1
|
Zhang HA, Zhang BY, Tang HB. Effects of macrophages on the osteogenic differentiation of adipose tissue-derived stem cells in two-dimensional and three-dimensional cocultures. World J Stem Cells 2025; 17:99326. [DOI: 10.4252/wjsc.v17.i2.99326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/24/2024] [Accepted: 01/23/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Fracture is one of the most pervasive injuries in the musculoskeletal system, and there is a complex interaction between macrophages and adipose tissue-derived stem cells (ADSCs) in fracture healing. However, two-dimensional (2D) coculture of macrophages and ADSCs can not accurately mimic the in vivo cell microenvironment.
AIM To establish both 2D and 3D osteogenic coculture models to investigate the interaction between macrophages and ADSCs.
METHODS After obtaining ADSCs from surgery and inducing differentiation of the THP1 cell line, we established 2D and 3D osteogenic coculture models. To assess the level of osteogenic differentiation, we used alizarin red staining and measured the relative expression levels of osteogenic differentiation markers osteocalcin, Runt-related transcription factor 2, and alkaline phosphatase through polymerase chain reaction. Verification was conducted by analyzing the expression changes of N-cadherin and the activation of the Wnt/β-catenin signaling pathway using western blotting.
RESULTS In this study, it was discovered that macrophages in 3D culture inhibited osteogenic differentiation of ADSCs, contrary to the effect in 2D culture. This observation confirmed the significance of intricate intercellular connections in the 3D culture environment. Additionally, the 3D culture group exhibited significantly higher N-cadherin expression and showed reduced β-catenin and Wnt1 protein levels compared to the 2D culture group.
CONCLUSION Macrophages promoted ADSC osteogenic differentiation in 2D culture conditions but inhibited it in 3D culture. The 3D culture environment might inhibit the Wnt/β-catenin signaling pathway by upregulating N-cadherin expression, ultimately hindering the osteogenic differentiation of ADSCs. By investigating the process of osteogenesis in ADSCs, this study provides novel ideas for exploring 3D osteogenesis in ADSCs, fracture repair, and other bone trauma repair.
Collapse
Affiliation(s)
- He-Ao Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Bo-Yu Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hong-Bo Tang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
2
|
Liu Z, Wang Q, Zhang J, Qi S, Duan Y, Li C. The Mechanotransduction Signaling Pathways in the Regulation of Osteogenesis. Int J Mol Sci 2023; 24:14326. [PMID: 37762629 PMCID: PMC10532275 DOI: 10.3390/ijms241814326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Bones are constantly exposed to mechanical forces from both muscles and Earth's gravity to maintain bone homeostasis by stimulating bone formation. Mechanotransduction transforms external mechanical signals such as force, fluid flow shear, and gravity into intracellular responses to achieve force adaptation. However, the underlying molecular mechanisms on the conversion from mechanical signals into bone formation has not been completely defined yet. In the present review, we provide a comprehensive and systematic description of the mechanotransduction signaling pathways induced by mechanical stimuli during osteogenesis and address the different layers of interconnections between different signaling pathways. Further exploration of mechanotransduction would benefit patients with osteoporosis, including the aging population and postmenopausal women.
Collapse
Affiliation(s)
- Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Sihan Qi
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Juhl OJ, Merife A, Zhang Y, Donahue HJ. Inhibition of focal adhesion turnover prevents osteoblastic differentiation through β‐catenin mediated transduction of pro‐osteogenic substrate. J Biomed Mater Res B Appl Biomater 2022; 110:1573-1586. [PMID: 35099117 PMCID: PMC9306686 DOI: 10.1002/jbm.b.35018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 11/24/2022]
Abstract
The mechanism by which substrate surface characteristics are transduced by osteoblastic cells and their progenitors is not fully known. Data from previous studies by our group suggest the involvement of β‐catenin in the mechanism by which substrate surface characteristics are transduced. This focal adhesion and β‐catenin mediated mechanism functions through the liberation of β‐catenin from focal adhesion complexes in response to pro‐osteogenic substrate (POS) characteristics. After liberation, β‐catenin translocates and facilitates upregulation of genes associated with osteogenesis. It is not known whether the observed correlation between focal adhesion turnover and β‐catenin translocation directly results from focal adhesion turnover. In this study we inhibited focal adhesion turnover using a focal adhesion kinase inhibitor PF‐573228. We found that inhibition of focal adhesion turnover resulted in an abrogation of the more rapid translocation and increased transcriptional activity of β‐catenin induced by POS. In addition, inhibition of focal adhesion turnover mitigated the increase in osteoblastic differentiation induced by a POS as measured by alkaline phosphatase enzymatic activity and osteogenic gene and protein expression. Together, these data, coupled with previous findings, suggest that the observed β‐catenin translocation is a result of focal adhesion turnover, providing evidence for a focal adhesion initiated, β‐catenin mediated mechanism of substrate surface signal transduction.
Collapse
Affiliation(s)
- Otto J. Juhl
- Department of Biomedical Engineering and Institute for Engineering and Medicine Virginia Commonwealth University Richmond Virginia USA
| | - Anna‐Blessing Merife
- Department of Biomedical Engineering and Institute for Engineering and Medicine Virginia Commonwealth University Richmond Virginia USA
| | - Yue Zhang
- Department of Biomedical Engineering and Institute for Engineering and Medicine Virginia Commonwealth University Richmond Virginia USA
| | - Henry J. Donahue
- Department of Biomedical Engineering and Institute for Engineering and Medicine Virginia Commonwealth University Richmond Virginia USA
| |
Collapse
|
4
|
Wolff LI, Houben A, Fabritius C, Angus-Hill M, Basler K, Hartmann C. Only the Co-Transcriptional Activity of β-Catenin Is Required for the Local Regulatory Effects in Hypertrophic Chondrocytes on Developmental Bone Modeling. J Bone Miner Res 2021; 36:2039-2052. [PMID: 34155688 DOI: 10.1002/jbmr.4396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022]
Abstract
In hypertrophic chondrocytes, β-catenin has two roles. First, it locally suppresses the differentiation of osteoclasts at the chondro-osseous junction by maintaining the pro-osteoclastic factor receptor activator of NF-κB ligand (RANKL) at low levels. Second, it promotes the differentiation of osteoblast-precursors from chondrocytes. Yet, β-catenin is a dual-function protein, which can either participate in cell-cell adherens junctions or serve as a transcriptional co-activator in canonical Wnt signaling interacting with T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors. Hence, whenever studying tissue-specific requirements of β-catenin using a conventional conditional knockout approach, the functional mechanisms underlying the defects in the conditional mutants remain ambiguous. To decipher mechanistically which of the two molecular functions of β-catenin is required in hypertrophic chondrocytes, we used different approaches. We analyzed the long bones of newborn mice carrying either the null-alleles of Lef1 or Tcf7, or mice in which Tcf7l2 was conditionally deleted in the hypertrophic chondrocytes, as well as double mutants for Lef1 and Tcf7l2, and Tcf7 and Tcf7l2. Furthermore, we analyzed Ctnnb1 mutant newborns expressing a signaling-defective allele that retains the cell adhesion function in hypertrophic chondrocytes. None of the analyzed Tcf/Lef single or double mutants recapitulated the previously published phenotype upon loss of β-catenin in hypertrophic chondrocytes. However, using this particular Ctnnb1 allele, maintaining cell adhesion function, we show that it is the co-transcriptional activity of β-catenin, which is required in hypertrophic chondrocytes to suppress osteoclastogenesis and to promote chondrocyte-derived osteoblast differentiation. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lena I Wolff
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| | - Astrid Houben
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| | - Christine Fabritius
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| | | | - Konrad Basler
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
| | - Christine Hartmann
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| |
Collapse
|
5
|
Juhl OJ, Merife AB, Zhang Y, Lemmon CA, Donahue HJ. Hydroxyapatite Particle Density Regulates Osteoblastic Differentiation Through β-Catenin Translocation. Front Bioeng Biotechnol 2021; 8:591084. [PMID: 33490047 PMCID: PMC7820766 DOI: 10.3389/fbioe.2020.591084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/08/2020] [Indexed: 01/09/2023] Open
Abstract
Substrate surface characteristics such as roughness, wettability and particle density are well-known contributors of a substrate's overall osteogenic potential. These characteristics are known to regulate cell mechanics as well as induce changes in cell stiffness, cell adhesions, and cytoskeletal structure. Pro-osteogenic particles, such as hydroxyapatite, are often incorporated into a substrate to enhance the substrates osteogenic potential. However, it is unknown which substrate characteristic is the key regulator of osteogenesis. This is partly due to the lack of understanding of how these substrate surface characteristics are transduced by cells. In this study substrates composed of polycaprolactone (PCL) and carbonated hydroxyapatite particles (HAp) were synthesized. HAp concentration was varied, and a range of surface characteristics created. The effect of each substrate characteristic on osteoblastic differentiation was then examined. We found that, of the characteristics examined, only HAp density, and indeed a specific density (85 particles/cm2), significantly increased osteoblastic differentiation. Further, an increase in focal adhesion maturation and turnover was observed in cells cultured on this substrate. Moreover, β-catenin translocation from the membrane bound cell fraction to the nucleus was more rapid in cells on the 85 particle/cm2 substrate compared to cells on tissue culture polystyrene. Together, these data suggest that particle density is one pivotal factor in determining a substrates overall osteogenic potential. Additionally, the observed increase in osteoblastic differentiation is a at least partly the result of β-catenin translocation and transcriptional activity suggesting a β-catenin mediated mechanism by which substrate surface characteristics are transduced.
