1
|
Corregidor D, Tabraue R, Colchero L, Daza R, Elices M, Guinea GV, Pérez-Rigueiro J. High-Yield Characterization of Single Molecule Interactions with DeepTip TM Atomic Force Microscopy Probes. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010226. [PMID: 36615422 PMCID: PMC9822271 DOI: 10.3390/molecules28010226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Single molecule interactions between biotin and streptavidin were characterized with functionalized DeepTipTM probes and used as a model system to develop a comprehensive methodology for the high-yield identification and analysis of single molecular events. The procedure comprises the covalent binding of the target molecule to a surface and of the sensing molecule to the DeepTipTM probe, so that the interaction between both chemical species can be characterized by obtaining force-displacement curves in an atomic force microscope. It is shown that molecular resolution is consistently attained with a percentage of successful events higher than 90% of the total number of recorded curves, and a very low level of unspecific interactions. The combination of both features is a clear indication of the robustness and versatility of the proposed methodology.
Collapse
Affiliation(s)
- Daniel Corregidor
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Raquel Tabraue
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Luis Colchero
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Rafael Daza
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Manuel Elices
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Gustavo V. Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
2
|
Molecular Recognition of Surface Trans-Sialidases in Extracellular Vesicles of the Parasite Trypanosoma cruzi Using Atomic Force Microscopy (AFM). Int J Mol Sci 2022; 23:ijms23137193. [PMID: 35806197 PMCID: PMC9266976 DOI: 10.3390/ijms23137193] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
Trans-sialidases (TS) are important constitutive macromolecules of the secretome present on the surface of Trypanosoma cruzi (T. cruzi) that play a central role as a virulence factor in Chagas disease. These enzymes have been related to infectivity, escape from immune surveillance and pathogenesis exhibited by this protozoan parasite. In this work, atomic force microscopy (AFM)-based single molecule-force spectroscopy is implemented as a suitable technique for the detection and location of functional TS on the surface of extracellular vesicles (EVs) released by tissue-culture cell-derived trypomastigotes (Ex-TcT). For that purpose, AFM cantilevers with functionalized tips bearing the anti-TS monoclonal antibody mAb 39 as a sense biomolecule are engineered using a covalent chemical ligation based on vinyl sulfonate click chemistry; a reliable, simple and efficient methodology for the molecular recognition of TS using the antibody-antigen interaction. Measurements of the breakdown forces between anti-TS mAb 39 antibodies and EVs performed to elucidate adhesion and forces involved in the recognition events demonstrate that EVs isolated from tissue-culture cell-derived trypomastigotes of T. cruzi are enriched in TS. Additionally, a mapping of the TS binding sites with submicrometer-scale resolution is provided. This work represents the first AFM-based molecular recognition study of Ex-TcT using an antibody-tethered AFM probe.
Collapse
|
3
|
Qin Y, Yang W, Chu H, Li Y, Cai S, Yu H, Liu L. Atomic Force Microscopy for Tumor Research at Cell and Molecule Levels. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-18. [PMID: 35257653 DOI: 10.1017/s1431927622000290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumors have posed a serious threat to human life and health. Researchers can determine whether or not cells are cancerous, whether the cancer cells are invasive or metastatic, and what the effects of drugs are on cancer cells by the physical properties such as hardness, adhesion, and Young's modulus. The atomic force microscope (AFM) has emerged as a key important tool for biomechanics research on tumor cells due to its ability to image and collect force spectroscopy information of biological samples with nano-level spatial resolution and under near-physiological conditions. This article reviews the existing results of the study of cancer cells with AFM. The main foci are the operating principle of AFM and research advances in mechanical property measurement, ultra-microtopography, and molecular recognition of tumor cells, which allows us to outline what we do know it in a systematic way and to summarize and to discuss future directions.
Collapse
Affiliation(s)
- Yitong Qin
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai264005, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai264005, China
| | - Honghui Chu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai264005, China
| | - Yan Li
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai264005, China
| | - Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai264005, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang110016, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang110016, China
| |
Collapse
|
4
|
Voci S, Goudeau B, Valenti G, Lesch A, Jović M, Rapino S, Paolucci F, Arbault S, Sojic N. Surface-Confined Electrochemiluminescence Microscopy of Cell Membranes. J Am Chem Soc 2018; 140:14753-14760. [PMID: 30336008 DOI: 10.1021/jacs.8b08080] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein is reported a surface-confined microscopy based on electrochemiluminescence (ECL) that allows to image the plasma membrane of single cells at the interface with an electrode. By analyzing photoluminescence (PL), ECL and AFM images of mammalian CHO cells, we demonstrate that, in contrast to the wide-field fluorescence, ECL emission is confined to the immediate vicinity of the electrode surface and only the basal membrane of the cell becomes luminescent. The resulting ECL microscopy reveals details that are not resolved by classic fluorescence microscopy, without any light irradiation and specific setup. The thickness of the ECL-emitting regions is ∼500 nm due to the unique ECL mechanism that involves short-lifetime electrogenerated radicals. In addition, the reported ECL microscopy is a dynamic technique that reflects the transport properties through the cell membranes and not only the specific labeling of the membranes. Finally, disposable transparent carbon nanotube (CNT)-based electrodes inkjet-printed on classic microscope glass coverslips were used to image cells in both reflection and transmission configurations. Therefore, our approach opens new avenues for ECL as a surface-confined microscopy to develop single cell assays and to image the dynamics of biological entities in cells or in membranes.
