1
|
Sueda S, Tsuruga R, Hirakawa T, Fujii S. Cell surface display of a protein based on a tail-anchored membrane protein. Biochem Biophys Res Commun 2025; 761:151738. [PMID: 40184792 DOI: 10.1016/j.bbrc.2025.151738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Methods for displaying proteins on the cell surface are widely used in protein-based biotechnology and bioengineering, where target proteins are expressed as fusion constructs with membrane proteins through recombinant DNA technology. In this study, we developed a system for displaying a protein on the cell surface using the transmembrane domain (TMD) of a tail-anchored membrane protein (TA protein). TA proteins have an orientation in the cell membrane such that their C-termini are displayed on the cell surface, which contrasts with that of type I transmembrane proteins that are commonly used as anchoring units. Therefore, by utilizing the TMD of a TA protein as an anchoring unit, desired proteins can be attached to the TMD via their N-termini. This approach is advantageous for displaying proteins whose C-terminal regions play important roles in their activity. In this study, we chose the inner nuclear membrane protein emerin as a TA protein and constructed expression systems in mammalian cells for a series of fusion proteins based on deleted forms of emerin. We found that utilizing emerin that lacks 210 residues from the N-terminus as a TMD allowed efficient translocation of the fusion protein to the plasma membrane, successfully displaying its target protein portion on the cell surface. Thus, our system serves as an effective method for protein display, enhancing the applicability of cell surface display technology based on transmembrane proteins.
Collapse
Affiliation(s)
- Shinji Sueda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, 820-8502, Japan.
| | - Rima Tsuruga
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, 820-8502, Japan
| | - Takumi Hirakawa
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, 820-8502, Japan
| | - Satoshi Fujii
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, 820-8502, Japan
| |
Collapse
|
2
|
Xie Y, Wang R, McClatchy DB, Ma Y, Diedrich J, Sanchez-Alavez M, Petrascheck M, Yates JR, Cline HT. Activity-dependent synthesis of Emerin gates neuronal plasticity by regulating proteostasis. Cell Rep 2025; 44:115439. [PMID: 40208794 PMCID: PMC12080591 DOI: 10.1016/j.celrep.2025.115439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/26/2024] [Accepted: 02/26/2025] [Indexed: 04/12/2025] Open
Abstract
Neurons dynamically regulate their proteome in response to sensory input, a key process underlying experience-dependent plasticity. We characterized the visual experience-dependent nascent proteome in mice within a brief, defined time window after stimulation using an optimized metabolic labeling approach. Visual experience induced cell-type-specific and age-dependent alterations in the nascent proteome, including proteostasis-related proteins. Emerin is the top activity-induced candidate plasticity protein. Activity-induced neuronal Emerin synthesis is rapid and transcription independent. Emerin broadly inhibits protein synthesis, decreasing translation regulators and synaptic proteins. Decreasing Emerin shifted the dendritic spine population from a predominantly mushroom morphology to filopodia and decreased network connectivity. Blocking visual experience-induced Emerin reduced visually evoked electrophysiological responses and impaired behaviorally assessed visual information processing. Our findings support a proteostatic model in which visual experience-induced Emerin provides a feedforward block on further protein synthesis, refining temporal control of activity-induced plasticity proteins and optimizing visual system function.
Collapse
Affiliation(s)
- Yi Xie
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Graduate Program, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ruoxi Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel B McClatchy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yuanhui Ma
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jolene Diedrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Manuel Sanchez-Alavez
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Petrascheck
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hollis T Cline
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Marano N, Holaska JM. The role of inner nuclear membrane protein emerin in myogenesis. FASEB J 2025; 39:e70514. [PMID: 40178931 PMCID: PMC11967984 DOI: 10.1096/fj.202500323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Emerin, a ubiquitously expressed inner nuclear membrane protein, plays a central role in maintaining nuclear structure and genomic organization, and in regulating gene expression and cellular signaling pathways. These functions are critical for proper myogenic differentiation and are closely linked to the pathology of Emery-Dreifuss muscular dystrophy 1 (EDMD1), a laminopathy caused by mutations in the EMD gene. Emerin, along with other nuclear lamina proteins, modulates chromatin organization, cell signaling, gene expression, and cellular mechanotransduction, processes essential for muscle development and homeostasis. Loss of emerin function disrupts chromatin localization, causes dysregulated gene expression, and alters nucleoskeletal organization, resulting in impaired myogenic differentiation. Recent findings suggest that emerin tethers repressive chromatin at the nuclear envelope, a process essential for robust myogenesis. This review provides an in-depth discussion of emerin's multifaceted roles in nuclear organization, gene regulation, and cellular signaling, highlighting its importance in myogenic differentiation and disease progression.
Collapse
Affiliation(s)
- Nicholas Marano
- Department of Biomedical SciencesCooper Medical School of Rowan UniversityCamdenNew JerseyUSA
- Rowan‐Virtua School of Translational Biomedical Engineering and SciencesStratfordNew JerseyUSA
| | - James M. Holaska
- Department of Biomedical SciencesCooper Medical School of Rowan UniversityCamdenNew JerseyUSA
- Rowan‐Virtua School of Translational Biomedical Engineering and SciencesStratfordNew JerseyUSA
| |
Collapse
|
4
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
5
|
Bosch‐Calvet M, Pérez‐Venteo A, Cebria‐Xart A, Garcia‐Cajide M, Mauvezin C. Nuclear stiffness through lamin A/C overexpression differentially modulates chromosomal instability biomarkers. Biol Cell 2025; 117:e12001. [PMID: 40012191 PMCID: PMC11865694 DOI: 10.1111/boc.12001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND INFORMATION Mitosis is crucial for the faithful transmission of genetic material, and disruptions can result in chromosomal instability (CIN), a hallmark of cancer. CIN is a known driver of tumor heterogeneity and anti-cancer drug resistance, thus highlighting the need to assess CIN levels in cancer cells to design effective targeted therapy. While micronuclei are widely recognized as CIN markers, we have recently identified the toroidal nucleus, a novel ring-shaped nuclear phenotype arising as well from chromosome mis-segregation. RESULTS Here, we examined whether increasing nuclear envelope stiffness through lamin A/C overexpression could affect the formation of toroidal nuclei and micronuclei. Interestingly, lamin A/C overexpression led to an increase in toroidal nuclei while reducing micronuclei prevalence. We demonstrated that chromatin compaction and nuclear stiffness drive the formation of toroidal nuclei. Furthermore, inhibition of autophagy and lysosomal function elevated the frequency of toroidal nuclei without affecting the number of micronuclei in the whole cell population. We demonstrated that this divergence between the two CIN biomarkers is independent of defects in lamin A processing. CONCLUSIONS AND SIGNIFICANCE These findings uncover a complex interplay between nuclear architecture and levels of CIN, advancing our understanding of the mechanisms supporting genomic stability and further contributing to cancer biology.
Collapse
Affiliation(s)
- Mireia Bosch‐Calvet
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutUniversitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Alejandro Pérez‐Venteo
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutUniversitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Alex Cebria‐Xart
- Institut de Recerca Sant Joan de Déu (IRSJD)BarcelonaSpain
- Cancer Science Programme, Laboratory of Pediatric Cancer EpigeneticsInstitute for Research in Biomedicine (IRB Barcelona)BarcelonaSpain
| | - Marta Garcia‐Cajide
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutUniversitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Caroline Mauvezin
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutUniversitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| |
Collapse
|
6
|
Odell J, Lammerding J. N-terminal tags impair the ability of lamin A to provide structural support to the nucleus. J Cell Sci 2024; 137:jcs262207. [PMID: 39092499 PMCID: PMC11361635 DOI: 10.1242/jcs.262207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Lamins are intermediate filament proteins that contribute to numerous cellular functions, including nuclear morphology and mechanical stability. The N-terminal head domain of lamin is crucial for higher order filament assembly and function, yet the effects of commonly used N-terminal tags on lamin function remain largely unexplored. Here, we systematically studied the effect of two differently sized tags on lamin A (LaA) function in a mammalian cell model engineered to allow for precise control of expression of tagged lamin proteins. Untagged, FLAG-tagged and GFP-tagged LaA completely rescued nuclear shape defects when expressed at similar levels in lamin A/C-deficient (Lmna-/-) MEFs, and all LaA constructs prevented increased nuclear envelope ruptures in these cells. N-terminal tags, however, altered the nuclear localization of LaA and impaired the ability of LaA to restore nuclear deformability and to recruit emerin to the nuclear membrane in Lmna-/- MEFs. Our finding that tags impede some LaA functions but not others might explain the partial loss of function phenotypes when tagged lamins are expressed in model organisms and should caution researchers using tagged lamins to study the nucleus.
Collapse
Affiliation(s)
- Jacob Odell
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Odell J, Lammerding J. N-terminal tags impair the ability of Lamin A to provide structural support to the nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590311. [PMID: 39211210 PMCID: PMC11361184 DOI: 10.1101/2024.04.19.590311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lamins are intermediate filament proteins that contribute to numerous cellular functions, including nuclear morphology and mechanical stability. The N-terminal head domain of lamin is critical for higher order filament assembly and function, yet the effects of commonly used N-terminal tags on lamin function remain largely unexplored. Here, we systematically studied the effect of two differently sized tags on Lamin A (LaA) function in a mammalian cell model engineered to allow for precise control of expression of tagged lamin proteins. Untagged, FLAG-tagged, and GFP-tagged LaA completely rescued nuclear shape defects when expressed at similar levels in lamin A/C-deficient ( Lmna -/- ) MEFs, and all LaA constructs prevented increased nuclear envelope (NE) ruptures in these cells. N-terminal tags, however, altered the nuclear localization of LaA and impaired the ability of LaA to restore nuclear deformability and to recruit Emerin to the nuclear membrane in Lmna -/- MEFs. Our finding that tags impede some LaA functions but not others may explain the partial loss of function phenotypes when tagged lamins are expressed in model organisms and should caution researchers using tagged lamins to study the nucleus.