Collapse
Affiliation(s)
- Otto J Juhl
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Anna-Blessing Merife
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Yue Zhang
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Christopher A Lemmon
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Henry J Donahue
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
6
|
Housman G, Quillen EE, Stone AC. Intraspecific and interspecific investigations of skeletal DNA methylation and femur morphology in primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:34-49. [PMID: 32170728 DOI: 10.1002/ajpa.24041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Epigenetic mechanisms influence the development and maintenance of complex phenotypes and may also contribute to the evolution of species-specific phenotypes. With respect to skeletal traits, little is known about the gene regulation underlying these hard tissues or how tissue-specific patterns are associated with bone morphology or vary among species. To begin exploring these topics, this study evaluates one epigenetic mechanism, DNA methylation, in skeletal tissues from five nonhuman primate species which display anatomical and locomotor differences representative of their phylogenetic groups. MATERIALS AND METHODS First, we test whether intraspecific variation in skeletal DNA methylation is associated with intraspecific variation in femur morphology. Second, we identify interspecific differences in DNA methylation and assess whether these lineage-specific patterns may have contributed to species-specific morphologies. Specifically, we use the Illumina Infinium MethylationEPIC BeadChip to identify DNA methylation patterns in femur trabecular bone from baboons (n = 28), macaques (n = 10), vervets (n = 10), chimpanzees (n = 4), and marmosets (n = 6). RESULTS Significant differentially methylated positions (DMPs) were associated with a subset of morphological variants, but these likely have small biological effects and may be confounded by other variables associated with morphological variation. Conversely, several species-specific DMPs were identified, and these are found in genes enriched for functions associated with complex skeletal traits. DISCUSSION Overall, these findings reveal that while intraspecific epigenetic variation is not readily associated with skeletal morphology differences, some interspecific epigenetic differences in skeletal tissues exist and may contribute to evolutionarily distinct phenotypes. This work forms a foundation for future explorations of gene regulation and skeletal trait evolution in primates.
Collapse
Affiliation(s)
- Genevieve Housman
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Ellen E Quillen
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
7
|
Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 2018; 185:240-275. [PMID: 30261426 PMCID: PMC6445367 DOI: 10.1016/j.biomaterials.2018.09.028] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
The development, maintenance of healthy bone and regeneration of injured tissue in the human body comprise a set of intricate and finely coordinated processes. However, an analysis of current bone regeneration strategies shows that only a small fraction of well-reported bone biology aspects has been used as inspiration and transposed into the development of therapeutic products. Specific topics that include inter-scale bone structural organization, developmental aspects of bone morphogenesis, bone repair mechanisms, role of specific cells and heterotypic cell contact in the bone niche (including vascularization networks and immune system cells), cell-cell direct and soluble-mediated contact, extracellular matrix composition (with particular focus on the non-soluble fraction of proteins), as well as mechanical aspects of native bone will be the main reviewed topics. In this Review we suggest a systematic parallelization of (i) fundamental well-established biology of bone, (ii) updated and recent advances on the understanding of biological phenomena occurring in native and injured tissue, and (iii) critical discussion of how those individual aspects have been translated into tissue regeneration strategies using biomaterials and other tissue engineering approaches. We aim at presenting a perspective on unexplored aspects of bone physiology and how they could be translated into innovative regeneration-driven concepts.
Collapse
Affiliation(s)
- Diana Lopes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Cláudia Martins-Cruz
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| |
Collapse
|
8
|
Hefni EK, Bencharit S, Kim SJ, Byrd KM, Moreli T, Nociti FH, Offenbacher S, Barros SP. Transcriptomic profiling of tantalum metal implant osseointegration in osteopenic patients. BDJ Open 2018; 4:17042. [PMID: 30479835 PMCID: PMC6251902 DOI: 10.1038/s41405-018-0004-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES The long-term success of dental implants is established by literature. Although clinically well defined, the complex genetic pathways underlying osseointegration have not yet been fully elucidated. Furthermore, patients with osteopenia/osteoporosis are considered to present as higher risk for implant failure. Porous tantalum trabecular metal (PTTM), an open-cell porous biomaterial, is suggested to present enhanced biocompatibility and osteoconductivity. The goal of this study was to evaluate the expression patterns of a panel of genes closely associated with osteogenesis and wound healing in osteopenic patients receiving either traditional titanium (Ti) or PTTM cylinders to assess the pathway of genes activation in the early phases of osseointegration. MATERIAL AND METHODS Implant cylinders made of Ti and PTTM were placed in osteopenic volunteers. At 2- and 4 weeks of healing, one Ti and one PTTM cylinder were removed from each subject for RT-PCR analysis using osteogenesis PCR array. RESULTS Compared to Ti, PTTM-associated bone displayed upregulation of bone matrix proteins, BMP/TGF tisuperfamily, soluble ligand and integrin receptors, growth factors, and collagen genes at one or both time points. Histologically, PTTM implants displayed more robust osteogenesis deposition and maturity when compared to Ti implants from the same patient. CONCLUSIONS Our results indicate that PTTM properties could induce an earlier activation of genes associated with osteogenesis in osteopenic patients suggesting that PTTM implants may attenuate the relative risk of placing dental implants in this population.
Collapse
Affiliation(s)
- E. K. Hefni
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| | - S. Bencharit
- Department of General Practice, School of Dentistry, Virginia Commonwealth University, Richmond, VA USA
| | - S. J. Kim
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| | - K. M. Byrd
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| | - T. Moreli
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| | - F. H. Nociti
- Department of Periodontology, School of Dentistry, State University of Campinas, Campinas, Brazil
| | - S. Offenbacher
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| | - S. P. Barros
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
9
|
Castori M, Ott CE, Bisceglia L, Leone MP, Mazza T, Castellana S, Tomassi J, Lanciotti S, Mundlos S, Hennekam RC, Kornak U, Brancati F. A novel mutation in CDH11, encoding cadherin-11, cause Branchioskeletogenital (Elsahy-Waters) syndrome. Am J Med Genet A 2018; 176:2028-2033. [PMID: 30194892 DOI: 10.1002/ajmg.a.40379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
Cadherins are cell-adhesion molecules that control morphogenesis, cell migration, and cell shape changes during multiple developmental processes. Until now four distinct cadherins have been implicated in human Mendelian disorders, mainly featuring skin, retinal and hearing manifestations. Branchio-skeleto-genital (or Elsahy-Waters) syndrome (BSGS) is an ultra-rare condition featuring a characteristic face, premature loss of teeth, vertebral and genital anomalies, and intellectual disability. We have studied two sibs with BSGS originally described by Castori et al. in 2010. Exome sequencing led to the identification of a novel homozygous nonsense variant in the first exon of the cadherin-11 gene (CDH11), which results in a prematurely truncated form of the protein. Recessive variants in CDH11 have been recently demonstrated in two other sporadic patients and a pair of sisters affected by BSGS. Although the function of this cadherin (also termed Osteoblast-Cadherin) is not completely understood, its prevalent expression in osteoblastic cell lines and up-regulation during differentiation suggest a specific function in bone formation and development. This study identifies a novel loss-of-function variant in CDH11 as a cause of BSGS and supports the role of cadherin-11 as a key player in axial and craniofacial malformations.
Collapse
Affiliation(s)
- Marco Castori
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Claus-Eric Ott
- Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luigi Bisceglia
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Pia Leone
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Stefano Castellana
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Jurgen Tomassi
- Neurological Rehabilitation Unit, San Raffaele Hospital, Cassino, Italy
| | - Silvia Lanciotti
- Medical Genetics Residency Programme, Tor Vergata University, Rome, Italy
| | - Stefan Mundlos
- Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Development and Disease Group, Berlin, Germany
| | - Raoul C Hennekam
- Department of Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Uwe Kornak
- Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Development and Disease Group, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| | - Francesco Brancati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| |
Collapse
|
10
|
Yuan X, Yuan T, Huang H, Jiang L, Zhou W, Liu S. Elevated CO 2 delays the early development of scleractinian coral Acropora gemmifera. Sci Rep 2018; 8:2787. [PMID: 29434364 PMCID: PMC5809585 DOI: 10.1038/s41598-018-21267-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 02/01/2018] [Indexed: 11/09/2022] Open
Abstract
The effects of elevated CO2 on the early life stages of coral were investigated by culturing the pelagic larvae and new recruits of Acropora gemmifera at three concentrations of CO2 (corresponding to pH = 8.1, 7.8 and 7.5, respectively). Acidified seawater resulted in fewer A. gemmifera larvae settling, and led to the production of smaller new recruits by slowing the development of the skeleton. The delayed development of new recruits due to elevated CO2 was consistent with the downregulation of calcification related genes. Several genes related to HCO3- and Ca2+ transporters were downregulated by elevated CO2, with solute carriers (SLC) (membrane transport proteins) possibly playing an important role. The downregulation of these membrane transport proteins might suppress the transport of calcium, bicarbonate and organic matter, resulting in the delayed development of A. gemmifera.
Collapse
Affiliation(s)
- Xiangcheng Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China.,Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China
| | - Tao Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China. .,Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China.
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China. .,Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China. .,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.
| | - Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China.,Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China
| | - Weihua Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China.,Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China.,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China
| | - Sheng Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China.,Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China
| |
Collapse
|
11
|
Marie PJ, Cohen-Solal M. The Expanding Life and Functions of Osteogenic Cells: From Simple Bone-Making Cells to Multifunctional Cells and Beyond. J Bone Miner Res 2018; 33:199-210. [PMID: 29206311 DOI: 10.1002/jbmr.3356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022]
Abstract
During the last three decades, important progress in bone cell biology and in human and mouse genetics led to major advances in our understanding of the life and functions of cells of the osteoblast lineage. Previously unrecognized sources of osteogenic cells have been identified. Novel cellular and molecular mechanisms controlling osteoblast differentiation and senescence have been determined. New mechanisms of communications between osteogenic cells, osteocytes, osteoclasts, and chondrocytes, as well as novel links between osteogenic cells and blood vessels have been identified. Additionally, cells of the osteoblast lineage were shown to be important components of the hematopoietic niche and to be implicated in hematologic dysfunctions and malignancy. Lastly, unexpected interactions were found between osteogenic cells and several soft tissues, including the central nervous system, gut, muscle, fat, and testis through the release of paracrine factors, making osteogenic cells multifunctional regulatory cells, in addition to their bone-making function. These discoveries considerably enlarged our vision of the life and functions of osteogenic cells, which may lead to the development of novel therapeutics with immediate applications in bone disorders. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pierre J Marie
- Inserm UMR-1132, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martine Cohen-Solal
- Inserm UMR-1132, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
12
|
Taskiran EZ, Karaosmanoglu B, Koşukcu C, Doğan ÖA, Taylan-Şekeroğlu H, Şimşek-Kiper PÖ, Utine EG, Boduroğlu K, Alikaşifoğlu M. Homozygous indel mutation in CDH11 as the probable cause of Elsahy-Waters syndrome. Am J Med Genet A 2017; 173:3143-3152. [PMID: 28988429 DOI: 10.1002/ajmg.a.38495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 11/12/2022]
Abstract
Two sisters from a consanguineous couple were seen in genetics department for facial dysmorphic features and glaucoma. They both had broad foreheads, hypertelorism, megalocorneas, thick eyebrows with synophrys, flat malar regions, broad and bulbous noses, and mild prognathism. Both had glaucoma, younger one also had cataracts and phthisis bulbi. Other findings included bilateral partial cutaneous syndactyly of 2nd and 3rd fingers, history of impacted teeth with dentigerous cyst in the elder one, and intellectual disability (mild and borderline). The sisters were considered to have Elsahy-Waters syndrome. In order to elucidate the underlying molecular cause, sisters and their healthy parents were genotyped by SNP arrays, followed by homozygosity mapping. Homozygous regions were further analyzed by exome sequencing in one affected individual. A homozygous indel variant segregating with the condition was detected in CDH11 (c.1116_1117delinsGATCATCAG, p.(Ile372MetfsTer9)), which was then validated by using Sanger sequencing. CDH11 encodes cadherin 11 (osteo-cadherin) that regulates cell-cell adhesion, cell polarization and migration, as well as osteogenic differentiation. Further experiments revealed that CDH11 expression was decreased in patient-derived fibroblasts as compared to the heterozygous parent and another healthy donor. Immunostaining showed absence of the protein expression in patient fibroblasts. In addition, cell proliferation rate was slow and osteogenic differentiation potential was delayed. We consider that this study reveals loss-of-function mutations in CDH11 as a probable cause of this phenotype. Next generation sequencing in further patients would both prove this gene as causative, and finely delineate this clinical spectrum further contributing in identification of other possibly involved gene(s).
Collapse
Affiliation(s)
- Ekim Z Taskiran
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Turkey
| | - Beren Karaosmanoglu
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Turkey.,Department of Stem Cell Sciences, Hacettepe University, Institute of Health Sciences, Ankara, Turkey
| | - Can Koşukcu
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Turkey
| | - Özlem A Doğan
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| | | | - Pelin Ö Şimşek-Kiper
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| | - Eda G Utine
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| | - Koray Boduroğlu
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| | - Mehmet Alikaşifoğlu
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Tang H, Zhang Y, Jansen JA, van den Beucken JJJP. Effect of monocytes/macrophages on the osteogenic differentiation of adipose-derived mesenchymal stromal cells in 3D co-culture spheroids. Tissue Cell 2017; 49:461-469. [PMID: 28684045 DOI: 10.1016/j.tice.2017.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 02/08/2023]
Abstract
This study aimed to investigate the distinctive roles of the monocytes and macrophages on osteogenic differentiation of adipose-derived mesenchymal stromal cells (ADMSCs) in 3D spheroid co-cultures. We hypothesized that monocytes or macrophages (subtypes pro-inflammatory M1 and pro-wound healing M2) would affect the osteogenic differentiation of ADMSCs in 3D spheroids and that cell-cell interactions between monocytes/macrophages and ADMSCs play an important role in the osteogenic differentiation process of ADMSCs. The obtained results indicated that the osteogenic differentiation of ADMSCs was inhibited by monocytes and both macrophage subtypes in 3D spheroids. Monocytes and M2 macrophages had a stronger inhibiting effect than M1 macrophages. Cell-cell interactions mediated by N-cadherin likely played a role in the inhibiting effect of monocytes/macrophages on the osteogenic differentiation of ADMSCs.
Collapse
Affiliation(s)
- Hongbo Tang
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands; Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Zhang
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands
| | | |
Collapse
|
14
|
He J, Guo J, Jiang B, Yao R, Wu Y, Wu F. Directing the osteoblastic and chondrocytic differentiations of mesenchymal stem cells: matrix vs. induction media. Regen Biomater 2017; 4:269-279. [PMID: 29026640 PMCID: PMC5633692 DOI: 10.1093/rb/rbx008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 12/16/2022] Open
Abstract
While both induction culture media and matrix have been reported to regulate the stem cell fate, little is known about which factor plays a more decisive role in directing the MSC differentiation lineage as well as the underlying mechanisms. To this aim, we seeded MSCs on HA-collagen and HA-synthetic hydrogel matrixes, which had demonstrated highly different potentials toward osteoblastic and chondrocytic differentiation lineages, respectively, and cultured them with osteogenic, chondrogenic and normal culture media, respectively. A systematic comparison has been carried out on the effects of induction media and matrix on MSC adhesion, cytoskeleton organization, proliferation, and in particular differentiation into the osteoblastic and chondrocytic lineages. The results demonstrated that the matrix selection had a much more profound effect on directing the differentiation lineage than the induction media did. The strong modulation effect on the transcription activities might be the critical factor contributing to the above observations in our study, where canonical Wnt-β-Catenin signal pathway was directly involved in the matrix-driven osteoblastic differentiation. Such findings not only provide a critical insight on natural cellular events leading to the osteoblastic and chondrocytic differentiations, but also have important implications in biomaterial design for tissue engineering applications.
Collapse
Affiliation(s)
- Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Jianglong Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Bo Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Ruijuan Yao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| |
Collapse
|
15
|
N-cadherin is Key to Expression of the Nucleus Pulposus Cell Phenotype under Selective Substrate Culture Conditions. Sci Rep 2016; 6:28038. [PMID: 27292569 PMCID: PMC4904275 DOI: 10.1038/srep28038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/27/2016] [Indexed: 12/19/2022] Open
Abstract
Nucleus pulposus (NP) cells of the intervertebral disc are essential for synthesizing extracellular matrix that contributes to disc health and mechanical function. NP cells have a unique morphology and molecular expression pattern derived from their notochordal origin, and reside in N-cadherin (CDH2) positive cell clusters in vivo. With disc degeneration, NP cells undergo morphologic and phenotypic changes including loss of CDH2 expression and ability to form cell clusters. Here, we investigate the role of CDH2 positive cell clusters in preserving healthy, biosynthetically active NP cells. Using a laminin-functionalized hydrogel system designed to mimic features of the native NP microenvironment, we demonstrate NP cell phenotype and morphology is preserved only when NP cells form CDH2 positive cell clusters. Knockdown (CRISPRi) or blocking CDH2 expression in vitro and in vivo results in loss of a healthy NP cell. Findings also reveal that degenerate human NP cells that are CDH2 negative can be promoted to re-express CDH2 and healthy, juvenile NP matrix synthesis patterns by promoting cell clustering for controlled microenvironment conditions. This work also identifies CDH2 interactions with β-catenin-regulated signaling as one mechanism by which CDH2-mediated cell interactions can control NP cell phenotype and biosynthesis towards maintenance of healthy intervertebral disc tissues.
Collapse
|
16
|
Hong S, Lee JY, Hwang C, Shin JH, Park Y. Inhibition of Rho-Associated Protein Kinase Increases the Angiogenic Potential of Mesenchymal Stem Cell Aggregates via Paracrine Effects. Tissue Eng Part A 2016; 22:233-43. [PMID: 26592750 DOI: 10.1089/ten.tea.2015.0289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The aggregation of multiple cells, such as mesenchymal condensation, is an important biological process in skeletal muscle development, osteogenesis, and adipogenesis. Due to limited in vivo study model systems, a simple and effective in vitro three-dimensional (3D) aggregation system is required to study the mechanisms of multicellular aggregation and its applications. We first generated controlled mesenchymal stem cell (MSC) aggregates using a bioprinting technique to monitor their aggregation and sprouting. We induced the angiogenic potential of the MSCs through chemical inhibition of the Rho/Rho-associated protein kinase (ROCK) pathway, which led to hairy sprouting in the aggregates. The angiogenic potential of this 3D construct was then tested by subcutaneously implanting the Matrigel with 3D MSC aggregates in a rat. Treatment of 3D MSCs with the ROCK inhibitor, Y27632, increased their angiogenic activity in vivo. The gene expressions and histological staining indicated that angiogenesis and neovascularization were mainly regulated by the paracrine factors secreted from human 3D MSC constructs. Our results demonstrate the enhancement of the angiogenic potential of the MSC constructs through the secretion of vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) by the inhibition of the Rho/ROCK pathway.
Collapse
Affiliation(s)
- Soyoung Hong
- 1 Department of Biomedical Engineering, College of Medicine, Korea University , Seoul, Korea.,2 Biomedical Engineering Research Center, Asan Medical Center , Seoul, Korea
| | - Jae Yeon Lee
- 1 Department of Biomedical Engineering, College of Medicine, Korea University , Seoul, Korea
| | - Changmo Hwang
- 2 Biomedical Engineering Research Center, Asan Medical Center , Seoul, Korea
| | - Jennifer H Shin
- 3 Department of Mechanical Engineering, Graduate School of Medical Science and Engineering , KAIST, Daejeon, Korea
| | - Yongdoo Park
- 1 Department of Biomedical Engineering, College of Medicine, Korea University , Seoul, Korea
| |
Collapse
|
17
|
Zhu M, Lin S, Sun Y, Feng Q, Li G, Bian L. Hydrogels functionalized with N-cadherin mimetic peptide enhance osteogenesis of hMSCs by emulating the osteogenic niche. Biomaterials 2016; 77:44-52. [PMID: 26580785 DOI: 10.1016/j.biomaterials.2015.10.072] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 01/16/2023]
Abstract
N-cadherin is considered to be the key factor in directing cell-cell interactions during mesenchymal condensation, which is essential to osteogenesis. In this study, hyaluronic acid (HA) hydrogels are biofunctionalized with an N-cadherin mimetic peptide to mimic the pro-osteogenic niche in the endosteal space to promote the osteogenesis of human mesenchymal stem cells (hMSCs). Results show that the conjugation of the N-cadherin peptide in the HA hydrogels enhances the expression of the osteogenic marker genes in the seeded hMSCs. Furthermore, the biofunctionalized HA hydrogels promote the alkaline phosphatase activity, type I collagen deposition, and matrix mineralization by the seeded hMSCs under both in vitro and in vivo condition. We postulate that the biofunctionalized hydrogels emulates the N-cadherin-mediated homotypic cell-cell adhesion among MSCs and the "orthotypic" interaction between the osteoblasts and MSCs. These findings demonstrate that the biofunctionalized HA hydrogels provide a supportive niche microenvironment for the osteogenesis of hMSCs.