Collapse
Affiliation(s)
- Silvia Voci
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255 , 33607 Pessac , France
| | - Bertrand Goudeau
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255 , 33607 Pessac , France
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Andreas Lesch
- Laboratory of Physical and Analytical Electrochemistry , EPFL Valais Wallis , Rue de l'Industrie 17, CP 440 , CH-1951 Sion , Switzerland
| | - Milica Jović
- Laboratory of Physical and Analytical Electrochemistry , EPFL Valais Wallis , Rue de l'Industrie 17, CP 440 , CH-1951 Sion , Switzerland
| | - Stefania Rapino
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Stéphane Arbault
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255 , 33607 Pessac , France
| | - Neso Sojic
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255 , 33607 Pessac , France
| |
Collapse
|
5
|
Li M, Dang D, Xi N, Wang Y, Liu L. Nanoscale imaging and force probing of biomolecular systems using atomic force microscopy: from single molecules to living cells. NANOSCALE 2017; 9:17643-17666. [PMID: 29135007 DOI: 10.1039/c7nr07023c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to the lack of adequate tools for observation, native molecular behaviors at the nanoscale have been poorly understood. The advent of atomic force microscopy (AFM) provides an exciting instrument for investigating physiological processes on individual living cells with molecular resolution, which attracts the attention of worldwide researchers. In the past few decades, AFM has been widely utilized to investigate molecular activities on diverse biological interfaces, and the performances and functions of AFM have also been continuously improved, greatly improving our understanding of the behaviors of single molecules in action and demonstrating the important role of AFM in addressing biological issues with unprecedented spatiotemporal resolution. In this article, we review the related techniques and recent progress about applying AFM to characterize biomolecular systems in situ from single molecules to living cells. The challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| | | | | | | | | |
Collapse
|
6
|
Valenti G, Scarabino S, Goudeau B, Lesch A, Jović M, Villani E, Sentic M, Rapino S, Arbault S, Paolucci F, Sojic N. Single Cell Electrochemiluminescence Imaging: From the Proof-of-Concept to Disposable Device-Based Analysis. J Am Chem Soc 2017; 139:16830-16837. [PMID: 29064235 DOI: 10.1021/jacs.7b09260] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report here the development of coreactant-based electrogenerated chemiluminescence (ECL) as a surface-confined microscopy to image single cells and their membrane proteins. Labeling the entire cell membrane allows one to demonstrate that, by contrast with fluorescence, ECL emission is only detected from fluorophores located in the immediate vicinity of the electrode surface (i.e., 1-2 μm). Then, to present the potential diagnostic applications of our approach, we selected carbon nanotubes (CNT)-based inkjet-printed disposable electrodes for the direct ECL imaging of a labeled plasma receptor overexpressed on tumor cells. The ECL fluorophore was linked to an antibody and enabled to localize the ECL generation on the cancer cell membrane in close proximity to the electrode surface. Such a result is intrinsically associated with the unique ECL mechanism and is rationalized by considering the limited lifetimes of the electrogenerated coreactant radicals. The electrochemical stimulus used for luminescence generation does not suffer from background signals, such as the typical autofluorescence of biological samples. The presented surface-confined ECL microscopy should find promising applications in ultrasensitive single cell imaging assays.
Collapse
Affiliation(s)
- Giovanni Valenti
- Department of Chemistry ''G. Ciamician'', University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Sabina Scarabino
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| | - Bertrand Goudeau
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| | - Andreas Lesch
- Laboratory of Physical and Analytical Electrochemistry, EPFL Valais Wallis , Rue de l'Industrie 17, CP 440, CH-1951 Sion, Switzerland
| | - Milica Jović
- Laboratory of Physical and Analytical Electrochemistry, EPFL Valais Wallis , Rue de l'Industrie 17, CP 440, CH-1951 Sion, Switzerland
| | - Elena Villani
- Department of Chemistry ''G. Ciamician'', University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Milica Sentic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| | - Stefania Rapino
- Department of Chemistry ''G. Ciamician'', University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Stéphane Arbault
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| | - Francesco Paolucci
- Department of Chemistry ''G. Ciamician'', University of Bologna , Via Selmi 2, 40126 Bologna, Italy.,ICMATE-CNR Bologna Associate Unit, University of Bologna , via Selmi 2, 40126 Bologna, Italy
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| |
Collapse
|
7
|
The structure and function of cell membranes studied by atomic force microscopy. Semin Cell Dev Biol 2017; 73:31-44. [PMID: 28723581 DOI: 10.1016/j.semcdb.2017.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
The cell membrane, involved in almost all communications of cells and surrounding matrix, is one of the most complicated components of cells. Lack of suitable methods for the detection of cell membranes in vivo has sparked debates on the biochemical composition and structure of cell membranes over half a century. The development of single molecule techniques, such as AFM, SMFS, and TREC, provides a versatile platform for imaging and manipulating cell membranes in biological relevant environments. Here, we discuss the latest developments in AFM and the progress made in cell membrane research. In particular, we highlight novel structure models and dynamic processes, including the mechanical properties of the cell membranes.
Collapse
|
8
|
Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy. SENSORS 2017; 17:s17010200. [PMID: 28117741 PMCID: PMC5298773 DOI: 10.3390/s17010200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/23/2022]
Abstract
The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used in biology to address diverse biomedical issues. Characterizing the behaviors of single molecules by AFM provides considerable novel insights into the underlying mechanisms guiding life activities, contributing much to cell and molecular biology. In this article, we review the recent developments of AFM studies in single-molecule assay. The related techniques involved in AFM single-molecule assay were firstly presented, and then the progress in several aspects (including molecular imaging, molecular mechanics, molecular recognition, and molecular activities on cell surface) was summarized. The challenges and future directions were also discussed.
Collapse
|
9
|
Sasseville LJ, Morin M, Coady MJ, Blunck R, Lapointe JY. The Human Sodium-Glucose Cotransporter (hSGLT1) Is a Disulfide-Bridged Homodimer with a Re-Entrant C-Terminal Loop. PLoS One 2016; 11:e0154589. [PMID: 27137918 PMCID: PMC4854415 DOI: 10.1371/journal.pone.0154589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/17/2016] [Indexed: 11/18/2022] Open
Abstract
Na-coupled cotransporters are proteins that use the trans-membrane electrochemical gradient of Na to activate the transport of a second solute. The sodium-glucose cotransporter 1 (SGLT1) constitutes a well-studied prototype of this transport mechanism but essential molecular characteristics, namely its quaternary structure and the exact arrangement of the C-terminal transmembrane segments, are still debated. After expression in Xenopus oocytes, human SGLT1 molecules (hSGLT1) were labelled on an externally accessible cysteine residue with a thiol-reactive fluorophore (tetramethylrhodamine-C5-maleimide, TMR). Addition of dipicrylamine (DPA, a negatively-charged amphiphatic fluorescence “quencher”) to the fluorescently-labelled oocytes is used to quench the fluorescence originating from hSGLT1 in a voltage-dependent manner. Using this arrangement with a cysteine residue introduced at position 624 in the loop between transmembrane segments 12 and 13, the voltage-dependent fluorescence signal clearly indicated that this portion of the 12–13 loop is located on the external side of the membrane. As the 12–13 loop begins on the intracellular side of the membrane, this suggests that the 12–13 loop is re-entrant. Using fluorescence resonance energy transfer (FRET), we observed that different hSGLT1 molecules are within molecular distances from each other suggesting a multimeric complex arrangement. In agreement with this conclusion, a western blot analysis showed that hSGLT1 migrates as either a monomer or a dimer in reducing and non-reducing conditions, respectively. A systematic mutational study of endogenous cysteine residues in hSGLT1 showed that a disulfide bridge is formed between the C355 residues of two neighbouring hSGLT1 molecules. It is concluded that, 1) hSGLT1 is expressed as a disulfide bridged homodimer via C355 and that 2) a portion of the intracellular 12–13 loop is re-entrant and readily accessible from the extracellular milieu.
