presents for the first time that mammalian oocytes directly connect to granulosa cells by fusing with the cell membrane, similar to that in Drosophila.
Collapse
Affiliation(s)
- Kouji Komatsu
- Department of Physiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Satoru Masubuchi
- Department of Physiology, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
12
|
Goldman CH, Gonsalvez GB. The Role of Microtubule Motors in mRNA Localization and Patterning Within the Drosophila Oocyte. Results Probl Cell Differ 2017; 63:149-168. [PMID: 28779317 DOI: 10.1007/978-3-319-60855-6_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Messenger RNA (mRNA) localization is a powerful and prevalent mechanism of post-transcriptional gene regulation, enabling the cell to produce protein at the exact location at which it is needed. The phenomenon of mRNA localization has been observed in many types of cells in organisms ranging from yeast to man. Thus, the process appears to be widespread and highly conserved. Several model systems have been used to understand the mechanism by which mRNAs are localized. One such model, and the focus of this chapter, is the egg chamber of the female Drosophila melanogaster. The polarity of the developing Drosophila oocyte and resulting embryo relies on the specific localization of three critical mRNAs: gurken, bicoid, and oskar. If these mRNAs are not localized during oogenesis, the resulting progeny will not survive. The study of these mRNAs has served as a model for understanding the general mechanisms by which mRNAs are sorted. In this chapter, we will discuss how the localization of these mRNAs enables polarity establishment. We will also discuss the role of motor proteins in the localization pathway. Finally, we will consider potential mechanisms by which mRNAs can be anchored at their site of localization. It is likely that the lessons learned using the Drosophila oocyte model system will be applicable to mRNAs that are localized in other organisms as well.
Collapse
Affiliation(s)
- Chandler H Goldman
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd., CB2917, Augusta, GA, 30912, USA
| | - Graydon B Gonsalvez
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd., CB2917, Augusta, GA, 30912, USA.
| |
Collapse
|
13
|
Lazzaretti D, Veith K, Kramer K, Basquin C, Urlaub H, Irion U, Bono F. The bicoid mRNA localization factor Exuperantia is an RNA-binding pseudonuclease. Nat Struct Mol Biol 2016; 23:705-13. [PMID: 27376588 DOI: 10.1038/nsmb.3254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
Abstract
Anterior patterning in Drosophila is mediated by the localization of bicoid (bcd) mRNA at the anterior pole of the oocyte. Exuperantia (Exu) is a putative exonuclease (EXO) associated with bcd and required for its localization. We present the crystal structure of Exu, which reveals a dimeric assembly with each monomer consisting of a 3'-5' EXO-like domain and a sterile alpha motif (SAM)-like domain. The catalytic site is degenerate and inactive. Instead, the EXO-like domain mediates dimerization and RNA binding. We show that Exu binds RNA directly in vitro, that the SAM-like domain is required for RNA binding activity and that Exu binds a structured element present in the bcd 3' untranslated region with high affinity. Through structure-guided mutagenesis, we show that Exu dimerization is essential for bcd localization. Our data demonstrate that Exu is a noncanonical RNA-binding protein with EXO-SAM-like domain architecture that interacts with its target RNA as a homodimer.
Collapse
Affiliation(s)
| | - Katharina Veith
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Katharina Kramer
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Claire Basquin
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Irion
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Fulvia Bono
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
14
|
Abstract
Objects are commonly moved within the cell by either passive diffusion or active directed transport. A third possibility is advection, in which objects within the cytoplasm are moved with the flow of the cytoplasm. Bulk movement of the cytoplasm, or streaming, as required for advection, is more common in large cells than in small cells. For example, streaming is observed in elongated plant cells and the oocytes of several species. In the Drosophila oocyte, two stages of streaming are observed: relatively slow streaming during mid-oogenesis and streaming that is approximately ten times faster during late oogenesis. These flows are implicated in two processes: polarity establishment and mixing. In this review, I discuss the underlying mechanism of streaming, how slow and fast streaming are differentiated, and what we know about the physiological roles of the two types of streaming.
Collapse
Affiliation(s)
- Margot E Quinlan
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, California 90095;
| |
Collapse
|
15
|
In Vitro Culturing and Live Imaging of Drosophila Egg Chambers: A History and Adaptable Method. Methods Mol Biol 2016; 1457:35-68. [PMID: 27557572 DOI: 10.1007/978-1-4939-3795-0_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of the Drosophila egg chamber encompasses a myriad of diverse germline and somatic events, and as such, the egg chamber has become a widely used and influential developmental model. Advantages of this system include physical accessibility, genetic tractability, and amenability to microscopy and live culturing, the last of which is the focus of this chapter. To provide adequate context, we summarize the structure of the Drosophila ovary and egg chamber, the morphogenetic events of oogenesis, the history of egg-chamber live culturing, and many of the important discoveries that this culturing has afforded. Subsequently, we discuss various culturing methods that have facilitated analyses of different stages of egg-chamber development and different types of cells within the egg chamber, and we present an optimized protocol for live culturing Drosophila egg chambers.We designed this protocol for culturing late-stage Drosophila egg chambers and live imaging epithelial tube morphogenesis, but with appropriate modifications, it can be used to culture egg chambers of any stage. The protocol employs a liquid-permeable, weighted "blanket" to gently hold egg chambers against the coverslip in a glass-bottomed culture dish so the egg chambers can be imaged on an inverted microscope. This setup provides a more buffered, stable, culturing environment than previously published methods by using a larger volume of culture media, but the setup is also compatible with small volumes. This chapter should aid researchers in their efforts to culture and live-image Drosophila egg chambers, further augmenting the impressive power of this model system.
Collapse
|
16
|
Christophorou N, Rubin T, Bonnet I, Piolot T, Arnaud M, Huynh JR. Microtubule-driven nuclear rotations promote meiotic chromosome dynamics. Nat Cell Biol 2015; 17:1388-400. [PMID: 26458247 DOI: 10.1038/ncb3249] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/03/2015] [Indexed: 11/09/2022]
Abstract
At the onset of meiosis, each chromosome needs to find its homologue and pair to ensure proper segregation. In Drosophila, pairing occurs during the mitotic cycles preceding meiosis. Here we show that germ cell nuclei undergo marked movements during this developmental window. We demonstrate that microtubules and Dynein are driving nuclear rotations and are required for centromere pairing and clustering. We further found that Klaroid (SUN) and Klarsicht (KASH) co-localize with centromeres at the nuclear envelope and are required for proper chromosome motions and pairing. We identified Mud (NuMA in vertebrates) as co-localizing with centromeres, Klarsicht and Klaroid. Mud is also required to maintain the integrity of the nuclear envelope and for the correct assembly of the synaptonemal complex. Our findings reveal a mechanism for chromosome pairing in Drosophila, and indicate that microtubules, centrosomes and associated proteins play a crucial role in the dynamic organization of chromosomes inside the nucleus.
