1
|
Gautam D, Tomar Y, Shukla P, Rapalli VK, Rao VKP, Singhvi G. Influence of Nanocarrier Additives on Biomechanical Response of a Rat Skin. IEEE Trans Nanobioscience 2025; 24:191-199. [PMID: 39365712 DOI: 10.1109/tnb.2024.3471588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Skin health monitoring focuses on identifying diseases by assessing the mechanical properties of the skin. These properties may degrade with time, which can alter the skin's natural frequencies and the modeshapes associated with those frequencies. Exploring the skin's mechanical properties can enhance our understanding of its dynamics, improving clinical trials and diagnostics. In this work, the dynamics of the skin were measured using a laser-based non-invasive optical sensor experiment. We measured the skin's mechanical properties over time by analyzing its resonant frequencies and mode shapes. A nanocarrier gel and ketoconazole cream were topically applied to keep the skin hydrated and facilitate deeper penetration of the additives in the skin. Time-based research was used to assess the effect of different formulations on skin elasticity. Experimental results for the modulus of elasticity were compared with those obtained using Finite Element Analysis (FEA) simulations. We observed a reduction in frequencies of cream and gel-treated skin by 29.98% and 44.029%, respectively, compared to normal skin (frequency: 263.3±1.18 Hz and Modulus of elasticity: 7.56±2.60 MPa). A decrease in stiffness is attributed to increased water content, was observed in cream- and nanocarrier gel-treated skin compared to normal skin. Experimental and numerical results are found to be consistent with one another. This optical sensor-based approach has the potential for studying diseased skin mechanics and its response to gel and cream treatments, aiming to reduce skin disorder morbidity and severity.
Collapse
|
2
|
Xue M, Deng Q, Deng L, Xun T, Huang T, Zhao J, Wei S, Zhao C, Chen X, Zhou Y, Liang Y, Yang X. Alterations of gut microbiota for the onset and treatment of psoriasis: A systematic review. Eur J Pharmacol 2025; 998:177521. [PMID: 40107339 DOI: 10.1016/j.ejphar.2025.177521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Psoriasis is a chronic, recurrent and systemic inflammatory skin disease which is mediated by immunoreaction. Its pathogenesis is multifactorial, and the exact driving factor remains unclear. Recent studies showed that gut microbiota, which maintain immune homeostasis of our bodies, is closely related with occurrence, development and prognosis of psoriasis. The intestinal microbial abundance and diversity in patients with psoriasis have changed significantly, including intestinal microbiota disorders and reduced production of short chain fatty acids (SCFAs), abnormalities in Firmicutes/Bacteroidetes (F/B), etc. Besides, the intestinal microbiota of psoriasis patients has also changed after treatment of systemic drugs, biologics and small molecule chemical drugs, suggesting that the intestinal microbiota may be a potential response-to-treatment biomarker for evaluating treatment effectiveness. Oral probiotics and prebiotics administration as well as fecal microbial transplantation were also reported to benefit well in psoriasis patients. Additionally, we also discussed the microbial changes from the skin and other organs, which regulated both the onset and treatment of psoriasis together with gut microbiota. Herein, we reviewed recent studies on the psoriasis-related microbiota in an attempt to confidently identify the "core" microbiota of psoriatic patients, understand how microbiota influence psoriasis through the gut-skin axis, and explore potential therapeutic strategies for psoriasis.
Collapse
Affiliation(s)
- Man Xue
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - QuanWen Deng
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Li Deng
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - TianRong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - TingTing Huang
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, China
| | - JingQian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Sui Wei
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - ChenYu Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xi Chen
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - YiWen Zhou
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, China
| | - YanHua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - XiXiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
3
|
Memariani M, Memariani H. New horizons in the treatment of psoriasis: Modulation of gut microbiome. Heliyon 2025; 11:e41672. [PMID: 39866422 PMCID: PMC11760288 DOI: 10.1016/j.heliyon.2025.e41672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
The last decennia have witnessed spectacular advances in our knowledge about the influence of the gut microbiome on the development of a wide swathe of diseases that extend beyond the digestive tract, including skin diseases like psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. The novel concept of the gut-skin axis delves into how skin diseases and the microbiome interact through inflammatory mediators, metabolites, and the intestinal barrier. Elucidating the effects of the gut microbiome on skin health could provide new opportunities for developing innovative treatments for dermatological diseases. Psoriasis is a complex disease with multiple factors contributing to its development, such as diet, lifestyle, genetic predisposition, and the microbiome. This paper has a dual purpose. First, we outline the current knowledge on the unique gut microbiota patterns implicated in the pathogenesis of psoriasis. Second, and of equal importance, we briefly discuss the reciprocal impact of psoriasis treatment and gut microbiome. In addition, this review explores potential therapeutic targets based on microbial interventions, which hold promise for providing new treatment options for psoriasis.
Collapse
Affiliation(s)
- Mojtaba Memariani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hamed Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Li Q, Li F, Wang T. Limonin alleviates imiquimod-induced psoriasis-like skin inflammation in mice model by downregulating inflammatory responses. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03655-x. [PMID: 39702598 DOI: 10.1007/s00210-024-03655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
Psoriasis is a chronic inflammatory condition affecting 1-2% of the global population. Phytomedicine, which uses plant-based compounds, is emerging as a promising approach to managing such inflammatory diseases. Limonin, a phytochemical found in citrus fruits and known for its bitter taste, possesses significant pharmacological properties. In this study, we evaluated the anti-psoriatic effects of limonin using a psoriasis-induced mice model. BALB/c mice were treated with imiquimod to induce psoriasis and then administered limonin at doses of 20 and 40 mg/kg/day for 6 days. Tacrolimus ointment served as a positive control. We assessed the hematological profile to determine limonin's impact on leukocytes in the psoriasis model. Additionally, histomorphometric analysis of ear and skin tissues was conducted to evaluate the therapeutic effects of limonin. We further investigated the antioxidant properties of limonin by measuring levels of antioxidants and oxidative stress markers. The anti-inflammatory effects were evaluated by quantifying inflammatory cytokines and signaling proteins. In vitro, the cytotoxicity and anti-inflammatory potential of limonin were assessed using murine macrophage RAW264.7 cells. Our findings showed that limonin significantly reduced leukocyte counts, decreased inflammatory cell infiltration, and improved skin histoarchitecture in psoriasis-induced mice. Limonin also effectively scavenged free radicals and reduced levels of inflammatory cytokines and proteins without causing cytotoxicity in RAW264.7 cells. Overall, our in vivo and in vitro results confirm that limonin is a potent anti-inflammatory agent that effectively ameliorates imiquimod-induced psoriasis.
Collapse
Affiliation(s)
- Qiang Li
- Department of Dermatology, Air Force Medicine Center, Air Force Military Medical University, Beijing, 100147, China
| | - Fangmei Li
- Department of Dermatology, Guangxi International Zhuang Medicine Hospital, Nanning, 530201, Guangxi, China
| | - Ting Wang
- Department of Dermatology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| |
Collapse
|
5
|
Zhang Q, Zhao L, Li Y, Wang S, Lu G, Wang H. Advances in the mechanism of action of short-chain fatty acids in psoriasis. Int Immunopharmacol 2024; 141:112928. [PMID: 39159566 DOI: 10.1016/j.intimp.2024.112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Psoriasis is a prevalent chronic inflammatory and immunological disorder. Its lesions are present as scaly erythema or plaques. Disruptions in the body's immune system play a significant role in developing psoriasis. Recent evidence suggests a potential role of the gut microbiome in autoimmune diseases. Short-chain fatty acids (SCFAs) are the primary metabolites created by gut microbes and play a crucial fuction in autoimmunity. SCFAs act on various cells by mediating signaling to participate in host physiological and pathological processes. These processes encompass body metabolism, maintenance of intestinal barrier function, and immune system modulation. SCFAs can regulate immune cells to enhance the body's immune function, potentially influencing the prevention and treatment of psoriasis. However, the mechanisms underlying the role of SCFAs in psoriasis remain incompletely understood. This paper examines the relationship between SCFAs and psoriasis, elucidating how SCFAs influence the immune system, inflammatory response, and gut barrier in psoriasis. According to the study, in psoriasis, SCFAs have been shown to regulate neutrophils, macrophages, and dendritic cells in the adaptive immune system, as well as T and B cells in the innate immune system. Additionally, we explore the role of SCFAs in psoriasis by maintaining intestinal barrier function, restoring intestinal ecological homeostasis, and investigating the potential therapeutic benefits of SCFAs for psoriasis.