Collapse
|
8
|
Xie Y, Wang R, McClatchy DB, Ma Y, Diedrich J, Sanchez-Alavez M, Petrascheck M, Yates JR, Cline HT. Activity-dependent synthesis of Emerin gates neuronal plasticity by regulating proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.600712. [PMID: 38979362 PMCID: PMC11230442 DOI: 10.1101/2024.06.30.600712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Neurons dynamically regulate their proteome in response to sensory input, a key process underlying experience-dependent plasticity. We characterized the visual experience-dependent nascent proteome within a brief, defined time window after stimulation using an optimized metabolic labeling approach. Visual experience induced cell type-specific and age-dependent alterations in the nascent proteome, including proteostasis-related processes. We identified Emerin as the top activity-induced candidate plasticity protein and demonstrated that its rapid activity-induced synthesis is transcription-independent. In contrast to its nuclear localization and function in myocytes, activity-induced neuronal Emerin is abundant in the endoplasmic reticulum and broadly inhibits protein synthesis, including translation regulators and synaptic proteins. Downregulating Emerin shifted the dendritic spine population from predominantly mushroom morphology to filopodia and decreased network connectivity. In mice, decreased Emerin reduced visual response magnitude and impaired visual information processing. Our findings support an experience-dependent feed-forward role for Emerin in temporally gating neuronal plasticity by negatively regulating translation.
Collapse
|
9
|
Storey EC, Holt I, Brown S, Synowsky S, Shirran S, Fuller HR. Proteomic characterization of human LMNA-related congenital muscular dystrophy muscle cells. Neuromuscul Disord 2024; 38:26-41. [PMID: 38554696 DOI: 10.1016/j.nmd.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
LMNA-related congenital muscular dystrophy (L-CMD) is caused by mutations in the LMNA gene, encoding lamin A/C. To further understand the molecular mechanisms of L-CMD, proteomic profiling using DIA mass spectrometry was conducted on immortalized myoblasts and myotubes from controls and L-CMD donors each harbouring a different LMNA mutation (R249W, del.32 K and L380S). Compared to controls, 124 and 228 differentially abundant proteins were detected in L-CMD myoblasts and myotubes, respectively, and were associated with enriched canonical pathways including synaptogenesis and necroptosis in myoblasts, and Huntington's disease and insulin secretion in myotubes. Abnormal nuclear morphology and reduced lamin A/C and emerin abundance was evident in all L-CMD cell lines compared to controls, while nucleoplasmic aggregation of lamin A/C was restricted to del.32 K cells, and mislocalization of emerin was restricted to R249W cells. Abnormal nuclear morphology indicates loss of nuclear lamina integrity as a common feature of L-CMD, likely rendering muscle cells vulnerable to mechanically induced stress, while differences between L-CMD cell lines in emerin and lamin A localization suggests that some molecular alterations in L-CMD are mutation specific. Nonetheless, identifying common proteomic alterations and molecular pathways across all three L-CMD lines has highlighted potential targets for the development of non-mutation specific therapies.
Collapse
Affiliation(s)
- Emily C Storey
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK; The School of Pharmacy and Bioengineering, Keele University, ST5 5BG, UK
| | - Ian Holt
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK; The School of Pharmacy and Bioengineering, Keele University, ST5 5BG, UK
| | - Sharon Brown
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK; The School of Pharmacy and Bioengineering, Keele University, ST5 5BG, UK
| | - Silvia Synowsky
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, KY16 9ST, UK
| | - Sally Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, KY16 9ST, UK
| | - Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK; The School of Pharmacy and Bioengineering, Keele University, ST5 5BG, UK.
| |
Collapse
|
10
|
Kim HJ, Lee PCW, Hong JH. Overview of cellular homeostasis-associated nuclear envelope lamins and associated input signals. Front Cell Dev Biol 2023; 11:1173514. [PMID: 37250905 PMCID: PMC10213260 DOI: 10.3389/fcell.2023.1173514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
With the discovery of the role of the nuclear envelope protein lamin in human genetic diseases, further diverse roles of lamins have been elucidated. The roles of lamins have been addressed in cellular homeostasis including gene regulation, cell cycle, cellular senescence, adipogenesis, bone remodeling as well as modulation of cancer biology. Features of laminopathies line with oxidative stress-associated cellular senescence, differentiation, and longevity and share with downstream of aging-oxidative stress. Thus, in this review, we highlighted various roles of lamin as key molecule of nuclear maintenance, specially lamin-A/C, and mutated LMNA gene clearly reveal aging-related genetic phenotypes, such as enhanced differentiation, adipogenesis, and osteoporosis. The modulatory roles of lamin-A/C in stem cell differentiation, skin, cardiac regulation, and oncology have also been elucidated. In addition to recent advances in laminopathies, we highlighted for the first kinase-dependent nuclear lamin biology and recently developed modulatory mechanisms or effector signals of lamin regulation. Advanced knowledge of the lamin-A/C proteins as diverse signaling modulators might be biological key to unlocking the complex signaling of aging-related human diseases and homeostasis in cellular process.
Collapse
Affiliation(s)
- Hyeong Jae Kim
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Peter C. W. Lee
- Lung Cancer Research Center, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
11
|
Hansen E, Holaska JM. The nuclear envelope and metastasis. Oncotarget 2023; 14:317-320. [PMID: 37057891 PMCID: PMC10103595 DOI: 10.18632/oncotarget.28375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 04/15/2023] Open
Affiliation(s)
| | - James M. Holaska
- Correspondence to:James M. Holaska, Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; Rowan University Graduate School of Biomedical Sciences, Stratford, NJ 08084, USA email
| |
Collapse
|
12
|
Scott NR, Parekh SH. A-type lamins involvement in transport and implications in cancer? Nucleus 2022; 13:221-235. [PMID: 36109835 PMCID: PMC9481127 DOI: 10.1080/19491034.2022.2118418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Nuclear lamins and transport are intrinsically linked, but their relationship is yet to be fully unraveled. A multitude of complex, coupled interactions between lamins and nucleoporins (Nups), which mediate active transport into and out of the nucleus, combined with well documented dysregulation of lamins in many cancers, suggests that lamins and nuclear transport may play a pivotal role in carcinogenesis and the preservation of cancer. Changes of function related to lamin/Nup activity can principally lead to DNA damage, further increasing the genetic diversity within a tumor, which could lead to the reduction the effectiveness of antineoplastic treatments. This review discusses and synthesizes different connections of lamins to nuclear transport and offers a number of outlook questions, the answers to which could reveal a new perspective on the connection of lamins to molecular transport of cancer therapeutics, in addition to their established role in nuclear mechanics.
Collapse
Affiliation(s)
- Nicholas R. Scott
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Sapun H. Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
13
|
Stenvall CGA, Nyström JH, Butler-Hallissey C, Jansson T, Heikkilä TRH, Adam SA, Foisner R, Goldman RD, Ridge KM, Toivola DM. Cytoplasmic keratins couple with and maintain nuclear envelope integrity in colonic epithelial cells. Mol Biol Cell 2022; 33:ar121. [PMID: 36001365 PMCID: PMC9634972 DOI: 10.1091/mbc.e20-06-0387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2022] [Accepted: 08/18/2022] [Indexed: 01/18/2023] Open
Abstract
Keratin intermediate filaments convey mechanical stability and protection against stress to epithelial cells. Keratins are essential for colon health, as seen in keratin 8 knockout (K8-/-) mice exhibiting a colitis phenotype. We hypothesized that keratins support the nuclear envelope and lamina in colonocytes. K8-/- colonocytes in vivo exhibit significantly decreased levels of lamins A/C, B1, and B2 in a colon-specific and cell-intrinsic manner. CRISPR/Cas9- or siRNA-mediated K8 knockdown in Caco-2 cells similarly decreased lamin levels, which recovered after reexpression of K8 following siRNA treatment. Nuclear area was not decreased, and roundness was only marginally increased in cells without K8. Down-regulation of K8 in adult K8flox/flox;Villin-CreERt2 mice following tamoxifen administration significantly decreased lamin levels at day 4 when K8 levels had reduced to 40%. K8 loss also led to reduced levels of plectin, LINC complex, and lamin-associated proteins. While keratins were not seen in the nucleoplasm without or with leptomycin B treatment, keratins were found intimately located at the nuclear envelope and complexed with SUN2 and lamin A. Furthermore, K8 loss in Caco-2 cells compromised nuclear membrane integrity basally and after shear stress. In conclusion, colonocyte K8 helps maintain nuclear envelope and lamina composition and contributes to nuclear integrity.
Collapse
Affiliation(s)
| | - Joel H. Nyström
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University
| | - Ciarán Butler-Hallissey
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University
- Turku Bioscience Centre, University of Turku, and Åbo Akademi University, and
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Theresia Jansson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University
| | - Taina R. H. Heikkilä
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University
| | | | - Roland Foisner
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter Campus, 1030 Vienna, Austria
| | | | - Karen M. Ridge
- Department of Cell and Developmental Biology and
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Diana M. Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University
- InFLAMES Research Flagship Center, Åbo Akademi University, 20500 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, 20520 Turku, Finland
| |
Collapse
|
14
|
Tang Y, Zhu L, Cho JS, Li XY, Weiss SJ. Matrix remodeling controls a nuclear lamin A/C-emerin network that directs Wnt-regulated stem cell fate. Dev Cell 2022; 57:480-495.e6. [PMID: 35150612 PMCID: PMC8891068 DOI: 10.1016/j.devcel.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
Abstract
Skeletal stem cells (SSCs) reside within a three-dimensional extracellular matrix (ECM) compartment and differentiate into multiple cell lineages, thereby controlling tissue maintenance and regeneration. Within this environment, SSCs can proteolytically remodel the surrounding ECM in response to growth factors that direct lineage commitment via undefined mechanisms. Here, we report that Mmp14-dependent ECM remodeling coordinates canonical Wnt signaling and guides stem cell fate by triggering an integrin-activated reorganization of the SCC cytoskeleton that controls nuclear lamin A/C levels via the linker of nucleoskeleton and cytoskeleton (LINC) complexes. In turn, SSC lamin A/C levels dictate the localization of emerin, an inner nuclear membrane protein whose ability to regulate β-catenin activity modulates Wnt signaling while directing lineage commitment in vitro and in vivo. These findings define a previously undescribed axis wherein SSCs use Mmp14-dependent ECM remodeling to control cytoskeletal and nucleoskeletal organization, thereby governing Wnt-dependent stem cell fate decisions.