Collapse
Affiliation(s)
- Nicolas Christophorou
- Department of Genetics and Developmental Biology, Institut Curie, F-75248 Paris, France.,CNRS UMR3215, Inserm, U934 F-75248 Paris, France
| | - Thomas Rubin
- Department of Genetics and Developmental Biology, Institut Curie, F-75248 Paris, France.,CNRS UMR3215, Inserm, U934 F-75248 Paris, France
| | - Isabelle Bonnet
- Laboratoire Physico-Chimie, Institut Curie, F-75248 Paris, France.,CNRS UMR 168, UPMC, F-75248 Paris, France
| | - Tristan Piolot
- Department of Genetics and Developmental Biology, Institut Curie, F-75248 Paris, France.,CNRS UMR3215, Inserm, U934 F-75248 Paris, France
| | - Marion Arnaud
- Department of Genetics and Developmental Biology, Institut Curie, F-75248 Paris, France.,CNRS UMR3215, Inserm, U934 F-75248 Paris, France
| | - Jean-René Huynh
- Department of Genetics and Developmental Biology, Institut Curie, F-75248 Paris, France.,CNRS UMR3215, Inserm, U934 F-75248 Paris, France
| |
Collapse
|
17
|
Fahmy K, Akber M, Cai X, Koul A, Hayder A, Baumgartner S. αTubulin 67C and Ncd are essential for establishing a cortical microtubular network and formation of the Bicoid mRNA gradient in Drosophila. PLoS One 2014; 9:e112053. [PMID: 25390693 DOI: 10.1371/journal.pone.0112053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/10/2014] [Indexed: 11/18/2022] Open
Abstract
The Bicoid (Bcd) protein gradient in Drosophila serves as a paradigm for gradient formation in textbooks. To explain the generation of the gradient, the ARTS model, which is based on the observation of a bcd mRNA gradient, proposes that the bcd mRNA, localized at the anterior pole at fertilization, migrates along microtubules (MTs) at the cortex to the posterior to form a bcd mRNA gradient which is translated to form a protein gradient. To fulfil the criteria of the ARTS model, an early cortical MT network is thus a prerequisite. We report hitherto undiscovered MT activities in the early embryo important for bcd mRNA transport: (i) an early and omnidirectional MT network exclusively at the anterior cortex of early nuclear cycle embryos showing activity during metaphase and anaphase only, (ii) long MTs up to 50 µm extending into the yolk at blastoderm stage to enable basal-apical transport. The cortical MT network is not anchored to the actin cytoskeleton. The posterior transport of the mRNA via the cortical MT network critically depends on maternally-expressed αTubulin67C and the minus-end motor Ncd. In either mutant, cortical transport of the bcd mRNA does not take place and the mRNA migrates along another yet undisclosed interior MT network, instead. Our data strongly corroborate the ARTS model and explain the occurrence of the bcd mRNA gradient.
Collapse
Affiliation(s)
- Khalid Fahmy
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Mira Akber
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Xiaoli Cai
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Aabid Koul
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Awais Hayder
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Drosophila patterning is established by differential association of mRNAs with P bodies. Nat Cell Biol 2012. [PMID: 23178881 DOI: 10.1038/ncb2627] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The primary embryonic axes in flies, frogs and fish are formed through translational regulation of localized transcripts before fertilization. In Drosophila melanogaster, the axes are established through the transport and translational regulation of gurken (grk) and bicoid (bcd) messenger RNA in the oocyte and embryo. Both transcripts are translationally silent while being localized within the oocyte along microtubules by cytoplasmic dynein. Once localized, grk is translated at the dorsoanterior of the oocyte to send a TGF-α signal to the overlying somatic cells. In contrast, bcd is translationally repressed in the oocyte until its activation in early embryos when it forms an anteroposterior morphogenetic gradient. How this differential translational regulation is achieved is not fully understood. Here, we address this question using ultrastructural analysis, super-resolution microscopy and live-cell imaging. We show that grk and bcd ribonucleoprotein (RNP) complexes associate with electron-dense bodies that lack ribosomes and contain translational repressors. These properties are characteristic of processing bodies (P bodies), which are considered to be regions of cytoplasm where decisions are made on the translation and degradation of mRNA. Endogenous grk mRNA forms dynamic RNP particles that become docked and translated at the periphery of P bodies, where we show that the translational activator Oo18 RNA-binding protein (Orb, a homologue of CEPB) and the anchoring factor Squid (Sqd) are also enriched. In contrast, an excess of grk mRNA becomes localized inside the P bodies, where endogenous bcd mRNA is localized and translationally repressed. Interestingly, bcd mRNA dissociates from P bodies in embryos following egg activation, when it is known to become translationally active. We propose a general principle of translational regulation during axis specification involving remodelling of transport RNPs and dynamic partitioning of different transcripts between the translationally active edge of P bodies and their silent core.
Collapse
|
19
|
Schisa JA. New insights into the regulation of RNP granule assembly in oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:233-89. [PMID: 22449492 DOI: 10.1016/b978-0-12-394306-4.00013-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a variety of cell types in plants, animals, and fungi, ribonucleoprotein (RNP) complexes play critical roles in regulating RNA metabolism. These RNP granules include processing bodies and stress granules that are found broadly across cell types, as well as RNP granules unique to the germline, such as P granules, polar granules, sponge bodies, and germinal granules. This review focuses on RNP granules localized in oocytes of the major model systems, Caenorhabditis elegans, Drosophila, Xenopus, mouse, and zebrafish. The signature families of proteins within oocyte RNPs include Vasa and other RNA-binding proteins, decapping activators and enzymes, Argonaute family proteins, and translation initiation complex proteins. This review describes the many recent insights into the dynamics and functions of RNP granules, including their roles in mRNA degradation, mRNA localization, translational regulation, and fertility. The roles of the cytoskeleton and cell organelles in regulating RNP granule assembly are also discussed.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, USA
| |
Collapse
|
20
|
Kato Y, Nakamura A. Roles of cytoplasmic RNP granules in intracellular RNA localization and translational control in the Drosophila oocyte. Dev Growth Differ 2011; 54:19-31. [PMID: 22111938 DOI: 10.1111/j.1440-169x.2011.01314.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Intracellular mRNA localization and translation are ways to achieve asymmetric protein sorting in polarized cells, and they play fundamental roles in cell-fate decisions and body patterning during animal development. These processes are regulated by the interplay between cis-acting elements and trans-acting RNA-binding proteins that form and occur within a ribonucleoprotein (RNP) complex. Recent studies in the Drosophila oocyte have revealed that RNP complex assembly in the nucleus is critical for the regulation of cytoplasmic mRNA localization and translation. Furthermore, several trans-acting factors promote the reorganization of target mRNAs in the cytoplasm into higher-order RNP granules, which are often visible by light microscopy. Therefore, RNA localization and translation are likely to be coupled within these RNP granules. Notably, diverse cytoplasmic RNP granules observed in different cell types share conserved sets of proteins, suggesting they have fundamental and common cellular functions.