Collapse
Affiliation(s)
- Louis J. Sasseville
- Groupe d'étude des protéines membranaires (GÉPROM) and Département de physique, Université de Montréal, Montréal, Québec
| | - Michael Morin
- Groupe d'étude des protéines membranaires (GÉPROM) and Département de physique, Université de Montréal, Montréal, Québec
| | - Michael J. Coady
- Groupe d'étude des protéines membranaires (GÉPROM) and Département de physique, Université de Montréal, Montréal, Québec
| | - Rikard Blunck
- Groupe d'étude des protéines membranaires (GÉPROM) and Département de physique, Université de Montréal, Montréal, Québec
| | - Jean-Yves Lapointe
- Groupe d'étude des protéines membranaires (GÉPROM) and Département de physique, Université de Montréal, Montréal, Québec
- * E-mail:
| |
Collapse
|
10
|
Li Q, Zhang T, Pan Y, Ciacchi LC, Xu B, Wei G. AFM-based force spectroscopy for bioimaging and biosensing. RSC Adv 2016. [DOI: 10.1039/c5ra22841g] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AFM-based force spectroscopy shows wide bio-related applications especially for bioimaging and biosensing.
Collapse
Affiliation(s)
- Qing Li
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Tong Zhang
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Yangang Pan
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Bingqian Xu
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Gang Wei
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| |
Collapse
|
11
|
Raja M, Puntheeranurak T, Gruber HJ, Hinterdorfer P, Kinne RKH. The role of transporter ectodomains in drug recognition and binding: phlorizin and the sodium–glucose cotransporter. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00572h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reviews the role of segments of SLCs located outside the plasma membrane bilayer (ectodomains) using the inhibition of SGLTs (SLC5 family) by the aromatic glucoside phlorizin as a model system.
Collapse
Affiliation(s)
- M. Raja
- Max Planck Institute of Molecular Physiology
- Dortmund
- Germany
| | - T. Puntheeranurak
- Department of Biology
- Center of Nanoscience
- Faculty of Science
- Mahidol University
- Bangkok
| | - H. J. Gruber
- Institute for Biophysics
- Christian Doppler Laboratory of Nanoscopic Methods in Biophysics
- Johannes Kepler University of Linz and Center for Advanced Bioanalysis GmbH (CBL)
- Linz
- Austria
| | - P. Hinterdorfer
- Institute for Biophysics
- Christian Doppler Laboratory of Nanoscopic Methods in Biophysics
- Johannes Kepler University of Linz and Center for Advanced Bioanalysis GmbH (CBL)
- Linz
- Austria
| | - R. K. H. Kinne
- Max Planck Institute of Molecular Physiology
- Dortmund
- Germany
| |
Collapse
|
12
|
Lanzerstorfer P, Stadlbauer V, Chtcheglova LA, Haselgrübler R, Borgmann D, Wruss J, Hinterdorfer P, Schröder K, Winkler SM, Höglinger O, Weghuber J. Identification of novel insulin mimetic drugs by quantitative total internal reflection fluorescence (TIRF) microscopy. Br J Pharmacol 2015; 171:5237-51. [PMID: 25039620 PMCID: PMC4262000 DOI: 10.1111/bph.12845] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/18/2014] [Accepted: 06/27/2014] [Indexed: 12/25/2022] Open
Abstract
Background and Purpose Insulin stimulates the transport of glucose in target tissues by triggering the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Resistance to insulin, the major abnormality in type 2 diabetes, results in a decreased GLUT4 translocation efficiency. Thus, special attention is being paid to search for compounds that are able to enhance this translocation process in the absence of insulin. Experimental Approach Total internal reflection fluorescence (TIRF) microscopy was applied to quantify GLUT4 translocation in highly insulin-sensitive CHO-K1 cells expressing a GLUT4-myc-GFP fusion protein. Key Results Using our approach, we demonstrated GLUT4 translocation modulatory properties of selected substances and identified novel potential insulin mimetics. An increase in the TIRF signal was found to correlate with an elevated glucose uptake. Variations in the expression level of the human insulin receptor (hInsR) showed that the insulin mimetics identified stimulate GLUT4 translocation by a mechanism that is independent of the presence of the hInsR. Conclusions and Implications Taken together, the results indicate that TIRF microscopy is an excellent tool for the quantification of GLUT4 translocation and for identifying insulin mimetic drugs.
Collapse
Affiliation(s)
- Peter Lanzerstorfer
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Wels, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nanoscale monitoring of drug actions on cell membrane using atomic force microscopy. Acta Pharmacol Sin 2015; 36:769-82. [PMID: 26027658 DOI: 10.1038/aps.2015.28] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/13/2015] [Indexed: 02/06/2023]
Abstract
Knowledge of the nanoscale changes that take place in individual cells in response to a drug is useful for understanding the drug action. However, due to the lack of adequate techniques, such knowledge was scarce until the advent of atomic force microscopy (AFM), which is a multifunctional tool for investigating cellular behavior with nanometer resolution under near-physiological conditions. In the past decade, researchers have applied AFM to monitor the morphological and mechanical dynamics of individual cells following drug stimulation, yielding considerable novel insight into how the drug molecules affect an individual cell at the nanoscale. In this article we summarize the representative applications of AFM in characterization of drug actions on cell membrane, including topographic imaging, elasticity measurements, molecular interaction quantification, native membrane protein imaging and manipulation, etc. The challenges that are hampering the further development of AFM for studies of cellular activities are aslo discussed.