Collapse
Affiliation(s)
- Meiling Zhu
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China; Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Sien Lin
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yuxin Sun
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Qian Feng
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China; Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Gang Li
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Liming Bian
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China; Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, People's Republic of China.
| |
Collapse
|
18
|
Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:421746. [PMID: 26247020 PMCID: PMC4515490 DOI: 10.1155/2015/421746] [Citation(s) in RCA: 1043] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023]
Abstract
Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.
Collapse
|
19
|
Hatano M, Matsumoto Y, Fukushi JI, Matsunobu T, Endo M, Okada S, Iura K, Kamura S, Fujiwara T, Iida K, Fujiwara Y, Nabeshima A, Yokoyama N, Fukushima S, Oda Y, Iwamoto Y. Cadherin-11 regulates the metastasis of Ewing sarcoma cells to bone. Clin Exp Metastasis 2015; 32:579-91. [DOI: 10.1007/s10585-015-9729-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/15/2015] [Indexed: 12/25/2022]
|
20
|
Yao W, Lane NE. Targeted delivery of mesenchymal stem cells to the bone. Bone 2015; 70:62-5. [PMID: 25173607 PMCID: PMC4268265 DOI: 10.1016/j.bone.2014.07.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/26/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a disease of excess skeletal fragility that results from estrogen loss and aging. Age related bone loss has been attributed to both elevated bone resorption and insufficient bone formation. We developed a hybrid compound, LLP2A-Ale in which LLP2A has high affinity for the α4β1 integrin on mesenchymal stem cells (MSCs) and alendronate has high affinity for bone. When LLP2A-Ale was injected into mice, the compound directed MSCs to both trabecular and cortical bone surfaces and increased bone mass and bone strength. Additional studies are underway to further characterize this hybrid compound, LLP2A-Ale, and how it can be utilized for the treatment of bone loss resulting from hormone deficiency, aging, and inflammation and to augment bone fracture healing. This article is part of a Special Issue entitled "Stem Cells and Bone".
Collapse
Affiliation(s)
- Wei Yao
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, Sacramento, CA 95817, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
21
|
Marie PJ, Haÿ E, Saidak Z. Integrin and cadherin signaling in bone: role and potential therapeutic targets. Trends Endocrinol Metab 2014; 25:567-75. [PMID: 25034128 DOI: 10.1016/j.tem.2014.06.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/16/2022]
Abstract
Cell-cell and cell-matrix interactions mediated by cell adhesion molecules are important mechanisms controlling cell fate and function. Here, we review recent advances in the implication of the cell adhesion molecules integrins and cadherins in the control of osteoblastogenesis and bone formation. We discuss emerging evidence indicating that signaling pathways mediated by integrins and cadherins and their crosstalk with the Wnt/β-catenin signaling pathway regulate osteogenic differentiation and mechanotransduction. We also offer a comprehensive view of the mechanisms by which some integrins and cadherins control the differentiation of cells of the osteoblast lineage in bone marrow niches. Understanding how specific integrins or cadherins may promote osteogenic cell differentiation, bone formation, and repair may lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Pierre J Marie
- UMR-1132 INSERM and University Paris Diderot, Sorbonne Paris Cité, Paris, 75475 cedex 10, France.
| | - Eric Haÿ
- UMR-1132 INSERM and University Paris Diderot, Sorbonne Paris Cité, Paris, 75475 cedex 10, France
| | - Zuzana Saidak
- UMR-1132 INSERM and University Paris Diderot, Sorbonne Paris Cité, Paris, 75475 cedex 10, France
| |
Collapse
|
22
|
Haÿ E, Dieudonné FX, Saidak Z, Marty C, Brun J, Da Nascimento S, Sonnet P, Marie PJ. N-cadherin/wnt interaction controls bone marrow mesenchymal cell fate and bone mass during aging. J Cell Physiol 2014; 229:1765-75. [PMID: 24664975 DOI: 10.1002/jcp.24629] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/21/2014] [Indexed: 01/25/2023]
Abstract
Age-related bone loss is characterized by reduced osteoblastogenesis and excessive bone marrow adipogenesis. The mechanisms governing bone marrow mesenchymal stromal cell (BMSC) differentiation into adipocytes or osteoblasts during aging are unknown. We show here that overexpressing N-cadherin (Cadh2) in osteoblasts increased BMSC adipocyte differentiation and reduced osteoblast differentiation in young transgenic (Tg) mice whereas this phenotype was fully reversed with aging. The reversed phenotype with age was associated with enhanced Wnt5a and Wnt10b expression in osteoblasts and a concomitant increase in BMSC osteogenic differentiation. Consistent with this mechanism, conditioned media from young wild type osteoblasts inhibited adipogenesis and promoted osteoblast differentiation in BMSC from old Cadh2 Tg mice, and this response was abolished by Wnt5a and Wnt10b silencing. Transplantation of BMSC from old Cadh2 Tg mice into young Tg recipients increased Wnt5a and Wnt10b expression and rescued BMSC osteogenic differentiation. In senescent osteopenic mice, blocking the CADH2-Wnt interaction using an antagonist peptide increased Wnt5a and Wnt10b expression, bone formation, and bone mass. The data indicate that Cadh2/Wnt interaction in osteoblasts regulates BMSC lineage determination, bone formation, and bone mass and suggest a therapeutic target for promoting bone formation in the aging skeleton.
Collapse
Affiliation(s)
- Eric Haÿ
- Inserm UMR-1132, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Marie PJ. Bone cell senescence: mechanisms and perspectives. J Bone Miner Res 2014; 29:1311-21. [PMID: 24496911 DOI: 10.1002/jbmr.2190] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/15/2022]
Abstract
Age-related bone loss is in large part the consequence of senescence mechanisms that impact bone cell number and function. In recent years, progress has been made in the understanding of the molecular mechanisms underlying bone cell senescence that contributes to the alteration of skeletal integrity during aging. These mechanisms can be classified as intrinsic senescence processes, alterations in endogenous anabolic factors, and changes in local support. Intrinsic senescence mechanisms cause cellular dysfunctions that are not tissue specific and include telomere shortening, accumulation of oxidative damage, impaired DNA repair, and altered epigenetic mechanisms regulating gene transcription. Aging mechanisms that are more relevant to the bone microenvironment include alterations in the expression and signaling of local growth factors and altered intercellular communications. This review provides an integrated overview of the current concepts and interacting mechanisms underlying bone cell senescence during aging and how they could be targeted to reduce the negative impact of senescence in the aging skeleton.
Collapse
Affiliation(s)
- Pierre J Marie
- Inserm UMR-1132, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
24
|
Ma D. Author's response to letter to the editor (JOR-13-0436) that refers to "Molecular mechanisms of cell sheet fragment in enhancing bone formation in mandibular distraction". J Orthop Res 2014; 32:353-4. [PMID: 24214848 DOI: 10.1002/jor.22515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 02/04/2023]
Affiliation(s)
- Dongyang Ma
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, BinHe 333 South Road, Lanzhou, 730052, China
| |
Collapse
|
25
|
Marie PJ, Haÿ E, Modrowski D, Revollo L, Mbalaviele G, Civitelli R. Cadherin-mediated cell-cell adhesion and signaling in the skeleton. Calcif Tissue Int 2014; 94:46-54. [PMID: 23657489 PMCID: PMC4272239 DOI: 10.1007/s00223-013-9733-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/08/2013] [Indexed: 01/01/2023]
Abstract
Direct cell-to-cell interactions via cell adhesion molecules, in particular cadherins, are critical for morphogenesis, tissue architecture, and cell sorting and differentiation. Partially overlapping, yet distinct roles of N-cadherin (cadherin-2) and cadherin-11 in the skeletal system have emerged from mouse genetics and in vitro studies. Both cadherins are important for precursor commitment to the osteogenic lineage, and genetic ablation of Cdh2 and Cdh11 results in skeletal growth defects and impaired bone formation. While Cdh11 defines the osteogenic lineage, persistence of Cdh2 in osteoblasts in vivo actually inhibits their terminal differentiation and impairs bone formation. The action of cadherins involves both cell-cell adhesion and interference with intracellular signaling, and in particular the Wnt/β-catenin pathway. Both cadherin-2 and cadherin-11 bind to β-catenin, thus modulating its cytoplasmic pools and transcriptional activity. Recent data demonstrate that cadherin-2 also interferes with Lrp5/6 signaling by sequestering these receptors in inactive pools via axin binding. These data extend the biologic action of cadherins in bone forming cells, and provide novel mechanisms for development of therapeutic strategies aimed at enhancing bone formation.
Collapse
Affiliation(s)
- Pierre J Marie
- Laboratory of Osteoblast Biology and Pathology, Inserm UMR-606, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475, Paris Cedex 10, France,
| | | | | | | | | | | |
Collapse
|
26
|
Sart S, Tsai AC, Li Y, Ma T. Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties, and applications. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:365-80. [PMID: 24168395 DOI: 10.1089/ten.teb.2013.0537] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) are primary candidates in cell therapy and tissue engineering and are being tested in clinical trials for a wide range of diseases. Originally isolated and expanded as plastic adherent cells, MSCs have intriguing properties of in vitro self-assembly into three-dimensional (3D) aggregates reminiscent of skeletal condensation in vivo. Recent studies have shown that MSC 3D aggregation improved a range of biological properties, including multilineage potential, secretion of therapeutic factors, and resistance against ischemic condition. Hence, the formation of 3D MSC aggregates has been explored as a novel strategy to improve cell delivery, functional activation, and in vivo retention to enhance therapeutic outcomes. This article summarizes recent reports of MSC aggregate self-assembly, characterization of biological properties, and their applications in preclinical models. The cellular and molecular mechanisms underlying MSC aggregate formation and functional activation are discussed, and the areas that warrant further investigation are highlighted. These analyses are combined to provide perspectives for identifying the controlling mechanisms and refining the methods of aggregate fabrication and expansion for clinical applications.