Collapse
Affiliation(s)
- Qin Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| | - Yu Li
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siyao Wang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guiling Lu
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Hongmei Wang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.
| |
Collapse
|
6
|
Chen M, Wang R, Wang T. Gut microbiota and skin pathologies: Mechanism of the gut-skin axis in atopic dermatitis and psoriasis. Int Immunopharmacol 2024; 141:112658. [PMID: 39137625 DOI: 10.1016/j.intimp.2024.112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
Atopic dermatitis (AD) and psoriasis are chronic skin diseases with a global impact, posing significant challenges to public health systems and severely affecting patients' quality of life. This review delves into the key role of the gut microbiota in these diseases, emphasizing the importance of the gut-skin axis in inflammatory mediators and immune regulation and revealing a complex bidirectional communication system. We comprehensively assessed the pathogenesis, clinical manifestations, and treatment strategies for AD and psoriasis, with a particular focus on how the gut microbiota and their metabolites influence disease progression via the gut-skin axis. In addition, personalized treatment plans based on individual patient microbiome characteristics have been proposed, offering new perspectives for future treatment approaches. We call for enhanced interdisciplinary cooperation to further explore the interactions between gut microbiota and skin diseases and to assess the potential of drugs and natural products in modulating the gut-skin axis, aiming to advance the treatment of skin diseases.
Collapse
Affiliation(s)
- Meng Chen
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Rui Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| | - Ting Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| |
Collapse
|
7
|
Alves AC, Martins SMDSB, Belo JVT, Lemos MVC, Lima CEDMC, da Silva CD, Zagmignan A, Nascimento da Silva LC. Global Trends and Scientific Impact of Topical Probiotics in Dermatological Treatment and Skincare. Microorganisms 2024; 12:2010. [PMID: 39458319 PMCID: PMC11510400 DOI: 10.3390/microorganisms12102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The skin plays a crucial role in maintaining homeostasis and protecting against external aggressors. Recent research has highlighted the potential of probiotics and postbiotics in dermatological treatments and skincare. These beneficial microorganisms interact with the skin microbiota, modulate the immune response, and enhance the skin barrier, offering a promising therapeutic avenue for various skin conditions, such as acne, dermatitis, eczema, and psoriasis. This bibliometric study aims to analyze the global trends and scientific impact of topical probiotics in dermatology. By reviewing 106 articles published between 2013 and 2023, the study categorizes the applications of probiotics in wound healing, inflammatory skin diseases, and general skincare. The findings indicate a significant increase in publications from 2021 onwards, attributed to the heightened focus on medical research during the COVID-19 pandemic. This study also identifies the most productive countries, institutions, and authors in this field, highlighting the importance of international collaborations. The results underscore the efficacy of probiotic-based topical formulations in improving skin health, reducing inflammation, and enhancing wound healing. This comprehensive analysis supports the development of new therapeutic strategies based on topical probiotics and encourages high-quality research in this promising area.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Luís Cláudio Nascimento da Silva
- Laboratório de Patogenicidade Microbiana, Universidade CEUMA, São Luis 65075-120, MA, Brazil; (A.C.A.); (S.M.d.S.B.M.J.); (J.V.T.B.); (M.V.C.L.); (C.E.d.M.C.L.); (C.D.d.S.); (A.Z.)
| |
Collapse
|
8
|
Radaschin DS, Tatu A, Iancu AV, Beiu C, Popa LG. The Contribution of the Skin Microbiome to Psoriasis Pathogenesis and Its Implications for Therapeutic Strategies. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1619. [PMID: 39459406 PMCID: PMC11509136 DOI: 10.3390/medicina60101619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
Psoriasis is a common chronic inflammatory skin disease, associated with significant morbidity and a considerable negative impact on the patients' quality of life. The complex pathogenesis of psoriasis is still incompletely understood. Genetic predisposition, environmental factors like smoking, alcohol consumption, psychological stress, consumption of certain drugs, and mechanical trauma, as well as specific immune dysfunctions, contribute to the onset of the disease. Mounting evidence indicate that skin dysbiosis plays a significant role in the development and exacerbation of psoriasis through loss of immune tolerance to commensal skin flora, an altered balance between Tregs and effector cells, and an excessive Th1 and Th17 polarization. While the implications of skin dysbiosis in psoriasis pathogenesis are only starting to be revealed, the progress in the characterization of the skin microbiome changes in psoriasis patients has opened a whole new avenue of research focusing on the modulation of the skin microbiome as an adjuvant treatment for psoriasis and as part of a long-term plan to prevent disease flares. The skin microbiome may also represent a valuable predictive marker of treatment response and may aid in the selection of the optimal personalized treatment. We present the current knowledge on the skin microbiome changes in psoriasis and the results of the studies that investigated the efficacy of the different skin microbiome modulation strategies in the management of psoriasis, and discuss the complex interaction between the host and skin commensal flora.
Collapse
Affiliation(s)
- Diana Sabina Radaschin
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Saint Parascheva” Infectious Disease Clinical Hospital, Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Alin Tatu
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Saint Parascheva” Infectious Disease Clinical Hospital, Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Cristina Beiu
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
9
|
Park YC, Choi SY, Cha Y, Yoon HW, Son YM. Microbiome-Mucosal Immunity Nexus: Driving Forces in Respiratory Disease Progression. J Microbiol 2024; 62:709-725. [PMID: 39240507 DOI: 10.1007/s12275-024-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
The importance of the complex interplay between the microbiome and mucosal immunity, particularly within the respiratory tract, has gained significant attention due to its potential implications for the severity and progression of lung diseases. Therefore, this review summarizes the specific interactions through which the respiratory tract-specific microbiome influences mucosal immunity and ultimately impacts respiratory health. Furthermore, we discuss how the microbiome affects mucosal immunity, considering tissue-specific variations, and its capacity in respiratory diseases containing asthma, chronic obstructive pulmonary disease, and lung cancer. Additionally, we investigate the external factors which affect the relationship between respiratory microbiome and mucosal immune responses. By exploring these intricate interactions, this review provides valuable insights into the potential for microbiome-based interventions to modulate mucosal immunity and alleviate the severity of respiratory diseases.
Collapse
Affiliation(s)
- Young Chae Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo Yeon Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yunah Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hyeong Won Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
10
|
Guillaume P, Rupp T, Froget G, Goineau S. Evaluation of Clobetasol and Tacrolimus Treatments in an Imiquimod-Induced Psoriasis Rat Model. Int J Mol Sci 2024; 25:9254. [PMID: 39273201 PMCID: PMC11395139 DOI: 10.3390/ijms25179254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disorder characterized by keratinocyte hyperproliferation, inflammation, and aberrant differentiation. Imiquimod-induced psoriasis in rodent models has been widely used to study the pathogenesis of the disease and evaluate potential therapeutic interventions. In this study, we investigated the efficacy of two commonly used treatments, Clobetasol and Tacrolimus, in ameliorating psoriatic symptoms in an Imiquimod-induced psoriasis Wistar rat model. Interestingly, rat models are poorly evaluated in the literature despite rats displaying several advantages in evaluating pharmacological substances. Psoriasis-like skin lesions were induced by topical application of Imiquimod cream on shaved dorsal skin for seven consecutive days. Following induction, rats in the treatment groups received either a Clobetasol or Tacrolimus ointment once daily for one week, while the control group did not receive any application. Disease severity was assessed using clinical scoring, histological examination, and measurement of proinflammatory cytokine levels. Both Clobetasol and Tacrolimus treatments significantly reduced psoriatic lesion severity compared to the control group. Clinical scoring revealed a decrease in erythema, scaling, transepidermal water loss, and thickness of skin lesions in both treatment groups with a more marked effect with Clobetasol. Histological analysis demonstrated reduced epidermal hyperplasia in treated animals compared to controls. Furthermore, Clobetasol led to a significant reduction in the expression levels of the interleukin-17 (IL-17a and IL-17f) proinflammatory cytokines in lesioned skin. Overall, our findings demonstrated the therapeutic efficacy of both Clobetasol and, in a modest manner, Tacrolimus in attenuating Imiquimod-induced psoriasis-like symptoms in a rat model. These results support the clinical use of these agents in the management of psoriasis and mitigating psoriatic inflammation. They also provide insights into the use of rats as a relevant species for the Imiquimod-induced psoriasis model.