Collapse
|
14
|
Kulik AJ, Lekka M, Lee K, Pyka-Fościak G, Nowak W. Probing fibronectin-antibody interactions using AFM force spectroscopy and lateral force microscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1164-1175. [PMID: 26114080 PMCID: PMC4462853 DOI: 10.3762/bjnano.6.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
The first experiment showing the effects of specific interaction forces using lateral force microscopy (LFM) was demonstrated for lectin-carbohydrate interactions some years ago. Such measurements are possible under the assumption that specific forces strongly dominate over the non-specific ones. However, obtaining quantitative results requires the complex and tedious calibration of a torsional force. Here, a new and relatively simple method for the calibration of the torsional force is presented. The proposed calibration method is validated through the measurement of the interaction forces between human fibronectin and its monoclonal antibody. The results obtained using LFM and AFM-based classical force spectroscopies showed similar unbinding forces recorded at similar loading rates. Our studies verify that the proposed lateral force calibration method can be applied to study single molecule interactions.
Collapse
Affiliation(s)
- Andrzej J Kulik
- Laboratoire de la Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Kyumin Lee
- Laboratoire de la Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Grazyna Pyka-Fościak
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, 87-100 Toruń, Poland
| |
Collapse
|
15
|
Kalia A, Parshad VR. Novel Trends to Revolutionize Preservation and Packaging of Fruits/Fruit Products: Microbiological and Nanotechnological Perspectives. Crit Rev Food Sci Nutr 2014; 55:159-82. [DOI: 10.1080/10408398.2011.649315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Neundlinger I, Puntheeranurak T, Wildling L, Rankl C, Wang LX, Gruber HJ, Kinne RKH, Hinterdorfer P. Forces and dynamics of glucose and inhibitor binding to sodium glucose co-transporter SGLT1 studied by single molecule force spectroscopy. J Biol Chem 2014; 289:21673-83. [PMID: 24962566 DOI: 10.1074/jbc.m113.529875] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single molecule force spectroscopy was employed to investigate the dynamics of the sodium glucose co-transporter (SGLT1) upon substrate and inhibitor binding on the single molecule level. CHO cells stably expressing rbSGLT1 were probed by using atomic force microscopy tips carrying either thioglucose, 2'-aminoethyl β-d-glucopyranoside, or aminophlorizin. Poly(ethylene glycol) (PEG) chains of different length and varying end groups were used as tether. Experiments were performed at 10, 25 and 37 °C to address different conformational states of SGLT1. Unbinding forces between ligands and SGLT1 were recorded at different loading rates by changing the retraction velocity, yielding binding probability, width of energy barrier of the binding pocket, and the kinetic off rate constant of the binding reaction. With increasing temperature, width of energy barrier and average life time increased for the interaction of SGLT1 with thioglucose (coupled via acrylamide to a long PEG) but decreased for aminophlorizin binding. The former indicates that in the membrane-bound SGLT1 the pathway to sugar translocation involves several steps with different temperature sensitivity. The latter suggests that also the aglucon binding sites for transport inhibitors have specific, temperature-sensitive conformations.
Collapse
Affiliation(s)
- Isabel Neundlinger
- From the Institute for Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Theeraporn Puntheeranurak
- From the Institute for Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, Department of Biology, Faculty of Science, Mahidol University and Nanotec-MU Center of Excellence on Intelligent Materials and Systems, 272 Rama VI, Ratchathewi, Bangkok 10400, Thailand
| | - Linda Wildling
- From the Institute for Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | | | - Lai-Xi Wang
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Hermann J Gruber
- From the Institute for Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Rolf K H Kinne
- Max Planck Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| | - Peter Hinterdorfer
- From the Institute for Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria,
| |
Collapse
|
17
|
Progress in measuring biophysical properties of membrane proteins with AFM single-molecule force spectroscopy. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0290-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Li M, Liu L, Xi N, Wang Y, Dong Z, Xiao X, Zhang W. Progress of AFM single-cell and single-molecule morphology imaging. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5906-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Whited AM, Park PSH. Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:56-68. [PMID: 23603221 DOI: 10.1016/j.bbamem.2013.04.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/22/2013] [Accepted: 04/09/2013] [Indexed: 01/31/2023]
Abstract
Membrane proteins are embedded in lipid bilayers and facilitate the communication between the external environment and the interior of the cell. This communication is often mediated by the binding of ligands to the membrane protein. Understanding the nature of the interaction between a ligand and a membrane protein is required to both understand the mechanism of action of these proteins and for the development of novel pharmacological drugs. The highly hydrophobic nature of membrane proteins and the requirement of a lipid bilayer for native function have hampered the structural and molecular characterizations of these proteins under physiologically relevant conditions. Atomic force microscopy offers a solution to studying membrane proteins and their interactions with ligands under physiologically relevant conditions and can provide novel insights about the nature of these critical molecular interactions that facilitate cellular communication. In this review, we provide an overview of the atomic force microscopy technique and discuss its application in the study of a variety of questions related to the interaction between a membrane protein and a ligand. This article is part of a Special Issue entitled: Structural and biophysical characterization of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Allison M Whited
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
20
|
Li M, Xiao X, Liu L, Xi N, Wang Y, Dong Z, Zhang W. Imaging and measuring the molecular force of lymphoma pathological cells using atomic force microscopy. SCANNING 2013; 35:40-46. [PMID: 22890585 DOI: 10.1002/sca.21033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/04/2012] [Indexed: 06/01/2023]
Abstract
Atomic force microscopy (AFM) provides a new technology to visualize the cellular topography and quantify the molecular interactions at nanometer spatial resolution. In this work, AFM was used to image the cellular topography and measure the molecular force of pathological cells from B-cell lymphoma patients. After the fluorescence staining, cancer cells were recognized by their special morphological features and then the detailed topography was visualized by AFM imaging. The AFM images showed that cancer cells were much rougher than healthy cells. CD20 is a surface marker of B cells and rituximab is a monoclonal antibody against CD20. To measure the CD20-rituximab interaction forces, the polyethylene glycol (PEG) linker was used to link rituximab onto the AFM tip and the verification experiments of the functionalized probe indicated that rituximab molecules were successfully linked onto the AFM tip. The CD20-rituximab interaction forces were measured on about 20 pathological cells and the force measurement results indicated the CD20-rituximab binding forces were mainly in the range of 110-120 pN and 130-140 pN. These results can improve our understanding of the topography and molecular force of lymphoma pathological cells.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Effect of the disintegrin eristostatin on melanoma-natural killer cell interactions. Toxicon 2012; 61:83-93. [PMID: 23147645 DOI: 10.1016/j.toxicon.2012.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 10/17/2012] [Accepted: 10/23/2012] [Indexed: 01/04/2023]
Abstract
Malignant melanoma is difficult to treat due to its resistance to chemotherapeutic regimens. Discovery of new pharmaceuticals with inhibitory potential can be helpful in the development of novel treatments. The snake venom disintegrin eristostatin, from the viper Eristicophis macmahoni, caused immunodeficient mice to be significantly protected from development of lung colonization when melanoma cells and the disintegrin were co-injected in vivo into the lateral tail vein compared to vehicle controls. Cytotoxicity assays suggested that eristostatin makes the melanoma cells a better target for lysis by human natural killer cells. Direct binding assays using atomic force microscopy showed eristostatin does specifically bind the surface of the six melanoma cell lines tested. Eristostatin binding was partially inhibited by the addition of soluble RGDS peptide, suggesting an integrin as one likely, but not the sole, binding partner. Studies done with melanoma cells on a culture dish and natural killer cells attached to a cantilever tip in atomic force microscopy showed four major populations of interactions which exhibited altered frequency and unbinding strength in the presence of eristostatin.
