1
|
Orlicky DJ, Smith EE, Bok R, Guess MK, Rascoff LG, Arruda JS, Hutchinson-Colas JA, Johnson J, Connell KA. Estrogen and Androgen Receptor Status in Uterosacral Ligaments of Women with Pelvic Organ Prolapse Stratified by the Pelvic Organ Prolapse Histology Quantification System. Reprod Sci 2023; 30:3495-3506. [PMID: 37430099 PMCID: PMC10692001 DOI: 10.1007/s43032-023-01283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/02/2023] [Indexed: 07/12/2023]
Abstract
Menopause is a significant risk factor for pelvic organ prolapse (POP), suggesting that ovarian sex steroids play a major role in the etiology of the condition. POP results from failure of the uterine-cervix-vagina support structures, including the uterosacral ligament (USL). We previously identified consistent degenerative USL phenotypes that occur in POP and used their characteristics to develop a standardized POP Histologic Quantification System (POP-HQ). In this study, POP and matched control USL tissue was first segregated into the unique POP-HQ phenotypes, and specimens were then compared for estrogen receptor (ER) alpha (ERα), ERbeta (ERβ), the G-protein estrogen receptor (GPER), and androgen receptor (AR) content via immunohistochemical staining. ER and AR expression levels in the control USL tissues were indistinguishable from those observed in the POP-A phenotype, and partially overlapped with those of the POP-I phenotype. However, control-USL steroid receptor expression was statistically distinct from the POP-V phenotype. This difference was driven mainly by the increased expression of GPER and AR in smooth muscle, connective tissue, and endothelial cells, and increased expression of ERα in connective tissue. These findings support a multifactorial etiology for POP involving steroid signaling that contributes to altered smooth muscle, vasculature, and connective tissue content in the USL. Furthermore, these data support the concept that there are consistent and distinct degenerative processes that lead to POP and suggest that personalized approaches are needed that target specific cell and tissues in the pelvic floor to treat or prevent this complex condition.
Collapse
Affiliation(s)
- David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - E Erin Smith
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rachel Bok
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marsha K Guess
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lauren G Rascoff
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jaime S Arruda
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Joshua Johnson
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Kathleen A Connell
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
2
|
Rodriguez EE, Bott CB, Wigginton KR, Love NG. In vitro bioassays to monitor complex chemical mixtures at a carbon-based indirect potable reuse plant. WATER RESEARCH 2023; 241:120094. [PMID: 37276655 DOI: 10.1016/j.watres.2023.120094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
Potable water reuse technologies are used to treat wastewater to drinking water quality to help sustain a community's water resources. California has long led the adoption of potable water reuse technologies in the United States and more states are exploring these technologies as water resources decline. Reuse technologies also need to achieve adequate reductions in microbial and chemical contaminant risks to meet public health goals and secure public acceptance. In vitro bioassays are a useful tool for screening if reuse treatment processes adequately reduce toxicity associated with a range of chemical classes that are contaminants of concern. In this study, we used an aryl hydrocarbon receptor (AhR) and an estrogen receptor luciferase bioassay to detect the presence of dioxin-like and estrogenic compounds across a 3800 m3/d carbon-based indirect potable reuse plant that uses carbon-based treatment (SWIFT-RC). Our results demonstrate significant removal of dioxin-like compounds across the SWIFT-RC treatment train. Estrogenicity declined across the treatment train for some months but was extremely variable and low with many samples falling below the method quantification level; consequently, we were not able to reliably determine estrogenicity trends for SWIFT-RC. Comparing the bioanalytical equivalent concentrations detected in the SWIFT-RC water with established monitoring trigger levels from the state of California suggests that SWIFT-RC produced water that met the bioassay guidelines. The log total organic carbon concentration and AhR assay equivalent concentrations are weakly correlated when data across all SWIFT-RC processes are included. Overall, this research demonstrates the performance of in vitro bioassays at a demonstration-scale carbon-based IPR system and highlights both the potential utility and challenges associated with these methods for assessing system performance.
Collapse
Affiliation(s)
- Enrique E Rodriguez
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Charles B Bott
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | - Krista R Wigginton
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nancy G Love
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Park CG, Singh N, Ryu CS, Yoon JY, Esterhuizen M, Kim YJ. Species Differences in Response to Binding Interactions of Bisphenol A and its Analogs with the Modeled Estrogen Receptor 1 and In Vitro Reporter Gene Assay in Human and Zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2431-2443. [PMID: 35876442 DOI: 10.1002/etc.5433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Adverse impacts associated with the interactions of numerous endocrine-disruptor chemicals (EDCs) with estrogen receptor 1 play a pivotal role in reproductive dysfunction. The predictive studies on these interactions thus are crucial in the risk assessment of EDCs but rely heavily on the accuracy of specific protein structure in three dimensions. As the three-dimensional (3D) structure of zebrafish estrogen receptor 1 (zEsr1) is not available, the 3D structure of zEsr1 ligand-binding domain (zEsr1-LBD) was generated using MODELLER and its quality was assessed by the PROCHECK, ERRAT, ProSA, and Verify-3D tools. After the generated model was verified as reliable, bisphenol A and its analogs were docked on the zEsr1-LBD and human estrogen receptor 1 ligand-binding domain (hESR1-LBD) using the Discovery Studio and Autodock Vina programs. The molecular dynamics followed by molecular docking were simulated using the Nanoscale Molecular Dynamics program and compared to those of the in vitro reporter gene assays. Some chemicals were bound with an orientation similar to that of 17β-estradiol in both models and in silico binding energies showed moderate or high correlations with in vitro results (0.33 ≤ r2 ≤ 0.71). Notably, hydrogen bond occupancy during molecular dynamics simulations exhibited a high correlation with in vitro results (r2 ≥ 0.81) in both complexes. These results show that the combined in silico and in vitro approaches is a valuable tool for identifying EDCs in different species, facilitating the assessment of EDC-induced reproductive toxicity. Environ Toxicol Chem 2022;41:2431-2443. © 2022 SETAC.
Collapse
Affiliation(s)
- Chang Gyun Park
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Saarbrucken, Germany
- Universität des Saarlandes, Saarbrücken, Germany
| | - Nancy Singh
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Saarbrucken, Germany
- Universität des Saarlandes, Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Saarbrucken, Germany
| | - Ju Yong Yoon
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Saarbrucken, Germany
| | - Maranda Esterhuizen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
- Helsinki Institute of Sustainability Science, Fabianinkatu, Helsinki, Finland
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Saarbrucken, Germany
| |
Collapse
|
4
|
Sukocheva OA, Lukina E, Friedemann M, Menschikowski M, Hagelgans A, Aliev G. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol 2022; 82:35-59. [PMID: 33301860 DOI: 10.1016/j.semcancer.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cell de-sensitization to Tamoxifen (TAM) or other selective estrogen receptor (ER) modulators (SERM) is a complex process associated with BC heterogeneity and the transformation of ER signalling. The most influential resistance-related mechanisms include modifications in ER expression and gene regulation patterns. During TAM/SERM treatment, epigenetic mechanisms can effectively silence ER expression and facilitate the development of endocrine resistance. ER status is efficiently regulated by specific epigenetic tools including hypermethylation of CpG islands within ER promoters, increased histone deacetylase activity in the ER promoter, and/or translational repression by miRNAs. Over-methylation of the ER α gene (ESR1) promoter by DNA methyltransferases was associated with poor prognosis and indicated the development of resistance. Moreover, BC progression and spreading were marked by transformed chromatin remodelling, post-translational histone modifications, and expression of specific miRNAs and/or long non-coding RNAs. Therefore, targeted inhibition of histone acetyltransferases (e.g. MYST3), deacetylases (e.g. HDAC1), and/or demethylases (e.g. lysine-specific demethylase LSD1) was shown to recover and increase BC sensitivity to anti-estrogens. Indicated as a powerful molecular instrument, the administration of epigenetic drugs can regain ER expression along with the activation of tumour suppressor genes, which can in turn prevent selection of resistant cells and cancer stem cell survival. This review examines recent advances in the epigenetic regulation of endocrine drug resistance and evaluates novel anti-resistance strategies. Underlying molecular mechanisms of epigenetic regulation will be discussed, emphasising the utilization of epigenetic enzymes and their inhibitors to re-program irresponsive BCs.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Elena Lukina
- Discipline of Biology, College of Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation; GALLY International Research Institute, San Antonio, TX, 78229, USA.
| |
Collapse
|
5
|
Hussain I, Deb P, Chini A, Obaid M, Bhan A, Ansari KI, Mishra BP, Bobzean SA, Udden SMN, Alluri PG, Das HK, Brothers RM, Perrotti LI, Mandal SS. HOXA5 Expression Is Elevated in Breast Cancer and Is Transcriptionally Regulated by Estradiol. Front Genet 2021; 11:592436. [PMID: 33384715 PMCID: PMC7770181 DOI: 10.3389/fgene.2020.592436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
HOXA5 is a homeobox-containing gene associated with the development of the lung, gastrointestinal tract, and vertebrae. Here, we investigate potential roles and the gene regulatory mechanism in HOXA5 in breast cancer cells. Our studies demonstrate that HOXA5 expression is elevated in breast cancer tissues and in estrogen receptor (ER)-positive breast cancer cells. HOXA5 expression is critical for breast cancer cell viability. Biochemical studies show that estradiol (E2) regulates HOXA5 gene expression in cultured breast cancer cells in vitro. HOXA5 expression is also upregulated in vivo in the mammary tissues of ovariectomized female rats. E2-induced HOXA5 expression is coordinated by ERs. Knockdown of either ERα or ERβ downregulated E2-induced HOXA5 expression. Additionally, ER co-regulators, including CBP/p300 (histone acetylases) and MLL-histone methylases (MLL2, MLL3), histone acetylation-, and H3K4 trimethylation levels are enriched at the HOXA5 promoter in present E2. In summary, our studies demonstrate that HOXA5 is overexpressed in breast cancer and is transcriptionally regulated via estradiol in breast cancer cells.