Collapse
Affiliation(s)
| | - Tristan Rupp
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France
| | | | - Sonia Goineau
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France
| |
Collapse
|
11
|
Korneev A, Peshkova M, Koteneva P, Gundogdu A, Timashev P. Modulation of the skin and gut microbiome by psoriasis treatment: a comprehensive systematic review. Arch Dermatol Res 2024; 316:374. [PMID: 38850443 DOI: 10.1007/s00403-024-03024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 06/10/2024]
Abstract
The microbiome is intricately linked to the development of psoriasis, serving as both a potential cause and consequence of the psoriatic process. In recent years, there has been growing interest among psoriasis researchers in exploring how psoriasis treatments affect the skin and gut microbiome. However, a comprehensive evaluation of the impact of modern treatment approaches on the microbiome has yet to be conducted. In this systematic review, we analyze studies investigating alterations in the skin and gut microbiome resulting from psoriasis treatment, aiming to understand how current therapies influence the role of the microbiome in psoriasis development. The systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. PubMed and Scopus databases were searched for eligible studies from the inception dates until July 5, 2023. Study selection, data extraction, and risk of bias assessment were carried out by three overlapping pairs of reviewers, resolving any disagreements through consensus. Our analysis of various treatments, including biologics, conventional medications, phototherapy, and probiotics, reveals significant shifts in microbial diversity and abundance. Importantly, favorable treatment outcomes are associated with microbiota alterations that approach those observed in healthy individuals. While the studies reviewed exhibit varying degrees of bias, underscoring the need for further research, this review supports the potential of microbiome modulation as both a preventive and therapeutic strategy for psoriasis patients. The findings underscore the importance of personalized therapeutic approaches, recognizing the profound impact of treatment on the microbiome. They also highlight the promise of probiotics, prebiotics, and dietary interventions in psoriasis management.
Collapse
Affiliation(s)
- Alexander Korneev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991.
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991.
- Laboratory of the Polymers Synthesis for Medical Applications, Sechenov University, Moscow, Russia, 119991.
| | - Maria Peshkova
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia, 119991
| | - Polina Koteneva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Design Center "Biofactory", Sechenov University, Moscow, Russia, 119991
| | - Aycan Gundogdu
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
- Metagenomics Laboratory, Genome and Stem Cell Center, Erciyes University, 38039, Kayseri, Turkey
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia, 119991
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia, 119991
| |
Collapse
|
12
|
Gulnaz A, Lew LC, Park YH, Sabir JSM, Albiheyri R, Rather IA, Hor YY. Efficacy of Probiotic Strains Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093 in Management of Obesity: An In Vitro and In Vivo Analysis. Pharmaceuticals (Basel) 2024; 17:676. [PMID: 38931347 PMCID: PMC11206994 DOI: 10.3390/ph17060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of obesity, characterized by an excessive accumulation of adipose tissue and adipocyte hypertrophy, presents a major public health challenge. This study investigates the therapeutic potential of two probiotic strains, Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093, in the context of obesity. Utilizing 3T3-L1 cell-derived human adipocytes, we assessed Probio65's and Probio-093's capacity to mitigate triglyceride accumulation and influence adipocytokine production in vitro. Subsequently, an in vivo trial with male C57BL/6J mice examined the effects of both probiotic strains on adipose tissue characteristics, body weight, fat mass, and obesity-related gene expression. This study employed both live and ethanol-extracted bacterial cells. The results demonstrated significant reductions in the triglyceride deposition, body weight, and adipose tissue mass in the treated groups (p < 0.05). Furthermore, both strains modulated adipokine profiles by downregulating proinflammatory markers such as PAI-1, leptin, TNF-α, STAMP2, F4/80, resistin, and MCP-1, and upregulating the insulin-sensitive transporter GLUT4 and the anti-inflammatory adiponectin (p < 0.05). Our findings suggest that Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093 are promising agents for microbiome-targeted anti-obesity therapies, offering the effective mitigation of obesity and improvement in adipocyte function in a murine model.
Collapse
Affiliation(s)
- Aneela Gulnaz
- Department of Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Lee-Ching Lew
- Probionic Corp., Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 38541, Jeollabuk-do, Republic of Korea
| | - Yong-Ha Park
- Department of Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Probionic Corp., Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 38541, Jeollabuk-do, Republic of Korea
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yan-Yan Hor
- Department of Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Probionic Corp., Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 38541, Jeollabuk-do, Republic of Korea
| |
Collapse
|
13
|
Giakoumaki M, Lambrou GI, Vlachodimitropoulos D, Tagka A, Vitsos A, Kyriazi M, Dimakopoulou A, Anagnostou V, Karasmani M, Deli H, Grigoropoulos A, Karalis E, Rallis MC, Black HS. Type I Diabetes Mellitus Suppresses Experimental Skin Carcinogenesis. Cancers (Basel) 2024; 16:1507. [PMID: 38672589 PMCID: PMC11048394 DOI: 10.3390/cancers16081507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This study explores the previously uncharted territory of the effects of ultraviolet (UV) radiation on diabetic skin, compared to its well-documented impact on normal skin, particularly focusing on carcinogenesis and aging. Employing hairless SKH-hr2, Type 1 and 2 diabetic, and nondiabetic male mice, the research subjected these to UV radiation thrice weekly for eight months. The investigation included comprehensive assessments of photoaging and photocarcinogenesis in diabetic versus normal skin, measuring factors such as hydration, trans-epidermal water loss, elasticity, skin thickness, melanin, sebum content, stratum corneum exfoliation and body weight, alongside photo documentation. Additionally, oxidative stress and the presence of hydrophilic antioxidants (uric acid and glutathione) in the stratum corneum were evaluated. Histopathological examination post-sacrifice provided insights into the morphological changes. Findings reveal that under UV exposure, Type 1 diabetic skin showed heightened dehydration, thinning, and signs of accelerated aging. Remarkably, Type 1 diabetic mice did not develop squamous cell carcinoma or pigmented nevi, contrary to normal and Type 2 diabetic skin. This unexpected resistance to UV-induced skin cancers in Type 1 diabetic skin prompts a crucial need for further research to uncover the underlying mechanisms providing this resistance.
Collapse
Affiliation(s)
- Maria Giakoumaki
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, School of Health Sciences, Medical School, National and Kapodistrian University of Athens, Thivon & Levaeias 8, Goudi, 11527 Athens, Greece;
- Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| | - Dimitrios Vlachodimitropoulos
- Department of Forensic Medicine and Toxicology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527 Athens, Greece;
| | - Anna Tagka
- First Department of Dermatology and Venereology, ‘Andreas Syggros” Hospital, School of Medicine, National and Kapodistrian University of Athens, Ionos Dragoumi 5, 11621 Athens, Greece;
| | - Andreas Vitsos
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Maria Kyriazi
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Aggeliki Dimakopoulou
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Vasiliki Anagnostou
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Marina Karasmani
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Heleni Deli
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Andreas Grigoropoulos
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Evangelos Karalis
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Michail Christou Rallis
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Homer S. Black
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
14
|
Dhillon-LaBrooy A, Braband KL, Tantawy E, Rampoldi F, Kao YS, Boukhallouk F, Velasquez LN, Mamareli P, Silva L, Damasceno LEA, Weidenthaler-Barth B, Berod L, Almeida L, Sparwasser T. Inhibition of Mitochondrial Translation Ameliorates Imiquimod-Induced Psoriasis-Like Skin Inflammation by Targeting Vγ4+ γδ T Cells. J Invest Dermatol 2024; 144:844-854.e2. [PMID: 37832844 DOI: 10.1016/j.jid.2023.09.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Psoriasis is an inflammatory skin disorder that is characterized by keratinocyte hyperproliferation in response to immune cell infiltration and cytokine secretion in the dermis. γδ T cells expressing the Vγ4 TCR chain are among the highest contributors of IL-17A, which is a major cytokine that drives a psoriasis flare, making Vγ4+ γδ T cells a suitable target to restrict psoriasis progression. In this study, we demonstrate that mitochondrial translation inhibition within Vγ4+ γδ T cells effectively reduced erythema, scaling, and skin thickening in a murine model of psoriatic disease. The antibiotic linezolid, which blocks mitochondrial translation, inhibited the production of mitochondrial-encoded protein cytochrome c oxidase in Vγ4+ γδ T cells and systemically reduced the frequencies of IL-17A+ Vγ4+ γδ T cells, effectively resolving IL-17A-dependent inflammation. Inhibiting mitochondrial translation could be a novel metabolic approach to interrupt IL-17A signaling in Vγ4+ T cells and reduce psoriasis-like skin pathophysiology.