Collapse
Affiliation(s)
- Yasuko Kato
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | | |
Collapse
|
21
|
Abstract
The localization of mRNAs in developing animal cells is essential for establishing cellular polarity and setting up the body plan for subsequent development. Cellular and molecular mechanisms by which maternal mRNAs are localized during oogenesis have been extensively studied in Drosophila and Xenopus. In contrast, evidence for mechanisms used in the localization of mRNAs encoded by developmentally important genes has also been accumulating in several other organisms. This offers the opportunity to unravel the fundamental mechanisms of mRNA localization shared among many species, as well as unique mechanisms specifically acquired or retained by animals based on their developmental needs. In addition to maternal mRNAs, the localization of zygotically expressed mRNAs in the cells of cleaving embryos is also important for early development. In this review, mRNA localization dynamics in the oocytes/eggs of Drosophila and Xenopus are first summarized, and evidence for localized mRNAs in the oocytes/eggs and cleaving embryos of other organisms is then presented.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
22
|
Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA, McDonald K, King N. Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev Biol 2011; 357:73-82. [PMID: 21699890 PMCID: PMC3156392 DOI: 10.1016/j.ydbio.2011.06.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/03/2011] [Accepted: 06/03/2011] [Indexed: 12/24/2022]
Abstract
It has been posited that animal development evolved from pre-existing mechanisms for regulating cell differentiation in the single celled and colonial ancestors of animals. Although the progenitors of animals cannot be studied directly, insights into their cell biology may be gleaned from comparisons between animals and their closest living relatives, the choanoflagellates. We report here on the life history, cell differentiation and intercellular interactions in the colony-forming choanoflagellate Salpingoeca rosetta. In response to diverse environmental cues, S. rosetta differentiates into at least five distinct cell types, including three solitary cell types (slow swimmers, fast swimmers, and thecate cells) and two colonial forms (rosettes and chains). Electron microscopy reveals that cells within colonies are held together by a combination of fine intercellular bridges, a shared extracellular matrix, and filopodia. In addition, we have discovered that the carbohydrate-binding protein wheat germ agglutinin specifically stains colonies and the slow swimmers from which they form, showing that molecular differentiation precedes multicellular development. Together, these results help establish S. rosetta as a model system for studying simple multicellularity in choanoflagellates and provide an experimental framework for investigating the origin of animal multicellularity and development.
Collapse
Affiliation(s)
- Mark J Dayel
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, Center for Integrative Genomics, University of California, 505 Life Sciences Addition, Berkeley, CA 94720, USA
| | - Rosanna A Alegado
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, Center for Integrative Genomics, University of California, 505 Life Sciences Addition, Berkeley, CA 94720, USA
| | - Stephen R Fairclough
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, Center for Integrative Genomics, University of California, 505 Life Sciences Addition, Berkeley, CA 94720, USA
| | - Tera C Levin
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, Center for Integrative Genomics, University of California, 505 Life Sciences Addition, Berkeley, CA 94720, USA
| | - Scott A Nichols
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, Center for Integrative Genomics, University of California, 505 Life Sciences Addition, Berkeley, CA 94720, USA
| | - Kent McDonald
- Electron Microscopy Laboratory, University of California, 26 Giannini Hall, Berkeley, CA 94720, USA
| | - Nicole King
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, Center for Integrative Genomics, University of California, 505 Life Sciences Addition, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Morris LX, Spradling AC. Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the Drosophila ovary. Development 2011; 138:2207-15. [PMID: 21558370 DOI: 10.1242/dev.065508] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Drosophila ovariole tip produces new ovarian follicles on a 12-hour cycle by controlling niche-based germline and follicle stem cell divisions and nurturing their developing daughters. Static images provide a thumbnail view of folliculogenesis but imperfectly capture the dynamic cellular interactions that underlie follicle production. We describe a live-imaging culture system that supports normal ovarian stem cell activity, cyst movement and intercellular interaction over 14 hours, which is long enough to visualize all the steps of follicle generation. Our results show that live imaging has unique potential to address diverse aspects of stem cell biology and gametogenesis. Stem cells in cultured tissue respond to insulin and orient their mitotic spindles. Somatic escort cells, the glial-like partners of early germ cells, do not adhere to and migrate along with germline stem cell daughters as previously proposed. Instead, dynamic, microtubule-rich cell membranes pass cysts from one escort cell to the next. Additionally, escort cells are not replenished by the regular division of escort stem cells as previously suggested. Rather, escort cells remain quiescent and divide only to maintain a constant germ cell:escort cell ratio.
Collapse
Affiliation(s)
- Lucy X Morris
- Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | | |
Collapse
|
24
|
Shimada Y, Burn KM, Niwa R, Cooley L. Reversible response of protein localization and microtubule organization to nutrient stress during Drosophila early oogenesis. Dev Biol 2011; 355:250-62. [PMID: 21570389 PMCID: PMC3118931 DOI: 10.1016/j.ydbio.2011.04.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/17/2011] [Accepted: 04/18/2011] [Indexed: 11/15/2022]
Abstract
The maturation of animal oocytes is highly sensitive to nutrient availability. During Drosophila oogenesis, a prominent metabolic checkpoint occurs at the onset of yolk uptake (vitellogenesis): under nutrient stress, egg chambers degenerate by apoptosis. To investigate additional responses to nutrient deprivation, we studied the intercellular transport of cytoplasmic components between nurse cells and the oocyte during previtellogenic stages. Using GFP protein-traps, we showed that Ypsilon Schachtel (Yps), a putative RNA binding protein, moved into the oocyte by both microtubule (MT)-dependent and -independent mechanisms, and was retained in the oocyte in a MT-dependent manner. These data suggest that oocyte enrichment is accomplished by a combination of MT-dependent polarized transport and MT-independent flow coupled with MT-dependent trapping within the oocyte. Under nutrient stress, Yps and other components of the oskar ribonucleoprotein complex accumulated in large processing bodies in nurse cells, accompanied by MT reorganization. This response was detected as early as 2h after starvation, suggesting that young egg chambers rapidly respond to nutrient stress. Moreover, both Yps aggregation and MT reorganization were reversed with re-feeding of females or the addition of exogenous insulin to cultured egg chambers. Our results suggest that egg chambers rapidly mount a stress response by altering intercellular transport upon starvation. This response implies a mechanism for preserving young egg chambers so that egg production can rapidly resume when nutrient availability improves.
Collapse
Affiliation(s)
- Yuko Shimada
- Department of Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - K. Mahala Burn
- Department of Cell Biology, Yale School of Medicine 333 Cedar Street, New Haven, CT 06520, USA
| | - Ryusuke Niwa
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
- Initiative for the Promotion of Young Scientists’ Independent Research, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan
| | - Lynn Cooley
- Department of Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Department of Cell Biology, Yale School of Medicine 333 Cedar Street, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Ave., New Haven, CT 05610, USA
| |
Collapse
|
25
|
Parton RM, Hamilton RS, Ball G, Yang L, Cullen CF, Lu W, Ohkura H, Davis I. A PAR-1-dependent orientation gradient of dynamic microtubules directs posterior cargo transport in the Drosophila oocyte. J Cell Biol 2011; 194:121-35. [PMID: 21746854 PMCID: PMC3135408 DOI: 10.1083/jcb.201103160] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/07/2011] [Indexed: 12/31/2022] Open
Abstract
Cytoskeletal organization is central to establishing cell polarity in various cellular contexts, including during messenger ribonucleic acid sorting in Drosophila melanogaster oocytes by microtubule (MT)-dependent molecular motors. However, MT organization and dynamics remain controversial in the oocyte. In this paper, we use rapid multichannel live-cell imaging with novel image analysis, tracking, and visualization tools to characterize MT polarity and dynamics while imaging posterior cargo transport. We found that all MTs in the oocyte were highly dynamic and were organized with a biased random polarity that increased toward the posterior. This organization originated through MT nucleation at the oocyte nucleus and cortex, except at the posterior end of the oocyte, where PAR-1 suppressed nucleation. Our findings explain the biased random posterior cargo movements in the oocyte that establish the germline and posterior.