Collapse
Affiliation(s)
- Imran Hussain
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Paromita Deb
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Avisankar Chini
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Monira Obaid
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Arunoday Bhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Khairul I Ansari
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Bibhu P Mishra
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Samara A Bobzean
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, United States
| | - S M Nashir Udden
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Prasanna G Alluri
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hriday K Das
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Institute for Healthy Aging, Fort Worth, TX, United States
| | - Robert Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Linda I Perrotti
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, United States
| | - Subhrangsu S Mandal
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
6
|
Wang L, Yi J, Lu LY, Zhang YY, Wang L, Hu GS, Liu YC, Ding JC, Shen HF, Zhao FQ, Huang HH, Liu W. Estrogen-induced circRNA, circPGR, functions as a ceRNA to promote estrogen receptor-positive breast cancer cell growth by regulating cell cycle-related genes. Theranostics 2021; 11:1732-1752. [PMID: 33408778 PMCID: PMC7778588 DOI: 10.7150/thno.45302] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023] Open
Abstract
Estrogen and estrogen receptor (ER)-regulated gene transcriptional events have been well known to be involved in ER-positive breast carcinogenesis. Meanwhile, circular RNAs (circRNAs) are emerging as a new family of functional non-coding RNAs (ncRNAs) with implications in a variety of pathological processes, such as cancer. However, the estrogen-regulated circRNA program and the function of such program remain uncharacterized. Methods: CircRNA sequencing (circRNA-seq) was performed to identify circRNAs induced by estrogen, and cell proliferation, colony formation, wound healing, transwell and tumor xenograft experiments were applied to examine the function of estrogen-induced circRNA, circPGR. RNA sequencing (RNA-seq) and ceRNA network analysis wereperformed to identify circPGR's target genes and the microRNA (miRNA) bound to circPGR. Anti-sense oligonucleotide (ASO) was used to assess circPGR's effects on ER-positive breast cancer cell growth. Results: Genome-wide circRNA profiling by circRNA sequencing (circRNA-seq) revealed that a large number of circRNAs were induced by estrogen, and further functional screening for the several circRNAs originated from PGR revealed that one of them, which we named as circPGR, was required for ER-positive breast cancer cell growth and tumorigenesis. CircPGR was found to be localized in the cytosol of cells and functioned as a competing endogenous RNA (ceRNA) to sponge miR-301a-5p to regulate the expression of multiple cell cycle genes. The clinical relevance of circPGR was underscored by its high and specific expression in ER-positive breast cancer cell lines and clinical breast cancer tissue samples. Accordingly, anti-sense oligonucleotide (ASO) targeting circPGR was proven to be effective in suppressing ER-positive breast cancer cell growth. Conclusions: These findings reveled that, besides the well-known messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA) and enhancer RNA (eRNA) programs, estrogen also induced a circRNA program, and exemplified by circPGR, these estrogen-induced circRNAs were required for ER-positive breast cancer cell growth, providing a new class of therapeutic targets for ER-positive breast cancer.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Cycle
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation
- Estrogens/pharmacology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- Prognosis
- RNA, Circular/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/genetics
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jia Yi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Ling-yun Lu
- Department of Orthopedics, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, China
| | - Yue-ying Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Lan Wang
- Department of Pathology, The Second Affiliated Hospital, Shantou University Medical College, Dongxia North Road, Shantou, Guangdong 515041, China
| | - Guo-sheng Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yi-chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jian-cheng Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Hai-feng Shen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Fang-qing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-hua Huang
- Department of Pathology, The Second Affiliated Hospital, Shantou University Medical College, Dongxia North Road, Shantou, Guangdong 515041, China
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
7
|
Abstract
PURPOSE Amplified in breast cancer 1 (AIB1) expression is known to be involved in the initiation and progression of malignant breast cancer (BC), but its prognostic role remains uncertain. This meta-analysis assessed reported studies to evaluate this relationship. METHODS Electronic databases were systematically reviewed to collect eligible studies using pre-established criteria. Hazard ratios (HRs) or odds ratios (ORs) and 95% confidence intervals (CIs) were pooled to estimate the impact of AIB1 protein expression on overall survival (OS) and clinicopathologic properties of BC cases. RESULTS Nine eligible studies, including 6774 patients, were finally assessed by the current clinical meta-analysis. AIB1 positivity correlated with reduced OS (pooled HR = 1.409, 95% CI 1.159-1.714, P = .001). AIB1 overexpression also impacted prognosis as shown by univariate (pooled HR = 1.420, 95% CI 1.154-1.747, P = .001) and multivariate (pooled HR = 1.446, 95% CI 1.099-1.956; P = .009) analyses. Notably, subgroup analyses also revealed that AIB1 overexpression was associated with poor OS in some subgroups, such as ER-positive group (pooled HR = 1.511, 95% CI 1.138-2.006, P = .004), ER-positive without tamoxifen administration group (pooled HR = 2.338, 95% CI 1.489-3.627, P < .001), and premenopausal women group (pooled HR = 1.715, 95% CI 1.231-2.390, P = .001). Additionally, high AIB1 protein levels were associated with HER2 positivity (pooled OR = 0.331, 95% CI 0.245-0.448; P < .001), poorly differentiated histological grade (pooled OR = 0.377, 95% CI 0.317-0.448; P < .001), high Ki67 (pooled OR = 0.501, 95% CI 0.410-0.612; P < .001), presence of lymph node metastases (pooled OR = 0.866, 95% CI 0.752-0.997; P = .045), and absence of progesterone receptor (pooled OR = 1.447, 95% CI 1.190-1.759; P < .001). CONCLUSIONS This analysis demonstrated that AIB1 overexpression is related to aggressive phenotypes and unfavorable clinical outcomes in BC, and might involve in tamoxifen resistance. AIB1 may be a new prognostic biomarker and therapeutic target in BC.
Collapse
Affiliation(s)
- Jianjing Hou
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Jingting Liu
- Department of Emergency, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang
| | - Mengci Yuan
- Division of Breast Surgery, Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning
| | - Chunyan Meng
- Department of General Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Jianhua Liao
- Department of General Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Steroids and TRP Channels: A Close Relationship. Int J Mol Sci 2020; 21:ijms21113819. [PMID: 32471309 PMCID: PMC7325571 DOI: 10.3390/ijms21113819] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential (TRP) channels are remarkable transmembrane protein complexes that are essential for the physiology of the tissues in which they are expressed. They function as non-selective cation channels allowing for the signal transduction of several chemical, physical and thermal stimuli and modifying cell function. These channels play pivotal roles in the nervous and reproductive systems, kidney, pancreas, lung, bone, intestine, among others. TRP channels are finely modulated by different mechanisms: regulation of their function and/or by control of their expression or cellular/subcellular localization. These mechanisms are subject to being affected by several endogenously-produced compounds, some of which are of a lipidic nature such as steroids. Fascinatingly, steroids and TRP channels closely interplay to modulate several physiological events. Certain TRP channels are affected by the typical genomic long-term effects of steroids but others are also targets for non-genomic actions of some steroids that act as direct ligands of these receptors, as will be reviewed here.