Collapse
Affiliation(s)
- Yi Tang
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Lingxin Zhu
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jung-Sun Cho
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Xiao-Yan Li
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Stephen J. Weiss
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Corresponding Authors: Stephen J. Weiss, MD, , Life Sciences Institute, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw, Ann Arbor, MI 48109-2216, Yi Tang, PhD, , Life Sciences Institute, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw, Ann Arbor, MI 48109-2216
| |
Collapse
|
15
|
Abstract
Lamins interact with a host of nuclear membrane proteins, transcription factors, chromatin regulators, signaling molecules, splicing factors, and even chromatin itself to form a nuclear subcompartment, the nuclear lamina, that is involved in a variety of cellular processes such as the governance of nuclear integrity, nuclear positioning, mitosis, DNA repair, DNA replication, splicing, signaling, mechanotransduction and -sensation, transcriptional regulation, and genome organization. Lamins are the primary scaffold for this nuclear subcompartment, but interactions with lamin-associated peptides in the inner nuclear membrane are self-reinforcing and mutually required. Lamins also interact, directly and indirectly, with peripheral heterochromatin domains called lamina-associated domains (LADs) and help to regulate dynamic 3D genome organization and expression of developmentally regulated genes.
Collapse
Affiliation(s)
- Xianrong Wong
- Laboratory of Developmental and Regenerative Biology, Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138648
| | - Ashley J Melendez-Perez
- Department of Biological Chemistry and Center for Epigenetics, Johns Hopkins University of Medicine, Baltimore, Maryland 21205, USA
| | - Karen L Reddy
- Department of Biological Chemistry and Center for Epigenetics, Johns Hopkins University of Medicine, Baltimore, Maryland 21205, USA
- Sidney Kimmel Cancer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| |
Collapse
|
16
|
Pothapragada SP, Gupta P, Mukherjee S, Das T. Matrix mechanics regulates epithelial defence against cancer by tuning dynamic localization of filamin. Nat Commun 2022; 13:218. [PMID: 35017535 PMCID: PMC8752856 DOI: 10.1038/s41467-021-27896-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
In epithelia, normal cells recognize and extrude out newly emerged transformed cells by competition. This process is the most fundamental epithelial defence against cancer, whose occasional failure promotes oncogenesis. However, little is known about what factors determine the success or failure of this defence. Here we report that mechanical stiffening of extracellular matrix attenuates the epithelial defence against HRasV12-transformed cells. Using photoconversion labelling, protein tracking, and loss-of-function mutations, we attribute this attenuation to stiffening-induced perinuclear sequestration of a cytoskeletal protein, filamin. On soft matrix mimicking healthy epithelium, filamin exists as a dynamically single population, which moves to the normal cell-transformed cell interface to initiate the extrusion of transformed cells. However, on stiff matrix mimicking fibrotic epithelium, filamin redistributes into two dynamically distinct populations, including a new perinuclear pool that cannot move to the cell-cell interface. A matrix stiffness-dependent differential between filamin-Cdc42 and filamin-perinuclear cytoskeleton interaction controls this distinctive filamin localization and hence, determines the success or failure of epithelial defence on soft versus stiff matrix. Together, our study reveals how pathological matrix stiffening leads to a failed epithelial defence at the initial stage of oncogenesis. Epithelial cells have the ability to competitively remove potentially cancerous cells from the tissue. Here the authors discover that pathological stiffening of extracellular matrix leads to the loss of this basic epithelial defence against cancer.
Collapse
Affiliation(s)
- Shilpa P Pothapragada
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, 500 046, India
| | - Praver Gupta
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, 500 046, India
| | - Soumi Mukherjee
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, 500 046, India.,Department of Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Tamal Das
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, 500 046, India.
| |
Collapse
|
17
|
Wong X, Hoskins VE, Melendez-Perez AJ, Harr JC, Gordon M, Reddy KL. Lamin C is required to establish genome organization after mitosis. Genome Biol 2021; 22:305. [PMID: 34775987 PMCID: PMC8591896 DOI: 10.1186/s13059-021-02516-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The dynamic 3D organization of the genome is central to gene regulation and development. The nuclear lamina influences genome organization through the tethering of lamina-associated domains (LADs) to the nuclear periphery. Evidence suggests that lamins A and C are the predominant lamins involved in the peripheral association of LADs, potentially serving different roles. RESULTS Here, we examine chromosome architecture in mouse cells in which lamin A or lamin C are downregulated. We find that lamin C, and not lamin A, is required for the 3D organization of LADs and overall chromosome organization. Striking differences in localization are present as cells exit mitosis and persist through early G1 and are linked to differential phosphorylation. Whereas lamin A associates with the nascent nuclear envelope (NE) during telophase, lamin C remains in the interior, surrounding globular LAD aggregates enriched on euchromatic regions. Lamin C association with the NE is delayed until several hours into G1 and correlates temporally and spatially with the post-mitotic NE association of LADs. Post-mitotic LAD association with the NE, and global 3D genome organization, is perturbed only in cells depleted of lamin C, and not lamin A. CONCLUSIONS Lamin C regulates LAD dynamics during exit from mitosis and is a key regulator of genome organization in mammalian cells. This reveals an unexpectedly central role for lamin C in genome organization, including inter-chromosomal LAD-LAD segregation and LAD scaffolding at the NE, raising intriguing questions about the individual and overlapping roles of lamin A/C in cellular function and disease.
Collapse
Affiliation(s)
- Xianrong Wong
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.,Current Address: Laboratory of Developmental and Regenerative Biology, A*STAR Skin Research Labs, Agency for Science, Technology and Research (A*STAR), Immunos, Singapore, 138648, Singapore
| | - Victoria E Hoskins
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.,McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ashley J Melendez-Perez
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jennifer C Harr
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Biological Sciences, St. Mary's University, San Antonio, TX, 78228, USA
| | - Molly Gordon
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Karen L Reddy
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
18
|
Expression of the Ebola Virus VP24 Protein Compromises the Integrity of the Nuclear Envelope and Induces a Laminopathy-Like Cellular Phenotype. mBio 2021; 12:e0097221. [PMID: 34225493 PMCID: PMC8406168 DOI: 10.1128/mbio.00972-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ebola virus (EBOV) VP24 protein is a nucleocapsid-associated protein that inhibits interferon (IFN) gene expression and counteracts the IFN-mediated antiviral response, preventing nuclear import of signal transducer and activator of transcription 1 (STAT1). Proteomic studies to identify additional EBOV VP24 partners have pointed to the nuclear membrane component emerin as a potential element of the VP24 cellular interactome. Here, we have further studied this interaction and its impact on cell biology. We demonstrate that VP24 interacts with emerin but also with other components of the inner nuclear membrane, such as lamin A/C and lamin B. We also show that VP24 diminishes the interaction between emerin and lamin A/C and compromises the integrity of the nuclear membrane. This disruption is associated with nuclear morphological abnormalities, activation of a DNA damage response, the phosphorylation of extracellular signal-regulated kinase (ERK), and the induction of interferon-stimulated gene 15 (ISG15). Interestingly, expression of VP24 also promoted the cytoplasmic translocation and downmodulation of barrier-to-autointegration factor (BAF), a common interactor of lamin A/C and emerin, leading to repression of the BAF-regulated CSF1 gene. Importantly, we found that EBOV infection results in the activation of pathways associated with nuclear envelope damage, consistent with our observations in cells expressing VP24. In summary, here we demonstrate that VP24 acts at the nuclear membrane, causing morphological and functional changes in cells that recapitulate several of the hallmarks of laminopathy diseases.
Collapse
|
19
|
Abstract
The cell nucleus is best known as the container of the genome. Its envelope provides a barrier for passive macromolecule diffusion, which enhances the control of gene expression. As its largest and stiffest organelle, the nucleus also defines the minimal space requirements of a cell. Internal or external pressures that deform a cell to its physical limits cause a corresponding nuclear deformation. Evidence is consolidating that the nucleus, in addition to its genetic functions, serves as a physical sensing device for critical cell body deformation. Nuclear mechanotransduction allows cells to adapt their acute behaviors, mechanical stability, paracrine signaling, and fate to their physical surroundings. This review summarizes the basic chemical and mechanical properties of nuclear components, and how these properties are thought to be utilized for mechanosensing. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
20
|
Chen NY, Kim PH, Tu Y, Yang Y, Heizer PJ, Young SG, Fong LG. Increased expression of LAP2β eliminates nuclear membrane ruptures in nuclear lamin-deficient neurons and fibroblasts. Proc Natl Acad Sci U S A 2021; 118:e2107770118. [PMID: 34161290 PMCID: PMC8237679 DOI: 10.1073/pnas.2107770118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defects or deficiencies in nuclear lamins cause pathology in many cell types, and recent studies have implicated nuclear membrane (NM) ruptures as a cause of cell toxicity. We previously observed NM ruptures and progressive cell death in the developing brain of lamin B1-deficient mouse embryos. We also observed frequent NM ruptures and DNA damage in nuclear lamin-deficient fibroblasts. Factors modulating susceptibility to NM ruptures remain unclear, but we noted low levels of LAP2β, a chromatin-binding inner NM protein, in fibroblasts with NM ruptures. Here, we explored the apparent link between LAP2β and NM ruptures in nuclear lamin-deficient neurons and fibroblasts, and we tested whether manipulating LAP2β expression levels would alter NM rupture frequency. In cortical plate neurons of lamin B1-deficient embryos, we observed a strong correlation between low LAP2β levels and NM ruptures. We also found low LAP2β levels and frequent NM ruptures in neurons of cultured Lmnb1-/- neurospheres. Reducing LAP2β expression in Lmnb1-/- neurons with an siRNA markedly increased the NM rupture frequency (without affecting NM rupture duration), whereas increased LAP2β expression eliminated NM ruptures and reduced DNA damage. Consistent findings were observed in nuclear lamin-deficient fibroblasts. Reduced LAP2β expression increased NM ruptures, whereas increased LAP2β expression virtually abolished NM ruptures. Increased LAP2β expression nearly abolished NM ruptures in cells subjected to mechanical stress (an intervention that increases NM ruptures). Our studies showed that increasing LAP2β expression bolsters NM integrity in nuclear lamin-deficient cells and markedly reduces NM rupture frequency.