Collapse
|
22
|
Raja M, Puntheeranurak T, Hinterdorfer P, Kinne R. SLC5 and SLC2 transporters in epithelia-cellular role and molecular mechanisms. CURRENT TOPICS IN MEMBRANES 2012. [PMID: 23177983 DOI: 10.1016/b978-0-12-394316-3.00002-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Members of the SLC5 and SLC2 family are prominently involved in epithelial sugar transport. SGLT1 (sodium-glucose transporter) and SGLT2, as representatives of the former, mediate sodium-dependent uptake of sugars into intestinal and renal cells. GLUT2 (glucose transporter), as representative of the latter, facilitates the sodium-independent exit of sugars from cells. SGLT has played a major role in the formulation and experimental proof for the existence of sodium cotransport systems. Based on the sequence data and biochemical and biophysical analyses, the role of extramembranous loops in sugar and inhibitor binding can be delineated. Crystal structures and homology modeling of SGLT reveal that the sugar translocation involves operation of two hydrophobic gates and intermediate exofacial and endofacial occluded states of the carrier in an alternating access model. The same basic model is proposed for GLUT1. Studies on GLUT1 have pioneered the isolation of eukaryotic transporters by biochemical methods and the development of transport kinetics and transporter models. For GLUT1, results from extensive mutagenesis, cysteine substitution and accessibility studies can be incorporated into a homology model with a barrel-like structure in which accessibility to the extracellular and intracellular medium is altered by pinching movements of some of the helices. For SGLT1 and GLUT1, the extensive hydrophilic and hydrophobic interactions between sugars and binding sites of the various intramembrane helices occur and lead to different substrate specificities and inhibitor affinities of the two transporters. A complex network of regulatory steps adapts the transport activity to the needs of the body.
Collapse
Affiliation(s)
- Mobeen Raja
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | | | | |
Collapse
|
23
|
Detecting CD20-Rituximab interaction forces using AFM single-molecule force spectroscopy. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4789-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Molecular recognition force spectroscopy of a specific lectin–carbohydrate interaction at single-molecule level. J Struct Biol 2011; 176:46-51. [DOI: 10.1016/j.jsb.2011.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 11/19/2022]
|
25
|
Puntheeranurak T, Neundlinger I, Kinne RKH, Hinterdorfer P. Single-molecule recognition force spectroscopy of transmembrane transporters on living cells. Nat Protoc 2011; 6:1443-52. [PMID: 21886107 DOI: 10.1038/nprot.2011.370] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atomic force microscopy (AFM) has proven to be a powerful tool in biological sciences. Its particular advantage over other high-resolution methods commonly used is that biomolecules can be investigated not only under physiological conditions but also while they perform their biological functions. Single-molecule force spectroscopy with AFM tip-modification techniques can provide insight into intermolecular forces between individual ligand-receptor pairs of biological systems. Here we present protocols for force spectroscopy of living cells, including cell sample preparation, tip chemistry, step-by-step AFM imaging, force spectroscopy and data analysis. We also delineate critical steps and describe limitations that we have experienced. The entire protocol can be completed in 12 h. The model studies discussed here demonstrate the power of AFM for studying transmembrane transporters at the single-molecule level.
Collapse
|
26
|
Chtcheglova LA, Hinterdorfer P. Simultaneous topography and recognition imaging on endothelial cells. J Mol Recognit 2011; 24:788-94. [DOI: 10.1002/jmr.1126] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Three powerful research tools from single cells into single molecules: AFM, laser tweezers, and Raman spectroscopy. Appl Biochem Biotechnol 2011; 165:485-96. [PMID: 21556902 DOI: 10.1007/s12010-011-9267-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 04/18/2011] [Indexed: 01/11/2023]
Abstract
By using three physical techniques (atomic force microscopy (AFM), laser tweezers, and Raman spectroscopy), many excellent works in single-cell/molecule research have been accomplished. In this review, we present a brief introduction to the principles of these three techniques, and their capabilities toward single-cell/molecule research are highlighted. Afterward, the advances in single-cell/molecule research that have been facilitated by these three techniques are described. Following this, their complementary assets for single-cell/molecule research are analyzed, and the necessity of integrating the functions of these three techniques into one instrument is proposed.