Collapse
|
9
|
Matsuda KI, Hashimoto T, Kawata M. Intranuclear Mobility of Estrogen Receptor: Implication for Transcriptional Regulation. Acta Histochem Cytochem 2018; 51:129-136. [PMID: 30279614 PMCID: PMC6160615 DOI: 10.1267/ahc.18023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022] Open
Abstract
The estrogen receptor (ER) is a ligand-dependent transcription factor that has two subtypes: ERα and ERβ. ERs regulate transcription of estrogen-responsive genes through interactions with multiple intranuclear components, such as cofactors and the nuclear matrix. Live cell imaging using fluorescent protein-labeled ERs has revealed that ligand-activated ERs are highly mobile in the nucleus, with transient association with the DNA and nuclear matrix. Scaffold attachment factor B (SAFB) 1 and its paralogue, SAFB2, are nuclear matrix-binding proteins that negatively modulate ERα-mediated transcription. Expression of SAFB1 and SAFB2 reduces the mobility of ERα in the presence of ligand. This regulatory machinery is emerging as an epigenetic-like mechanism that alters transcriptional activity through control of intranuclear molecular mobility.
Collapse
Affiliation(s)
- Ken Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Takashi Hashimoto
- Division of Anatomy and Neuroscience, Department of Morphological and Physiological Sciences, University of Fukui Faculty of Medical Sciences
| | | |
Collapse
|
10
|
Sharma G, Prossnitz ER. G-Protein-Coupled Estrogen Receptor (GPER) and Sex-Specific Metabolic Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1043:427-453. [PMID: 29224106 DOI: 10.1007/978-3-319-70178-3_20] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Obesity and metabolic syndrome display disparate prevalence and regulation between males and females. Human, as well as rodent, females with regular menstrual/estrous cycles exhibit protection from weight gain and associated chronic diseases. These beneficial effects are predominantly attributed to the female hormone estrogen, specifically 17β-estradiol (E2). E2 exerts its actions via multiple receptors, nuclear and extranuclear estrogen receptor (ER) α and ERβ, and the G-protein-coupled estrogen receptor (GPER, previously termed GPR30). The roles of GPER in metabolic homeostasis are beginning to emerge but are complex and remain unclear. The discovery of GPER-selective pharmacological agents (agonists and antagonists) and the availability of GPER knockout mice have significantly enhanced our understanding of the functions of GPER in normal physiology and disease. GPER action manifests pleiotropic effects in metabolically active tissues such as the pancreas, adipose, liver, and skeletal muscle. Cellular and animal studies have established that GPER is involved in the regulation of body weight, feeding behavior, inflammation, as well as glucose and lipid homeostasis. GPER deficiency leads to increased adiposity, insulin resistance, and metabolic dysfunction in mice. In contrast, pharmacologic stimulation of GPER in vivo limits weight gain and improves metabolic output, revealing a promising novel therapeutic potential for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, and Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
11
|
Pir2/Rnf144b is a potential endometrial cancer biomarker that promotes cell proliferation. Cell Death Dis 2018; 9:504. [PMID: 29724995 PMCID: PMC5938710 DOI: 10.1038/s41419-018-0521-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
Endometrial cancer is one of the most common gynaecological cancers in developed countries. Its incidence has increased 20% over the last decade and the death rate has increased >100% over the past two decades. Current models for prediction of prognosis and treatment response are suboptimal, and as such biomarkers to support clinical decision-making and contribute to individualised treatment are needed. In this study, we show that the E3-ubiquitin ligase PIR2/RNF144B is a potential targetable biomarker in endometrial cancer. At transcript level, it is expressed both in normal endometrium and tumour samples, but at protein level, it is expressed in tumours only. By using endometrial cancer cell lines, we demonstrated that PIR2/RNF144B is stabilised via phosphorylation downstream of GSK3β and this is necessary for the proliferation of endometrial cancer cells, in the absence of oestrogenic growth stimuli. Here, inactivation of GSK3β activity is associated with loss of PIR2/RNF144B protein and consequent inhibition of cell proliferation. Our results, therefore, substantiate PIR2/RNF144B as a novel candidate for targeted therapy in endometrial cancer.
Collapse
|
12
|
Sharma G, Mauvais-Jarvis F, Prossnitz ER. Roles of G protein-coupled estrogen receptor GPER in metabolic regulation. J Steroid Biochem Mol Biol 2018; 176:31-37. [PMID: 28223150 PMCID: PMC5563497 DOI: 10.1016/j.jsbmb.2017.02.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 12/19/2022]
Abstract
Metabolic homeostasis is differentially regulated in males and females. The lower incidence of obesity and associated diseases in pre-menopausal females points towards the beneficial role of the predominant estrogen, 17β-estradiol (E2). The actions of E2 are elicited by nuclear and extra-nuclear estrogen receptor (ER) α and ERβ, as well as the G protein-coupled estrogen receptor (GPER, previously termed GPR30). The roles of GPER in the regulation of metabolism are only beginning to emerge and much remains unclear. The present review highlights recent advances implicating the importance of GPER in metabolic regulation. Assessment of the specific metabolic roles of GPER employing GPER-deficient mice and highly selective GPER-targeted pharmacological agents, agonist G-1 and antagonists G-15 and G36, is also presented. Evidence from in vitro and in vivo studies involving either GPER deficiency or selective activation suggests that GPER is involved in body weight regulation, glucose and lipid homeostasis as well as inflammation. The therapeutic potential of activating GPER signaling through selective ligands for the treatment of obesity and diabetes is also discussed.
Collapse
Affiliation(s)
- Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, United States
| | - Franck Mauvais-Jarvis
- Diabetes Discovery and Gender Medicine Laboratory, Section of Endocrinology and Metabolism, Department of Medicine,Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, United States
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, United States; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
13
|
Sukocheva OA. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming. Int J Mol Sci 2018; 19:420. [PMID: 29385066 PMCID: PMC5855642 DOI: 10.3390/ijms19020420] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 02/05/2023] Open
Abstract
Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER) positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1) and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P) in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR) and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention.
Collapse
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| |
Collapse
|
14
|
Risiko und Nutzen von Nahrungsergänzungsmitteln für die Behandlung von Wechseljahresbeschwerden. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 60:297-304. [DOI: 10.1007/s00103-016-2502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Levin ER, Hammes SR. Nuclear receptors outside the nucleus: extranuclear signalling by steroid receptors. Nat Rev Mol Cell Biol 2016; 17:783-797. [PMID: 27729652 PMCID: PMC5649368 DOI: 10.1038/nrm.2016.122] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Steroid hormone receptors mediate numerous crucial biological processes and are classically thought to function as transcriptional regulators in the nucleus. However, it has been known for more than 50 years that steroids evoke rapid responses in many organs that cannot be explained by gene regulation. Mounting evidence indicates that most steroid receptors in fact exist in extranuclear cellular pools, including at the plasma membrane. This latter pool, when engaged by a steroid ligand, rapidly activates signals that affect various aspects of cellular biology. Research into the mechanisms of signalling instigated by extranuclear steroid receptor pools and how this extranuclear signalling is integrated with responses elicited by nuclear receptor pools provides novel understanding of steroid hormone signalling and its roles in health and disease.
Collapse
Affiliation(s)
- Ellis R. Levin
- Department of Medicine and Biochemistry, University of California,
Irvine and the Long Beach VA Medical Center, California 90822, USA
| | - Stephen R. Hammes
- Departments of Medicine and Pharmacology, University of Rochester,
Rochester, New York 14642, USA
| |
Collapse
|
16
|
Mo XM, Li L, Zhu P, Dai YJ, Zhao TT, Liao LY, Chen GG, Liu ZM. Up-regulation of Hsp27 by ERα/Sp1 facilitates proliferation and confers resistance to apoptosis in human papillary thyroid cancer cells. Mol Cell Endocrinol 2016; 431:71-87. [PMID: 27179757 DOI: 10.1016/j.mce.2016.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/15/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
Abstract
17β-estradiol (E2) has been suggested to play a role in the development and progression of papillary thyroid cancer. Heat shock protein 27 (Hsp27) is a member of the Hsp family that is responsible for cell survival under stressful conditions. Previous studies have shown that the 5'-promoter region of Hsp27 gene contains a specificity protein-1 (Spl) and estrogen response element half-site (ERE-half), which contributes to Hsp27 induction by E2 in breast cancer cells. However, it is unclear whether Hsp27 can be up-regulated by E2 and which estrogen receptor (ER) isoform and tethered transcription factor are involved in this regulation in papillary thyroid cancer cells. In the present study, we demonstrated that Hsp27 can be effectively up-regulated by E2 at mRNA and protein levels in human K1 and BCPAP papillary thyroid cancer cells which have more than two times higher level of ERα than that of ERβ. The up-regulation of Hsp27 by E2 is mediated by ERα/Sp1 and ERβ has repressive effect on this ERα/Sp1-mediated up-regulation of Hsp27. Moreover, we showed that the up-regulation of Hsp27 by ERα/Sp1 facilitates proliferation and confers resistance to apoptosis through interaction with procaspase-3. Targeting this pathway may be a potential strategy for therapy of papillary thyroid cancer.