Collapse
Affiliation(s)
- Sébastien Sart
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | | | | | | |
Collapse
|
27
|
Contribution of genetic and epigenetic mechanisms to Wnt pathway activity in prevalent skeletal disorders. Gene 2013; 532:165-72. [PMID: 24096177 DOI: 10.1016/j.gene.2013.09.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/13/2013] [Accepted: 09/23/2013] [Indexed: 12/22/2022]
Abstract
We reported previously that the expression of Wnt-related genes is lower in osteoporotic hip fractures than in osteoarthritis. We aimed to confirm those results by analyzing β-catenin levels and explored potential genetic and epigenetic mechanisms involved. β-Catenin gene expression and nuclear levels were analyzed by real time PCR and confocal immunofluorescence. Increased nuclear β-catenin was found in osteoblasts isolated from patients with osteoarthritis (99 ± 4 units vs. 76 ± 12, p=0.01, n=10), without differences in gene transcription, which is consistent with a post-translational down-regulation of β-catenin and decreased Wnt pathway activity. Twenty four single nucleotide polymorphisms (SNPs) of genes showing differential expression between fractures and osteoarthritis (WNT4, WNT10A, WNT16 and SFRP1) were analyzed in DNA isolated from blood of 853 patients. The genotypic frequencies were similar in both groups of patients, with no significant differences. Methylation of Wnt pathway genes was analyzed in bone tissue samples (15 with fractures and 15 with osteoarthritis) by interrogating a CpG-based methylation array. Six genes showed significant methylation differences between both groups of patients: FZD10, TBL1X, CSNK1E, WNT8A, CSNK1A1L and SFRP4. The DNA demethylating agent 5-deoxycytidine up-regulated 8 genes, including FZD10, in an osteoblast-like cell line, whereas it down-regulated other 16 genes. In conclusion, Wnt activity is reduced in patients with hip fractures, in comparison with those with osteoarthritis. It does not appear to be related to differences in the allele frequencies of the Wnt genes studied. On the other hand, methylation differences between both groups could contribute to explain the differences in Wnt activity.
Collapse
Key Words
- 5-aza-2-deoxy-azacytidine
- AzadC
- Bone diseases
- C-terminal binding protein 1
- CACYBP
- CAMK2G
- CSNK1A1
- CSNK1A1L
- CSNK1E
- CTBP1
- Ct
- DNA methylation
- FDR
- FOS-like antigen 1
- FOSL1
- FRZB
- FZD10
- Fractures
- GSK3B
- GWAS
- HWE
- Hardy–Weinberg equilibrium
- LRP5
- PLCB3
- PPP2R1A
- RHOA
- SFRP1
- SFRP4
- TATA box binding protein
- TBL1X
- TBP
- WNT10A
- WNT16
- WNT4
- WNT8A
- Wnt
- calcium/calmodulin-dependent protein kinase II gamma
- calcyclin binding protein
- casein kinase 1, alpha 1
- casein kinase 1, alpha 1-like
- casein kinase 1, epsilon
- false discovery rate
- frizzled homolog 10
- frizzled-related protein
- genome-wide association study
- glycogen synthase kinase 3 beta
- lipoprotein receptor related protein 5
- phospholipase C, beta 3 (phosphatidylinositol-specific)
- protein phosphatase 2 (formerly 2A), regulatory subunit A, alpha isoform
- ras homolog gene family, member A
- secreted frizzled-related protein 1
- secreted frizzled-related protein 4
- threshold cycle
- transducin (beta)-like 1X-linked
- wingless-type MMTV integration site family, member 10A
- wingless-type MMTV integration site family, member 16
- wingless-type MMTV integration site family, member 4
- wingless-type MMTV integration site family, member 8A
- β-Catenin
Collapse
|
28
|
Pustylnik S, Fiorino C, Nabavi N, Zappitelli T, da Silva R, Aubin JE, Harrison RE. EB1 levels are elevated in ascorbic Acid (AA)-stimulated osteoblasts and mediate cell-cell adhesion-induced osteoblast differentiation. J Biol Chem 2013; 288:22096-110. [PMID: 23740245 DOI: 10.1074/jbc.m113.481515] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Osteoblasts are differentiated mesenchymal cells that function as the major bone-producing cells of the body. Differentiation cues including ascorbic acid (AA) stimulation provoke intracellular changes in osteoblasts leading to the synthesis of the organic portion of the bone, which includes collagen type I α1, proteoglycans, and matrix proteins, such as osteocalcin. During our microarray analysis of AA-stimulated osteoblasts, we observed a significant up-regulation of the microtubule (MT) plus-end binding protein, EB1, compared with undifferentiated osteoblasts. EB1 knockdown significantly impaired AA-induced osteoblast differentiation, as detected by reduced expression of osteoblast differentiation marker genes. Intracellular examination of AA-stimulated osteoblasts treated with EB1 siRNA revealed a reduction in MT stability with a concomitant loss of β-catenin distribution at the cell cortex and within the nucleus. Diminished β-catenin levels in EB1 siRNA-treated osteoblasts paralleled an increase in phospho-β-catenin and active glycogen synthase kinase 3β, a kinase known to target β-catenin to the proteasome. EB1 siRNA treatment also reduced the expression of the β-catenin gene targets, cyclin D1 and Runx2. Live immunofluorescent imaging of differentiated osteoblasts revealed a cortical association of EB1-mcherry with β-catenin-GFP. Immunoprecipitation analysis confirmed an interaction between EB1 and β-catenin. We also determined that cell-cell contacts and cortically associated EB1/β-catenin interactions are necessary for osteoblast differentiation. Finally, using functional blocking antibodies, we identified E-cadherin as a major contributor to the cell-cell contact-induced osteoblast differentiation.
Collapse
Affiliation(s)
- Sofia Pustylnik
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Cadherins and Wnt signalling: a functional link controlling bone formation. BONEKEY REPORTS 2013; 2:330. [PMID: 24422077 DOI: 10.1038/bonekey.2013.64] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 01/14/2023]
Abstract
Cadherins are calcium-dependent cell adhesion molecules that have a major role in morphogenesis and tissue formation. In bone, cadherins control osteoblast differentiation by mediating cell-cell adhesion and signals that promote phenotypic osteoblast gene expression. Furthermore, cadherins can interact with Wnt signalling to modulate osteoblastogenesis. One mechanism involves the interaction of N-cadherin with β-catenin at the cell membrane, resulting in β-catenin sequestration, reduction of the cytosolic β-catenin pool and inhibition of Wnt signalling. In addition to modulating the β-catenin pool, N-cadherin can regulate osteoblasts by interacting with the Wnt coreceptors LRP5 or LRP6. We showed that the functional interaction between N-cadherin and LRP5/6 in osteoblasts promotes β-catenin degradation and reduces canonical Wnt signalling. This crosstalk between N-cadherin and Wnt signalling has a negative impact on osteoblast proliferation, differentiation and survival, independently of cell-cell adhesion, which results in decreased bone formation and delayed bone accrual in mice. The identification of this crosstalk between N-cadherin and Wnt signalling may have therapeutic implications, as a disruption of the N-cadherin-LRP5/6 interaction using a competitor peptide can increase Wnt/β-catenin signalling without affecting cell-cell adhesion, and this effect results in increased osteoblastogenesis and bone tissue formation in vivo. In this review, we summarize our current knowledge of the key crosstalks between cadherins and Wnt signalling that impact osteoblast function, bone formation and bone mass, and the possible therapeutic implications of such interactions for promoting osteoblastogenesis, bone formation and bone mass.
Collapse
|
30
|
WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013; 19:179-92. [PMID: 23389618 DOI: 10.1038/nm.3074] [Citation(s) in RCA: 1520] [Impact Index Per Article: 126.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022]
Abstract
Low bone mass and strength lead to fragility fractures, for example, in elderly individuals affected by osteoporosis or children with osteogenesis imperfecta. A decade ago, rare human mutations affecting bone negatively (osteoporosis-pseudoglioma syndrome) or positively (high-bone mass phenotype, sclerosteosis and Van Buchem disease) have been identified and found to all reside in components of the canonical WNT signaling machinery. Mouse genetics confirmed the importance of canonical Wnt signaling in the regulation of bone homeostasis, with activation of the pathway leading to increased, and inhibition leading to decreased, bone mass and strength. The importance of WNT signaling for bone has also been highlighted since then in the general population in numerous genome-wide association studies. The pathway is now the target for therapeutic intervention to restore bone strength in millions of patients at risk for fracture. This paper reviews our current understanding of the mechanisms by which WNT signalng regulates bone homeostasis.
Collapse
|
31
|
Haÿ E, Buczkowski T, Marty C, Da Nascimento S, Sonnet P, Marie PJ. Peptide-based mediated disruption of N-cadherin-LRP5/6 interaction promotes Wnt signaling and bone formation. J Bone Miner Res 2012; 27:1852-63. [PMID: 22576936 DOI: 10.1002/jbmr.1656] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Wnt signaling plays an important role in skeletal biology and diseases. In osteoblasts, we recently showed that the cell-cell adhesion molecule N-cadherin interacts with the Wnt coreceptors LRP5/6 to regulate osteogenesis. In this study we investigated whether targeting the intracellular domain of N-cadherin that interacts with LRP5/6 may promote Wnt signaling and bone formation. By investigating the molecular interactions between the Wnt coreceptors LRP5/6 and N-cadherin, we identified specific LRP5/6- and N-cadherin-interacting intracellular domains that impact Wnt/β-catenin signaling in murine osteoblasts. We showed that truncated N-cadherin constructs that impair N-cadherin-LRP5/6 interactions promote Wnt/β-catenin signaling and osteoblast differentiation. Based on this finding, we developed a peptide-based approach targeting N-cadherin-LRP5 interaction for promoting Wnt signaling and osteoblast function. We found that a competitor peptide containing the 28 last amino acids of LRP5 disrupts LRP5/6-N-cadherin interaction and thereby enhances Wnt/β-catenin signaling in osteoblasts. We also show that the peptide-mediated disruption of N-cadherin-LRP5/6 interaction increases Wnt/β-catenin signaling and osteoblast function in vitro and promotes calvaria bone formation in vivo. The targeted competitor peptide-based strategy reported here may provide a novel approach to stimulate Wnt/β-catenin signaling that can be used for promoting osteoblast function and bone formation.