Collapse
|
28
|
Li Y, Wang J, Xing C, Wang Z, Wang H, Zhang B, Tang J. Molecular Recognition Force Spectroscopy Study of the Specific Lectin and Carbohydrate Interaction in a Living Cell. Chemphyschem 2011; 12:909-12. [DOI: 10.1002/cphc.201001008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/29/2011] [Indexed: 01/06/2023]
|
29
|
de Souza W, Rocha GM. Atomic force microscopy: a tool to analyze the structural organization of pathogenic protozoa. Trends Parasitol 2011; 27:160-7. [PMID: 21273123 DOI: 10.1016/j.pt.2010.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
Abstract
The fine structure of parasitic protozoa has been the subject of intense investigation with the use of electron microscopy. The recent development of atomic force microscopy (AFM) and all of the techniques associated with AFM has created new ways to further analyze the structure of cells. In this review, the various, presently-available modalities of AFM are discussed, as well as the results obtained in analysis of: (i) the structure of intact and detergent-extracted protozoa; (ii) the surface of infected cells; (iii) the structure of parasite macromolecules; (iv) the measurement of surface potential; and (v) force spectroscopy, the measurement of elasticity and ligand-receptor interactions.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens - Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brasil.
| | | |
Collapse
|
30
|
Shan Y, Hao X, Shang X, Cai M, Jiang J, Tang Z, Wang H. Recording force events of single quantum-dot endocytosis. Chem Commun (Camb) 2011; 47:3377-9. [DOI: 10.1039/c1cc00040c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Abstract
Recently, the idea has been developed to lower blood glucose blood glucose levels in diabetes by inhibiting sugar reabsorption sugar reabsorption in the kidney kidney . The main target is thereby the early proximal tubule proximal tubule where secondary active transport secondary active transport of the sugar is mediated by the sodium-D: -glucose D-glucose cotransporter SGLT2 SGLT2 . A model substance for the inhibitors inhibitors is the O-glucoside O-glucoside phlorizin phlorizin which inhibits transport transport competitively. Its binding to the transporter involves at least two different domains: an aglucone binding aglucone binding site at the transporter surface, involving extramembranous loops extramembraneous loops , and the sugar binding sugar binding /translocation site buried in a hydrophilic pocket of the transporter. The properties of these binding sites differ between SGLT2 and SGLT1 SGLT1 , which mediates sugar absorption sugar absorption in the intestine intestine . Various O-, C-, N- and S-glucosides have been synthesized with high affinity affinity and high specificity specificity for SGLT2 SGLT2 . Some of these glucosides are in clinical trials clinical trials and have been proven to successfully increase urinary glucose excretion urinary glucose excretion and to decrease blood sugar blood sugar levels without the danger of hypoglycaemia hypoglycaemia during fasting fasting in type 2 diabetes type 2 diabetes .
Collapse
Affiliation(s)
- Rolf K H Kinne
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.
| | | |
Collapse
|
32
|
Tyagi NK, Puntheeranurak T, Raja M, Kumar A, Wimmer B, Neundlinger I, Gruber H, Hinterdorfer P, Kinne RK. A biophysical glance at the outer surface of the membrane transporter SGLT1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1-18. [DOI: 10.1016/j.bbamem.2010.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 07/22/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
|
33
|
Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy. Biochem Biophys Res Commun 2010; 404:689-94. [PMID: 21156157 DOI: 10.1016/j.bbrc.2010.12.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 12/08/2010] [Indexed: 12/31/2022]
Abstract
The topography and mechanical properties of single B-lymphoma cells have been investigated by atomic force microscopy (AFM). With the assistance of microfabricated patterned pillars, the surface topography and ultrastructure of single living B-lymphoma cell were visualized by AFM. The apoptosis of B-lymphoma cells induced by rituximab alone was observed by acridine orange/ethidium bromide (AO/EB) double fluorescent staining. The rituximab-induced changes of mechanical properties in B-lymphoma cells were measured dynamically and the results showed that B-lymphoma cells became dramatically softer after incubation with rituximab. These results can improve our understanding of rituximab'effect and will facilitate the further investigation of the underlying mechanisms.
Collapse
|
34
|
Detecting CD20-Rituximab specific interactions on lymphoma cells using atomic force microscopy. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1189-95. [DOI: 10.1007/s11427-010-4070-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/31/2010] [Indexed: 10/18/2022]
|
35
|
La Ferla B, Spinosa V, D'Orazio G, Palazzo M, Balsari A, Foppoli AA, Rumio C, Nicotra F. Dansyl C-Glucoside as a Novel Agent Against Endotoxic Shock. ChemMedChem 2010; 5:1677-80. [DOI: 10.1002/cmdc.201000282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Goossens K, Willaert R. Flocculation protein structure and cell–cell adhesion mechanism in Saccharomyces cerevisiae. Biotechnol Lett 2010; 32:1571-85. [DOI: 10.1007/s10529-010-0352-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/02/2010] [Indexed: 01/08/2023]
|
37
|
Deng Z, Lulevich V, Liu FT, Liu GY. Applications of atomic force microscopy in biophysical chemistry of cells. J Phys Chem B 2010; 114:5971-82. [PMID: 20405961 PMCID: PMC3980964 DOI: 10.1021/jp9114546] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article addresses the question of what information and new insights atomic force microscopy (AFM) provides that are of importance and relevance to cellular biophysical chemistry research. Three enabling aspects of AFM are discussed: (a) visualization of membrane structural features with nanometer resolution, such as microvilli, ridges, porosomes, lamellapodia, and filopodia; (b) revealing structural evolution associated with cellular signaling pathways by time-dependent and high-resolution imaging of the cellular membrane in correlation with intracellular components from simultaneous optical microscopy; and (c) qualitative and quantitative measurements of single cell mechanics by acquisition of force-deformation profiles and extraction of Young's moduli for the membrane as well as cytoskeleton. A future prospective of AFM is also presented.