Collapse
Affiliation(s)
- Ayesha Dhillon-LaBrooy
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes University Gutenberg, Mainz, Germany
| | - Kathrin L Braband
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes University Gutenberg, Mainz, Germany
| | - Eshraq Tantawy
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes University Gutenberg, Mainz, Germany
| | - Francesca Rampoldi
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes University Gutenberg, Mainz, Germany
| | - Yu-San Kao
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes University Gutenberg, Mainz, Germany
| | - Fatima Boukhallouk
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes University Gutenberg, Mainz, Germany
| | - Lis Noelia Velasquez
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes University Gutenberg, Mainz, Germany
| | - Panagiota Mamareli
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes University Gutenberg, Mainz, Germany
| | - Luana Silva
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes University Gutenberg, Mainz, Germany
| | - Luis Eduardo Alves Damasceno
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes University Gutenberg, Mainz, Germany; Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Beate Weidenthaler-Barth
- Department of Dermatology, University Medical Center of the Johannes University Gutenberg, Mainz, Germany
| | - Luciana Berod
- Institute of Molecular Medicine, University Medical Center of the Johannes University Gutenberg, Mainz, Germany; Research Center for Immunotherapy, University Medical Centre of the Johannes University Gutenberg, Mainz, Germany
| | - Luís Almeida
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes University Gutenberg, Mainz, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes University Gutenberg, Mainz, Germany; Research Center for Immunotherapy, University Medical Centre of the Johannes University Gutenberg, Mainz, Germany.
| |
Collapse
|
15
|
Whiting C, Abdel Azim S, Friedman A. The Skin Microbiome and its Significance for Dermatologists. Am J Clin Dermatol 2024; 25:169-177. [PMID: 38252188 DOI: 10.1007/s40257-023-00842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
The skin is a physical and immunological barrier to the external environment. Its large surface area is colonized by diverse communities of microorganisms, including bacteria, viruses, fungi, and Demodex species mites. These microorganisms and their genetic material together create the skin microbiome. Physiologic and anatomic properties of skin sites create biogeographical habitats (dry, moist, and sebaceous) where distinct microbiota communities reside. Although, in general, the composition of these habitats is maintained from person to person, the skin microbiome of an individual also has unique microbial features. Dysbiosis occurs when the normal abundance, composition, or location of the microbiota is changed, most notably there is a decrease in flora diversity. Certain skin diseases, including atopic dermatitis, rosacea, and psoriasis are associated with cutaneous dysbiosis, and even disruption of the gut microbiota. Studies have shown that current treatments for these dermatologic conditions can alter/stabilize the skin microbiome, and there is emerging research detailing the impact of prebiotics, probiotics, and postbiotics on these conditions. Although clinical guidelines do not currently exist, clinical studies support the safety and possible benefits of using topical prebiotics and postbiotics and oral probiotics for a variety of skin conditions. Until such guidelines exist, utilizing carefully designed clinical studies to inform clinical practice is recommended.
Collapse
Affiliation(s)
- Cleo Whiting
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Ave. NW, Suite 2b-430, Washington, DC, 20037, USA
| | - Sara Abdel Azim
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Ave. NW, Suite 2b-430, Washington, DC, 20037, USA
- Georgetown University School of Medicine, Washington, DC, USA
| | - Adam Friedman
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Ave. NW, Suite 2b-430, Washington, DC, 20037, USA.
| |
Collapse
|
16
|
MORI-ICHIOKA A, SUNADA Y, KOIKEDA T, MATSUDA H, MATSUO S. Effect of applying Lactiplantibacillus plantarum subsp. plantarum N793 to the scalps of men and women with thinning hair: a randomized, double-blind, placebo-controlled, parallel-group study. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:192-203. [PMID: 38966052 PMCID: PMC11220327 DOI: 10.12938/bmfh.2023-056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/22/2024] [Indexed: 07/06/2024]
Abstract
Lactiplantibacillus plantarum subsp. plantarum N793 (N793) is a lactic acid bacterium (LAB) isolated from corn. We previously showed that N793 increases the level of keratinocyte growth factor, which is required for hair growth, in the culture supernatant of human follicle dermal papilla cells. Additionally, an open-label, single-arm study reported that applying a lotion containing N793 to the scalp for 24 weeks improved hair density in men and women with thinning hair. The present study was a double-blind, placebo-controlled, parallel-group study aimed at verifying the efficacy of N793 for thinning hair. A lotion containing N793, and a control lotion (placebo) were applied once daily for 24 weeks to 104 healthy Japanese men and women. Analysis of all participants revealed no difference in hair density between the N793 and placebo groups. However, an additional analysis limited to participants with relatively mild progression of thinning hair showed a significantly better hair density in the N793 group than in the placebo group. These findings suggest that topical application of N793 improves thinning hair in men and women when the condition's progression is relatively mild.
Collapse
Affiliation(s)
- Ayaka MORI-ICHIOKA
- Global Innovation Center, Nissin Foods Holdings Co., Ltd.,
2100 Tobukimachi, Hachioji-shi, Tokyo 192-0001, Japan
| | - Yosuke SUNADA
- Global Innovation Center, Nissin Foods Holdings Co., Ltd.,
2100 Tobukimachi, Hachioji-shi, Tokyo 192-0001, Japan
| | - Takashi KOIKEDA
- Shiba Palace Clinic, 1-9-10 Hamamatsucho, Minato-ku, Tokyo
105-0013, Japan
| | - Hideo MATSUDA
- Graduate School of Information Science and Technology, Osaka
University, 1-5 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Shinji MATSUO
- Global Innovation Center, Nissin Foods Holdings Co., Ltd.,
2100 Tobukimachi, Hachioji-shi, Tokyo 192-0001, Japan
| |
Collapse
|
17
|
Reali E, Caliceti C, Lorenzini A, Rizzo P. The Use of Microbial Modifying Therapies to Prevent Psoriasis Exacerbation and Associated Cardiovascular Comorbidity. Inflammation 2024; 47:13-29. [PMID: 37953417 PMCID: PMC10799147 DOI: 10.1007/s10753-023-01915-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
Psoriasis has emerged as a systemic disease characterized by skin and joint manifestations as well as systemic inflammation and cardiovascular comorbidities. Many progresses have been made in the comprehension of the immunological mechanisms involved in the exacerbation of psoriatic plaques, and initial studies have investigated the mechanisms that lead to extracutaneous disease manifestations, including endothelial disfunction and cardiovascular disease. In the past decade, the involvement of gut dysbiosis in the development of pathologies with inflammatory and autoimmune basis has clearly emerged. More recently, a major role for the skin microbiota in establishing the immunological tolerance in early life and as a source of antigens leading to cross-reactive responses towards self-antigens in adult life has also been evidenced. Gut microbiota can indeed be involved in shaping the immune and inflammatory response at systemic level and in fueling inflammation in the cutaneous and vascular compartments. Here, we summarized the microbiota-mediated mechanisms that, in the skin and gut, may promote and modulate local or systemic inflammation involved in psoriatic disease and endothelial dysfunction. We also analyze the emerging strategies for correcting dysbiosis or modulating skin and gut microbiota composition to integrate systemically existing pharmacological therapies for psoriatic disease. The possibility of merging systemic treatment and tailored microbial modifying therapies could increase the efficacy of the current treatments and potentially lower the effect on patient's life quality.
Collapse
Affiliation(s)
- Eva Reali
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| | - Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Istituto Nazionale Biosistemi e Biostrutture (INBB), Rome, Italy
| | - Paola Rizzo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Ravenna, Italy.
| |
Collapse
|
18
|
Vata D, Tarcau BM, Popescu IA, Halip IA, Patrascu AI, Gheuca Solovastru DF, Mocanu M, Chiriac PC, Gheuca Solovastru L. Update on Obesity in Psoriasis Patients. Life (Basel) 2023; 13:1947. [PMID: 37895330 PMCID: PMC10608303 DOI: 10.3390/life13101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin condition, with genetic, epigenetic, environmental, and lifestyle factors contributing to its onset and recurrence. Severe psoriasis has a great impact on quality of life, which is similar to that of insulin-dependent diabetes, depression, and ischemic heart disease, but with a lower mortality. There is an overlap between the rising incidences of autoimmune diseases and obesity. In recent years, research has shown that there is an association between psoriasis and obesity. Psoriasis is linked to obesity in a two-way manner, as each can precipitate the development of the other. Several adipose tissue-secreted adipokines were shown to be elevated in obese psoriasis patients, exhibiting similar mechanisms of action to those underlying the pathogenesis of psoriasis. Excess body weight can influence not only the treatment response in psoriasis, but also the adverse events, leading to decreased patient compliance. Specific human microbiome patterns have been identified for obesity and psoriasis and could represent a future therapeutic target in selected individuals.