Collapse
Affiliation(s)
- Richard M. Parton
- Department of Biochemistry, University of
Oxford, Oxford OX1 3QU, England, UK
| | - Russell S. Hamilton
- Department of Biochemistry, University of
Oxford, Oxford OX1 3QU, England, UK
| | - Graeme Ball
- Department of Biochemistry, University of
Oxford, Oxford OX1 3QU, England, UK
| | - Lei Yang
- Department of Physics, Heriot-Watt
University, Edinburgh EH14 4AS, Scotland, UK
| | - C. Fiona Cullen
- Wellcome Trust Centre for Cell Biology,
University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Weiping Lu
- Department of Physics, Heriot-Watt
University, Edinburgh EH14 4AS, Scotland, UK
| | - Hiroyuki Ohkura
- Wellcome Trust Centre for Cell Biology,
University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Ilan Davis
- Department of Biochemistry, University of
Oxford, Oxford OX1 3QU, England, UK
| |
Collapse
|
26
|
Patrício K, da Cruz-Landim C, Machado-Santelli GM. Cytoskeletal organization of bee ovarian follicles during oogenesis. Micron 2010; 42:55-9. [PMID: 20850979 DOI: 10.1016/j.micron.2010.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
The germ cells in the germarium of the bee meroistic polytrophic ovarian cysts remain interconnected by cytoplasmic bridges as a result of incomplete cell division. These intercellular bridges form a distribution pathway for the substances that initially determine which of the cystocytes will become oocyte and later conduct the products synthesized by the nurse cells to the oocyte. In the present work, the presence and distribution of cytoskeleton components, actin and tubulin were studied in ovaries of queens of Apis mellifera and Scaptotrigona postica, two eusocial species, using antibody against α- and β-tubulin and FITC-phalloidin, aiming to shed light on the role of these cytoskeleton elements in oogenesis. The immunofluorescent preparations were analyzed by laser scanning confocal microscopy. F-actin was detected in the intercellular bridges of both species. The tubulin distribution in cell cytoplasm of A. mellifera and S. postica also displayed similar pattern. The role of these elements in the oogenetic events responsible for both cell support and motility is discussed.
Collapse
Affiliation(s)
- Karina Patrício
- Department of Biology, Institute of Biosciences, UNESP - Univ. Estadual Paulista, 24 Av. N° 1515, CEP 13.506-900, Rio Claro, SP, Brazil
| | | | | |
Collapse
|
27
|
Parton RM, Vallés AM, Dobbie IM, Davis I. Live cell imaging in Drosophila melanogaster. Cold Spring Harb Protoc 2010; 2010:pdb.top75. [PMID: 20360379 DOI: 10.1101/pdb.top75] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although many of the techniques of live cell imaging in Drosophila melanogaster are also used by the greater community of cell biologists working on other model systems, studying living fly tissues presents unique difficulties with regard to keeping the cells alive, introducing fluorescent probes, and imaging through thick, hazy cytoplasm. This article outlines the major tissue types amenable to study by time-lapse cinematography and different methods for keeping the cells alive. It describes various imaging and associated techniques best suited to following changes in the distribution of fluorescently labeled molecules in real time in these tissues. Imaging, in general, is a rapidly developing discipline, and recent advances in imaging technology are able to greatly extend what can be achieved with live cell imaging of Drosophila tissues. As far as possible, this article includes the latest technical developments and discusses likely future developments in imaging methods that could have an impact on research using Drosophila.
Collapse
|
28
|
Januschke J, Gonzalez C. The interphase microtubule aster is a determinant of asymmetric division orientation in Drosophila neuroblasts. ACTA ACUST UNITED AC 2010; 188:693-706. [PMID: 20194641 PMCID: PMC2835941 DOI: 10.1083/jcb.200905024] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The orientation of stem cell divisions is maintained beyond one cell cycle thanks to microtubule polymerization and apical centrosome positioning. The mechanisms that maintain the orientation of cortical polarity and asymmetric division unchanged in consecutive mitoses in Drosophila melanogaster neuroblasts (NBs) are unknown. By studying the effect of transient microtubule depolymerization and centrosome mutant conditions, we have found that such orientation memory requires both the centrosome-organized interphase aster and centrosome-independent functions. We have also found that the span of such memory is limited to the last mitosis. Furthermore, the orientation of the NB axis of polarity can be reset to any angle with respect to the surrounding tissue and is, therefore, cell autonomous.
Collapse
Affiliation(s)
- Jens Januschke
- Cell Division Group, Institute for Research in Biomedicine Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
29
|
Pokrywka NJ, Payne-Tobin A, Raley-Susman KM, Swartzman S. Microtubules, the ER and Exu: new associations revealed by analysis of mini spindles mutations. Mech Dev 2009; 126:289-300. [PMID: 19303437 PMCID: PMC2731561 DOI: 10.1016/j.mod.2009.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 03/03/2009] [Accepted: 03/07/2009] [Indexed: 11/21/2022]
Abstract
During Drosophila oogenesis, organized microtubule networks coordinate the localization of specific RNAs, the positioning of the oocyte nucleus, and ooplasmic streaming events. We used mutations in mini spindles (msps), a microtubule-associated protein, to disrupt microtubule function during mid- and late-oogenesis, and show that msps is required for these microtubule-based events. Since endoplasmic reticulum (ER) organization is influenced by microtubules in other systems, we hypothesized that using msps to alter microtubule dynamics might affect the structure and organization of the ER in nurse cells and the oocyte. ER organization was monitored using GFP-tagged versions of Reticulon-like1 and protein disulfide isomerase. Analyses of living cells indicate microtubule associations mediate the movement of ER components within the oocyte. Surprisingly, the distribution and behavior of tubular ER in the oocyte differs from general ER, suggesting these two compartments of the ER interact differently with microtubules. We find that the morphology of Exu particles is msps-dependent, and that Exu is specifically associated with tubular ER in msps mutants. Our results extend previous descriptions of sponge bodies and the fusome, suggesting both are manifestations of a dynamic structure that interacts with microtubules and persists throughout oogenesis.