Collapse
Affiliation(s)
- Zhao Deng
- Department of Chemistry, University of California, Davis, Davis, California 95616
| | - Valentin Lulevich
- Department of Chemistry, University of California, Davis, Davis, California 95616
| | - Fu-tong Liu
- Department of Dermatology, University of California at Davis, Sacramento, California 95817
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, Davis, California 95616
| |
Collapse
|
38
|
Han SW, Mieda S, Nakamura C, Kihara T, Nakamura N, Miyake J. Successive detection of insulin-like growth factor-II bound to receptors on a living cell surface using an AFM. J Mol Recognit 2009; 24:17-22. [DOI: 10.1002/jmr.994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Shi X, Xu L, Yu J, Fang X. Study of inhibition effect of Herceptin on interaction between Heregulin and ErbB Receptors HER3/HER2 by single-molecule force spectroscopy. Exp Cell Res 2009; 315:2847-55. [DOI: 10.1016/j.yexcr.2009.05.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/07/2009] [Accepted: 05/28/2009] [Indexed: 11/25/2022]
|
40
|
Wimmer B, Raja M, Hinterdorfer P, Gruber HJ, Kinne RKH. C-terminal Loop 13 of Na+/Glucose Cotransporter 1 Contains Both Stereospecific and Non-stereospecific Sugar Interaction Sites. J Biol Chem 2009; 284:983-91. [DOI: 10.1074/jbc.m805082200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
41
|
Ebner A, Nikova D, Lange T, Häberle J, Falk S, Dübbers A, Bruns R, Hinterdorfer P, Oberleithner H, Schillers H. Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging. NANOTECHNOLOGY 2008; 19:384017. [PMID: 21832576 DOI: 10.1088/0957-4484/19/38/384017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated chloride (Cl(-)) channel that plays an important role in salt and fluid movement across epithelia. Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR. The most predominant mutation, F508del, disturbs CFTR protein trafficking, resulting in a reduced number of CFTR in the plasma membrane. Recent studies indicate that CFTR is not only found in epithelia but also in human erythrocytes. Although considerable attempts have been made to quantify CFTR in cells, conclusions on numbers of CFTR molecules localized in the plasma membrane have been drawn indirectly. AFM has the power to provide the needed information, since both sub-molecular spatial resolution and direct protein recognition via antibody-antigen interaction can be observed. We performed a quantification study of the CFTR copies in erythrocyte membranes at the single molecule level, and compared the difference between healthy donors and CF patients. We detected that the number of CFTR molecules is reduced by 70% in erythrocytes of cystic fibrosis patients.
Collapse
Affiliation(s)
- Andreas Ebner
- Institute for Biophysics, University of Linz, A-4040 Linz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Helenius J, Heisenberg CP, Gaub HE, Muller DJ. Single-cell force spectroscopy. J Cell Sci 2008; 121:1785-91. [PMID: 18492792 DOI: 10.1242/jcs.030999] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The controlled adhesion of cells to each other and to the extracellular matrix is crucial for tissue development and maintenance. Numerous assays have been developed to quantify cell adhesion. Among these, the use of atomic force microscopy (AFM) for single-cell force spectroscopy (SCFS) has recently been established. This assay permits the adhesion of living cells to be studied in near-physiological conditions. This implementation of AFM allows unrivaled spatial and temporal control of cells, as well as highly quantitative force actuation and force measurement that is sufficiently sensitive to characterize the interaction of single molecules. Therefore, not only overall cell adhesion but also the properties of single adhesion-receptor-ligand interactions can be studied. Here we describe current implementations and applications of SCFS, as well as potential pitfalls, and outline how developments will provide insight into the forces, energetics and kinetics of cell-adhesion processes.
Collapse
Affiliation(s)
- Jonne Helenius
- Biotechnology Center, University of Technology Dresden, Germany.
| | | | | | | |
Collapse
|
43
|
Chtcheglova LA, Atalar F, Ozbek U, Wildling L, Ebner A, Hinterdorfer P. Localization of the ergtoxin-1 receptors on the voltage sensing domain of hERG K+ channel by AFM recognition imaging. Pflugers Arch 2008; 456:247-54. [DOI: 10.1007/s00424-007-0418-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 12/05/2007] [Indexed: 11/29/2022]
|
44
|
Gunning AP, Chambers S, Pin C, Man AL, Morris VJ, Nicoletti C. Mapping specific adhesive interactions on living human intestinal epithelial cells with atomic force microscopy. FASEB J 2008; 22:2331-9. [PMID: 18263697 DOI: 10.1096/fj.07-100578] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Specific molecular-receptor interactions with gut epithelium cells are important in understanding bioactivity of food components and drugs, binding of commensal microflora, attachment and initiation of defense mechanisms against pathogenic bacteria and for development of targeted delivery systems to the gut. However, methods for probing such interactions are lacking. Methodology has been developed and validated to measure specific molecular-receptor interactions on living human colorectal cancer cells as in vitro models for the gut epithelium. Atomic force microscopy (AFM) was used to measure ligand-receptor interactions and to map receptor locations on cell surfaces. Measurements were made using silica beads attached to the AFM tip-cantilever assembly, which were functionalized by coupling of ligands to the bead surface. Wheat germ agglutinin (WGA) binds to the glycosylated extracellular domain III of the epidermal growth factor receptor. Methodology was tested by measuring binding of WGA to the surface of confluent monolayers of living Caco-2 human intestinal epithelial cells. The measured modal detachment force of 125 pN is typical of values expected for single molecule interactions. Adhesive events were used to map the location of binding sites on the cell surface revealing heterogeneity in their distribution within and between cells within the monolayer.
Collapse
Affiliation(s)
- A Patrick Gunning
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Cao T, Wang A, Liang X, Tang H, Auner GW, Salley SO, Ng KYS. Investigation of spacer length effect on immobilized Escherichia coli pili-antibody molecular recognition by AFM. Biotechnol Bioeng 2008; 98:1109-22. [PMID: 17514756 DOI: 10.1002/bit.21503] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The immobilization of antibodies to sensor surfaces is critical in biochemical sensor development. In this study, Poly(ethylene glycol) (PEG) and Jeffamine spacers were employed to tether Escherichia coli K99 pilus antibody to silicon wafer surfaces for the purpose of improving the orientation of antibody as well as reducing the steric hindrance. To illustrate the effect of spacer length, a variety of linear polymers were used to covalently attach the antibodies to silicon surfaces. Atomic Force Microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface morphology and chemical composition at each reaction step. The effect of spacer length in improving the specificity of immobilized antibody was investigated by attaching E. coli on the end of an AFM tip. The distribution of unbinding force and rupture distance from the force-distance curves obtained by AFM showed that the introduction of PEG spacer facilitates bacterial recognition which can improve the incidence of interactions by up to 90%. J600 proved to be the most effective spacer overcoming the steric hindrance seen with direct immobilization of antibody. In addition, the force spectroscopy reveals the elementary force quantum of E. coli-antibody to be 0.3 nN.