Collapse
Affiliation(s)
- Natalie Y Chen
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Paul H Kim
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Yiping Tu
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Ye Yang
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Patrick J Heizer
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, CA 90095;
- Department of Human Genetics, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, CA 90095;
| |
Collapse
|
21
|
Chiu M, Trigg B, Taracena M, Wells M. Diverse cellular morphologies during lumen maturation in Anopheles gambiae larval salivary glands. INSECT MOLECULAR BIOLOGY 2021; 30:210-230. [PMID: 33305876 PMCID: PMC8142555 DOI: 10.1111/imb.12689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Mosquitoes are the greatest animal threat to human health, causing hundreds of millions of infections and around 1 million deaths each year. All mosquito-borne pathogens must traverse the salivary glands (SGs) to be transmitted to the next host, making this organ an ideal target for interventions. The adult SG develops from precursor cells located in the larval SG duct bud. Characterization of the larval SG has been limited. We sought to better understand larval SG architecture, secretion and gene expression. We developed an optimized method for larval SG staining and surveyed hundreds of larval stage 4 (L4) SGs using fluorescence confocal microscopy. Remarkable variation in SG cell and chromatin organization differed among individuals and across the L4 stage. Lumen formation occurred during L4 stage through secretion likely involving a coincident cellular apical lipid enrichment and extracellular vesicle-like structures. Meta-analysis of microarray data showed that larval SG gene expression is divergent from adult SGs, more similar to larval gastric cecae, but different from other larval gut compartments. This work highlights the variable cell architecture of larval Anopheles gambiae SGs and provides candidate targets for genetic strategies aiming to disrupt SGs and transmission of mosquito-borne pathogens.
Collapse
Affiliation(s)
- M Chiu
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - B Trigg
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - M Taracena
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - M Wells
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biomedical Sciences, Idaho College of Osteopathic Medicine (ICOM), Meridian, Idaho, USA
| |
Collapse
|
22
|
Yamamoto-Hino M, Kawaguchi K, Ono M, Furukawa K, Goto S. Lamin is essential for nuclear localization of the GPI synthesis enzyme PIG-B and GPI-anchored protein production in Drosophila. J Cell Sci 2020; 133:jcs.238527. [PMID: 32051283 PMCID: PMC7104860 DOI: 10.1242/jcs.238527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/28/2020] [Indexed: 01/13/2023] Open
Abstract
Membrane lipid biosynthesis is a complex process that occurs in various intracellular compartments. In Drosophila, phosphatidylinositol glycan-B (PIG-B), which catalyzes addition of the third mannose in glycosylphosphatidylinositol (GPI), localizes to the nuclear envelope (NE). Although this NE localization is essential for Drosophila development, the underlying molecular mechanism remains unknown. To elucidate this mechanism, we identified PIG-B-interacting proteins by performing immunoprecipitation followed by proteomic analysis. We then examined which of these proteins are required for the NE localization of PIG-B. Knockdown of Lamin Dm0, a B-type lamin, led to mislocalization of PIG-B from the NE to the endoplasmic reticulum. Lamin Dm0 associated with PIG-B at the inner nuclear membrane, a process that required the tail domain of Lamin Dm0. Furthermore, GPI moieties were distributed abnormally in the Lamin Dm0 mutant. These data indicate that Lamin Dm0 is involved in the NE localization of PIG-B and is required for proper GPI-anchor modification of proteins. Highlighted Article: Lamin plays a role in post-translational modification of plasma membrane proteins by tethering the GPI modification enzyme PIG-B to the inner nuclear membrane.
Collapse
Affiliation(s)
- Miki Yamamoto-Hino
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Kohei Kawaguchi
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Hospital, Chu-o-ku, Tokyo 104-0045, Japan
| | - Kazuhiro Furukawa
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Satoshi Goto
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
23
|
Pradhan R, Nallappa MJ, Sengupta K. Lamin A/C modulates spatial organization and function of the Hsp70 gene locus via nuclear myosin I. J Cell Sci 2020; 133:jcs236265. [PMID: 31988151 DOI: 10.1242/jcs.236265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
The structure-function relationship of the nucleus is tightly regulated, especially during heat shock. Typically, heat shock activates molecular chaperones that prevent protein misfolding and preserve genome integrity. However, the molecular mechanisms that regulate nuclear structure-function relationships during heat shock remain unclear. Here, we show that lamin A and C (hereafter lamin A/C; both lamin A and C are encoded by LMNA) are required for heat-shock-mediated transcriptional induction of the Hsp70 gene locus (HSPA genes). Interestingly, lamin A/C regulates redistribution of nuclear myosin I (NM1) into the nucleus upon heat shock, and depletion of either lamin A/C or NM1 abrogates heat-shock-induced repositioning of Hsp70 gene locus away from the nuclear envelope. Lamins and NM1 also regulate spatial positioning of the SC35 (also known as SRSF2) speckles - important nuclear landmarks that modulates Hsp70 gene locus expression upon heat shock. This suggests an intricate crosstalk between nuclear lamins, NM1 and SC35 organization in modulating transcriptional responses of the Hsp70 gene locus during heat shock. Taken together, this study unravels a novel role for lamin A/C in the regulation of the spatial dynamics and function of the Hsp70 gene locus upon heat shock, via the nuclear motor protein NM1.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Roopali Pradhan
- Biology, Main Building, First Floor, Room B-216, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Muhunden Jayakrishnan Nallappa
- Biology, Main Building, First Floor, Room B-216, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Kundan Sengupta
- Biology, Main Building, First Floor, Room B-216, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| |
Collapse
|
24
|
Buchwalter A, Schulte R, Tsai H, Capitanio J, Hetzer M. Selective clearance of the inner nuclear membrane protein emerin by vesicular transport during ER stress. eLife 2019; 8:e49796. [PMID: 31599721 PMCID: PMC6802967 DOI: 10.7554/elife.49796] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
The inner nuclear membrane (INM) is a subdomain of the endoplasmic reticulum (ER) that is gated by the nuclear pore complex. It is unknown whether proteins of the INM and ER are degraded through shared or distinct pathways in mammalian cells. We applied dynamic proteomics to profile protein half-lives and report that INM and ER residents turn over at similar rates, indicating that the INM's unique topology is not a barrier to turnover. Using a microscopy approach, we observed that the proteasome can degrade INM proteins in situ. However, we also uncovered evidence for selective, vesicular transport-mediated turnover of a single INM protein, emerin, that is potentiated by ER stress. Emerin is rapidly cleared from the INM by a mechanism that requires emerin's LEM domain to mediate vesicular trafficking to lysosomes. This work demonstrates that the INM can be dynamically remodeled in response to environmental inputs.
Collapse
Affiliation(s)
- Abigail Buchwalter
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoUnited States
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Roberta Schulte
- The Salk Institute for Biological StudiesLa JollaUnited States
| | - Hsiao Tsai
- The Salk Institute for Biological StudiesLa JollaUnited States
| | | | - Martin Hetzer
- The Salk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
25
|
Bianchi A, Manti PG, Lucini F, Lanzuolo C. Mechanotransduction, nuclear architecture and epigenetics in Emery Dreifuss Muscular Dystrophy: tous pour un, un pour tous. Nucleus 2019; 9:276-290. [PMID: 29619865 PMCID: PMC5973142 DOI: 10.1080/19491034.2018.1460044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The alteration of the several roles that Lamin A/C plays in the mammalian cell leads to a broad spectrum of pathologies that – all together – are named laminopathies. Among those, the Emery Dreifuss Muscular Dystrophy (EDMD) is of particular interest as, despite the several known mutations of Lamin A/C, the genotype–phenotype correlation still remains poorly understood; this suggests that the epigenetic background of patients might play an important role during the time course of the disease. Historically, both a mechanical role of Lamin A/C and a regulative one have been suggested as the driving force of laminopathies; however, those two hypotheses are not mutually exclusive. Recent scientific evidence shows that Lamin A/C sustains the correct gene expression at the epigenetic level thanks to the Lamina Associated Domains (LADs) reorganization and the crosstalk with the Polycomb Group of Proteins (PcG). Furthermore, the PcG-dependent histone mark H3K27me3 increases under mechanical stress, finally pointing out the link between the mechano-properties of the nuclear lamina and epigenetics. Here, we summarize the emerging mechanisms that could explain the high variability seen in Emery Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- Andrea Bianchi
- a CNR Institute of Cell Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy.,b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy
| | | | - Federica Lucini
- b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy
| | - Chiara Lanzuolo
- a CNR Institute of Cell Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy.,b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy.,c Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy
| |
Collapse
|
26
|
Abstract
Cellular nuclei are bound by two uniformly separated lipid membranes that are fused with each other at numerous donut-shaped pores. These membranes are structurally supported by an array of distinct proteins with distinct mechanical functions. As a result, the nuclear envelope possesses unique mechanical properties, which enables it to resist cytoskeletal forces. Here, we review studies that are beginning to provide quantitative insights into nuclear membrane mechanics. We discuss how the mechanical properties of the fused nuclear membranes mediate their response to mechanical forces exerted on the nucleus and how structural reinforcement by different nuclear proteins protects the nuclear membranes against rupture. We also highlight some open questions in nuclear envelope mechanics, and discuss their relevance in the context of health and disease.
Collapse
Affiliation(s)
- Ashutosh Agrawal
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
27
|
Samson C, Petitalot A, Celli F, Herrada I, Ropars V, Le Du MH, Nhiri N, Jacquet E, Arteni AA, Buendia B, Zinn-Justin S. Structural analysis of the ternary complex between lamin A/C, BAF and emerin identifies an interface disrupted in autosomal recessive progeroid diseases. Nucleic Acids Res 2019; 46:10460-10473. [PMID: 30137533 PMCID: PMC6212729 DOI: 10.1093/nar/gky736] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/02/2018] [Indexed: 01/22/2023] Open
Abstract
Lamins are the main components of the nucleoskeleton. Whereas their 3D organization was recently described using cryoelectron tomography, no structural data highlights how they interact with their partners at the interface between the inner nuclear envelope and chromatin. A large number of mutations causing rare genetic disorders called laminopathies were identified in the C-terminal globular Igfold domain of lamins A and C. We here present a first structural description of the interaction between the lamin A/C immunoglobulin-like domain and emerin, a nuclear envelope protein. We reveal that this lamin A/C domain both directly binds self-assembled emerin and interacts with monomeric emerin LEM domain through the dimeric chromatin-associated Barrier-to-Autointegration Factor (BAF) protein. Mutations causing autosomal recessive progeroid syndromes specifically impair proper binding of lamin A/C domain to BAF, thus destabilizing the link between lamin A/C and BAF in cells. Recent data revealed that, during nuclear assembly, BAF’s ability to bridge distant DNA sites is essential for guiding membranes to form a single nucleus around the mitotic chromosome ensemble. Our results suggest that BAF interaction with lamin A/C also plays an essential role, and that mutations associated with progeroid syndromes leads to a dysregulation of BAF-mediated chromatin organization and gene expression.