Collapse
Affiliation(s)
- Dan Vata
- Department of Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.V.); (I.A.H.); (A.I.P.); (M.M.); (L.G.S.)
- Dermatology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 700111 Iasi, Romania
| | - Bogdan Marian Tarcau
- Department of Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.V.); (I.A.H.); (A.I.P.); (M.M.); (L.G.S.)
- Dermatology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 700111 Iasi, Romania
| | - Ioana Adriana Popescu
- Department of Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.V.); (I.A.H.); (A.I.P.); (M.M.); (L.G.S.)
- Dermatology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 700111 Iasi, Romania
| | - Ioana Alina Halip
- Department of Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.V.); (I.A.H.); (A.I.P.); (M.M.); (L.G.S.)
- Dermatology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 700111 Iasi, Romania
| | - Adriana Ionela Patrascu
- Department of Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.V.); (I.A.H.); (A.I.P.); (M.M.); (L.G.S.)
- Dermatology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 700111 Iasi, Romania
| | | | - Madalina Mocanu
- Department of Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.V.); (I.A.H.); (A.I.P.); (M.M.); (L.G.S.)
- Dermatology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 700111 Iasi, Romania
| | | | - Laura Gheuca Solovastru
- Department of Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.V.); (I.A.H.); (A.I.P.); (M.M.); (L.G.S.)
- Dermatology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 700111 Iasi, Romania
| |
Collapse
|
19
|
Lai Y, Wu X, Chao E, Bloomstein JD, Wei G, Hwang ST, Shi Z. Impact of Gut Bacterial Metabolites on Psoriasis and Psoriatic Arthritis: Current Status and Future Perspectives. J Invest Dermatol 2023; 143:1657-1666. [PMID: 37422760 DOI: 10.1016/j.jid.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 07/10/2023]
Abstract
There is growing evidence that supports a role of gut dysbiosis in the pathogenesis of psoriasis (Pso). Thus, probiotic supplementation and fecal microbiota transplantation may serve as promising preventive and therapeutic strategies for patients with Pso. One of the basic mechanisms through which the gut microbiota interacts with the host is through bacteria-derived metabolites, usually intermediate or end products produced by microbial metabolism. In this study, we provide an up-to-date review of the most recent literature on microbial-derived metabolites and highlight their roles in the immune system, with a special focus on Pso and one of its most common comorbidities, psoriatic arthritis.
Collapse
Affiliation(s)
- Yuhsien Lai
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuesong Wu
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Ellen Chao
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | | | - Grace Wei
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Sam T Hwang
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Zhenrui Shi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
20
|
Chen X, Chen Y, Stanton C, Ross RP, Zhao J, Chen W, Yang B. Dose-Response Efficacy and Mechanisms of Orally Administered Bifidobacterium breve CCFM683 on IMQ-Induced Psoriasis in Mice. Nutrients 2023; 15:nu15081952. [PMID: 37111171 PMCID: PMC10143451 DOI: 10.3390/nu15081952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to investigate the dose-response effect of Bifidobacterium breve CCFM683 on relieving psoriasis and its underlying patterns. Specifically, the expression of keratin 16, keratin 17, and involucrin were substantially decreased by administration of 109 CFU and 1010 CFU per day. Moreover, interleukin (IL)-17 and TNF-α levels were substantially decreased by 109 and 1010 CFU/day. Furthermore, the gut microbiota in mice treated with 109 or 1010 CFU/day was rebalanced by improving the diversity, regulating microbe interactions, increasing Lachnoclostridium, and decreasing Oscillibacter. Moreover, the concentrations of colonic bile acids were positively correlated with the effectiveness of the strain in relieving psoriasis. The gavage dose should be more than 108.42 CFU/day to improve psoriasis according to the dose-effect curve. In conclusion, CCFM683 supplementation alleviated psoriasis in a dose-dependent manner by recovering microbiota, promoting bile acid production, regulating the FXR/NF-κB pathway, diminishing proinflammatory cytokines, regulating keratinocytes, and maintaining the epidermal barrier function. These results may help guide probiotic product development and clinical trials in psoriasis.
Collapse
Affiliation(s)
- Xinqi Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214126, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Reynolds Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214126, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214126, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214126, China
| |
Collapse
|
21
|
Parveen SR, Wadhwa S, Babu MR, Vishwas S, Corrie L, Awasthi A, Khan FR, Al-Bazi MM, Alharthi NS, Alotaibi F, Gupta G, Pandey NK, Kumar B, Kumbhar P, Disouza J, Gulati M, Neelamraju J, Madempudi RS, Dua K, Singh SK. Formulation of chrysin loaded nanostructured lipid carriers using Box Behnken design, its characterization and antibacterial evaluation alone and in presence of probiotics co-loaded in gel. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
22
|
Rather IA, Wani MY, Kamli MR, Sabir JSM, Hakeem KR, Firoz A, Park YH, Hor YY. Limosilactobacillus fermentum KAU0021 Abrogates Mono- and Polymicrobial Biofilms Formed by Candida albicans and Staphylococcus aureus. Pharmaceutics 2023; 15:pharmaceutics15041079. [PMID: 37111565 PMCID: PMC10145238 DOI: 10.3390/pharmaceutics15041079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Candida albicans and Staphylococcus aureus, representing two different kingdoms, are the most frequently isolated pathogens from invasive infections. Their pathogenic attributes, combined with drug resistance, make them a major threat and a challenge to successful treatments, mainly when involved in polymicrobial biofilm-associated infections. In the present study, we investigated the antimicrobial potential of Lactobacillus metabolite extracts (LMEs) purified from cell-free supernatant of four Lactobacillus strains (KAU007, KAU0010, KAU0021, and Pro-65). Furthermore, LME obtained from the strain KAU0021 (LMEKAU0021), being the most effective, was analyzed for its anti-biofilm property against mono- and polymicrobial biofilms formed by C. albicans and S. aureus. The impact of LMEKAU0021 on membrane integrity in single and mixed culture conditions was also evaluated using propidium iodide. The MIC values recorded for LMEKAU0021 was 406 µg/mL, 203 µg/mL, and 406 µg/mL against planktonic cells of C. albicans SC5314, S. aureus and polymicrobial culture, respectively. The LMEKAU0021 at sub-MIC values potentially abrogates both biofilm formation as well as 24 h mature mono- and polymicrobial biofilms. These results were further validated using different microscopy and viability assays. For insight mechanism, LMEKAU0021 displayed a strong impact on cell membrane integrity of both pathogens in single and mixed conditions. A hemolytic assay using horse blood cells at different concentrations of LMEKAU0021 confirmed the safety of this extract. The results from this study correlate the antimicrobial and anti-biofilm properties of lactobacilli against bacterial and fungal pathogens in different conditions. Further in vitro and in vivo studies determining these effects will support the aim of discovering an alternative strategy for combating serious polymicrobial infections caused by C. albicans and S. aureus.
Collapse
|
23
|
Carrillo D, Edwards N, Arancibia‐Altamirano D, Otárola F, Villarroel C, Prieto CP, Villamizar‐Sarmiento MG, Sauma D, Valenzuela F, Lattus J, Oyarzun‐Ampuero F, Palma V. Efficacy of stem cell secretome loaded in hyaluronate sponge for topical treatment of psoriasis. Bioeng Transl Med 2023; 8:e10443. [PMID: 36925706 PMCID: PMC10013801 DOI: 10.1002/btm2.10443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 02/24/2023] Open
Abstract
Psoriasis vulgaris is an inflammatory disease characterized by distinctive skin lesions and dysregulated angiogenesis. Recent research uses stem cell secretion products (CM); a set of bioactive factors with therapeutic properties that regulate several cellular processes, including tissue repair and angiogenesis. The aim of this work was to evaluate the effect of CM of Wharton's gelatin MSC (hWJCM) in a treatment based on the bioactivation of a hyaluronic acid matrix (HA hWJCM) in a psoriasiform-like dermatitis (PD) mouse model. A preclinical study was conducted on PD mice. The effect of hWJCM, Clobetasol (Clob) gold standard, HA Ctrl, and HA hWJCM was tested topically evaluating severity of PD, mice weight as well as skin, liver, and spleen appearance. Treatment with either hWJCM, HA Ctrl or HA hWJCM, resulted in significant improvement of the PD phenotype. Moreover, treatment with HA hWJCM reduced the Psoriasis Area Severity Index (PASI), aberrant angiogenesis, and discomfort associated with the disease, leading to total recovery of body weight. We suggest that the topical application of HA hWJCM can be an effective noninvasive therapeutic solution for psoriasis, in addition to other skin diseases, laying the groundwork for future studies in human patients.