Collapse
Affiliation(s)
- Ting Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Extending Bell's model: how force transducer stiffness alters measured unbinding forces and kinetics of molecular complexes. Biophys J 2008; 94:2621-30. [PMID: 18178658 DOI: 10.1529/biophysj.107.114454] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Forced unbinding of complementary macromolecules such as ligand-receptor complexes can reveal energetic and kinetic details governing physiological processes ranging from cellular adhesion to drug metabolism. Although molecular-level experiments have enabled sampling of individual ligand-receptor complex dissociation events, disparities in measured unbinding force F(R) among these methods lead to marked variation in inferred binding energetics and kinetics at equilibrium. These discrepancies are documented for even the ubiquitous ligand-receptor pair, biotin-streptavidin. We investigated these disparities and examined atomic-level unbinding trajectories via steered molecular dynamics simulations, as well as via molecular force spectroscopy experiments on biotin-streptavidin. In addition to the well-known loading rate dependence of F(R) predicted by Bell's model, we find that experimentally accessible parameters such as the effective stiffness of the force transducer k can significantly perturb the energy landscape and the apparent unbinding force of the complex for sufficiently stiff force transducers. Additionally, at least 20% variation in unbinding force can be attributed to minute differences in initial atomic positions among energetically and structurally comparable complexes. For force transducers typical of molecular force spectroscopy experiments and atomistic simulations, this energy barrier perturbation results in extrapolated energetic and kinetic parameters of the complex that depend strongly on k. We present a model that explicitly includes the effect of k on apparent unbinding force of the ligand-receptor complex, and demonstrate that this correction enables prediction of unbinding distances and dissociation rates that are decoupled from the stiffness of actual or simulated molecular linkers.
Collapse
|
47
|
Functionalization of Probe Tips and Supports for Single-Molecule Recognition Force Microscopy. Top Curr Chem (Cham) 2008; 285:29-76. [DOI: 10.1007/128_2007_24] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Tyagi NK, Kumar A, Goyal P, Pandey D, Siess W, Kinne RKH. d-Glucose-Recognition and Phlorizin-Binding Sites in Human Sodium/d-Glucose Cotransporter 1 (hSGLT1): A Tryptophan Scanning Study. Biochemistry 2007; 46:13616-28. [DOI: 10.1021/bi701193x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Navneet K. Tyagi
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany, and the Institute for Prevention of Cardiovascular Disease, Ludwig Maximilian University, Pettenkoferstrasse 9, Munich, 80336, Germany
| | - Azad Kumar
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany, and the Institute for Prevention of Cardiovascular Disease, Ludwig Maximilian University, Pettenkoferstrasse 9, Munich, 80336, Germany
| | - Pankaj Goyal
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany, and the Institute for Prevention of Cardiovascular Disease, Ludwig Maximilian University, Pettenkoferstrasse 9, Munich, 80336, Germany
| | - Dharmendra Pandey
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany, and the Institute for Prevention of Cardiovascular Disease, Ludwig Maximilian University, Pettenkoferstrasse 9, Munich, 80336, Germany
| | - Wolfgang Siess
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany, and the Institute for Prevention of Cardiovascular Disease, Ludwig Maximilian University, Pettenkoferstrasse 9, Munich, 80336, Germany
| | - Rolf K. H. Kinne
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany, and the Institute for Prevention of Cardiovascular Disease, Ludwig Maximilian University, Pettenkoferstrasse 9, Munich, 80336, Germany
| |
Collapse
|
49
|
Sullivan CJ, Venkataraman S, Retterer ST, Allison DP, Doktycz MJ. Comparison of the indentation and elasticity of E. coli and its spheroplasts by AFM. Ultramicroscopy 2007; 107:934-42. [PMID: 17574761 DOI: 10.1016/j.ultramic.2007.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Atomic force microscopy (AFM) provides a unique opportunity to study live individual bacteria at the nanometer scale. In addition to providing accurate morphological information, AFM can be exploited to investigate membrane protein localization and molecular interactions on the surface of living cells. A prerequisite for these studies is the development of robust procedures for sample preparation. While such procedures are established for intact bacteria, they are only beginning to emerge for bacterial spheroplasts. Spheroplasts are useful research models for studying mechanosensitive ion channels, membrane transport, lipopolysaccharide translocation, solute uptake, and the effects of antimicrobial agents on membranes. Furthermore, given the similarities between spheroplasts and cell wall-deficient (CWD) forms of pathogenic bacteria, spheroplast research could be relevant in biomedical research. In this paper, a new technique for immobilizing spheroplasts on mica pretreated with aminopropyltriethoxysilane (APTES) and glutaraldehyde is described. Using this mounting technique, the indentation and cell elasticity of glutaraldehyde-fixed and untreated spheroplasts of E. coli in liquid were measured. These values are compared to those of intact E. coli. Untreated spheroplasts were found to be much softer than the intact cells and the silicon nitride cantilevers used in this study.
Collapse
Affiliation(s)
- C J Sullivan
- Genome Science and Technology, The University of Tennessee, Knoxville, TN 37932, USA
| | | | | | | | | |
Collapse
|
50
|
Yang H, Yu J, Fu G, Shi X, Xiao L, Chen Y, Fang X, He C. Interaction between single molecules of Mac-1 and ICAM-1 in living cells: an atomic force microscopy study. Exp Cell Res 2007; 313:3497-504. [PMID: 17803991 DOI: 10.1016/j.yexcr.2007.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 07/05/2007] [Accepted: 08/02/2007] [Indexed: 11/17/2022]
Abstract
The interaction between integrin macrophage differentiation antigen associated with complement three receptor function (Mac-1) and intercellular adhesion molecule-1 (ICAM-1), which is controlled tightly by the ligand-binding activity of Mac-1, is central to the regulation of neutrophil adhesion in host defense. Several "inside-out" signals and extracellular metal ions or antibodies have been found to activate Mac-1, resulting in an increased adhesiveness of Mac-1 to its ligands. However, the molecular basis for Mac-1 activation is not well understood yet. In this work, we have carried out a single-molecule study of Mac-1/ICAM-1 interaction force in living cells by atomic force microscopy (AFM). Our results showed that the binding probability and adhesion force of Mac-1 with ICAM-1 increased upon Mac-1 activation. Moreover, by comparing the dynamic force spectra of different Mac-1 mutants, we expected that Mac-1 activation is governed by the downward movement of its alpha7 helix.
Collapse
Affiliation(s)
- Huayan Yang
- Department of Neurobiology, Institute of Neuroscience, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|