Collapse
Affiliation(s)
- Camille Samson
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ambre Petitalot
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Florian Celli
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isaline Herrada
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Virginie Ropars
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Hélène Le Du
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Naïma Nhiri
- Institut de Chimie des Substances Naturelles, Université Paris Sud, Université Paris-Saclay, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, Université Paris Sud, Université Paris-Saclay, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Ana-Andrea Arteni
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Brigitte Buendia
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sophie Zinn-Justin
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- To whom correspondence should be addressed. Tel: +33 169083026;
| |
Collapse
|
28
|
Abstract
Cellular behavior is continuously affected by microenvironmental forces through the process of mechanotransduction, in which mechanical stimuli are rapidly converted to biochemical responses. Mounting evidence suggests that the nucleus itself is a mechanoresponsive element, reacting to cytoskeletal forces and mediating downstream biochemical responses. The nucleus responds through a host of mechanisms, including partial unfolding, conformational changes, and phosphorylation of nuclear envelope proteins; modulation of nuclear import/export; and altered chromatin organization, resulting in transcriptional changes. It is unclear which of these events present direct mechanotransduction processes and which are downstream of other mechanotransduction pathways. We critically review and discuss the current evidence for nuclear mechanotransduction, particularly in the context of stem cell fate, a largely unexplored topic, and in disease, where an improved understanding of nuclear mechanotransduction is beginning to open new treatment avenues. Finally, we discuss innovative technological developments that will allow outstanding questions in the rapidly growing field of nuclear mechanotransduction to be answered.
Collapse
Affiliation(s)
- Melanie Maurer
- Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA; ,
| | - Jan Lammerding
- Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA; ,
| |
Collapse
|
29
|
Sidorenko E, Vartiainen MK. Nucleoskeletal regulation of transcription: Actin on MRTF. Exp Biol Med (Maywood) 2019; 244:1372-1381. [PMID: 31142145 DOI: 10.1177/1535370219854669] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Myocardin-related transcription factor A (MRTF-A) and serum response factor (SRF) form an essential transcriptional complex that regulates the expression of many cytoskeletal genes in response to dynamic changes in the actin cytoskeleton. The nucleoskeleton, a “dynamic network of networks,” consists of numerous proteins that contribute to nuclear shape and to its various functions, including gene expression. In this review, we will discuss recent work that has identified many nucleoskeletal proteins, such as nuclear lamina and lamina-associated proteins, nuclear actin, and the linker of the cytoskeleton and nucleoskeleton complex as important regulators of MRTF-A/SRF transcriptional activity, especially in the context of mechanical control of transcription. Impact statement Regulation of gene expression is a fundamental cellular process that ensures the appropriate response of a cell to its surroundings. Alongside biochemical signals, mechanical cues, such as substrate rigidity, have been recognized as key regulators of gene expression. Nucleoskeletal components play an important role in mechanoresponsive transcription, particularly in controlling the activity of MRTF-A/SRF transcription factors. This ensures that the cell can balance the internal and external mechanical forces by fine-tuning the expression of cytoskeletal genes.
Collapse
Affiliation(s)
- Ekaterina Sidorenko
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Maria K Vartiainen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
30
|
Sola-Carvajal A, Revêchon G, Helgadottir HT, Whisenant D, Hagblom R, Döhla J, Katajisto P, Brodin D, Fagerström-Billai F, Viceconte N, Eriksson M. Accumulation of Progerin Affects the Symmetry of Cell Division and Is Associated with Impaired Wnt Signaling and the Mislocalization of Nuclear Envelope Proteins. J Invest Dermatol 2019; 139:2272-2280.e12. [PMID: 31128203 DOI: 10.1016/j.jid.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is the result of a defective form of the lamin A protein called progerin. While progerin is known to disrupt the properties of the nuclear lamina, the underlying mechanisms responsible for the pathophysiology of HGPS remain less clear. Previous studies in our laboratory have shown that progerin expression in murine epidermal basal cells results in impaired stratification and halted development of the skin. Stratification and differentiation of the epidermis is regulated by asymmetric stem cell division. Here, we show that expression of progerin impairs the ability of stem cells to maintain tissue homeostasis as a result of altered cell division. Quantification of basal skin cells showed an increase in symmetric cell division that correlated with progerin accumulation in HGPS mice. Investigation of the mechanisms underlying this phenomenon revealed a putative role of Wnt/β-catenin signaling. Further analysis suggested an alteration in the nuclear translocation of β-catenin involving the inner and outer nuclear membrane proteins, emerin and nesprin-2. Taken together, our results suggest a direct involvement of progerin in the transmission of Wnt signaling and normal stem cell division. These insights into the molecular mechanisms of progerin may help develop new treatment strategies for HGPS.
Collapse
Affiliation(s)
- Agustín Sola-Carvajal
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| | - Gwladys Revêchon
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Hafdis T Helgadottir
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Daniel Whisenant
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Robin Hagblom
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Julia Döhla
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pekka Katajisto
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - David Brodin
- Bioinformatics and Expression Core Facility, Karolinska Institutet, Huddinge, Sweden
| | | | - Nikenza Viceconte
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
31
|
Ranade D, Pradhan R, Jayakrishnan M, Hegde S, Sengupta K. Lamin A/C and Emerin depletion impacts chromatin organization and dynamics in the interphase nucleus. BMC Mol Cell Biol 2019; 20:11. [PMID: 31117946 PMCID: PMC6532135 DOI: 10.1186/s12860-019-0192-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022] Open
Abstract
Background Nuclear lamins are type V intermediate filament proteins that maintain nuclear structure and function. Furthermore, Emerin - an interactor of Lamin A/C, facilitates crosstalk between the cytoskeleton and the nucleus as it also interacts with actin and Nuclear Myosin 1 (NM1). Results Here we show that the depletion of Lamin A/C or Emerin, alters the localization of the nuclear motor protein - Nuclear Myosin 1 (NM1) that manifests as an increase in NM1 foci in the nucleus and are rescued to basal levels upon the combined knockdown of Lamin A/C and Emerin. Furthermore, Lamin A/C-Emerin co-depletion destabilizes cytoskeletal organization as it increases actin stress fibers. This further impinges on nuclear organization, as it enhances chromatin mobility more toward the nuclear interior in Lamin A/C-Emerin co-depleted cells. This enhanced chromatin mobility was restored to basal levels either upon inhibition of Nuclear Myosin 1 (NM1) activity or actin depolymerization. In addition, the combined loss of Lamin A/C and Emerin alters the otherwise highly conserved spatial positions of chromosome territories. Furthermore, knockdown of Lamin A/C or Lamin A/C-Emerin combined, deregulates expression levels of a candidate subset of genes. Amongst these genes, both KLK10 (Chr.19, Lamina Associated Domain (LAD+)) and MADH2 (Chr.18, LAD-) were significantly repressed, while BCL2L12 (Chr.19, LAD-) is de-repressed. These genes differentially reposition with respect to the nuclear envelope. Conclusions Taken together, these studies underscore a remarkable interplay between Lamin A/C and Emerin in modulating cytoskeletal organization of actin and NM1 that impinges on chromatin dynamics and function in the interphase nucleus. Electronic supplementary material The online version of this article (10.1186/s12860-019-0192-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Devika Ranade
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India
| | - Roopali Pradhan
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India
| | - Muhunden Jayakrishnan
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India
| | - Sushmitha Hegde
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India
| | - Kundan Sengupta
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India.
| |
Collapse
|
32
|
Vivante A, Brozgol E, Bronshtein I, Levi V, Garini Y. Chromatin dynamics governed by a set of nuclear structural proteins. Genes Chromosomes Cancer 2019; 58:437-451. [PMID: 30537111 DOI: 10.1002/gcc.22719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/15/2018] [Accepted: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
During the past three decades, the study of nuclear and chromatin organization has become of great interest. The organization and dynamics of chromatin are directly responsible for many functions including gene regulation, genome replication, and maintenance. In order to better understand the details of these mechanisms, we need to understand the role of specific proteins that take part in these processes. The genome in the nucleus is organized in different length scales, ranging from the bead-like nucleosomes through topological associated domains up to chromosome territories. The mechanisms that maintain these structures, however, remain to be fully elucidated. Previous works highlighted the significance of lamin A, an important nucleoplasmic protein; however, there are other nuclear structural proteins that are also important for chromatin organization. Studying the organizational aspects of the nucleus is a complex task, and different methods have been developed and adopted for this purpose, including molecular and imaging methods. Here we describe the use of the live-cell imaging method and demonstrate that the dynamics of the nucleus is strongly related to its organizational mechanisms. We labeled different genomic sites in the nucleus and measured the effect of nuclear structural proteins on their dynamics. We studied lamin A, BAF, Emerin, lamin B, CTCF, and Cohesin and discuss how each of them affect chromatin dynamics. Our findings indicate that lamin A and BAF have a significant effect on chromosomes dynamics, while other proteins mildly affect the type of the diffusion while the volume of motion is not affected.
Collapse
Affiliation(s)
- Anat Vivante
- Physics Department and Nanotechnology Institute, Bar Ilan University, Ramat Gan, Israel
| | - Eugene Brozgol
- Physics Department and Nanotechnology Institute, Bar Ilan University, Ramat Gan, Israel
| | - Irena Bronshtein
- Physics Department and Nanotechnology Institute, Bar Ilan University, Ramat Gan, Israel
| | - Vered Levi
- Physics Department and Nanotechnology Institute, Bar Ilan University, Ramat Gan, Israel
| | - Yuval Garini
- Physics Department and Nanotechnology Institute, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
33
|
Targeting of LRRC59 to the Endoplasmic Reticulum and the Inner Nuclear Membrane. Int J Mol Sci 2019; 20:ijms20020334. [PMID: 30650545 PMCID: PMC6359192 DOI: 10.3390/ijms20020334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/12/2023] Open
Abstract
LRRC59 (leucine-rich repeat-containing protein 59) is a tail-anchored protein with a single transmembrane domain close to its C-terminal end that localizes to the endoplasmic reticulum (ER) and the nuclear envelope. Here, we investigate the mechanisms of membrane integration of LRRC59 and its targeting to the inner nuclear membrane (INM). Using purified microsomes, we show that LRRC59 can be post-translationally inserted into ER-derived membranes. The TRC-pathway, a major route for post-translational membrane insertion, is not required for LRRC59. Like emerin, another tail-anchored protein, LRRC59 reaches the INM, as demonstrated by rapamycin-dependent dimerization assays. Using different approaches to inhibit importin α/β-dependent nuclear import of soluble proteins, we show that the classic nuclear transport machinery does not play a major role in INM-targeting of LRRC59. Instead, the size of the cytoplasmic domain of LRRC59 is an important feature, suggesting that targeting is governed by passive diffusion.