Collapse
|
30
|
Abstract
Sponge bodies, cytoplasmic structures containing post-transcriptional regulatory factors, are distributed throughout the nurse cells and oocytes of the Drosophila ovary and share components with P bodies of yeast and mammalian cells. We show that sponge body composition differs between nurse cells and the oocyte, and that the sponge bodies change composition rapidly after entry into the oocyte. We identify conditions that affect sponge body organization. At one extreme, components are distributed relatively uniformly or in small dispersed bodies. At the other extreme, components are present in large reticulated bodies. Both types of sponge bodies allow normal development, but show substantial differences in distribution of Staufen protein and oskar mRNA, whose localization within the oocyte is essential for axial patterning. Based on these and other results we propose a model for the relationship between P bodies and the various cytoplasmic bodies containing P body proteins in the Drosophila ovary.
Collapse
Affiliation(s)
- Mark J Snee
- Institute for Cellular and Molecular Biology, Section of Molecular, Cell, and Developmental Biology, The University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
31
|
Nicolas E, Chenouard N, Olivo-Marin JC, Guichet A. A dual role for actin and microtubule cytoskeleton in the transport of Golgi units from the nurse cells to the oocyte across ring canals. Mol Biol Cell 2008; 20:556-68. [PMID: 19005218 DOI: 10.1091/mbc.e08-04-0360] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Axis specification during Drosophila embryonic development requires transfer of maternal components during oogenesis from nurse cells (NCs) into the oocyte through cytoplasmic bridges. We found that the asymmetrical distribution of Golgi, between nurse cells and the oocyte, is sustained by an active transport process. We have characterized actin basket structures that asymmetrically cap the NC side of Ring canals (RCs) connecting the oocyte. Our results suggest that these actin baskets structurally support transport mechanisms of RC transit. In addition, our tracking analysis indicates that Golgi are actively transported to the oocyte rather than diffusing. We observed that RC transit is microtubule-based and mediated at least by dynein. Finally, we show that actin networks may be involved in RC crossing through a myosin II step process, as well as in dispatching Golgi units inside the oocyte subcompartments.
Collapse
|
32
|
Zimyanin VL, Belaya K, Pecreaux J, Gilchrist MJ, Clark A, Davis I, St Johnston D. In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 2008; 134:843-53. [PMID: 18775316 PMCID: PMC2585615 DOI: 10.1016/j.cell.2008.06.053] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/30/2008] [Accepted: 06/25/2008] [Indexed: 12/30/2022]
Abstract
oskar mRNA localization to the posterior of the Drosophila oocyte defines where the abdomen and germ cells form in the embryo. Although this localization requires microtubules and the plus end-directed motor, kinesin, its mechanism is controversial and has been proposed to involve active transport to the posterior, diffusion and trapping, or exclusion from the anterior and lateral cortex. By following oskar mRNA particles in living oocytes, we show that the mRNA is actively transported along microtubules in all directions, with a slight bias toward the posterior. This bias is sufficient to localize the mRNA and is reversed in mago, barentsz, and Tropomyosin II mutants, which mislocalize the mRNA anteriorly. Since almost all transport is mediated by kinesin, oskar mRNA localizes by a biased random walk along a weakly polarized cytoskeleton. We also show that each component of the oskar mRNA complex plays a distinct role in particle formation and transport.
Collapse
Affiliation(s)
- Vitaly L. Zimyanin
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, CB2 1QN Cambridge, UK
| | - Katsiaryna Belaya
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, CB2 1QN Cambridge, UK
| | | | - Michael J. Gilchrist
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, CB2 1QN Cambridge, UK
| | - Alejandra Clark
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Ilan Davis
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, CB2 1QN Cambridge, UK
| |
Collapse
|
33
|
Meignin C, Davis I. UAP56 RNA helicase is required for axis specification and cytoplasmic mRNA localization in Drosophila. Dev Biol 2008; 315:89-98. [PMID: 18237727 DOI: 10.1016/j.ydbio.2007.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 11/30/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
mRNA export from the nucleus requires the RNA helicase UAP56 and involves remodeling of ribonucleo-protein complexes in the nucleus. Here, we show that UAP56 is required for bulk mRNA export from the nurse cell nuclei that supply most of the material to the growing Drosophila oocyte and for the organization of chromatin in the oocyte nucleus. Loss of UAP56 function leads to patterning defects that identify uap56 as a spindle-class gene similar to the RNA helicase Vasa. UAP56 is required for the localization of gurken, bicoid and oskar mRNA as well as post-translational modification of Osk protein. By injecting grk RNA into the oocyte cytoplasm, we show that UAP56 plays a role in cytoplasmic mRNA localization. We propose that UAP56 has two independent functions in the remodeling of ribonucleo-protein complexes. The first is in the nucleus for mRNA export of most transcripts from the nucleus. The second is in the cytoplasm for remodeling the transacting factors that decorate mRNA and dictate its cytoplasmic destination.
Collapse
Affiliation(s)
- Carine Meignin
- Department of Biochemistry, The University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
34
|
Fusco D, Bertrand E, Singer RH. Imaging of single mRNAs in the cytoplasm of living cells. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2008; 35:135-50. [PMID: 15113083 PMCID: PMC4975164 DOI: 10.1007/978-3-540-74266-1_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dahlene Fusco
- Department of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine, 10461, Bronx, New York, USA
| | - Edouard Bertrand
- Institut de Genetique Moleculaire de Montpellier-CNRS, UMR 5535, IFR 24, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Robert H. Singer
- Department of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine, 10461, Bronx, New York, USA
| |
Collapse
|
35
|
Galasso A, Pane LS, Russo M, Grimaldi MR, Verrotti AC, Gigliotti S, Graziani F. dSTAM expression pattern during wild type and mutant egg chamber development in D. melanogaster. Gene Expr Patterns 2007; 7:730-7. [PMID: 17664083 DOI: 10.1016/j.modgep.2007.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 06/06/2007] [Accepted: 06/17/2007] [Indexed: 11/25/2022]
Abstract
STAM (signal-transducing adaptor molecule) is a protein highly conserved from yeast to mammals. In Drosophila melanogaster the basic molecular architecture of the protein is comprised of a N-terminal VHS domain, an ubiquitin-interacting motif and a central Src homology-3 domain. In this paper we examine the expression pattern of the stam gene and the localisation of the STAM protein during D. melanogaster oogenesis. Its transcript is present throughout egg chamber development in all germ-line cells, including the oocyte. dSTAM is firstly detected in germarial region 2, where the protein is present in the newly formed germ-line cysts and is mainly accumulated into the oocyte. As oogenesis proceeds, dSTAM is enriched in the perinuclear region of the nurse cells and is also found in the somatic polar follicular cells. In the oocyte, the protein is more abundant posteriorly and becomes restricted to the posterior pole just before disappearing at stage 10b. We show that dSTAM localisation is unaffected in the oocyte of grk mutant egg chambers, indicating that it is not dependent on the polarity of the microtubule network. In contrast, dSTAM distribution is remarkably altered in cup mutant oocytes where the protein accumulates in a round central spot and never reaches the posterior pole.