Collapse
Affiliation(s)
- Eric Haÿ
- Laboratory of Osteoblast Biology and Pathology, INSERM UMR-606, Paris, France
| | | | | | | | | | | |
Collapse
|
32
|
Guntur AR, Rosen CJ, Naski MC. N-cadherin adherens junctions mediate osteogenesis through PI3K signaling. Bone 2012; 50:54-62. [PMID: 21964322 PMCID: PMC3251172 DOI: 10.1016/j.bone.2011.09.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 08/22/2011] [Accepted: 09/07/2011] [Indexed: 01/18/2023]
Abstract
During endochondral ossification, the cartilage is surrounded by a layer of cells that constitute the perichondrium. Communication between osteoblasts in the perichondrium via N-cadherin adherens junctions is essential for endochondral bone growth. We observed that adherens junction molecule N-cadherin and its interacting partners p120, β-catenin and PTEN are expressed by cells present in the perichondrium. To study if N-cadherin mediated adherens junctions play a role in mediating signal transduction events during bone development, we utilized MC3T3E1 preosteoblasts plated at sub confluent (low) and confluent (high) densities to mimic adherens junction formation. When MC3T3E1 cells were plated at high density we observed an increase in phosphorylation of AKTSer473 and its downstream target GSK3Ser9, which coincided with an increase in Osterix, Osteomodulin and Osteoglycin gene expression. Using immunofluorescence, we identified N-cadherin, p120 and β-catenin localized at the membrane of MC3T3E1 cells. Treatment of confluent MC3T3E1 cells with an N-cadherin junction inhibitor-EGTA and a PI3K inhibitor LY294002 resulted in reduction of phosphorylation levels of AKT and GSK3 and expression of Osterix, Osteomodulin and Osteoglycin. Furthermore, utilizing an N-cadherin blocking antibody resulted in reduced AKT signaling and Osterix gene expression, suggesting that osteoblast junction formation is linked to activation of PI3K signaling, which leads to osteoblast differentiation. To further explore the strength of this linkage, we utilized a conditional knockout approach using Dermo1cre to delete β-catenin and PTEN, two important proteins known to be essential for adherens junctions and PI3K signaling, respectively. In the absence of β-catenin, we observed a decrease in adherens junctions and AKT signaling in the perichondrium. PTEN deletion, on the other hand, increased the number of cells expressing N-cadherin in the perichondrium. These observations show that N-cadherin mediated junctions between osteoblasts are needed for osteoblast gene transcription.
Collapse
Affiliation(s)
- Anyonya R Guntur
- Department of Biochemistry University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | |
Collapse
|
33
|
Farber CR, Kelly SA, Baruch E, Yu D, Hua K, Nehrenberg DL, de Villena FPM, Buus RJ, Garland T, Pomp D. Identification of quantitative trait loci influencing skeletal architecture in mice: emergence of Cdh11 as a primary candidate gene regulating femoral morphology. J Bone Miner Res 2011; 26:2174-83. [PMID: 21638317 PMCID: PMC3304441 DOI: 10.1002/jbmr.436] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bone strength is influenced by many properties intrinsic to bone, including its mass, geometry, and mineralization. To further advance our understanding of the genetic basis of bone-strength-related traits, we used a large (n = 815), moderately (G(4) ) advanced intercross line (AIL) of mice derived from a high-runner selection line (HR) and the C57BL/6J inbred strain. In total, 16 quantitative trait loci (QTLs) were identified that affected areal bone mineral density (aBMD) and femoral length and width. Four significant (p < .05) and one suggestive (p < .10) QTLs were identified for three aBMD measurements: total body, vertebral, and femoral. A QTL on chromosome (Chr.) 3 influenced all three aBMD measures, whereas the other four QTLs were unique to a single measure. A total of 10 significant and one suggestive QTLs were identified for femoral length (FL) and two measures of femoral width, anteroposterior (AP) and mediolateral (ML). FL QTLs were distinct from loci affecting AP and ML width, and of the 7 AP QTLs, only three affected ML. A QTL on Chr. 8 that explained 7.1% and 4.0% of the variance in AP and ML, respectively, was mapped to a 6-Mb region harboring 12 protein-coding genes. The pattern of haplotype diversity across the QTL region and expression profiles of QTL genes suggested that of the 12, cadherin 11 (Cdh11) was most likely the causal gene. These findings, when combined with existing data from gene knockouts, identify Cdh11 as a strong candidate gene within which genetic variation may affect bone morphology.
Collapse
Affiliation(s)
- Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Groen RWJ, de Rooij MFM, Kocemba KA, Reijmers RM, de Haan-Kramer A, Overdijk MB, Aalders L, Rozemuller H, Martens ACM, Bergsagel PL, Kersten MJ, Pals ST, Spaargaren M. N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation. Haematologica 2011; 96:1653-61. [PMID: 21828122 DOI: 10.3324/haematol.2010.038133] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Multiple myeloma is a hematologic malignancy characterized by a clonal expansion of malignant plasma cells in the bone marrow, which is accompanied by the development of osteolytic lesions and/or diffuse osteopenia. The intricate bi-directional interaction with the bone marrow microenvironment plays a critical role in sustaining the growth and survival of myeloma cells during tumor progression. Identification and functional analysis of the (adhesion) molecules involved in this interaction will provide important insights into the pathogenesis of multiple myeloma. DESIGN AND METHODS Multiple myeloma cell lines and patients' samples were analyzed for expression of the adhesion molecule N-cadherin by immunoblotting, flow cytometry, immunofluorescence microscopy, immunohistochemistry and expression microarray. In addition, by means of blocking antibodies and inducible RNA interference we studied the functional consequence of N-cadherin expression for the myeloma cells, by analysis of adhesion, migration and growth, and for the bone marrow microenvironment, by analysis of osteogenic differentiation. RESULTS The malignant plasma cells in approximately half of the multiple myeloma patients, belonging to specific genetic subgroups, aberrantly expressed the homophilic adhesion molecule N-cad-herin. N-cadherin-mediated cell-substrate or homotypic cell-cell adhesion did not contribute to myeloma cell growth in vitro. However, N-cadherin directly mediated the bone marrow localization/retention of myeloma cells in vivo, and facilitated a close interaction between myeloma cells and N-cadherin-positive osteoblasts. Furthermore, this N-cadherin-mediated interaction contributed to the ability of myeloma cells to inhibit osteoblastogenesis. CONCLUSIONS Taken together, our data show that myeloma cells frequently display aberrant expression of N-cadherin and that N-cadherin mediates the interaction of myeloma cells with the bone marrow microenvironment, in particular the osteoblasts. This N-cadherin-mediated interaction inhibits osteoblast differentiation and may play an important role in the pathogenesis of myeloma bone disease.
Collapse
Affiliation(s)
- Richard W J Groen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH. Bone remodelling at a glance. J Cell Sci 2011; 124:991-8. [PMID: 21402872 DOI: 10.1242/jcs.063032] [Citation(s) in RCA: 329] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Julie C Crockett
- Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | | | | | |
Collapse
|
36
|
Liedert A, Mattausch L, Röntgen V, Blakytny R, Vogele D, Pahl M, Bindl R, Neunaber C, Schinke T, Harroch S, Amling M, Ignatius A. Midkine-deficiency increases the anabolic response of cortical bone to mechanical loading. Bone 2011; 48:945-51. [PMID: 21185956 DOI: 10.1016/j.bone.2010.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/23/2010] [Accepted: 12/15/2010] [Indexed: 02/04/2023]
Abstract
The adaptive response of bone to load is dependent on molecular factors, including growth factor signaling, which is involved in the regulation of proliferation, differentiation and function of osteoblasts and osteoclasts. Based on a recent study, which has shown that the deficiency of growth factor midkine (Mdk) in mice at 12 and 18 months of age resulted in increased trabecular bone formation, we hypothesized that mechanically-induced bone remodeling may, at least in part, be dependent on Mdk expression. To investigate this, we loaded the ulnae of Mdk-deficient mice and appropriate wild-type mice at the age of 12 months using the in vivo ulna loading model. Histomorphometric quantification of the periosteal bone demonstrated an increased mineralizing surface, mineral apposition rate, and bone formation rate in ulnae of Mdk-deficient mice compared to wild-type mice in response to loading. Because Mdk has been shown to bind to a complex of receptor-type protein tyrosine phosphatase zeta (Ptprz) and low density lipoprotein receptor-related protein-6 (Lrp-6) together with the α4β1- and α6β1-integrins, we performed in vitro studies using osteoblastic cells, transiently over-expressing Mdk, Wnt-3a, and Ptprz to evaluate whether Mdk has a role in regulating bone formation by modulating Wnt signaling. We observed a negative effect of Mdk on Wnt signaling, the extent of which appeared to be dependent on Ptprz expression. Moreover, we performed in vitro loading studies with osteoblasts treated with recombinant Mdk and observed a negative effect on the expression of Wnt target genes, which play a critical role in osteoblast proliferation. In summary, our data demonstrate that Mdk-deficiency in mice has an anabolic effect on mechanically induced cortical bone formation. This could be due to an improved osteoblast function based on an enhancement of β-catenin-dependent Wnt signaling by both Mdk-deficiency and mechanical loading.