Collapse
Affiliation(s)
- Xiao-Mei Mo
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Li Li
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yu-Jie Dai
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ting-Ting Zhao
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ling-Yao Liao
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China
| | - Zhi-Min Liu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Deb P, Bhan A, Hussain I, Ansari KI, Bobzean SA, Pandita TK, Perrotti LI, Mandal SS. Endocrine disrupting chemical, bisphenol-A, induces breast cancer associated gene HOXB9 expression in vitro and in vivo. Gene 2016; 590:234-43. [PMID: 27182052 DOI: 10.1016/j.gene.2016.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/16/2016] [Accepted: 05/08/2016] [Indexed: 12/21/2022]
Abstract
HOXB9 is a homeobox-containing gene that plays a key role in mammary gland development and is associated with breast and other types of cancer. Here, we demonstrate that HOXB9 expression is transcriptionally regulated by estradiol (E2), in vitro and in vivo. We also demonstrate that the endocrine disrupting chemical bisphenol-A (BPA) induces HOXB9 expression in cultured human breast cancer cells (MCF7) as well as in vivo in the mammary glands of ovariectomized (OVX) rats. Luciferase assay showed that estrogen-response-elements (EREs) in the HOXB9 promoter are required for BPA-induced expression. Estrogen-receptors (ERs) and ER-co-regulators such as MLL-histone methylase (MLL3), histone acetylases, CBP/P300, bind to the HOXB9 promoter EREs in the presence of BPA, modify chromatin (histone methylation and acetylation) and lead to gene activation. In summary, our results demonstrate that BPA exposure, like estradiol, increases HOXB9 expression in breast cells both in vitro and in vivo through a mechanism that involves increased recruitment of transcription and chromatin modification factors.
Collapse
Affiliation(s)
- Paromita Deb
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Arunoday Bhan
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Imran Hussain
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Khairul I Ansari
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Samara A Bobzean
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, United States
| | - Linda I Perrotti
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Subhrangsu S Mandal
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States.
| |
Collapse
|
18
|
Roles of ERβ and GPR30 in Proliferative Response of Human Bladder Cancer Cell to Estrogen. BIOMED RESEARCH INTERNATIONAL 2015; 2015:251780. [PMID: 26090392 PMCID: PMC4450232 DOI: 10.1155/2015/251780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/14/2014] [Accepted: 10/01/2014] [Indexed: 02/08/2023]
Abstract
Bladder cancer belongs to one of the most common cancers and is a leading cause of deaths in our society. Urothelial carcinoma of the bladder (UCB) is the main type of this cancer, and the estrogen receptors in UCB remain to be studied. Our experiment aimed to investigate the possible biological effect of 17β-estradiol on human bladder-derived T24 carcinoma cells and to indicate its related mechanisms. T24 cells were treated with various doses of 17β-estradiol, and cell proliferation was detected using MTT assays. 17β-estradiol promoted T24 cell proliferation independent of ERβ/GPR30-regulated EGFR-MAPK pathway, while it inhibited cell growth via GPR30. Furthermore, the expression levels of downstream genes (c-FOS, BCL-2, and CYCLIN D1) were increased by 17β-estradiol and this effect was independently associated with activity of the EGFR-MAPK pathway. The two estrogen receptors might be potential therapeutic targets for the treatment of bladder cancer.
Collapse
|
19
|
|
20
|
Bisphenol-A induces expression of HOXC6, an estrogen-regulated homeobox-containing gene associated with breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:697-708. [PMID: 25725483 DOI: 10.1016/j.bbagrm.2015.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 12/31/2022]
Abstract
HOXC6 is a homeobox-containing gene associated with mammary gland development and is overexpressed in variety of cancers including breast and prostate cancers. Here, we have examined the expression of HOXC6 in breast cancer tissue, investigated its transcriptional regulation via estradiol (E2) and bisphenol-A (BPA, an estrogenic endocrine disruptor) in vitro and in vivo. We observed that HOXC6 is differentially over-expressed in breast cancer tissue. E2 induces HOXC6 expression in cultured breast cancer cells and in mammary glands of Sprague Dawley rats. HOXC6 expression is also induced upon exposure to BPA both in vitro and in vivo. Estrogen-receptor-alpha (ERα) and ER-coregulators such as MLL-histone methylases are bound to the HOXC6 promoter upon exposure to E2 or BPA and that resulted in increased histone H3K4-trimethylation, histone acetylation, and recruitment of RNA polymerase II at the HOXC6 promoter. HOXC6 overexpression induces expression of tumor growth factors and facilitates growth 3D-colony formation, indicating its potential roles in tumor growth. Our studies demonstrate that HOXC6, which is a critical player in mammary gland development, is upregulated in multiple cases of breast cancer, and is transcriptionally regulated by E2 and BPA, in vitro and in vivo.
Collapse
|
21
|
Drzewiecka H, Gałęcki B, Jarmołowska-Jurczyszyn D, Kluk A, Dyszkiewicz W, Jagodziński PP. Increased expression of 17-beta-hydroxysteroid dehydrogenase type 1 in non-small cell lung cancer. Lung Cancer 2015; 87:107-16. [DOI: 10.1016/j.lungcan.2014.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 11/05/2014] [Accepted: 12/17/2014] [Indexed: 01/10/2023]
|
22
|
Zheng XQ, Guo JP, Yang H, Kanai M, He LL, Li YY, Koomen JM, Minton S, Gao M, Ren XB, Coppola D, Cheng JQ. Aurora-A is a determinant of tamoxifen sensitivity through phosphorylation of ERα in breast cancer. Oncogene 2014; 33:4985-96. [PMID: 24166501 PMCID: PMC4002670 DOI: 10.1038/onc.2013.444] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/20/2013] [Accepted: 09/09/2013] [Indexed: 12/14/2022]
Abstract
Despite the clinical success of tamoxifen, its resistance remains a major challenge in breast cancer. Here we show that Aurora-A determines tamoxifen sensitivity by regulation of oestrogen receptor (ER)α. Ectopic expression of Aurora-A decreases and depletion of Aurora-A enhances tamoxifen sensitivity in ERα-positive breast cancer. Elevated Aurora-A was significantly associated with the recurrence of ERα-positive tumours. Notably, Aurora-A inhibitor MLN8237, which is currently in clinical trial, synergizes with tamoxifen and overcomes tamoxifen resistance. Furthermore, Aurora-A interacts with and phosphorylates ERα on serine-167 and -305, leading to increase in ERα DNA-binding and transcriptional activity. Elevated levels of Aurora-A are significantly associated with disease-free survival in ERα-positive but not ERα-negative breast cancers. These data suggest that Aurora-A has a pivotal role in tamoxifen resistance and ERα is a bona fide substrate of Aurora-A. Thus, Aurora-A represents a prognostic marker in ERα-positive tumour and a critical therapeutic target in tamoxifen-resistant breast cancer, and Aurora-A inhibitor could be used as either an independent or concurrent agent in tamoxifen-resistant tumour.
Collapse
Affiliation(s)
- XQ Zheng
- Departments of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612
- Department of Thyroid and Neck Tumour, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of cancer prevention and therapy, National Clinical Research Center of Cancer, Tianjin, P. R. China, 300060
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of cancer prevention and therapy, National Clinical Research Center of Cancer, Tianjin, P. R. China, 300060
| | - JP Guo
- Departments of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612
| | - H Yang
- Departments of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612
| | - M Kanai
- Departments of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612
| | - LL He
- Departments of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612
| | - YY Li
- Departments of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612
| | - JM. Koomen
- Departments of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612
| | - S. Minton
- Department of Women’s Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612
| | - M Gao
- Department of Thyroid and Neck Tumour, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of cancer prevention and therapy, National Clinical Research Center of Cancer, Tianjin, P. R. China, 300060
| | - XB Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of cancer prevention and therapy, National Clinical Research Center of Cancer, Tianjin, P. R. China, 300060
| | - D Coppola
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612
| | - JQ Cheng
- Departments of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612
| |
Collapse
|
23
|
Li M, Guo J, Gao W, Yu J, Han X, Zhang J, Shao B. Bisphenol AF-induced endogenous transcription is mediated by ERα and ERK1/2 activation in human breast cancer cells. PLoS One 2014; 9:e94725. [PMID: 24727858 PMCID: PMC3984236 DOI: 10.1371/journal.pone.0094725] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/18/2014] [Indexed: 12/21/2022] Open
Abstract
Bisphenol AF (BPAF)-induced transcriptional activity has been evaluated by luciferase reporter assay. However, the molecular mechanism of BPAF-induced endogenous transcription in human breast cancer cells has not been fully elucidated. In the present study, we investigated the effect and mechanism of BPAF-induced endogenous transcription detected by real-time PCR in human breast cancer cells. We found that BPAF stimulated transcription of estrogen responsive genes, such as trefoil factor 1 (TFF1), growth regulation by estrogen in breast cancer 1 (GREB1) and cathepsin D (CTSD), through dose-dependent and time-dependent manners in T47D and MCF7 cells. Gene-silencing of ERα, ERβ and G protein-coupled estrogen receptor 1 (GPER) by small interfering RNA revealed that BPAF-induced endogenous transcription was dependent on ERα and GPER, implying both genomic and nongenomic pathways might be involved in the endogenous transcription induced by BPAF. ERα-mediated gene transcription was further confirmed by inhibition of ER activity using ICI 182780 in ERα-positive T47D and MCF7 cells as well as overexpression of ERα in ERα-negative MDA-MB-231 breast cancer cells. Moreover, we utilized Src tyrosine kinase inhibitor PP2 and two MEK inhibitors PD98059 and U0126 to elucidate the rapid nongenomic activation of Src/MEK/ERK1/2 cascade on endogenous transcription. Our data showed that BPAF-induced transcription could be significantly blocked by PP2, PD98059 and U0126, suggesting activation of ERK1/2 was also required to regulate endogenous transcription. Taken together, these results indicate that BPAF-induced endogenous transcription of estrogen responsive genes is mediated through both genomic and nongenomic pathways involving the ERα and ERK1/2 activation in human breast cancer cells.