Collapse
|
36
|
Mische S, Li M, Serr M, Hays TS. Direct observation of regulated ribonucleoprotein transport across the nurse cell/oocyte boundary. Mol Biol Cell 2007; 18:2254-63. [PMID: 17429069 PMCID: PMC1877097 DOI: 10.1091/mbc.e06-10-0959] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Drosophila, the asymmetric localization of specific mRNAs to discrete regions within the developing oocyte determines the embryonic axes. The microtubule motors dynein and kinesin are required for the proper localization of the determinant ribonucleoprotein (RNP) complexes, but the mechanisms that account for RNP transport to and within the oocyte are not well understood. In this work, we focus on the transport of RNA complexes containing bicoid (bcd), an anterior determinant. We show in live egg chambers that, within the nurse cell compartment, dynein actively transports green fluorescent protein-tagged Exuperantia, a cofactor required for bcd RNP localization. Surprisingly, the loss of kinesin I activity elevates RNP motility in nurse cells, whereas disruption of dynein activity inhibits RNP transport. Once RNPs are transferred through the ring canal to the oocyte, they no longer display rapid, linear movements, but they are distributed by cytoplasmic streaming and gradually disassemble. By contrast, bcd mRNA injected into oocytes assembles de novo into RNP particles that exhibit rapid, dynein-dependent transport. We speculate that after delivery to the oocyte, RNP complexes may disassemble and be remodeled with appropriate accessory factors to ensure proper localization.
Collapse
Affiliation(s)
- Sarah Mische
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Mingang Li
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Madeline Serr
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Thomas S. Hays
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
37
|
Irion U, St Johnston D. bicoid RNA localization requires specific binding of an endosomal sorting complex. Nature 2007; 445:554-8. [PMID: 17268469 PMCID: PMC1997307 DOI: 10.1038/nature05503] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 12/01/2006] [Indexed: 11/09/2022]
Abstract
bicoid messenger RNA localizes to the anterior of the Drosophila egg, where it is translated to form a morphogen gradient of Bicoid protein that patterns the head and thorax of the embryo. Although bicoid was the first localized cytoplasmic determinant to be identified, little is known about how the mRNA is coupled to the microtubule-dependent transport pathway that targets it to the anterior, and it has been proposed that the mRNA is recognized by a complex of many redundant proteins, each of which binds to the localization element in the 3' untranslated region (UTR) with little or no specificity. Indeed, the only known RNA-binding protein that co-localizes with bicoid mRNA is Staufen, which binds non-specifically to double-stranded RNA in vitro. Here we show that mutants in all subunits of the ESCRT-II complex (VPS22, VPS25 and VPS36) abolish the final Staufen-dependent step in bicoid mRNA localization. ESCRT-II is a highly conserved component of the pathway that sorts ubiquitinated endosomal proteins into internal vesicles, and functions as a tumour-suppressor by removing activated receptors from the cytoplasm. However, the role of ESCRT-II in bicoid localization seems to be independent of endosomal sorting, because mutations in ESCRT-I and III components do not affect the targeting of bicoid mRNA. Instead, VPS36 functions by binding directly and specifically to stem-loop V of the bicoid 3' UTR through its amino-terminal GLUE domain, making it the first example of a sequence-specific RNA-binding protein that recognizes the bicoid localization signal. Furthermore, VPS36 localizes to the anterior of the oocyte in a bicoid-mRNA-dependent manner, and is required for the subsequent recruitment of Staufen to the bicoid complex. This function of ESCRT-II as an RNA-binding complex is conserved in vertebrates and may clarify some of its roles that are independent of endosomal sorting.
Collapse
Affiliation(s)
| | - Daniel St Johnston
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics University of Cambridge Tennis Court Road Cambridge CB2 1QN United Kingdom
| |
Collapse
|
38
|
Verdier V, Johndrow JE, Betson M, Chen GC, Hughes DA, Parkhurst SM, Settleman J. Drosophila Rho-kinase (DRok) is required for tissue morphogenesis in diverse compartments of the egg chamber during oogenesis. Dev Biol 2006; 297:417-32. [PMID: 16887114 PMCID: PMC2504748 DOI: 10.1016/j.ydbio.2006.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 05/11/2006] [Accepted: 05/15/2006] [Indexed: 11/16/2022]
Abstract
The Rho-kinases are widely utilized downstream targets of the activated Rho GTPase that have been directly implicated in many aspects of Rho-dependent effects on F-actin assembly, acto-myosin contractility, and microtubule stability, and consequently play an essential role in regulating cell shape, migration, polarity, and division. We have determined that the single closely related Drosophila Rho-kinase ortholog, DRok, is required for several aspects of oogenesis, including maintaining the integrity of the oocyte cortex, actin-mediated tethering of nurse cell nuclei, "dumping" of nurse cell contents into the oocyte, establishment of oocyte polarity, and the trafficking of oocyte yolk granules. These defects are associated with abnormalities in DRok-dependent actin dynamics and appear to be mediated by multiple downstream effectors of activated DRok that have previously been implicated in oogenesis. DRok regulates at least one of these targets, the membrane cytoskeletal cross-linker DMoesin, via a direct phosphorylation that is required to promote localization of DMoesin to the oocyte cortex. The collective oogenesis defects associated with DRok deficiency reveal its essential role in multiple aspects of proper oocyte formation and suggest that DRok defines a novel class of oogenesis determinants that function as key regulators of several distinct actin-dependent processes required for proper tissue morphogenesis.
Collapse
Affiliation(s)
- Valerie Verdier
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - James E. Johndrow
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A1-162, PO Box 19024, Seattle, WA 98109-1024, USA
| | | | - Guang-Chao Chen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - David A. Hughes
- The Faculty of Life Sciences, The University of Manchester, Sackville Street, Manchester, United Kingdom
| | - Susan M. Parkhurst
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A1-162, PO Box 19024, Seattle, WA 98109-1024, USA
| | - Jeffrey Settleman
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| |
Collapse
|
39
|
Lin MD, Fan SJ, Hsu WS, Chou TB. Drosophila decapping protein 1, dDcp1, is a component of the oskar mRNP complex and directs its posterior localization in the oocyte. Dev Cell 2006; 10:601-13. [PMID: 16678775 DOI: 10.1016/j.devcel.2006.02.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 02/04/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
In Drosophila, posterior deposition of oskar (osk) mRNA in oocytes is critical for both pole cell and abdomen formation. Exon junction complex components, translational regulation factors, and other proteins form an RNP complex that is essential for directing osk mRNA to the posterior of the oocyte. Until now, it has not been clear whether the mRNA degradation machinery is involved in regulating osk mRNA deposition. Here we show that Drosophila decapping protein 1, dDcp1, is a posterior group gene required for the transport of osk mRNA. In oocytes, dDcp1 is localized posteriorly in an osk mRNA position- and dosage-dependent manner. In nurse cells, dDcp1 colocalizes with dDcp2 and Me31B in discrete foci that may be related to processing bodies (P bodies), which are sites of active mRNA degradation. Thus, as well as being a general factor required for mRNA decay, dDcp1 is an essential component of the osk mRNP localization complex.