Collapse
Affiliation(s)
- Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shiirevnyamba A, Takahashi T, Shan H, Ogawa H, Yano S, Kanayama H, Izumi K, Uehara H. Enhancement of osteoclastogenic activity in osteolytic prostate cancer cells by physical contact with osteoblasts. Br J Cancer 2011; 104:505-13. [PMID: 21206493 PMCID: PMC3049567 DOI: 10.1038/sj.bjc.6606070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The interaction between prostate cancer cells and osteoblasts is critical for the development of bone metastasis. Metastatic cancer cells may physically contact osteoblasts in the bone microenvironment; however, the biological significance of this interaction is not fully understood. METHODS Human prostate cancer cells (the osteolytic cell line PC-3 and the osteoblastic cell line MDA-PCa 2b) and human osteoblasts (hFOB1.19) were cocultured under two different conditions (bilayer and contact conditions). Differential gene expression profiles of prostate cancer cells were then investigated using microarray analysis. Differentially expressed genes were analysed using RT-PCR and western blotting, and the effect of anti-cadherin neutralising antibodies on their expression was assayed. The osteoclastogenic activity of cells grown under these different conditions was also investigated using an in vitro assay. RESULTS When PC-3 or MDA-PCa 2b cells were cocultured with hFOB1.19 cells under contact conditions, the expression of eight genes was upregulated and that of one gene was downregulated in PC-3 cells compared with gene expression in bilayer culture. No differentially expressed genes were detected in MDA-PCa 2b cells. Four of the eight upregulated genes (interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), IL-6 and the third component of complement (C3)) have already been reported to participate in osteoclastogenesis. Indeed, a cell lysate of PC-3 cells grown under contact coculture conditions significantly enhanced osteoclastogenesis in vitro (P<0.005). neutralisation of cadherin-11 with a specific antibody inhibited upregulation of COX-2 and C3 mRNA in PC-3 cells. In contrast, neutralisation of N-cadherin induced upregulation of COX-2 mRNA. CONCLUSION Physical contact between osteolytic prostate cancer cells and osteoblasts may upregulate osteoclastogenesis-related gene expression in prostate cancer cells and enhance osteoclastogenesis. Additionally, cadherin-11 and N-cadherin are involved in this process. These data provide evidence supporting new therapies of prostate cancer bone metastasis that target direct cancer-cell-osteoblast cell-cell contact.
Collapse
Affiliation(s)
- A Shiirevnyamba
- Department of Molecular and Environmental Pathology, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
In the last 5 years a role for beta-catenin in the skeleton has been cemented. Beginning with mutations in the Lrp5 receptor that control beta-catenin canonical downstream signals, and progressing to transgenic models with bone-specific alteration of beta-catenin, research has shown that beta-catenin is required for normal bone development. A cell critical to bone in which beta-catenin activity determines function is the marrow-derived mesenchymal stem cell (MSC), where sustained beta-catenin prevents its distribution into adipogenic lineage. beta-Catenin actions are less well understood in mature osteoblasts: while beta-catenin contributes to control of osteoclastic bone resorption via alteration of the osteoprotegerin/RANKL ratio, a specific regulatory role during osteoblast bone synthesis has not yet been determined. The proven ability of mechanical factors to prevent beta-catenin degradation and induce nuclear translocation through Lrp-independent mechanisms suggests processes by which exercise might modulate bone mass via control of lineage allocation, in particular, by preventing precursor distribution into the adipocyte pool. Effects resulting from mechanical activation of beta-catenin in mature osteoblasts and osteocytes likely modulate bone resorption, but whether beta-catenin is involved in osteoblast synthetic function remains to be proven for both mechanical and soluble mediators. As beta-catenin appears to support the downstream effects of multiple osteogenic factors, studies clarifying when and where beta-catenin effects occur will be relevant for translational approaches aimed at preventing bone loss and terminal adipogenic conversion.
Collapse
Affiliation(s)
- Natasha Case
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
39
|
Di Benedetto A, Watkins M, Grimston S, Salazar V, Donsante C, Mbalaviele G, Radice GL, Civitelli R. N-cadherin and cadherin 11 modulate postnatal bone growth and osteoblast differentiation by distinct mechanisms. J Cell Sci 2010; 123:2640-8. [PMID: 20605916 DOI: 10.1242/jcs.067777] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have previously shown that targeted expression of a dominant-negative truncated form of N-cadherin (Cdh2) delays acquisition of peak bone mass in mice and retards osteoblast differentiation; whereas deletion of cadherin 11 (Cdh11), another osteoblast cadherin, leads to only modest osteopenia. To determine the specific roles of these two cadherins in the adult skeleton, we generated mice with an osteoblast/osteocyte specific Cdh2 ablation (cKO) and double Cdh2(+/-);Cdh11(-/-) germline mutant mice. Age-dependent osteopenia and smaller diaphyses with decreased bone strength characterize cKO bones. By contrast, Cdh2(+/-);Cdh11(-/-) exhibit severely reduced trabecular bone mass, decreased in vivo bone formation rate, smaller diaphyses and impaired bone strength relative to single Cdh11 null mice. The number of bone marrow immature precursors and osteoprogenitor cells is reduced in both cKO and Cdh2(+/-);Cdh11(-/-) mice, suggesting that N-cadherin is involved in maintenance of the stromal cell precursor pool via the osteoblast. Although Cdh11 is dispensable for postnatal skeletal growth, it favors osteogenesis over adipogenesis. Deletion of either cadherin reduces β-catenin abundance and β-catenin-dependent gene expression, whereas N-cadherin loss disrupts cell-cell adhesion more severely than loss of cadherin 11. Thus, Cdh2 and Cdh11 are crucial regulators of postnatal skeletal growth and bone mass maintenance, serving overlapping, yet distinct, functions in the osteogenic lineage.
Collapse
Affiliation(s)
- Adriana Di Benedetto
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8301, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Beta-Catenin-dependent canonical Wnt signaling plays an important role in bone metabolism by controlling differentiation of bone-forming osteoblasts and bone-resorbing osteoclasts. To investigate its function in osteocytes, the cell type constituting the majority of bone cells, we generated osteocyte-specific beta-catenin-deficient mice (Ctnnb1(loxP/loxP); Dmp1-Cre). Homozygous mutants were born at normal Mendelian frequency with no obvious morphological abnormalities or detectable differences in size or body weight, but bone mass accrual was strongly impaired due to early-onset, progressive bone loss in the appendicular and axial skeleton with mild growth retardation and premature lethality. Cancellous bone mass was almost completely absent, and cortical bone thickness was dramatically reduced. The low-bone-mass phenotype was associated with increased osteoclast number and activity, whereas osteoblast function and osteocyte density were normal. Cortical bone Wnt/beta-catenin target gene expression was reduced, and of the known regulators of osteoclast differentiation, osteoprotegerin (OPG) expression was significantly downregulated in osteocyte bone fractions of mutant mice. Moreover, the OPG levels expressed by osteocytes were higher than or comparable to the levels expressed by osteoblasts during skeletal growth and at maturity, suggesting that the reduction in osteocytic OPG and the concomitant increase in osteocytic RANKL/OPG ratio contribute to the increased number of osteoclasts and resorption in osteocyte-specific beta-catenin mutants. Together, these results reveal a crucial novel function for osteocyte beta-catenin signaling in controlling bone homeostasis.
Collapse
|
41
|
Shefer G, Benayahu D. SVEP1 is a Novel Marker of Activated Pre-determined Skeletal Muscle Satellite Cells. Stem Cell Rev Rep 2010; 6:42-9. [DOI: 10.1007/s12015-009-9106-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
N-cadherin negatively regulates osteoblast proliferation and survival by antagonizing Wnt, ERK and PI3K/Akt signalling. PLoS One 2009; 4:e8284. [PMID: 20011526 PMCID: PMC2788421 DOI: 10.1371/journal.pone.0008284] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 10/29/2009] [Indexed: 12/31/2022] Open
Abstract
Background Osteoblasts are bone forming cells that play an essential role in osteogenesis. The elucidation of the mechanisms that control osteoblast number is of major interest for the treatment of skeletal disorders characterized by abnormal bone formation. Canonical Wnt signalling plays an important role in the control of osteoblast proliferation, differentiation and survival. Recent studies indicate that the cell-cell adhesion molecule N-cadherin interacts with the Wnt co-receptors LRP5/6 to regulate osteoblast differentiation and bone accrual. The role of N-cadherin in the control of osteoblast proliferation and survival remains unknown. Methods and Principal Findings Using murine MC3T3-E1 osteoblastic cells and N-cadherin transgenic mice, we demonstrate that N-cadherin overexpression inhibits cell proliferation in vitro and in vivo. The negative effect of N-cadherin on cell proliferation results from decreased Wnt, ERK and PI3K/Akt signalling and is restored by N-cadherin neutralizing antibody that antagonizes N-cadherin-LRP5 interaction. Inhibition of Wnt signalling using DKK1 or Sfrp1 abolishes the ability of N-cadherin blockade to restore ERK and PI3K signalling and cell proliferation, indicating that the altered cell growth in N-cadherin overexpressing cells is in part secondary to alterations in Wnt signalling. Consistently, we found that N-cadherin overexpression inhibits the expression of Wnt3a ligand and its downstream targets c-myc and cyclin D1, an effect that is partially reversed by N-cadherin blockade. We also show that N-cadherin overexpression decreases osteoblast survival in vitro and in vivo. This negative effect on cell survival results from inhibition of PI3K/Akt signalling and increased Bax/Bcl-2, a mechanism that is rescued by Wnt3a. Conclusion The data show that N-cadherin negatively controls osteoblast proliferation and survival via inhibition of autocrine/paracrine Wnt3a ligand expression and attenuation of Wnt, ERK and PI3K/Akt signalling, which provides novel mechanisms by which N-cadherin regulates osteoblast number.