Collapse
Affiliation(s)
- Daniela Carrillo
- Laboratory of Stem Cells and Developmental Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
- Facultad de Medicina y CienciaUniversidad San SebastianConcepciónChile
| | - Natalie Edwards
- Laboratory of Stem Cells and Developmental Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
| | - David Arancibia‐Altamirano
- Laboratory of Stem Cells and Developmental Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
| | - Fabiola Otárola
- Laboratory of Stem Cells and Developmental Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
| | - Cynthia Villarroel
- Laboratory of Stem Cells and Developmental Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
| | - Catalina P Prieto
- Laboratory of Stem Cells and Developmental Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
| | - María Gabriela Villamizar‐Sarmiento
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de ChileSantiagoChile
- Department of Sciences and Pharmaceutical Technology, Faculty of Chemical and Pharmaceutical SciencesUniversidad de ChileSantiagoChile
| | - Daniela Sauma
- Department of Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
| | - Fernando Valenzuela
- Dermatology Department, Faculty of MedicineUniversidad de ChileSantiagoChile
| | - José Lattus
- Campus Oriente, Department of Obstetrics and Gynecology, Faculty of MedicineUniversity of ChileSantiago de ChileChile
| | - Felipe Oyarzun‐Ampuero
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de ChileSantiagoChile
- Department of Sciences and Pharmaceutical Technology, Faculty of Chemical and Pharmaceutical SciencesUniversidad de ChileSantiagoChile
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of SciencesUniversidad de ChileSantiagoChile
| |
Collapse
|
24
|
Updates on the Role of Probiotics against Different Health Issues: Focus on Lactobacillus. Int J Mol Sci 2022; 24:ijms24010142. [PMID: 36613586 PMCID: PMC9820606 DOI: 10.3390/ijms24010142] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
This review article is built on the beneficial effects of Lactobacillus against different diseases, and a special focus has been made on its effects against neurological disorders, such as depression, multiple sclerosis, Alzheimer's, and Parkinson's disease. Probiotics are live microbes, which are found in fermented foods, beverages, and cultured milk and, when administered in an adequate dose, confer health benefits to the host. They are known as "health-friendly bacteria", normally residing in the human gut and involved in maintaining homeostatic conditions. Imbalance in gut microbiota results in the pathophysiology of several diseases entailing the GIT tract, skin, immune system, inflammation, and gut-brain axis. Recently, the use of probiotics has gained tremendous interest, because of their profound effects on the management of these disease conditions. Recent findings suggest that probiotics enrichment in different human and mouse disease models showed promising beneficial effects and results in the amelioration of disease symptoms. Thus, this review focuses on the current probiotics-based products, different disease models, variable markers measured during trials, and evidence obtained from past studies on the use of probiotics in the prevention and treatment of different diseases, covering the skin to the central nervous system diseases.
Collapse
|
25
|
Yu L, Chen Y, Duan H, Qiao N, Wang G, Zhao J, Zhai Q, Tian F, Chen W. Latilactobacillus sakei: a candidate probiotic with a key role in food fermentations and health promotion. Crit Rev Food Sci Nutr 2022; 64:978-995. [PMID: 35997270 DOI: 10.1080/10408398.2022.2111402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Latilactobacillus sakei is used extensively in industrial production and food fermentations. The species is primarily derived from fermented meat and vegetable products and is also found in human feces. Genomics and metabolomics have revealed unique metabolic pathways in L. sakei and molecular mechanisms underlying its competitive advantages in different habitats, which are mostly attributed to its flexible carbohydrate metabolism, cold tolerance, acid and salt tolerance, ability to cope with oxygen changes, and heme uptake. In recent years, probiotic effects of L. sakei and its metabolites have been identified, including the ability to effectively alleviate metabolic syndrome, inflammatory bowel disease, and atopic dermatitis. This review summarizes the genomic and metabolic characteristics of L. sakei and its metabolites and describes their applications, laying a foundation for their expanded use across the food and healthcare industries.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Nanzhen Qiao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
26
|
Kapoor B, Gulati M, Rani P, Gupta R. Psoriasis: Interplay between dysbiosis and host immune system. Clin Exp Rheumatol 2022; 21:103169. [PMID: 35964945 DOI: 10.1016/j.autrev.2022.103169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
With advancement in human microbiome research, an increasing number of scientific evidences have endorsed the key role of both gut and skin microbiota in the pathogenesis of psoriasis. Microbiome dysbiosis, characterized by altered diversity and composition, as well as rise of pathobionts, have been identified as possible triggers for recurrent episodes of psoriasis. Mechanistically, gut dysbiosis leads to "leaky gut syndrome" via disruption of epithelial bilayer, thereby, resulting in translocation of bacteria and other endotoxins to systemic circulation, which in turn, results in inflammatory response. Similarly, skin dysbiosis disrupts the cutaneous homeostasis, leading to invasion of bacteria and other pathogens to deeper layers of skin or even systemic circulation further enhanced by injury caused by pruritus-induced scratching, and elicit innate and adaptive inflammation. The present review explores the correlation of both skin and gut microbiota dysbiosis with psoriasis. Also, the studies highlighting the potential of bacteriotherapeutic approaches including probiotics, prebiotics, metabiotics, and fecal microbiota transplantation for the management of psoriasis have been discussed.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia.
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
27
|
Rungjang A, Meephansan J, Payungporn S, Sawaswong V, Chanchaem P, Pureesrisak P, Wongpiyabovorn J, Thio HB. Alteration of gut microbiota during narrowband ultraviolet B therapy: A preliminary study. Exp Dermatol 2022; 31:1281-1288. [PMID: 35737868 DOI: 10.1111/exd.14631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Gut microbiome dysbiosis is associated with psoriasis development. A relationship between gut microbiota and psoriasis treatment response has been reported. No study has reported the effect of narrowband ultraviolet B (NBUVB) therapy, a standard treatment of psoriasis, on gut microbiota. QUESTION ADDRESSED This study aimed to evaluate gut microbiota change during NBUVB therapy. EXPERIMENTAL DESIGN Stool samples from 22 participants, including 13 patients with chronic plaque psoriasis and nine healthy controls, were recruited. Fecal microbiota composition was analyzed using 16S rRNA sequencing before and after NBUVB therapy. Serum 25-OH Vitamin D of patients with psoriasis was evaluated simultaneously. RESULTS The most abundant phyla of gut microbiota in patients with psoriasis were Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria in all participants. Bilophila, Paraprevotella, Alistipes, Sutterella, Romboutsia, Clostridium sensu stricto, and Agathobacter are significantly more enriched in healthy controls. Lactobacillales and Ruminococus torques appeared more enriched after NBUVB treatment in responders but not non-responders. Serum Vitamin D levels significantly increased after NBUVB treatment. CONCLUSIONS&PERSPECTIVE The present study revealed that gut microbiota altered after NBUVB treatment. The change might be treatment-specific and influence the treatment response.