Collapse
Affiliation(s)
- Ming Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jing Guo
- Department of Emergency, Beijing Mentougou District Hospital, Beijing, China
| | - Wenhui Gao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jianlong Yu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
- School of Public Health and Family Medicine, Capital Medical University, Beijing, China
| | - Xiaoyu Han
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
- School of Public Health and Family Medicine, Capital Medical University, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
- School of Public Health and Family Medicine, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
24
|
Colitti M, Parillo F. Immunolocalization of estrogen and progesterone receptors in ewe mammary glands. Microsc Res Tech 2013; 76:955-62. [DOI: 10.1002/jemt.22254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 02/01/2023]
Affiliation(s)
- M. Colitti
- Dipartimento di Scienze Agrarie e Ambientali; Università di Udine; Udine; 33100; Italy
| | - F. Parillo
- Scuola di Scienze Mediche Veterinarie; Università di Camerino; Matelica; 62024; Italy
| |
Collapse
|
25
|
Conversion of estrone to 17 beta-estradiol in Jurkat acute T cell leukemia Hut-78 T- and Raji B lymphoma cell lines in vitro. Biomed Pharmacother 2013; 67:299-303. [DOI: 10.1016/j.biopha.2012.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/04/2012] [Indexed: 12/11/2022] Open
|
26
|
The ESR2 AluI 1730G>A (rs4986938) gene polymorphism is associated with fibrinogen plasma levels in postmenopausal women. Gene 2012; 508:206-10. [DOI: 10.1016/j.gene.2012.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/15/2012] [Accepted: 08/02/2012] [Indexed: 12/24/2022]
|
27
|
Drzewiecka H, Jagodzinski PP. Conversion of estrone to 17-beta-estradiol in human non-small-cell lung cancer cells in vitro. Biomed Pharmacother 2012; 66:530-4. [DOI: 10.1016/j.biopha.2012.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/29/2012] [Indexed: 12/21/2022] Open
|
28
|
Chang AK, Wu H. The role of AIB1 in breast cancer. Oncol Lett 2012; 4:588-594. [PMID: 23226788 DOI: 10.3892/ol.2012.803] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/02/2012] [Indexed: 12/23/2022] Open
Abstract
Amplified in breast cancer 1 (AIB1) is a member of the p160 steroid receptor coactivator family that mediates the transcriptional activities of nuclear receptors including estrogen receptor (ER) and progesterone receptor (PR), as well as certain other transcription factors, including E2F1 and p53. AIB1 is widely implicated in nuclear receptor-mediated diseases, particularly malignant diseases, including breast, prostate, gastric and pancreatic cancers. AIB1 was initially implicated in hormone-dependent breast cancer, where increasing levels of AIB1 mRNA and protein were detected in some of these specimens and the overexpression of AIB1 in mice led to an increased incidence of tumors. More recent studies revealed that AIB1 also affects the growth of hormone-independent breast cancer via signaling pathways such as those of E2F1, IGF-I, EGF and PI3K/Akt/mTOR. The pleiotropic effect of AIB1 and the roles it plays in both normal development and cancer have presented a great challenge to formulating an effective therapeutic strategy for breast cancer. In this review, we highlight the significant progress made with the recent findings and present an overview of the current understanding of the influence of AIB1 on breast cancer via hormone-dependent and -independent signaling pathways.
Collapse
Affiliation(s)
- Alan K Chang
- College of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
| | | |
Collapse
|
29
|
Berger CE, Qian Y, Liu G, Chen H, Chen X. p53, a target of estrogen receptor (ER) α, modulates DNA damage-induced growth suppression in ER-positive breast cancer cells. J Biol Chem 2012; 287:30117-27. [PMID: 22787161 DOI: 10.1074/jbc.m112.367326] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In response to genotoxic stress, the p53 tumor suppressor induces target genes for cell cycle arrest, apoptosis, and DNA repair. Although p53 is the most commonly mutated gene in all human cancers, it is only mutated in about 20% of breast cancers. 70% of all breast cancer cases are estrogen receptor (ER)-positive and express ERα. ER-positive breast cancer generally indicates good patient prognosis and treatment responsiveness with antiestrogens, such as tamoxifen. However, ER-positive breast cancer patients can experience loss or a reduction in ERα, which is associated with aggressive tumor growth, increased invasiveness, poor prognosis, and loss of p53 function. Consistent with this, we found that p53 is a target gene of ERα. Specifically, we found that knockdown of ERα decreases expression of p53 and its downstream targets, MDM2 and p21. In addition, we found that ERα activates p53 transcription via binding to estrogen response element half-sites within the p53 promoter. Moreover, we found that loss of ERα desensitizes, whereas ectopic expression of ERα sensitizes, breast cancer cells to DNA damage-induced growth suppression in a p53-dependent manner. Altogether, this study provides an insight into a feedback loop between ERα and p53 and a biological role of p53 in the DNA damage response in ER-positive breast cancers.
Collapse
Affiliation(s)
- Crystal E Berger
- Comparative Oncology Laboratory, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
30
|
Ren X, Lu F, Cui Y, Wang X, Bai C, Chen J, Huang C, Yang D. Protective effects of genistein and estradiol on PAHs-induced developmental toxicity in zebrafish embryos. Hum Exp Toxicol 2012; 31:1161-9. [PMID: 22736253 DOI: 10.1177/0960327112450900] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The toxicity of exposure to polycyclic aromatic hydrocarbons (PAHs) or phytoestrogen is relatively well characterized. However, the toxicity of combined exposure to PAHs and phytoestrogen is not well investigated. In the present study, benzo(a)pyrene (B(a)P) and benzo(k)fluorathene (B(k)F), genistein, along with 17β-estradiol (E2), were investigated for their single and combined developmental toxicity using zebrafish embryos as model system. We demonstrated that two representative PAHs, both B(a)P (≥1 μM) and B(k)F (≥10 μM), can cause significant malformation and mortality in developing zebrafish embryos. The toxicity effect of B(a)P was in general higher than that of B(k)F. Developmental exposure to high level of genistein (>20 μM) or E2 (>10 μM), also caused significant malformation and mortality in zebrafish larvae at 120 hours post fertilization (hpf). However, different toxic effects were observed for the combined exposure to PAHs and phytoestrogen in zebrafish. Lower doses of genistein (1 and 10 μM) and E2 (0.1 and 1 μM), when used in combination with high concentration of B(a)P (1 μM) or B(k)F (20 μM), can significantly suppress the toxicity effect of B(a)P and B(k)F in developing zebrafish embryos. The beneficial effect of genistein may be due to the inhibition of cytochrome P450 enzymes via directly interacting with aryl-hydrocarbon receptor (AhR) pathway, or disturbing the AhR pathway through interacting with estrogen receptor pathway.