Collapse
Affiliation(s)
- Ming-Der Lin
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | | | | | | |
Collapse
|
40
|
Shav-Tal Y. The living test-tube: imaging of real-time gene expression. SOFT MATTER 2006; 2:361-370. [PMID: 32680249 DOI: 10.1039/b600234j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cells are dynamic entities. Not only are some cells motile but there is constant motion of organelles, proteins, nucleic acids and other molecules within every living cell. These complex molecular pathways control the life cycle of a cell and all come down to the basic players of the gene expression pathway: DNA, RNA and protein. It is therefore imperative to study biological processes as they naturally occur-in living cells, and to unravel the biophysical rules that govern intracellular dynamics. Towards this end, genetically encoded fluorescent proteins have become one of the major tools available for the study of kinetic processes taking place in real-time. This review will focus on the technical developments available for the study of gene activity in living cells and will summarize the novel biological information extracted from these approaches.
Collapse
Affiliation(s)
- Yaron Shav-Tal
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
41
|
Dirks RW, Tanke HJ. Advances in fluorescent tracking of nucleic acids in living cell. Biotechniques 2006; 40:489-96. [PMID: 16629396 DOI: 10.2144/000112121] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nucleic acids are typically detected in morphologically preserved fixed cells and tissues using in situ hybridization techniques. This review discusses a variety of established and more challenging fluorescence-based methods for the detection and tracking of DNA or RNA sequences in living cells. Over the past few years, various fluorescent in vivo labeling methods have been developed, and dedicated microscope and image analysis tools have been designed. These advances in technologies indicate that live-cell imaging of nucleic acids is likely to become a standard research tool for understanding genome organization and gene expression regulation in the near future. Recent live-cell imaging studies have already provided important insights into the dynamic behaviors of chromatin and RNAs in the cell.
Collapse
Affiliation(s)
- Roeland W Dirks
- Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL, Leiden, The Netherlands.
| | | |
Collapse
|
42
|
Claussen M, Suter B. BicD-dependent localization processes: from Drosophilia development to human cell biology. Ann Anat 2006; 187:539-53. [PMID: 16320833 DOI: 10.1016/j.aanat.2005.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many eukaryotic cells depend on proper cell polarization for their development and physiological function. The establishment of these polarities often involve the subcellular localization of a specific subset of proteins, RNAs and organelles. In Drosophila, the microtubule-dependent BicD (BicaudalD) localization machinery is involved in the proper localization of mRNA during oogenesis and embryogenesis and the proper positioning of the oocyte and photoreceptor nuclei. BicD acts together with the minus-end directed motor dynein as well as Egl and Lis-1. The finding that the mammalian homologs of BicD function in retrograde Golgi-to-ER transport has supported the view that BicD may be part of a repeatedly used and evolutionary conserved localization machinery. In this review we focus on the various processes in which BicD is involved during Drosophilian development and in mammals. In addition, we evaluate the interactions between BicD, the dynein localization machinery and associated factors.
Collapse
Affiliation(s)
- Maike Claussen
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, 3012 Bern, Switzerland
| | | |
Collapse
|
43
|
Wilhelm JE, Buszczak M, Sayles S. Efficient protein trafficking requires trailer hitch, a component of a ribonucleoprotein complex localized to the ER in Drosophila. Dev Cell 2006; 9:675-85. [PMID: 16256742 DOI: 10.1016/j.devcel.2005.09.015] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 08/17/2005] [Accepted: 09/16/2005] [Indexed: 11/23/2022]
Abstract
Translational control of localized messenger mRNAs (mRNAs) is critical for cell polarity, synaptic plasticity, and embryonic patterning. While progress has been made in identifying localization factors and translational regulators, it is unclear how broad a role they play in regulating basic cellular processes. We have identified Drosophila trailer hitch (tral) as a gene that is required for the proper secretion of the dorsal-ventral patterning factor Gurken, as well as the vitellogenin receptor Yolkless. Surprisingly, biochemical purification of Tral revealed that it is part of a large RNA-protein complex that includes the translation/localization factors Me31B and Cup as well as the mRNAs for endoplasmic reticulum (ER) exit site components. This complex is localized to subdomains of the ER that border ER exit sites. Furthermore, tral is required for normal ER exit site formation. These findings raise exciting new possibilities for how the mRNA localization machinery could interface with the classical secretory pathway to promote efficient protein trafficking in the cell.
Collapse
Affiliation(s)
- James E Wilhelm
- Department of Embryology, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, Maryland 21210, USA.
| | | | | |
Collapse
|
44
|
Bray JD, Chennathukuzhi VM, Hecht NB. KIF2Abeta: A kinesin family member enriched in mouse male germ cells, interacts with translin associated factor-X (TRAX). Mol Reprod Dev 2005; 69:387-96. [PMID: 15457513 DOI: 10.1002/mrd.20171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Translin associated factor X (TRAX) is a binding partner of TB-RBP/Translin. A cDNA encoding the 260 C-terminal amino acids of KIF2Abeta was isolated from mouse testis cDNAs in a yeast two-hybrid library screen for specific TRAX-interacting proteins. KIF2Abeta was expressed predominantly in the mouse testis and enriched in germ cells. The interaction of full-length KIF2Abeta or its C-terminus with TRAX was verified using in vitro synthesized fusion proteins. Deletion mapping of the TRAX-binding region of KIF2Abeta indicated that amino acids 514-659 were necessary and sufficient for the interaction in vivo. Confocal microscopy studies using GFP-fusion proteins demonstrated that KIF2Abeta colocalizes with TRAX in a perinuclear location. KIF2Abeta does not interact with TB-RBP, suggesting that either TRAX can function as an adaptor molecule for motor proteins and TB-RBP, or that this interaction reveals an undescribed role for TRAX in germ cells. The interaction with KIF2Abeta suggests a role for TRAX in microtubule-based functions during spermatogenesis.
Collapse
Affiliation(s)
- Jeffrey D Bray
- Center for Research on Reproduction and Women's Health and Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6142, USA
| | | | | |
Collapse
|
45
|
Stephenson EC. Localization of swallow-Green Fluorescent Protein in Drosophila oogenesis and implications for the role of swallow in RNA localization. Genesis 2005; 39:280-7. [PMID: 15287001 DOI: 10.1002/gene.20057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The localization of a hybrid protein composed of swallow and Green Fluorescent Protein (GFP) during Drosophila oogenesis is reported. I constructed a hybrid gene with GFP inserted into an internal position of swallow. This gene was integrated into the Drosophila genome and provides full swallow+ function, as assayed by the complete rescue of strong swallow mutants. Swallow-GFP is localized at all points along the oocyte cortex from vitellogenic stages of oogenesis through the end of oogenesis. Higher concentrations of swallow-GFP are present at the anterior oocyte cortex than at the lateral and posterior oocyte cortices at Stages 10 and 11, when bicoid and htsN4 mRNA transport from nurse cells and localization in the oocyte are most active. At Stage 9 and at Stages 12-14 swallow-GFP is equally distributed at the anterior, lateral, and posterior oocyte cortices. The position of swallow-GFP in vitellogenic stages is identical to the position of endogenous swallow protein determined by indirect immunofluorescence using an anti-swallow antibody. At the oocyte cortex, swallow-GFP is present in particulate structures that lie within or just internal to the dense cortical actin meshwork. These particles show little or no movement, suggesting that they are attached to or embedded in the oocyte cortex. These observations are most easily interpreted in the context of mRNA anchoring or microtubule organizing functions for the swallow protein.