Collapse
Affiliation(s)
- A Rungjang
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - J Meephansan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - S Payungporn
- The Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - V Sawaswong
- The Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - P Chanchaem
- The Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - P Pureesrisak
- Division of Dermatology, Department of Medicine, Rajavithi Hospital, Ministry of Public Health, Bangkok, Thailand
| | - J Wongpiyabovorn
- Division of Immunology, Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - H B Thio
- Department of Dermatology, Erasmus University Medical Center, Rotterdam
| |
Collapse
|
28
|
Characterization of New Probiotic Isolates from Fermented Ajwa Dates of Madinah and Their Anti-Inflammatory Potential. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A total of 20 Lactobacillus strains isolated from fermented dates were tested for their probiotic potential by comparing their pH stability, resistance to low pH, and ability to tolerate bile salts. Out of 20 strains, 3 strains named as Lactobacillus pentosus KAU001, Lactiplantibacillus pentosus KAU002, and Lactiplantibacillus plantarum KAU003 had a high tolerance of acids and bile salts and the capability to adhere to the intestinal wall. In addition, the three isolates were tested for their anti-oxidation, anti-glucosidase inhibition, cholesterol-lowering, and anti-inflammation properties. Among them, strain KAU001 and KAU002 inhibited α-glucosidase, lowered cholesterol level, inhibited nitric oxide production, and showed a higher anti-oxidative ability that was significantly better than strain KAU003. Both strains also significantly inhibited the release of inflammatory mediators such as TNF-α, IL-6 and IL-10 induced by LPS on RAW 264.7 macrophages (p < 0.001). The results indicated that KAU001 and KAU002 have the highest probiotic potential, potentially modulating metabolic health and reducing pro-inflammatory cytokines in response to allergic reactions.
Collapse
|
29
|
Rather IA, Kamli MR, Sabir JSM, Paray BA. Potential Antiviral Activity of Lactiplantibacillus plantarum KAU007 against Influenza Virus H1N1. Vaccines (Basel) 2022; 10:vaccines10030456. [PMID: 35335088 PMCID: PMC8954428 DOI: 10.3390/vaccines10030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
The development of antiviral resistance has exacerbated a growing threat to public health. As a result, there is increasing demand for unconventional antivirals that can effectively replace the presently in-use drugs. Lactic acid-producing bacteria (LAB) are among the most common bacteria used in the food industry. These bacteria play an essential role in the fermentation of many foods and feed. Additionally, these bacteria are considered more economical, efficient, and safe “nutraceuticals” in the health care arsenal. Therefore, we carried out the screening and molecular characterization of raw camel milk LAB isolates and tested their inhibitory activity against influenza virus H1N1. The strain that exhibited the highest antiviral activity against the H1N1 virus, confirmed by hemagglutination assay, was identified as Lactiplantibacillus plantarum KAU007. The study also confirmed the non-cytotoxic behavior of CFCS isolated from KAU007 against MDCK cells, approving its safety concern against the mammalian cells. Besides, CFCS at 5 and 10 mg/mL significantly decreased the level of IFN-γ (p < 0.001 and p < 0.001) and IL-6 (p < 0.001 and p < 0.005) in a dose-dependent manner, respectively. This is a preliminary report about the anti-influenza activity of KAU007 isolated from camel milk. This study reinforces that camel milk contains beneficial LAB isolates with antagonistic properties against the H1N1 influenza virus.
Collapse
Affiliation(s)
- Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.R.K.); (J.S.M.S.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence:
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.R.K.); (J.S.M.S.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.R.K.); (J.S.M.S.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Bilal Ahmad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
30
|
Topical Probiotics: More Than a Skin Deep. Pharmaceutics 2022; 14:pharmaceutics14030557. [PMID: 35335933 PMCID: PMC8955881 DOI: 10.3390/pharmaceutics14030557] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Skin, an exterior interface of the human body is home to commensal microbiota and also acts a physical barrier that protects from invasion of foreign pathogenic microorganisms. In recent years, interest has significantly expanded beyond the gut microbiome to include the skin microbiome and its influence in managing several skin disorders. Probiotics play a major role in maintaining human health and disease prevention. Topical probiotics have demonstrated beneficial effects for the treatment of certain inflammatory skin diseases such as acne, rosacea, psoriasis etc., and also found to have a promising role in wound healing. In this review, we discuss recent insights into applications of topical probiotics and their influence on health and diseases of the skin. Patents, commercially available topical probiotics, and novel probiotic impregnated fabrics have been emphasized. A thorough understanding of the relationship between probiotics and the skin microbiome is important for designing novel therapeutic approaches in using topical probiotics.
Collapse
|
31
|
The Effectiveness and Safety of Probiotic Supplements for Psoriasis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials and Preclinical Trials. J Immunol Res 2021; 2021:7552546. [PMID: 34938815 PMCID: PMC8687811 DOI: 10.1155/2021/7552546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background Patients with psoriasis need long-term medication to control their condition. Recent studies suggest that changing the intestinal flora may be a potential treatment. Methods The databases were utilized to search the randomized controlled trials (RCTs) and preclinical trials about probiotic supplement in the treatment of psoriasis. The retrieval time is from the establishment of these databases to December 2020. RevMan5.3 was used for the risk assessment of bias and meta-analysis. This systematic review was registered in PROSPERO (CRD42021232756). Results A total of 3 RCTs involving 164 participants were included. Two RCTs showed that probiotics can improve PASI and thereby improve the condition. For inflammation-related indicators, only one RCT showed that probiotics can improve the levels of CRP and TNF-α but have no obvious improvement effect on IL6. One RCT demonstrated the total effective rate of probiotics in the treatment of psoriasis. For adverse events, one RCT showed that the incidence of adverse events of probiotic treatment was low. Preclinical studies showed that continuous intervention with oral probiotics can significantly improve the progression of psoriasis and reduce the expression of inflammatory factors. The meta-analysis showed that the PASI between two groups was of no statistical significance (SMD 1.83 [-0.41, 4.07], P = 0.11). Meanwhile, probiotics may improve skin thickness (SMD -5.87 [-11.34, -0.41], P = 0.04) in animal model. Conclusion Prebiotics may have a positive effect on alleviating the clinical symptoms of psoriasis, but a large sample of RCTs is still needed to support its therapeutic effect in psoriasis.
Collapse
|
32
|
Shangguan Y, Chen Y, Ma Y, Zhao Y, He Y, Li W. Salubrinal protects against inflammatory response in macrophage and attenuates psoriasiform skin inflammation by antagonizing NF-κB signaling pathway. Biochem Biophys Res Commun 2021; 589:63-70. [PMID: 34891043 DOI: 10.1016/j.bbrc.2021.11.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/26/2021] [Accepted: 11/17/2021] [Indexed: 11/02/2022]
Abstract
Psoriasiform skin inflammation is the common chronic skin inflammatory disease with no effective clinical therapy. Salubrinal is a multifunctional molecule playing a protective role in several conditions. Recently, studies have reported that Salubrinal is a potential therapeutic agent for inflammatory diseases. However, the protective role of Salubrinal in psoriasis-like skin inflammation remains unknown. In this article, imiquimod (IMQ)-induced psoriasis models were established in wild-type mice to explore the role of Salubrinal in the development of psoriasis. As a result, the IMQ-induced mouse models exhibited typical skin inflammation, which was alleviated by the administration of Salubrinal. Furthermore, RAW264.7 macrophage was stimulated with Lipopolysaccharide(LPS) in the presence or absence of Salubrinal. LPS stimulation elevated the expression of various inflammatory biomarkers, while the administration of Salubrinal abolished the function of LPS in RAW264.7 macrophages. In addition, the activation of the nuclear factor-kappa B (NF-κB) signaling pathway in both the LPS-stimulated RAW264.7 macrophage and psoriasis mouse models was antagonized by the administration of Salubrinal. Collectively, Salubrinal might be considered as a promising therapeutic agent for psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Yangtao Shangguan
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yongkun Chen
- Department of Ultrasound, The Fourth People's Hospital of Jinan, Jinan, Shandong Province, 250031, PR China
| | - Yihui Ma
- Department of Pathology, Heze Mudan People's Hospital (Heze Central Hospital), Heze, Shandong, 274000, PR China
| | - Yunpeng Zhao
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yeteng He
- Department of Orthopaedics, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, PR China.
| | - Weiwei Li
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
33
|
Polak K, Jobbágy A, Muszyński T, Wojciechowska K, Frątczak A, Bánvölgyi A, Bergler-Czop B, Kiss N. Microbiome Modulation as a Therapeutic Approach in Chronic Skin Diseases. Biomedicines 2021; 9:biomedicines9101436. [PMID: 34680552 PMCID: PMC8533290 DOI: 10.3390/biomedicines9101436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
There is a growing quantity of evidence on how skin and gut microbiome composition impacts the course of various dermatological diseases. The strategies involving the modulation of bacterial composition are increasingly in the focus of research attention. The aim of the present review was to analyze the literature available in PubMed (MEDLINE) and EMBASE databases on the topic of microbiome modulation in skin diseases. The effects and possible mechanisms of action of probiotics, prebiotics and synbiotics in dermatological conditions including atopic dermatitis (AD), psoriasis, chronic ulcers, seborrheic dermatitis, burns and acne were analyzed. Due to the very limited number of studies available regarding the topic of microbiome modulation in all skin diseases except for AD, the authors decided to also include case reports and original studies concerning oral administration and topical application of the pro-, pre- and synbiotics in the final analysis. The evaluated studies mostly reported significant health benefits to the patients or show promising results in animal or ex vivo studies. However, due to a limited amount of research and unambiguous results, the topic of microbiome modulation as a therapeutic approach in skin diseases still warrants further investigation.