Collapse
Affiliation(s)
- X Ren
- Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33:378-455. [PMID: 22419778 PMCID: PMC3365860 DOI: 10.1210/er.2011-1050] [Citation(s) in RCA: 2076] [Impact Index Per Article: 159.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/07/2012] [Indexed: 02/08/2023]
Abstract
For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Tufts University, Center for Regenerative and Developmental Biology, Department of Biology, 200 Boston Avenue, Suite 4600, Medford, Massachusetts 02155, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang C, Hu ZQ, Chu M, Wang Z, Zhang WG, Wang LZ, Li CG, Wang JS. Resveratrol inhibited GH3 cell growth and decreased prolactin level via estrogen receptors. Clin Neurol Neurosurg 2012; 114:241-8. [DOI: 10.1016/j.clineuro.2011.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 12/19/2022]
|
33
|
Gutowska I, Baranowska-Bosiacka I, Noceń I, Piotrowska K, Marchlewicz M, Wiernicki I, Chlubek D, Wiszniewska B. Soy isoflavones administered pre- and postnatally may affect the ERα and ERβ expression and elements' content in bones of mature male rats. Hum Exp Toxicol 2012; 31:346-54. [PMID: 22249396 DOI: 10.1177/0960327111432501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The aim of this study was to assess the influence of soy isoflavones, administered pre- and later postnatally, on the estrogen receptor α (ERα) and β (ERβ) expression in bones and to examine the mineral metabolism of the skeletal system in male rats. In bones, ERs were examined with an immunohistochemical method; in blood, estradiol with chemiluminescence immunoassay and in blood and bones, calcium and magnesium with atomic absorption spectrometry and fluorides with a potentiometric method were examined. Decreased immunoexpression of ERα and the increased intensity of immunofluorescence of ERβ in osteocytes in the femur of experimental rats were observed. In the serum of treated rats, a significantly higher concentration of estradiol and lower calcium were observed. The content of magnesium and fluoride were significantly higher in the bones of the examined animals. The data presented show that pre- and postnatal supplementation of male rats with soy isoflavones may considerably increase the concentration of estrogens in serum, with a concurrent effect on the mineral composition of bones.
Collapse
Affiliation(s)
- Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bartella V, De Marco P, Malaguarnera R, Belfiore A, Maggiolini M. New advances on the functional cross-talk between insulin-like growth factor-I and estrogen signaling in cancer. Cell Signal 2012; 24:1515-21. [PMID: 22481093 DOI: 10.1016/j.cellsig.2012.03.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 03/20/2012] [Indexed: 01/07/2023]
Abstract
There is increasing awareness that estrogens may affect cell functions through the integration with a network of signaling pathways. The IGF system is a phylogenetically highly conserved axis that includes the insulin receptor (IR) and the insulin-like growth factor I receptor (IGF-IR) pathways, which are of crucial importance in the regulation of metabolism and cell growth in relationship to nutrient availability. Numerous studies nowadays document that estrogens cooperate with IGF system at multiple levels both in physiology and in disease. Several studies have focused on this bidirectional cross-talk in central nervous system, in mammary gland development and in cancer. Notably, cancer cells show frequent deregulation of the IGF system with overexpression of IR and/or IGF-IR and their ligands as well as frequent upregulation of the classical estrogen receptor (ER)α and the novel ER named GPER. Recent studies have, therefore, unraveled further mechanisms of cross-talk involving membrane initiated estrogen actions and the IGF system in cancer, that converge in the stimulation of pro-tumoral effects. These studies offer hope for new strategies aimed at the treatment of estrogen related cancers in order to prevent an estrogen-independent and more aggressive tumor progression.
Collapse
Affiliation(s)
- Viviana Bartella
- Department of Pharmaco-Biology, University of Calabria, 87030 Rende, Italy
| | | | | | | | | |
Collapse
|
35
|
Izumiyama K, Osanai T, Sagara S, Yamamoto Y, Itoh T, Sukekawa T, Nishizaki F, Magota K, Okumura K. Estrogen attenuates coupling factor 6-induced salt-sensitive hypertension and cardiac systolic dysfunction in mice. Hypertens Res 2012; 35:539-46. [PMID: 22258022 DOI: 10.1038/hr.2011.232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In male coupling factor 6 (CF6)-overexpressing transgenic (TG) mice, a high-salt diet induces hypertension and cardiac systolic dysfunction with excessive reactive oxygen species generation. However, the role of gender in CF6-mediated pathophysiology is unknown. We investigated the effects of ovariectomy and estrogen replacement on hypertension, cardiac dysfunction and Rac1 activity, which activates radical generation and the mineralocorticoid receptor, in female TG mice. Fifteen-week-old male and female TG and wild-type (WT) mice were fed a normal- or high-salt diet for 60 weeks. Systolic and diastolic blood pressures were higher in the TG mice fed a high-salt diet than in those fed a normal-salt diet at 20-60 weeks in males but only at 60 weeks in females. The blood pressure elevation under high-salt diet conditions was concomitant with a decrease in left ventricular fractional shortening. In the WT mice, neither blood pressure nor cardiac systolic function was influenced by a high-salt diet. In the female TG mice, bilateral ovariectomy induced hypertension with cardiac systolic dysfunction 8 weeks after the initiation of a high-salt diet. The ratios of Rac1 bound to guanosine triphosphate (Rac1-GTP) to total Rac1 in the heart and kidneys were increased in the ovariectomized TG mice, and estrogen replacement abolished the CF6-mediated pathophysiology induced under the high-salt diet conditions. The overexpression of CF6 induced salt-sensitive hypertension, complicated by systolic cardiac dysfunction, but its onset was delayed in females. Estrogen has an important role in the regulation of CF6-mediated pathophysiology, presumably via the downregulation of Rac1.
Collapse
Affiliation(s)
- Kei Izumiyama
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Valencia-Hernández I, Reyes-Ramírez JA, Urquiza-Marín H, Nateras-Marín B, Villegas-Bedolla JC, Godínez-Hernández D. The Effects of 17�-Oestradiol on Increased a1-Adrenergic Vascular Reactivity Induced by Prolonged Ovarian Hormone Deprivation: The Role of Voltage-Dependent L-type Ca2+Channels. Pharmacology 2012; 90:316-23. [DOI: 10.1159/000342635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 08/13/2012] [Indexed: 01/13/2023]
|
37
|
Huttunen R, Shweta, Martikkala E, Lahdenranta M, Virta P, Hänninen P, Härmä H. Single-label time-resolved luminescence assay for estrogen receptor–ligand binding. Anal Biochem 2011; 415:27-31. [DOI: 10.1016/j.ab.2011.03.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 11/30/2022]
|
38
|
Abstract
PURPOSE OF REVIEW Premenopausal women have a lower risk and incidence of hypertension and cardiovascular disease (CVD) compared to age-matched men and this sex advantage for women gradually disappears after menopause, suggesting that sexual hormones play a cardioprotective role in women. However, randomized prospective primary or secondary prevention trials failed to confirm that hormone replacement therapy (HRT) affords cardioprotection. This review highlights the factors that may contribute to this divergent outcome and could reveal why young or premenopausal women are protected from CVD and yet postmenopausal women do not benefit from HRT. RECENT FINDINGS In addition to the two classical estrogen receptors, ERα and ERβ, a third, G-protein-coupled estrogen receptor GPR30, has been identified. New intracellular signaling pathways and actions for the cardiovascular protective properties of estrogen have been proposed. In addition, recent Women's Health Initiative (WHI) studies restricted to younger postmenopausal women showed that initiation of HRT closer to menopause reduced the risk of CVD. Moreover, dosage, duration, the type of estrogen and route of administration all merit consideration when determining the outcome of HRT. SUMMARY HRT has become one of the most controversial topics related to women's health. Future studies are necessary if we are to understand the divergent published findings regarding HRT and develop new therapeutic strategies to improve the quality of life for women.
Collapse
|
39
|
Gantus MAV, Alves LM, Stipursky J, Souza ECL, Teodoro AJ, Alves TR, Carvalho DP, Martinez AMB, Gomes FCA, Nasciutti LE. Estradiol modulates TGF-β1 expression and its signaling pathway in thyroid stromal cells. Mol Cell Endocrinol 2011; 337:71-9. [PMID: 21315800 DOI: 10.1016/j.mce.2011.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 01/14/2023]
Abstract
The higher prevalence of thyroid disease in women suggests that estrogen (E2) might be involved in the pathophysiology of thyroid dysfunction. To approach the question of the effect of stromal cells in the modulation of thyroid epithelial cells activity, we established and characterized a homogeneous stromal cell population (TS7 cells) of rat thyroid gland. These fibroblastic cells synthesize the cytoskeleton proteins α-smooth muscle actin and vimentin, produce basement membrane components and express the cytokine transforming growth factor beta 1 (TGF-β1). Here, we hypothesized that the effects of E2 on follicular thyroid cells are mediated by TGF-β1 synthesis and secretion by stromal cells (paracrine action). Thus we investigated the effect of E2 on TGF-β1 synthesis and its signaling pathway in TS7 cells. In addition, we analyzed the role of TGF-β1 signaling pathway as mediator of TS7-PC CL3 thyroid epithelial cells interactions. We report that TS7 stromal cells expressed α and β estrogen receptors (ERα and ERβ). Further, both isoforms of TGF-β1 receptors, TGFRI and TGFRII, were also identified in TS7 cells, suggesting that these cells might be a target for this cytokine in vitro. Treatment of TS7 cells with E2 induced both synthesis and secretion of TGF-β1. This event was followed by phosphorylation of the transcription factor Smad2, a hallmark of TGF-β1 pathway activation. Co-culture of PC CL3 cells onto TS7 cells monolayers yielded round aggregates of PC CL3 cells surrounded by TS7 cells. TS7 cells induced a decrease in iodide uptake by PC CL3 cells, probably by a mechanism involving TGF-β1. Moreover, E2 affected synthesis and organization of the extracellular matrix (ECM) components, tenascin C and chondroitin sulfate, in these co-culture cells. Our results point to the TGF-β1/Smad-2 signaling pathway as a putative target of estrogen actions on thyroid stromal cells and contribute to understanding the interplay between stromal and follicular cells in thyroid physiology.