Collapse
|
34
|
Dutta S, Bhattacharyya M, Sengupta K. Changes in the Nuclear Envelope in Laminopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1112:31-38. [PMID: 30637688 DOI: 10.1007/978-981-13-3065-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Double-membrane-bound nucleus is the major organelle of every metazoan cell, which controls various nuclear processes like chromatin maintenance, DNA replication, transcription and nucleoskeleton-cytoskeleton coupling. Nuclear homeostasis depends on the integrity of nuclear membrane and associated proteins. Lamins, underlying the inner nuclear membrane (INM), play a crucial role in maintaining nuclear homeostasis. In this review, we have focussed on the disruption of nuclear homeostasis due to lamin A/C mutation which produces a plethora of diseases, termed as laminopathies.
Collapse
Affiliation(s)
- Subarna Dutta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| | | | - Kaushik Sengupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India.
| |
Collapse
|
35
|
González-Cruz RD, Dahl KN, Darling EM. The Emerging Role of Lamin C as an Important LMNA Isoform in Mechanophenotype. Front Cell Dev Biol 2018; 6:151. [PMID: 30450357 PMCID: PMC6224339 DOI: 10.3389/fcell.2018.00151] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022] Open
Abstract
Lamin A and lamin C isoforms of the gene LMNA are major structural and mechanotransductive components of the nuclear lamina. Previous reports have proposed lamin A as the isoform with the most dominant contributions to cellular mechanophenotype. Recently, expression of lamin C has also been shown to strongly correlate to cellular elastic and viscoelastic properties. Nevertheless, LMNA isoforms exist as part of a network that collectively provides structural integrity to the nucleus and their expression is ultimately regulated in a cell-specific manner. Thus, they have importance in mechanotransduction and structural integrity of the nucleus as well as potential candidates for biomarkers of whole-cell mechanophenotype. Therefore, a fuller discussion of lamin isoforms as mechanophenotypic biomarkers should compare both individual and ratiometric isoform contributions toward whole-cell mechanophenotype across different cell types. In this perspective, we discuss the distinctions between the mechanophenotypic correlations of individual and ratiometric lamins A:B1, C:B1, (A + C):B1, and C:A across cells from different lineages, demonstrating that the collective contribution of ratiometric lamin (A + C):B1 isoforms exhibited the strongest correlation to whole-cell stiffness. Additionally, we highlight the potential roles of lamin isoform ratios as indicators of mechanophenotypic change in differentiation and disease to demonstrate that the contributions of individual and collective lamin isoforms can occur as both static and dynamic biomarkers of mechanophenotype.
Collapse
Affiliation(s)
| | - Kris N Dahl
- Department of Chemical Engineering, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Eric M Darling
- Center for Biomedical Engineering, Brown University, Providence, RI, United States.,Department of Molecular Pharmacology, Physiology and Biotechnology, School of Engineering, Department of Orthopaedics, Brown University, Providence, RI, United States
| |
Collapse
|
36
|
Steele-Stallard HB, Pinton L, Sarcar S, Ozdemir T, Maffioletti SM, Zammit PS, Tedesco FS. Modeling Skeletal Muscle Laminopathies Using Human Induced Pluripotent Stem Cells Carrying Pathogenic LMNA Mutations. Front Physiol 2018; 9:1332. [PMID: 30405424 PMCID: PMC6201196 DOI: 10.3389/fphys.2018.01332] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/04/2018] [Indexed: 01/03/2023] Open
Abstract
Laminopathies are a clinically heterogeneous group of disorders caused by mutations in LMNA. The main proteins encoded by LMNA are Lamin A and C, which together with Lamin B1 and B2, form the nuclear lamina: a mesh-like structure located underneath the inner nuclear membrane. Laminopathies show striking tissue specificity, with subtypes affecting striated muscle, peripheral nerve, and adipose tissue, while others cause multisystem disease with accelerated aging. Although several pathogenic mechanisms have been proposed, the exact pathophysiology of laminopathies remains unclear, compounded by the rarity of these disorders and lack of easily accessible cell types to study. To overcome this limitation, we used induced pluripotent stem cells (iPSCs) from patients with skeletal muscle laminopathies such as LMNA-related congenital muscular dystrophy and limb-girdle muscular dystrophy 1B, to model disease phenotypes in vitro. iPSCs can be derived from readily accessible cell types, have unlimited proliferation potential and can be differentiated into cell types that would otherwise be difficult and invasive to obtain. iPSC lines from three skeletal muscle laminopathy patients were differentiated into inducible myogenic cells and myotubes. Disease-associated phenotypes were observed in these cells, including abnormal nuclear shape and mislocalization of nuclear lamina proteins. Nuclear abnormalities were less pronounced in monolayer cultures of terminally differentiated skeletal myotubes than in proliferating myogenic cells. Notably, skeletal myogenic differentiation of LMNA-mutant iPSCs in artificial muscle constructs improved detection of myonuclear abnormalities compared to conventional monolayer cultures across multiple pathogenic genotypes, providing a high-fidelity modeling platform for skeletal muscle laminopathies. Our results lay the foundation for future iPSC-based therapy development and screening platforms for skeletal muscle laminopathies.
Collapse
Affiliation(s)
- Heather B Steele-Stallard
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Luca Pinton
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Shilpita Sarcar
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Tanel Ozdemir
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Sara M Maffioletti
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
37
|
Pradhan R, Ranade D, Sengupta K. Emerin modulates spatial organization of chromosome territories in cells on softer matrices. Nucleic Acids Res 2018; 46:5561-5586. [PMID: 29684168 PMCID: PMC6009696 DOI: 10.1093/nar/gky288] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023] Open
Abstract
Cells perceive and relay external mechanical forces into the nucleus through the nuclear envelope. Here we examined the effect of lowering substrate stiffness as a paradigm to address the impact of altered mechanical forces on nuclear structure-function relationships. RNA sequencing of cells on softer matrices revealed significant transcriptional imbalances, predominantly in chromatin associated processes and transcriptional deregulation of human Chromosome 1. Furthermore, 3-Dimensional fluorescence in situ hybridization (3D-FISH) analyses showed a significant mislocalization of Chromosome 1 and 19 Territories (CT) into the nuclear interior, consistent with their transcriptional deregulation. However, CT18 with relatively lower transcriptional dysregulation, also mislocalized into the nuclear interior. Furthermore, nuclear Lamins that regulate chromosome positioning, were mislocalized into the nuclear interior in response to lowered matrix stiffness. Notably, Lamin B2 overexpression retained CT18 near the nuclear periphery in cells on softer matrices. While, cells on softer matrices also activated emerin phosphorylation at a novel Tyr99 residue, the inhibition of which in a phospho-deficient mutant (emerinY99F), selectively retained chromosome 18 and 19 but not chromosome 1 territories at their conserved nuclear locations. Taken together, emerin functions as a key mechanosensor, that modulates the spatial organization of chromosome territories in the interphase nucleus.
Collapse
Affiliation(s)
- Roopali Pradhan
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Devika Ranade
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Kundan Sengupta
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
38
|
Ziat E, Mamchaoui K, Beuvin M, Nelson I, Azibani F, Spuler S, Bonne G, Bertrand AT. FHL1B Interacts with Lamin A/C and Emerin at the Nuclear Lamina and is Misregulated in Emery-Dreifuss Muscular Dystrophy. J Neuromuscul Dis 2018; 3:497-510. [PMID: 27911330 DOI: 10.3233/jnd-160169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Emery-Dreifuss muscular dystrophy (EDMD) is associated with mutations in EMD and LMNA genes, encoding for the nuclear envelope proteins emerin and lamin A/C, indicating that EDMD is a nuclear envelope disease. We recently reported mutations in FHL1 gene in X-linked EDMD. FHL1 encodes FHL1A, and the two minor isoforms FHL1B and FHL1C. So far, none have been described at the nuclear envelope. OBJECTIVE To gain insight into the pathophysiology of EDMD, we focused our attention on the poorly characterized FHL1B isoform. METHODS The amount and the localisation of FHL1B were evaluated in control and diseased human primary myoblasts using immunofluorescence and western blotting. RESULTS We found that in addition to a cytoplasmic localization, this isoform strongly accumulated at the nuclear envelope of primary human myoblasts, like but independently of lamin A/C and emerin. During myoblast differentiation, we observed a major reduction of FHL1B protein expression, especially in the nucleus. Interestingly, we found elevated FHL1B expression level in myoblasts from an FHL1-related EDMD patient where the FHL1 mutation only affects FHL1A, as well as in myoblasts from an LMNA-related EDMD patient. CONCLUSIONS Altogether, the specific localization of FHL1B and its modulation in disease-patient's myoblasts confirmed FHL1-related EDMD as a nuclear envelope disease.
Collapse
Affiliation(s)
- Esma Ziat
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France.,Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation between Max-Delbrück-Center for Molecular Medicine and Charite Medical Faculty, Berlin, Germany
| | - Kamel Mamchaoui
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| | - Maud Beuvin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| | - Isabelle Nelson
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| | - Feriel Azibani
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation between Max-Delbrück-Center for Molecular Medicine and Charite Medical Faculty, Berlin, Germany
| | - Gisèle Bonne
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| | - Anne T Bertrand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| |
Collapse
|
39
|
Eisch V, Lu X, Gabriel D, Djabali K. Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts. Oncotarget 2017; 7:24700-18. [PMID: 27015553 PMCID: PMC5029735 DOI: 10.18632/oncotarget.8267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/04/2016] [Indexed: 01/26/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670) is a rare premature aging disorder that leads to death at an average age of 14.7 years due to myocardial infarction or stroke. The most common mutation in HGPS is at position G608G (GGC>GGT) within exon 11 of the LMNA gene. This mutation results in the deletion of 50 amino acids at the carboxyl-terminal tail of prelamin A, producing a truncated farnesylated protein called progerin. Lamins play important roles in the organization and structure of the nucleus. The nuclear build-up of progerin causes severe morphological and functional changes in interphase HGPS cells. In this study, we investigated whether progerin elicits spatiotemporal deviations in mitotic processes in HGPS fibroblasts. We analyzed the nuclear distribution of endogenous progerin during mitosis in relation to components of the nuclear lamina, nuclear envelope (NE) and nuclear pores. We found that progerin caused defects in chromosome segregation as early as metaphase, delayed NE reformation and trapped lamina components and inner NE proteins in the endoplasmic reticulum at the end of mitosis. Progerin displaced the centromere protein F (CENP-F) from metaphase chromosome kinetochores, which caused increased chromatin lagging, binucleated cells and genomic instability. This accumulation of progerin-dependent defects with each round of mitosis predisposes cells to premature senescence.