Collapse
Affiliation(s)
- Edwin C Stephenson
- Department of Biological Sciences, Coalition for Biomolecular Products, University of Alabama, Tuscaloosa Alabama 35487-0344, USA.
| |
Collapse
|
46
|
Abstract
Technical advances in the field of live-cell imaging have introduced the cell biologist to a new, dynamic, subcellular world. The static world of molecules in fixed cells has now been extended to the time dimension. This allows the visualization and quantification of gene expression and intracellular trafficking events of the studied molecules and the associated enzymatic processes in individual cells, in real time.
Collapse
Affiliation(s)
- Yaron Shav-Tal
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
47
|
Moon W, Hazelrigg T. The Drosophila Microtubule-Associated Protein Mini Spindles Is Required for Cytoplasmic Microtubules in Oogenesis. Curr Biol 2004; 14:1957-61. [PMID: 15530399 DOI: 10.1016/j.cub.2004.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/26/2004] [Accepted: 09/15/2004] [Indexed: 11/26/2022]
Abstract
The XMAP215/TOG family of proteins is a closely related set of MAPs (microtubule-associated proteins) found in animals, yeast, and plants . In yeast and animal cells, the XMAP215/TOG proteins are required for both mitosis and meiosis. Although effects of XMAP215/TOG proteins on cytoplasmic microtubules have not previously been shown in animal cells, in plants the Arabidopsis family member MOR1 is required for the organization of cortical microtubule arrays . The Drosophila family member, encoded by the mini spindles (msps) gene, is maternally expressed and loaded into the egg, where it is an essential component of meiotic and mitotic spindles . Here we show that msps is also required during oogenesis for the structure and function of cytoplasmic microtubules. Localization of bicoid (bcd) mRNA in the oocyte is a microtubule-mediated event . We show that bcd RNA localization is defective in msps mutants. We also identify defects in cytoplasmic microtubules in both the germ and follicle cells of mutant ovaries and determine the expression pattern of msps mRNA and protein in developing egg chambers. Our findings reveal a new role for msps in cell patterning and raise the possibility that other family members may perform similar functions.
Collapse
Affiliation(s)
- Woongjoon Moon
- Department of Biological Sciences, 602 Fairchild, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | | |
Collapse
|
48
|
Wilhelm JE, Hilton M, Amos Q, Henzel WJ. Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz. ACTA ACUST UNITED AC 2004; 163:1197-204. [PMID: 14691132 PMCID: PMC2173729 DOI: 10.1083/jcb.200309088] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Drosophila oocytes, precise localization of the posterior determinant, Oskar, is required for posterior patterning. This precision is accomplished by a localization-dependent translational control mechanism that ensures translation of only correctly localized oskar transcripts. Although progress has been made in identifying localization factors and translational repressors of oskar, none of the known components of the oskar complex is required for both processes. Here, we report the identification of Cup as a novel component of the oskar RNP complex. cup is required for oskar mRNA localization and is necessary to recruit the plus end-directed microtubule transport factor Barentsz to the complex. Surprisingly, Cup is also required to repress the translation of oskar. Furthermore, eukaryotic initiation factor 4E (eIF4E) is localized within the oocyte in a cup-dependent manner and binds directly to Cup in vitro. Thus, Cup is a translational repressor of oskar that is required to assemble the oskar mRNA localization machinery. We propose that Cup coordinates localization with translation.
Collapse
Affiliation(s)
- James E Wilhelm
- Department of Embryology, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, MD 21210, USA.
| | | | | | | |
Collapse
|
49
|
MacDougall N, Clark A, MacDougall E, Davis I. Drosophila gurken (TGFalpha) mRNA localizes as particles that move within the oocyte in two dynein-dependent steps. Dev Cell 2003; 4:307-19. [PMID: 12636913 DOI: 10.1016/s1534-5807(03)00058-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In Drosophila oocytes, gurken mRNA localization orientates the TGF-alpha signal to establish the anteroposterior and dorsoventral axes. We have elucidated the path and mechanism of gurken mRNA localization by time-lapse cinematography of injected fluorescent transcripts in living oocytes. gurken RNA assembles into particles that move in two distinct steps, both requiring microtubules and cytoplasmic Dynein. gurken particles first move toward the anterior and then turn and move dorsally toward the oocyte nucleus. We present evidence suggesting that the two steps of gurken RNA transport occur on distinct arrays of microtubules. Such distinct microtubule networks could provide a general mechanism for one motor to transport different cargos to distinct subcellular destinations.
Collapse
Affiliation(s)
- Nina MacDougall
- Wellcome Trust Centre for Cell Biology, ICMB, King's Buildings, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, United Kingdom
| | | | | | | |
Collapse
|
50
|
Fusco D, Accornero N, Lavoie B, Shenoy SM, Blanchard JM, Singer RH, Bertrand E. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol 2003; 13:161-167. [PMID: 12546792 PMCID: PMC4764064 DOI: 10.1016/s0960-9822(02)01436-7] [Citation(s) in RCA: 462] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytoplasmic mRNA movements ultimately determine the spatial distribution of protein synthesis. Although some mRNAs are compartmentalized in cytoplasmic regions, most mRNAs, such as housekeeping mRNAs or the poly-adenylated mRNA population, are believed to be distributed throughout the cytoplasm. The general mechanism by which all mRNAs may move, and how this may be related to localization, is unknown. Here, we report a method to visualize single mRNA molecules in living mammalian cells, and we report that, regardless of any specific cytoplasmic distribution, individual mRNA molecules exhibit rapid and directional movements on microtubules. Importantly, the beta-actin mRNA zipcode increased both the frequency and length of these movements, providing a common mechanistic basis for both localized and nonlocalized mRNAs. Disruption of the cytoskeleton with drugs showed that microtubules and microfilaments are involved in the types of mRNA movements we have observed, which included complete immobility and corralled and nonrestricted diffusion. Individual mRNA molecules switched frequently among these movements, suggesting that mRNAs undergo continuous cycles of anchoring, diffusion, and active transport.
Collapse
Affiliation(s)
- Dahlene Fusco
- Departments of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine Bronx, New York 10461
| | - Nathalie Accornero
- Institut de Genetique Moleculaire de Montpellier-CNRS UMR 5535 IFR 24 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - Brigitte Lavoie
- NINDS/NIH Molecular Plasticity Section Bethesda, Maryland 20892
| | - Shailesh M. Shenoy
- Departments of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine Bronx, New York 10461
| | - Jean-Marie Blanchard
- Institut de Genetique Moleculaire de Montpellier-CNRS UMR 5535 IFR 24 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - Robert H. Singer
- Departments of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine Bronx, New York 10461
- Correspondence: ;
| | - Edouard Bertrand
- Institut de Genetique Moleculaire de Montpellier-CNRS UMR 5535 IFR 24 1919 route de Mende 34293 Montpellier Cedex 5 France
- Correspondence: ;
| |
Collapse
|