Collapse
Affiliation(s)
- M A V Gantus
- Laboratory of Cellular Interactions, Program of Cellular Biology and Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Steed HL, Chu QSC. Aromatase inhibition: a potential target for the management of recurrent or metastatic endometrial cancer by letrozole: more questions than answers? Expert Opin Investig Drugs 2011; 20:681-90. [PMID: 21413907 DOI: 10.1517/13543784.2011.566862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Endometrial cancer generally presents as early and resectable disease, but about 20% of patients present with either incurable or recurrent/metastatic disease. Patients with good performance status will be treated with hormonal agents, including progestins and tamoxifen, followed by cytotoxic chemotherapy. The options are restricted to hormonal agents for those with multiple comorbidities and older age. Therefore, there is a need to identify novel hormonal agents and other targeted therapeutics with improved therapeutic window in this setting. AREA COVERED Clinical trials of letrozole in localized and metastatic settings are reviewed. In the localized setting, limited by the small sample size, preliminary and conflicting clinical activities were observed. Despite the selection of Type I endometrial cancer, which is more estrogen-dependent for its growth, modest clinical activity was observed in the metastatic setting. Thus far, no biomarkers for efficacy have been identified. EXPERT OPINION Further understanding of the relevance of aromatase and estrogen receptor and their interplay with other growth pathways will be necessary to guide further development of letrozole. It is premature to declare letrozole a therapeutic option in recurrent/metastatic endometrial cancer.
Collapse
Affiliation(s)
- Helen L Steed
- Cross Cancer Institute, Department of Gynecological Oncology, Edmonton, AB, Canada
| | | |
Collapse
|
41
|
McCarthy TL, Kallen CB, Centrella M. β-Catenin independent cross-control between the estradiol and Wnt pathways in osteoblasts. Gene 2011; 479:16-28. [PMID: 21335072 DOI: 10.1016/j.gene.2011.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/08/2011] [Indexed: 12/19/2022]
Abstract
Osteoblasts are controlled by the individual and combined effects of systemic and local growth regulators. Here we show functional and physical interactions between estradiol (17βE) and Wnt activated pathways in osteoblasts. 17βE increased gene promoter activity by the Wnt pathway transcriptional effector T cell factor (TCF) in an estrogen receptor (ER) dependent way. This occurred independently of its activity through traditional estrogen response elements and was not replicated by androgen receptor activation. 17βE also increased the stimulatory effect of LiCl on TCF activity, LiCl increased the stimulatory effect of 17βE through estrogen response elements, and both were further enhanced by a noncanonical Wnt receptor agonist (WAg) that functions independently of β-catenin stabilization. In contrast to LiCl, WAg increased DNA synthesis and reduced relative collagen synthesis and alkaline phosphatase activity in otherwise untreated or 17βE stimulated cells. In addition, WAg suppressed Runx2, osterix, and alkaline phosphatase mRNA levels, and potently induced osteoprotegerin mRNA, whereas LiCl was ineffective alone and inhibitory in combination with 17βE. A definitive intersection between the 17βE and Wnt pathways occurred at the protein level, where ERα physically associated with TCF-4 independently of its β-catenin binding domain. This interaction required ligand-dependent exposure of a TCF binding region that mapped to ERα domain E and was further enhanced by Wnt pathway activation. Our studies reveal highly focused co-regulatory effects between the 17βE and Wnt pathways in osteoblasts that involve activated ERα and TCF-4 and downstream changes in gene expression, osteoblast proliferation, and differentiated cell function.
Collapse
Affiliation(s)
- Thomas L McCarthy
- Yale University School of Medicine, Department of Surgery, New Haven, CT, 06520-8041, USA.
| | | | | |
Collapse
|
42
|
Foryst-Ludwig A, Kintscher U. Metabolic impact of estrogen signalling through ERalpha and ERbeta. J Steroid Biochem Mol Biol 2010; 122:74-81. [PMID: 20599505 DOI: 10.1016/j.jsbmb.2010.06.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 06/16/2010] [Accepted: 06/21/2010] [Indexed: 02/07/2023]
Abstract
Estrogens, acting on both estrogen receptors alpha (ERalpha) and beta (ERbeta) are recognized as important regulators of glucose homeostasis and lipid metabolism. ERs belong to the family of nuclear hormone receptors which mainly act as ligand activated transcription factors. Both ERs are expressed in metabolic tissue such as adipose tissue, skeletal muscle, liver and pancreas, as well as in the central nervous system. Expression pattern of both ERs differ between species, sexes, and specific tissues. The present review will focus on the key effects of ERs on glucose- and lipid metabolism. It appears that ERalpha mainly mediates beneficial metabolic effects of estrogens such as anti-lipogenesis, improvement of insulin sensitivity and glucose tolerance, and reduction of body weight/fat mass. In contrast, ERbeta activation seems to be detrimental for the maintenance of regular glucose and lipid homeostasis. Metabolic actions of both receptors in relevant tissues will be discussed.
Collapse
Affiliation(s)
- Anna Foryst-Ludwig
- Center for Cardiovascular Research (CCR), Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany
| | | |
Collapse
|
43
|
Tang JY, Li S, Li ZH, Zhang ZJ, Hu G, Cheang LCV, Alex D, Hoi MPM, Kwan YW, Chan SW, Leung GPH, Lee SMY. Calycosin promotes angiogenesis involving estrogen receptor and mitogen-activated protein kinase (MAPK) signaling pathway in zebrafish and HUVEC. PLoS One 2010; 5:e11822. [PMID: 20686605 PMCID: PMC2912279 DOI: 10.1371/journal.pone.0011822] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 06/16/2010] [Indexed: 01/01/2023] Open
Abstract
Background Angiogenesis plays an important role in a wide range of physiological processes, and many diseases are associated with the dysregulation of angiogenesis. Radix Astragali is a Chinese medicinal herb commonly used for treating cardiovascular disorders and has been shown to possess angiogenic effect in previous studies but its active constituent and underlying mechanism remain unclear. The present study investigates the angiogenic effects of calycosin, a major isoflavonoid isolated from Radix Astragali, in vitro and in vivo. Methodology Tg(fli1:EGFP) and Tg(fli1:nEGFP) transgenic zebrafish embryos were treated with different concentrations of calycosin (10, 30, 100 µM) from 72 hpf to 96 hpf prior morphological observation and angiogenesis phenotypes assessment. Zebrafish embryos were exposed to calycosin (10, 100 µM) from 72 hpf to 78 hpf before gene-expression analysis. The effects of VEGFR tyrosine kinase inhibitor on calycosin-induced angiogenesis were studied using 72 hpf Tg(fli1:EGFP) and Tg(fli1:nEGFP) zebrafish embryos. The pro-angiogenic effects of calycosin were compared with raloxifene and tamoxifen in 72 hpf Tg(fli1:EGFP) zebrafish embryos. The binding affinities of calycosin to estrogen receptors (ERs) were evaluated by cell-free and cell-based estrogen receptor binding assays. Human umbilical vein endothelial cell cultures (HUVEC) were pretreated with different concentrations of calycosin (3, 10, 30, 100 µM) for 48 h then tested for cell viability and tube formation. The role of MAPK signaling in calycosin-induced angiogenesis was evaluated using western blotting. Conclusion Calycosin was shown to induce angiogenesis in human umbilical vein endothelial cell cultures (HUVEC) in vitro and zebrafish embryos in vivo via the up-regulation of vascular endothelial growth factor (VEGF), VEGFR1 and VEGFR2 mRNA expression. It was demonstrated that calycosin acted similar to other selective estrogen receptor modulators (SERMs), such as raloxifene and tamoxifen, by displaying selective potency and affinity to estrogen receptors ERα and ERβ. Our results further indicated that calycosin promotes angiogenesis via activation of MAPK with the involvement of ERK1/2 and ER. Together, this study revealed, for the first time, that calycosin acts as a selective estrogen receptor modulator (SERM) to promote angiogenesis, at least in part through VEGF-VEGFR2 and MAPK signaling pathways.