Collapse
|
43
|
Clendenon SG, Shah B, Miller CA, Schmeisser G, Walter A, Gattone VH, Barald KF, Liu Q, Marrs JA. Cadherin-11 controls otolith assembly: evidence for extracellular cadherin activity. Dev Dyn 2009; 238:1909-22. [PMID: 19582870 DOI: 10.1002/dvdy.22015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cadherin-11/Cdh11 is expressed through early development and strongly during inner ear development (otic placode and vesicle). Here we show that antisense knockdown of Cdh11 during early zebrafish development interferes with otolith formation. Immunofluorescence labeling showed that Cdh11 expression was concentrated on and within the otolith. Cdh11 was faintly detected at the lateral surface (sites of cell-cell contact) of otic epithelial cells and in the cytoplasm. Strongly labeled Cdh11 containing puncta were detected within the otolymph (the fluid within the otic vesicle) and associated with the otolith surface. BODIPY-ceramine-labeled vesicular structures detected in the otolymph were larger and more numerous in Cdh11 knockdown embryos. We present evidence supporting a working model that vesicular structures containing Cdh11 (perhaps containing biomineralization components) are exported from the otic epithelium into the otolymph, adhere to one another and to the surface of the growing otolith, facilitating otolith growth.
Collapse
Affiliation(s)
- Sherry G Clendenon
- Department of Medicine, Indiana University Medical Center, Indianapolis, Indiana 46202-5130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu L, Ling J, Wei X, Wu L, Xiao Y. Stem cell regulatory gene expression in human adult dental pulp and periodontal ligament cells undergoing odontogenic/osteogenic differentiation. J Endod 2009; 35:1368-76. [PMID: 19801232 DOI: 10.1016/j.joen.2009.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 12/28/2022]
Abstract
INTRODUCTION During development and regeneration, odontogenesis and osteogenesis are initiated by a cascade of signals driven by several master regulatory genes. METHODS In this study, we investigated the differential expression of 84 stem cell-related genes in dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) undergoing odontogenic/osteogenic differentiation. RESULTS Our results showed that, although there was considerable overlap, certain genes had more differential expression in PDLCs than in DPCs. CCND2, DLL1, and MME were the major upregulated genes in both PDLCs and DPCs, whereas KRT15 was the only gene significantly downregulated in PDLCs and DPCs in both odontogenic and osteogenic differentiation. Interestingly, a large number of regulatory genes in odontogenic and osteogenic differentiation interact or crosstalk via Notch, Wnt, transforming growth factor beta (TGF-beta)/bone morphogenic protein (BMP), and cadherin signaling pathways, such as the regulation of APC, DLL1, CCND2, BMP2, and CDH1. Using a rat dental pulp and periodontal defect model, the expression and distribution of both BMP2 and CDH1 have been verified for their spatial localization in dental pulp and periodontal tissue regeneration. CONCLUSIONS This study has generated an overview of stem cell-related gene expression in DPCs and PDLCs during odontogenic/osteogenic differentiation and revealed that these genes may interact through the Notch, Wnt, TGF-beta/BMP, and cadherin signaling pathways to play a crucial role in determining the fate of dental derived cell and dental tissue regeneration. These findings provided a new insight into the molecular mechanisms of the dental tissue mineralization and regeneration.
Collapse
Affiliation(s)
- Lu Liu
- Department of Operative Dentistry, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Overexpression of alpha-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells. Biochem Biophys Res Commun 2009; 382:745-50. [PMID: 19324011 DOI: 10.1016/j.bbrc.2009.03.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 03/18/2009] [Indexed: 11/21/2022]
Abstract
alpha- and beta-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/beta-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of alpha-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding alpha-catenin (MSCV-alpha-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium (beta-glycerol phosphate and ascorbic acid), cells overexpressing alpha-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2 was significantly increased compared to control. Cell aggregation assay revealed that alpha-catenin overexpression has significantly increased cell-cell aggregation. However, cellular beta-catenin levels (total, cytoplasmic-nuclear ratio) and beta-catenin-TCF/LEF transcriptional activity did not change by overexpression of alpha-catenin. Knock-down of alpha-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that alpha-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/beta-catenin-signaling.
Collapse
|
47
|
N-cadherin interacts with axin and LRP5 to negatively regulate Wnt/beta-catenin signaling, osteoblast function, and bone formation. Mol Cell Biol 2008; 29:953-64. [PMID: 19075000 DOI: 10.1128/mcb.00349-08] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Wnt signaling plays an important role in the regulation of bone formation and bone mass. The mechanisms that regulate canonical Wnt signaling in osteoblasts are not fully understood. We show here a novel mechanism by which the adhesion molecule N-cadherin interacts with the Wnt coreceptor LRP5 and regulates canonical Wnt/beta-catenin signaling in osteoblasts. We demonstrate that N-cadherin, besides associating with beta-catenin at the membrane, forms a molecular complex with axin and LRP5 involving the LRP5 cytoplasmic tail domain. N-cadherin overexpression in osteoblasts increases N-cadherin-LRP5 interaction, causing increased beta-catenin degradation and altered TCF/LEF transcription in response to Wnt3a. This mechanism results in decreased osteoblast gene expression and osteogenesis in basal conditions and in response to Wnt3a. Consistent with a functional mechanism, silencing N-cadherin expression in control cells increases TCF/LEF transcription and enhances the response to Wnt3a. Using N-cadherin transgenic mice, we show that increased N-cadherin-LRP5 interaction resulting from targeted overexpression of N-cadherin in osteoblasts causes increased beta-catenin ubiquitination and results in cell-autonomous defective osteoblast function, reduced bone formation, and delayed bone mass acquisition. These data indicate that a previously unrecognized N-cadherin-axin-LRP5 interaction negatively regulates Wnt/beta-catenin signaling and is critical in the regulation of osteoblast function, bone formation, and bone mass.
Collapse
|
48
|
Chu K, Cheng CJ, Ye X, Lee YC, Zurita AJ, Chen DT, Yu-Lee LY, Zhang S, Yeh ET, Hu MCT, Logothetis CJ, Lin SH. Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol Cancer Res 2008; 6:1259-67. [PMID: 18708358 PMCID: PMC2643879 DOI: 10.1158/1541-7786.mcr-08-0077] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bone is the most common site of metastases from prostate cancer. The mechanism by which prostate cancer cells metastasize to bone is not fully understood, but interactions between prostate cancer cells and bone cells are thought to initiate the colonization of metastatic cells at that site. Here, we show that cadherin-11 (also known as osteoblast-cadherin) was highly expressed in prostate cancer cell line derived from bone metastases and had strong homophilic binding to recombinant cadherin-11 in vitro. Down-regulation of cadherin-11 in bone metastasis-derived PC3 cells with cadherin-11-specific short hairpin RNA (PC3-shCad-11) significantly decreased the adhesion of those cells to cadherin-11 in vitro. In a mouse model of metastasis, intracardiac injection of PC3 cells led to metastasis of those cells to bone. However, the incidence of PC3 metastasis to bone in this model was reduced greatly when the expression of cadherin-11 by those cells was silenced. The clinical relevance of cadherin-11 in prostate cancer metastases was further studied by examining the expression of cadherin-11 in human prostate cancer specimens. Cadherin-11 was not expressed by normal prostate epithelial cells but was detected in prostate cancer, with its expression increasing from primary to metastatic disease in lymph nodes and especially bone. Cadherin-11 expression was not detected in metastatic lesions that occur in other organs. Collectively, these findings suggest that cadherin-11 is involved in the metastasis of prostate cancer cells to bone.
Collapse
Affiliation(s)
- Khoi Chu
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Chien-Jui Cheng
- Department of Pathology, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Xiangcang Ye
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Yu-Chen Lee
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Amado J. Zurita
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Dung-Tsa Chen
- Biostatistics Division, Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Sui Zhang
- Department of Cardiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Edward T. Yeh
- Department of Cardiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Mickey C-T. Hu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Sue-Hwa Lin
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
49
|
Bibliography. Current world literature. Parathyroids, bone and mineral metabolism. Curr Opin Endocrinol Diabetes Obes 2007; 14:494-501. [PMID: 17982358 DOI: 10.1097/med.0b013e3282f315ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Bennett CN, Ouyang H, Ma YL, Zeng Q, Gerin I, Sousa KM, Lane TF, Krishnan V, Hankenson KD, MacDougald OA. Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res 2007; 22:1924-32. [PMID: 17708715 DOI: 10.1359/jbmr.070810] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Overexpression of Wnt10b from the osteocalcin promoter in transgenic mice increases postnatal bone mass. Increases in osteoblast perimeter, mineralizing surface, and bone formation rate without detectable changes in pre-osteoblast proliferation, osteoblast apoptosis, or osteoclast number and activity suggest that, in this animal model, Wnt10b primarily increases bone mass by stimulating osteoblastogenesis. INTRODUCTION Wnt signaling regulates many aspects of development including postnatal accrual of bone. Potential mechanisms for how Wnt signaling increases bone mass include regulation of osteoblast and/or osteoclast number and activity. To help differentiate between these possibilities, we studied mice in which Wnt10b is expressed specifically in osteoblast lineage cells or in mice devoid of Wnt10b. MATERIALS AND METHODS Transgenic mice, in which mouse Wnt10b is expressed from the human osteocalcin promoter (Oc-Wnt10b), were generated in C57BL/6 mice. Transgene expression was evaluated by RNase protection assay. Quantitative assessment of bone variables was done by radiography, muCT, and static and dynamic histomorphometry. Mechanisms of bone homeostasis were evaluated with assays for BrdU, TUNEL, and TRACP5b activity, as well as serum levels of C-terminal telopeptide of type I collagen (CTX). The endogenous role of Wnt10b in bone was assessed by dynamic histomorphometry in Wnt10b(-/-) mice. RESULTS Oc-Wnt10b mice have increased mandibular bone and impaired eruption of incisors during postnatal development. Analyses of femoral distal metaphyses show significantly higher BMD, bone volume fraction, and trabecular number. Increased bone formation is caused by increases in number of osteoblasts per bone surface, rate of mineral apposition, and percent mineralizing surface. Although number of osteoclasts per bone surface is not altered, Oc-Wnt10b mice have increased total osteoclast activity because of higher bone mass. In Wnt10b(-/-) mice, changes in mineralizing variables and osteoblast perimeter in femoral distal metaphyses were not observed; however, bone formation rate is reduced because of decreased total bone volume and trabecular number. CONCLUSIONS High bone mass in Oc-Wnt10b mice is primarily caused by increased osteoblastogenesis, with a minor contribution from elevated mineralizing activity of osteoblasts.
Collapse
Affiliation(s)
- Christina N Bennett
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|