Collapse
Affiliation(s)
- Veronika Eisch
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| | - Xiang Lu
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| | - Diana Gabriel
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| |
Collapse
|
40
|
Gagliardi A, Besio R, Carnemolla C, Landi C, Armini A, Aglan M, Otaify G, Temtamy SA, Forlino A, Bini L, Bianchi L. Cytoskeleton and nuclear lamina affection in recessive osteogenesis imperfecta: A functional proteomics perspective. J Proteomics 2017; 167:46-59. [PMID: 28802583 PMCID: PMC5584732 DOI: 10.1016/j.jprot.2017.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
Osteogenesis imperfecta (OI) is a collagen-related disorder associated to dominant, recessive or X-linked transmission, mainly caused by mutations in type I collagen genes or in genes involved in type I collagen metabolism. Among the recessive forms, OI types VII, VIII, and IX are due to mutations in CRTAP, P3H1, and PPIB genes, respectively. They code for the three components of the endoplasmic reticulum complex that catalyzes 3-hydroxylation of type I collagen α1Pro986. Under-hydroxylation of this residue leads to collagen structural abnormalities and results in moderate to lethal OI phenotype, despite the exact molecular mechanisms are still not completely clear. To shed light on these recessive forms, primary fibroblasts from OI patients with mutations in CRTAP (n=3), P3H1 (n=3), PPIB (n=1) genes and from controls (n=4) were investigated by a functional proteomic approach. Cytoskeleton and nucleoskeleton asset, protein fate, and metabolism were delineated as mainly affected. While western blot experiments confirmed altered expression of lamin A/C and cofilin-1, immunofluorescence analysis using antibody against lamin A/C and phalloidin showed an aberrant organization of nucleus and cytoskeleton. This is the first report describing an altered organization of intracellular structural proteins in recessive OI and pointing them as possible novel target for OI treatment. SIGNIFICANCE OI is a prototype for skeletal dysplasias. It is a highly heterogeneous collagen-related disorder with dominant, recessive and X-linked transmission. There is no definitive cure for this disease, thus a better understanding of the molecular basis of its pathophysiology is expected to contribute in identifying potential targets to develop new treatments. Based on this concept, we performed a functional proteomic study to delineate affected molecular pathways in primary fibroblasts from recessive OI patients, carrying mutations in CRTAP (OI type VII), P3H1 (OI type VIII), and PPIB (OI type IX) genes. Our analyses demonstrated the occurrence of an altered cytoskeleton and, for the first time in OI, of nuclear lamina organization. Hence, cytoskeleton and nucleoskeleton components may be considered as novel drug targets for clinical management of the disease. Finally, according to our analyses, OI emerged to share similar deregulated pathways and molecular aberrances, as previously described, with other rare disorders caused by different genetic defects. Those aberrances may provide common pharmacological targets to support classical clinical approach in treating different diseases.
Collapse
Affiliation(s)
- Assunta Gagliardi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy; CIBIO, University of Trento, Trento, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Chiara Carnemolla
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Claudia Landi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Alessandro Armini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Mona Aglan
- Department of Clinical Genetics, Human Genetics & Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Ghada Otaify
- Department of Clinical Genetics, Human Genetics & Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Samia A Temtamy
- Department of Clinical Genetics, Human Genetics & Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Luca Bini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy.
| |
Collapse
|
41
|
Küchler P, Zimmermann G, Winzker M, Janning P, Waldmann H, Ziegler S. Identification of novel PDEδ interacting proteins. Bioorg Med Chem 2017; 26:1426-1434. [PMID: 28935183 DOI: 10.1016/j.bmc.2017.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/20/2017] [Indexed: 12/15/2022]
Abstract
Prenylation is a post-translational modification that increases the affinity of proteins for membranes and mediates protein-protein interactions. The retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta (PDEδ) is a prenyl binding protein that is essential for the shuttling of small GTPases between different membrane compartments and, thus, for their proper functioning. Although the prenylome comprises up to 2% of the mammalian proteome, only few prenylated proteins are known to interact with PDEδ. A proteome-wide approach was employed to map the PDEδ interactome among the prenylome and revealed RAB23, CDC42 and CNP as novel PDEδ interacting proteins. Moreover, PDEδ associates with the lamin A mutant progerin in a prenyl-dependent manner. These findings shed new light on the role of PDEδ in binding (and regulating) prenylated proteins in cells.
Collapse
Affiliation(s)
- Philipp Küchler
- Department of Chemical Biology, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Lehrbereich Chemische Biologie, Fakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Gunther Zimmermann
- Department of Chemical Biology, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Lehrbereich Chemische Biologie, Fakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Michael Winzker
- Department of Chemical Biology, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Lehrbereich Chemische Biologie, Fakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Petra Janning
- Department of Chemical Biology, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Lehrbereich Chemische Biologie, Fakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany.
| | - Slava Ziegler
- Department of Chemical Biology, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
| |
Collapse
|
42
|
Abstract
Nuclear lamins are components of the peripheral lamina that define the mechanical properties of nuclei and tether heterochromatin to the periphery. A-type lamins localize also to the nuclear interior, but the regulation and specific functions of this nucleoplasmic lamin pool are poorly understood. In this Commentary, we summarize known pathways that are potentially involved in the localization and dynamic behavior of intranuclear lamins, including their post-translational modifications and interactions with nucleoplasmic proteins, such as lamina-associated polypeptide 2α (LAP2α; encoded by TMPO). In addition, new data suggest that lamins in the nuclear interior have an important role in chromatin regulation and gene expression through dynamic binding to both hetero- and euchromatic genomic regions and promoter subdomains, thereby affecting epigenetic pathways and chromatin accessibility. Nucleoplasmic lamins also have a role in spatial chromatin organization and may be involved in mechanosignaling. In view of this newly emerging concept, we propose that the previously reported cellular phenotypes in lamin-linked diseases are, at least in part, rooted in an impaired regulation and/or function of the nucleoplasmic lamin A/C pool.
Collapse
Affiliation(s)
- Nana Naetar
- Center of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, Vienna A-1030, Austria
| | - Simona Ferraioli
- Center of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, Vienna A-1030, Austria
| | - Roland Foisner
- Center of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, Vienna A-1030, Austria
| |
Collapse
|
43
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
44
|
Le Thanh P, Meinke P, Korfali N, Srsen V, Robson MI, Wehnert M, Schoser B, Sewry CA, Schirmer EC. Immunohistochemistry on a panel of Emery-Dreifuss muscular dystrophy samples reveals nuclear envelope proteins as inconsistent markers for pathology. Neuromuscul Disord 2016; 27:338-351. [PMID: 28214269 PMCID: PMC5380655 DOI: 10.1016/j.nmd.2016.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/22/2016] [Accepted: 12/09/2016] [Indexed: 11/08/2022]
Abstract
Altered distribution of EDMD-linked proteins is not a general characteristic of EDMD. Tissue-specific proteins exhibit altered distributions in some EDMD patients. Variation in redistributed proteins in EDMD may underlie its clinical variability.
Reports of aberrant distribution for some nuclear envelope proteins in cells expressing a few Emery–Dreifuss muscular dystrophy mutations raised the possibility that such protein redistribution could underlie pathology and/or be diagnostic. However, this disorder is linked to 8 different genes encoding nuclear envelope proteins, raising the question of whether a particular protein is most relevant. Therefore, myoblast/fibroblast cultures from biopsy and tissue sections from a panel of nine Emery–Dreifuss muscular dystrophy patients (4 male, 5 female) including those carrying emerin and FHL1 (X-linked) and several lamin A (autosomal dominant) mutations were stained for the proteins linked to the disorder. As tissue-specific nuclear envelope proteins have been postulated to mediate the tissue-specific pathologies of different nuclear envelopathies, patient samples were also stained for several muscle-specific nuclear membrane proteins. Although linked proteins nesprin 1 and SUN2 and muscle-specific proteins NET5/Samp1 and Tmem214 yielded aberrant distributions in individual patient cells, none exhibited defects through the larger patient panel. Muscle-specific Tmem38A normally appeared in both the nuclear envelope and sarcoplasmic reticulum, but most patient samples exhibited a moderate redistribution favouring the sarcoplasmic reticulum. The absence of striking uniform defects in nuclear envelope protein distribution indicates that such staining will be unavailing for general diagnostics, though it remains possible that specific mutations exhibiting protein distribution defects might reflect a particular clinical variant. These findings further argue that multiple pathways can lead to the generally similar pathologies of this disorder while at the same time the different cellular phenotypes observed possibly may help explain the considerable clinical variation of EDMD.
Collapse
Affiliation(s)
- Phu Le Thanh
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Peter Meinke
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Friedrich-Baur-Institute, Ludwig Maximilian University, Munich, Germany
| | - Nadia Korfali
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Vlastimil Srsen
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Michael I Robson
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Manfred Wehnert
- Institute of Human Genetics, University of Greifswald, Greifswald, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Ludwig Maximilian University, Munich, Germany
| | - Caroline A Sewry
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
45
|
The effect of the lamin A and its mutants on nuclear structure, cell proliferation, protein stability, and mobility in embryonic cells. Chromosoma 2016; 126:501-517. [PMID: 27534416 PMCID: PMC5509783 DOI: 10.1007/s00412-016-0610-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/11/2016] [Accepted: 08/02/2016] [Indexed: 01/26/2023]
Abstract
LMNA gene encodes for nuclear intermediate filament proteins lamin A/C. Mutations in this gene lead to a spectrum of genetic disorders, collectively referred to as laminopathies. Lamin A/C are widely expressed in most differentiated somatic cells but not in early embryos and some undifferentiated cells. To investigate the role of lamin A/C in cell phenotype maintenance and differentiation, which could be a determinant of the pathogenesis of laminopathies, we examined the role played by exogenous lamin A and its mutants in differentiated cell lines (HeLa, NHDF) and less-differentiated HEK 293 cells. We introduced exogenous wild-type and mutated (H222P, L263P, E358K D446V, and ∆50) lamin A into different cell types and analyzed proteins’ impact on proliferation, protein mobility, and endogenous nuclear envelope protein distribution. The mutants give rise to a broad spectrum of nuclear phenotypes and relocate lamin C. The mutations ∆50 and D446V enhance proliferation in comparison to wild-type lamin A and control cells, but no changes in exogenous protein mobility measured by FRAP were observed. Interestingly, although transcripts for lamins A and C are at similar level in HEK 293 cells, only lamin C protein is detected in western blots. Also, exogenous lamin A and its mutants, when expressed in HEK 293 cells underwent posttranscriptional processing. Overall, our results provide new insight into the maintenance of lamin A in less-differentiated cells. Embryonic cells are very sensitive to lamin A imbalance, and its upregulation disturbs lamin C, which may influence gene expression and many regulatory pathways.