Collapse
Affiliation(s)
- Jing Yan Tang
- Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Selective estrogen receptor modulators (SERMs), which lack the estrogen steroid moiety yet retain the ability to bind the estrogen receptor (ER), are known to confer mixed ER agonist or antagonist effects depending on the target tissue. The tissue-selective effects of SERMs have led to considerations in the clinical profile of an ideal SERM, which would have ER agonist activity in tissues where mimicking the action of estrogens is desirable, and ER neutral or antagonist activity in tissues estrogens have been shown to adversely stimulate. A number of newer SERMs, including bazedoxifene, lasofoxifene, ospemifene, and arzoxifene, are currently in clinical development for the prevention and treatment of postmenopausal osteoporosis and for other indications. Although the possibility of developing a single agent that has all of the desired characteristics of an ideal SERM seems to be unlikely, progress in the clinical development of SERMs targeted to the ER suggests that these newer compounds may have attributes that represent an improvement relative to existing SERMs. Further clinical investigation will help to clarify the relative benefits and risks of novel SERMs in development within specific indications.
Collapse
|
45
|
McCullar JS, Oesterle EC. Cellular targets of estrogen signaling in regeneration of inner ear sensory epithelia. Hear Res 2009; 252:61-70. [PMID: 19450430 PMCID: PMC2975607 DOI: 10.1016/j.heares.2009.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/16/2009] [Accepted: 01/22/2009] [Indexed: 01/19/2023]
Abstract
Estrogen signaling in auditory and vestibular sensory epithelia is a newly emerging focus propelled by the role of estrogen signaling in many other proliferative systems. Understanding the pathways with which estrogen interacts can provide a means to identify how estrogen may modulate proliferative signaling in inner ear sensory epithelia. Reviewed herein are two signaling families, EGF and TGFbeta. Both pathways are involved in regulating proliferation of supporting cells in mature vestibular sensory epithelia and have well characterized interactions with estrogen signaling in other systems. It is becoming increasingly clear that elucidating the complexity of signaling in regeneration will be necessary for development of therapeutics that can initiate regeneration and prevent progression to a pathogenic state.
Collapse
Affiliation(s)
- Jennifer S. McCullar
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, CHDD CD176, P.O. Box 357923, Seattle, WA 98195, USA
| | - Elizabeth C. Oesterle
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, CHDD CD176, P.O. Box 357923, Seattle, WA 98195, USA
| |
Collapse
|
46
|
Speirs V, Shaaban AM. Role of ERβ in Clinical Breast Cancer. Cancer Treat Res 2009; 147:1-20. [PMID: 21461830 DOI: 10.1007/978-0-387-09463-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Valerie Speirs
- Section of Pathology and Tumor Biology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, UK,
| | | |
Collapse
|
47
|
Kharode Y, Bodine PVN, Miller CP, Lyttle CR, Komm BS. The pairing of a selective estrogen receptor modulator, bazedoxifene, with conjugated estrogens as a new paradigm for the treatment of menopausal symptoms and osteoporosis prevention. Endocrinology 2008; 149:6084-91. [PMID: 18703623 DOI: 10.1210/en.2008-0817] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The menopausal transition is associated with decreased ovarian function and concomitant decline in estrogen production, which may result in physiological effects such as hot flashes, reduced bone mass, and altered lipid profile. It is well established that these unfavorable changes are effectively offset with estrogen therapy (ET) or, in women with a uterus, estrogens in combination with a progestin (hormone therapy). Selective estrogen receptor (ER) modulators (SERMs), which exhibit both ER agonist and antagonist activities depending on the target tissue, have been regarded as offering the potential to provide the benefits of ET and hormone therapy with an improved safety and tolerability profile. To date, no SERM alone has demonstrated an ideal benefit-risk profile for menopausal therapy. The tissue-selective estrogen complex, or the pairing of a SERM with estrogens, may provide an optimal blend of ER agonist and antagonist activities. We evaluated the physiological profile of this novel therapeutic paradigm by using various in vivo models to assess uterine, vasomotor, lipid, and skeletal responses to a tissue-selective estrogen complex partnering bazedoxifene with conjugated estrogens (CE). Bazedoxifene at 3.0 mg/kg effectively antagonized CE-induced uterine stimulation without reversing the positive effects of CE on vasomotor instability. When paired with CE, bazedoxifene at 3.0 mg/kg reduced total cholesterol levels by up to 20% compared with CE alone and significantly increased total bone density relative to control. These preclinical findings showed that the appropriate dose combination of bazedoxifene/CE exhibits positive vasomotor, lipid, and skeletal responses with minimal uterine stimulation.
Collapse
Affiliation(s)
- Yogendra Kharode
- Wyeth Research, Women's Health and Musculoskeletal Biology, Collegeville, Pennsylvania 19426, USA
| | | | | | | | | |
Collapse
|
48
|
Vitreo-retinal traction and anastrozole use. Breast Cancer Res Treat 2008; 117:9-16. [PMID: 18712596 DOI: 10.1007/s10549-008-0156-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 08/06/2008] [Indexed: 02/01/2023]
Abstract
PURPOSE This study tested a prediction stemming from the hypothesis that anastrozole users experience heightened vitreo-retinal traction. This hypothesis was based on the knowledge that menopause increases the risk of intraocular tractional events such as posterior vitreous detachments (PVDs). METHODS Retinal thickness was measured for 3 groups of amenorrheic women: (1) anastrozole users and (2) tamoxifen users undergoing adjuvant therapy for early-stage breast cancer, and (3) control subjects not using hormonal medication. Foveal shape indices were derived for subjects without PVDs. RESULTS For anastrozole users, the distance to the temporal side of the fovea became less than the distance to the nasal side at a sufficient height above the foveal base. This effect did not exist for control subjects; the between-group difference was appreciable. Results concerning tamoxifen users were inconclusive. CONCLUSIONS The foveas of women using anastrozole appear to be subjected to more tractional force than are the foveas of women not using any hormonal medication.
Collapse
|
49
|
Kummer V, Masková J, Zralý Z, Neca J, Simecková P, Vondrácek J, Machala M. Estrogenic activity of environmental polycyclic aromatic hydrocarbons in uterus of immature Wistar rats. Toxicol Lett 2008; 180:212-21. [PMID: 18634860 DOI: 10.1016/j.toxlet.2008.06.862] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 02/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are an important group of environmental pollutants, known for their mutagenic and carcinogenic activities. Many PAHs are aryl hydrocarbon receptor (AhR) ligands and several recent studies have suggested that PAHs or their metabolites may activate estrogen receptors (ER). The present study investigated possible estrogenic/antiestrogenic effects of abundant environmental contaminants benzo[a]pyrene (BaP), benz[a]anthracene (BaA), fluoranthene (Fla) and benzo[k]fluoranthene (BkF) in vivo, using the immature rat uterotrophic assay. The present results suggest that BaA, BaP and Fla behaved as estrogen-like compounds in immature Wistar rats, when applied for 3 consecutive days at 10mg/kg/day, as documented by a significant increase of uterine weight and hypertrophy of luminal epithelium. These effects were likely to be mediated by ERalpha, a major subtype of ER present in uterus, as they were inhibited by treatment with ER antagonist ICI 182,780. BaA, the most potent of studied PAHs, induced a significant estrogenic effect within a concentration range 0.1-50mg/kg/day; however, it did not reach the maximum level induced by reference estrogens. The proposed antiestrogenicity of the potent AhR agonist BkF was not confirmed in the present in vivo study; the exposure to BkF did not significantly affect the uterine weight, although a weak suppression of ERalpha immunostaining was observed in luminal and glandular epithelium, possibly related to its AhR-mediated activity. The PAHs under study did not induce marked genotoxic damage in uterine tissues, as documented by the lack of Ser-15-phoshorylated p53 protein staining. With the exception of Fla, all three remaining compounds increased CYP1-dependent monooxygenation activities in liver at the doses used, suggesting that the potential tissue-specific antiestrogenic effects of PAHs mediated by metabolization of 17beta-estradiol also cannot be excluded. Taken together, these environmentally relevant PAHs induced estrogenic effects in vivo, which might affect their toxic impact and carcinogenicity.
Collapse
|
50
|
Hughes ZA, Liu F, Platt BJ, Dwyer JM, Pulicicchio CM, Zhang G, Schechter LE, Rosenzweig-Lipson S, Day M. WAY-200070, a selective agonist of estrogen receptor beta as a potential novel anxiolytic/antidepressant agent. Neuropharmacology 2008; 54:1136-42. [DOI: 10.1016/j.neuropharm.2008.03.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/29/2008] [Accepted: 03/12/2008] [Indexed: 11/25/2022]
|