Collapse
|
46
|
Bell ES, Lammerding J. Causes and consequences of nuclear envelope alterations in tumour progression. Eur J Cell Biol 2016; 95:449-464. [PMID: 27397692 DOI: 10.1016/j.ejcb.2016.06.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022] Open
Abstract
Morphological changes in the size and shape of the nucleus are highly prevalent in cancer, but the underlying molecular mechanisms and the functional relevance remain poorly understood. Nuclear envelope proteins, which can modulate nuclear shape and organization, have emerged as key components in a variety of signalling pathways long implicated in tumourigenesis and metastasis. The expression of nuclear envelope proteins is altered in many cancers, and changes in levels of nuclear envelope proteins lamins A and C are associated with poor prognosis in multiple human cancers. In this review we highlight the role of the nuclear envelope in different processes important for tumour initiation and cancer progression, with a focus on lamins A and C. Lamin A/C controls many cellular processes with key roles in cancer, including cell invasion, stemness, genomic stability, signal transduction, transcriptional regulation, and resistance to mechanical stress. In addition, we discuss potential mechanisms mediating the changes in lamin levels observed in many cancers. A better understanding of cause-and-effect relationships between lamin expression and tumour progression could reveal important mechanisms for coordinated regulation of oncogenic processes, and indicate therapeutic vulnerabilities that could be exploited for improved patient outcome.
Collapse
Affiliation(s)
- Emily S Bell
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, United States
| | - Jan Lammerding
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
47
|
Gesson K, Rescheneder P, Skoruppa MP, von Haeseler A, Dechat T, Foisner R. A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Genome Res 2016; 26:462-73. [PMID: 26798136 PMCID: PMC4817770 DOI: 10.1101/gr.196220.115] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/19/2016] [Indexed: 11/24/2022]
Abstract
Lamins are components of the peripheral nuclear lamina and interact with heterochromatic genomic regions, termed lamina-associated domains (LADs). In contrast to lamin B1 being primarily present at the nuclear periphery, lamin A/C also localizes throughout the nucleus, where it associates with the chromatin-binding protein lamina-associated polypeptide (LAP) 2 alpha. Here, we show that lamin A/C also interacts with euchromatin, as determined by chromatin immunoprecipitation of euchromatin- and heterochromatin-enriched samples. By way of contrast, lamin B1 was only found associated with heterochromatin. Euchromatic regions occupied by lamin A/C overlap with those bound by LAP2alpha, and lack of LAP2alpha in LAP2alpha-deficient cells shifts binding of lamin A/C toward more heterochromatic regions. These alterations in lamin A/C-chromatin interactions correlate with changes in epigenetic histone marks in euchromatin but do not significantly affect gene expression. Loss of lamin A/C in heterochromatic regions in LAP2alpha-deficient cells, however, correlated with increased gene expression. Our data show a novel role of nucleoplasmic lamin A/C and LAP2alpha in regulating euchromatin.
Collapse
Affiliation(s)
- Kevin Gesson
- Department of Medical Biochemistry, Medical University of Vienna, A-1030 Vienna, Austria
| | - Philipp Rescheneder
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories (MFPL), Medical University of Vienna and University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Michael P Skoruppa
- Department of Medical Biochemistry, Medical University of Vienna, A-1030 Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories (MFPL), Medical University of Vienna and University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria; Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, A-1030 Vienna, Austria
| | - Thomas Dechat
- Department of Medical Biochemistry, Medical University of Vienna, A-1030 Vienna, Austria
| | - Roland Foisner
- Department of Medical Biochemistry, Medical University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
48
|
MCLIP Detection of Novel Protein–Protein Interactions at the Nuclear Envelope. Methods Enzymol 2016; 569:503-15. [DOI: 10.1016/bs.mie.2015.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
49
|
Herrada I, Samson C, Velours C, Renault L, Östlund C, Chervy P, Puchkov D, Worman HJ, Buendia B, Zinn-Justin S. Muscular Dystrophy Mutations Impair the Nuclear Envelope Emerin Self-assembly Properties. ACS Chem Biol 2015; 10:2733-42. [PMID: 26415001 DOI: 10.1021/acschembio.5b00648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
More than 100 genetic mutations causing X-linked Emery-Dreifuss muscular dystrophy have been identified in the gene encoding the integral inner nuclear membrane protein emerin. Most mutations are nonsense or frameshift mutations that lead to the absence of emerin in cells. Only very few cases are due to missense or short in-frame deletions. Molecular mechanisms explaining the corresponding emerin variants' loss of function are particularly difficult to identify because of the mostly intrinsically disordered state of the emerin nucleoplasmic region. We now demonstrate that this EmN region can be produced as a disordered monomer, as revealed by nuclear magnetic resonance, but rapidly self-assembles in vitro. Increases in concentration and temperature favor the formation of long curvilinear filaments with diameters of approximately 10 nm, as observed by electron microscopy. Assembly of these filaments can be followed by fluorescence through Thioflavin-T binding and by Fourier-transform Infrared spectrometry through formation of β-structures. Analysis of the assembly properties of five EmN variants reveals that del95-99 and Q133H impact filament assembly capacities. In cells, these variants are located at the nuclear envelope, but the corresponding quantities of emerin-emerin and emerin-lamin proximities are decreased compared to wild-type protein. Furthermore, variant P183H favors EmN aggregation in vitro, and variant P183T provokes emerin accumulation in cytoplasmic foci in cells. Substitution of residue Pro183 might systematically favor oligomerization, leading to emerin aggregation and mislocalization in cells. Our results suggest that emerin self-assembly is necessary for its proper function and that a loss of either the protein itself or its ability to self-assemble causes muscular dystrophy.
Collapse
Affiliation(s)
- Isaline Herrada
- Laboratoire
de Biologie Structurale et Radiobiologie, Institute for Integrative Biology of the Cell (I2BC), CEA Saclay Bât. 144, 91191 Gif-sur-Yvette Cedex, France
| | - Camille Samson
- Laboratoire
de Biologie Structurale et Radiobiologie, Institute for Integrative Biology of the Cell (I2BC), CEA Saclay Bât. 144, 91191 Gif-sur-Yvette Cedex, France
| | - Christophe Velours
- Laboratoire
d’Enzymologie et Biochimie Structurales, Institute for Integrative Biology of the Cell (I2BC), CNRS Bât.34, 1 avenue de
la terrasse, 91190 Gif-sur-Yvette, France
| | - Louis Renault
- Laboratoire
d’Enzymologie et Biochimie Structurales, Institute for Integrative Biology of the Cell (I2BC), CNRS Bât.34, 1 avenue de
la terrasse, 91190 Gif-sur-Yvette, France
| | - Cecilia Östlund
- Department
of Medicine and Department of Pathology and Cell Biology, College
of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York 10032, United States
| | - Pierre Chervy
- Laboratoire
de Biologie Structurale et Radiobiologie, Institute for Integrative Biology of the Cell (I2BC), CEA Saclay Bât. 144, 91191 Gif-sur-Yvette Cedex, France
| | - Dmytro Puchkov
- Department
of Molecular Pharmacology and Cell Biology, Leibniz-Institut für Molecular Pharmakologie (FMP), 13125 Berlin, Germany
| | - Howard J Worman
- Department
of Medicine and Department of Pathology and Cell Biology, College
of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York 10032, United States
| | - Brigitte Buendia
- Laboratoire
de Physiologie du Muscle Strié, Université Paris Diderot-Paris 7, CNRS, UMR 8251, Institut de Biologie
Fonctionnelle et Adaptative, 4 rue
M.A. Lagroua Weill Halle, 75205 Paris Cedex 13, France
| | - Sophie Zinn-Justin
- Laboratoire
de Biologie Structurale et Radiobiologie, Institute for Integrative Biology of the Cell (I2BC), CEA Saclay Bât. 144, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
50
|
Pfaff J, Rivera Monroy J, Jamieson C, Rajanala K, Vilardi F, Schwappach B, Kehlenbach RH. Emery-Dreifuss muscular dystrophy mutations impair TRC40-mediated targeting of emerin to the inner nuclear membrane. J Cell Sci 2015; 129:502-16. [PMID: 26675233 DOI: 10.1242/jcs.179333] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/14/2015] [Indexed: 11/20/2022] Open
Abstract
Emerin is a tail-anchored protein that is found predominantly at the inner nuclear membrane (INM), where it associates with components of the nuclear lamina. Mutations in the emerin gene cause Emery-Dreifuss muscular dystrophy (EDMD), an X-linked recessive disease. Here, we report that the TRC40/GET pathway for post-translational insertion of tail-anchored proteins into membranes is involved in emerin-trafficking. Using proximity ligation assays, we show that emerin interacts with TRC40 in situ. Emerin expressed in bacteria or in a cell-free lysate was inserted into microsomal membranes in an ATP- and TRC40-dependent manner. Dominant-negative fragments of the TRC40-receptor proteins WRB and CAML (also known as CAMLG) inhibited membrane insertion. A rapamycin-based dimerization assay revealed correct transport of wild-type emerin to the INM, whereas TRC40-binding, membrane integration and INM-targeting of emerin mutant proteins that occur in EDMD was disturbed. Our results suggest that the mode of membrane integration contributes to correct targeting of emerin to the INM.
Collapse
Affiliation(s)
- Janine Pfaff
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University, GZMB, Humboldtallee 23, Göttingen 37073, Germany
| | - Jhon Rivera Monroy
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University, GZMB, Humboldtallee 23, Göttingen 37073, Germany
| | - Cara Jamieson
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University, GZMB, Humboldtallee 23, Göttingen 37073, Germany
| | - Kalpana Rajanala
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University, GZMB, Humboldtallee 23, Göttingen 37073, Germany
| | - Fabio Vilardi
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University, GZMB, Humboldtallee 23, Göttingen 37073, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University, GZMB, Humboldtallee 23, Göttingen 37073, Germany Max-Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University, GZMB, Humboldtallee 23, Göttingen 37073, Germany
| |
Collapse
|