Collapse
Affiliation(s)
- Karina Polak
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland; (K.P.); (K.W.)
| | - Antal Jobbágy
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
| | - Tomasz Muszyński
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Cracow, Poland;
| | - Kamila Wojciechowska
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland; (K.P.); (K.W.)
| | - Aleksandra Frątczak
- Chair and Department of Dermatology, Medical University of Silesia, 40-027 Katowice, Poland; (A.F.); (B.B.-C.)
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
| | - Beata Bergler-Czop
- Chair and Department of Dermatology, Medical University of Silesia, 40-027 Katowice, Poland; (A.F.); (B.B.-C.)
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
- Correspondence:
| |
Collapse
|
34
|
Integrated Phenotypic-Genotypic Analysis of Latilactobacillus sakei from Different Niches. Foods 2021; 10:foods10081717. [PMID: 34441495 PMCID: PMC8393274 DOI: 10.3390/foods10081717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing attention has been paid to the potential probiotic effects of Latilactobacillus sakei. To explore the genetic diversity of L. sakei, 14 strains isolated from different niches (feces, fermented kimchi, and meat products) and 54 published strains were compared and analyzed. The results showed that the average genome size and GC content of L. sakei were 1.98 Mb and 41.22%, respectively. Its core genome mainly encodes translation and transcription, amino acid synthesis, glucose metabolism, and defense functions. L. sakei has open pan-genomic characteristics, and its pan-gene curve shows an upward trend. The genetic diversity of L. sakei is mainly reflected in carbohydrate utilization, antibiotic tolerance, and immune/competition-related factors, such as clustering regular interval short palindromic repeat sequence (CRISPR)-Cas. The CRISPR system is mainly IIA type, and a few are IIC types. This work provides a basis for the study of this species.
Collapse
|
35
|
Shin M, Kim JW, Gu B, Kim S, Kim H, Kim WC, Lee MR, Kim SR. Comparative Metabolite Profiling of Traditional and Commercial Vinegars in Korea. Metabolites 2021; 11:478. [PMID: 34436419 PMCID: PMC8400794 DOI: 10.3390/metabo11080478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/02/2022] Open
Abstract
Vinegar, composed of various organic acids, amino acids, and volatile compounds, has been newly recognized as a functional food with health benefits. Vinegar is produced through alcoholic fermentation of various raw materials followed by acetic acid fermentation, and detailed processes greatly vary between different vinegar products. This study performed metabolite profiling of various vinegar products using gas chromatography-mass spectrometry to identify metabolites that are specific to vinegar production processes. In particular, seven traditional vinegars that underwent spontaneous and slow alcoholic and acetic acid fermentations were compared to four commercial vinegars that were produced through fast acetic acid fermentation using distilled ethanol. A total of 102 volatile and 78 nonvolatile compounds were detected, and the principal component analysis of metabolites clearly distinguished between the traditional and commercial vinegars. Ten metabolites were identified as specific or significantly different compounds depending on vinegar production processes, most of which had originated from complex microbial metabolism during traditional vinegar fermentation. These process-specific compounds of vinegars may serve as potential biomarkers for fermentation process controls as well as authenticity and quality evaluation.
Collapse
Affiliation(s)
- Minhye Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon 22212, Korea;
| | - Jeong-Won Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; (J.-W.K.); (B.G.)
| | - Bonbin Gu
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; (J.-W.K.); (B.G.)
| | - Sooah Kim
- Department of Environment Science & Biotechnology, Jeonju University, Jeonju 55069, Korea;
| | - Hojin Kim
- Experimental Research Institute, National Agricultural Products Quality Management Service, Gimcheon-si 39660, Korea;
| | - Won-Chan Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea;
| | - Mee-Ryung Lee
- Department of Food and Nutrition, Daegu University, Gyeongsan 38453, Korea
| | - Soo-Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; (J.-W.K.); (B.G.)
| |
Collapse
|
36
|
Iorio R, Petricca S, Luzi C, Bellio P, Cristiano L, Festuccia C, Amicosante G, Celenza G. Lactobacillus sakei Pro-Bio65 Reduces TNF-α Expression and Upregulates GSH Content and Antioxidant Enzymatic Activities in Human Conjunctival Cells. Transl Vis Sci Technol 2021; 10:8. [PMID: 34111255 PMCID: PMC8107481 DOI: 10.1167/tvst.10.6.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose The study investigates the regulatory effects exhibited by lysate of Lactobacillus sakei pro-Bio65 (4%; L.SK) on the human conjunctival epithelial (HCE) cell line. Methods Trypan blue and methylthiazol tetrazolium (MTT) methods were used to assess cell growth and viability. Mitochondrial membrane potential was assessed by JC-1 staining and cytofluorimetric detection methods. The antioxidant pattern and the intracellular reactive oxygen species (ROS) levels were analyzed by spectrophotometric and spectrofluorimetric methods. NF-κB luciferase activity was quantified by luminometric detection. NF-κB nuclear translocation, as well as mitochondrial morphology, were investigated by immunofluorescence using confocal microscopy. Cytokines and COX2 expression levels were determined by Western blot analyses. Results This study demonstrates that L.SK exposure does not influence HCE cell proliferation and viability in vitro. L.SK paraprobiotic induces mild-low levels of intracellular ROS. It is coupled to changes in the mitochondrial membrane potential (ΔΨm), in a context of a regular mitochondrial-network organization. The negative modulation of tumor necrosis factor alpha (TNF-α) expression levels and rising antioxidant defense efficiency, mediated by the upregulation of glutathione (GSH) and increased antioxidant enzymatic activities, were observed. Conclusions This study demonstrates that L.SK empowers the antioxidant endogenous efficiency of HCE cells, by the upregulation of the GSH content and the enzymatic antioxidant pattern, and concurrently reduces TNF-α protein expression. Translational Relevance Although the obtained in vitro results should be confirmed by in vivo investigations, our data suggest the possibility of L.SK paraprobiotic application for promoting eye health, exploring its use as an endogen antioxidant system inducer in preventing and treating different oxidative stress-based, inflammatory, and age-related conditions.
Collapse
Affiliation(s)
- Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sabrina Petricca
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Carla Luzi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Loredana Cristiano
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gianfranco Amicosante
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
37
|
Potential Role of Probiotics in Ameliorating Psoriasis by Modulating Gut Microbiota in Imiquimod-Induced Psoriasis-Like Mice. Nutrients 2021; 13:nu13062010. [PMID: 34207960 PMCID: PMC8230682 DOI: 10.3390/nu13062010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is an immune-mediated systemic disease that may be treated with probiotics. In this study, probiotic strains that could or could not decrease interleukin (IL)-17 levels were applied to imiquimod (IMQ)-induced psoriasis-like mice via oral administration. Bifidobacterium adolescentis CCFM667, B. breve CCFM1078, Lacticaseibacillus paracasei CCFM1074, and Limosilactobacillus reuteri CCFM1132 ameliorated psoriasis-like pathological characteristics and suppressed the release of IL-23/T helper cell 17 (Th17) axis-related inflammatory cytokines, whereas B. animalis CCFM1148, L. paracasei CCFM1147, and L. reuteri CCFM1040 neither alleviated the pathological characteristics nor reduced the levels of inflammatory cytokines. All effective strains increased the contents of short-chain fatty acids, which were negatively correlated with the levels of inflammatory cytokines. By performing 16S rRNA gene sequencing, the diversity of gut microbiota in psoriasis-like mice was found to decrease, but all effective strains made some specific changes to the composition of gut microbiota compared to the ineffective strains. Furthermore, except for B. breve CCFM1078, all other effective strains decreased the abundance of the family Rikenellaceae, which was positively correlated with psoriasis-like pathological characteristics and was negatively correlated with propionate levels. These findings demonstrated effects of strain-specificity, and how probiotics ameliorated psoriasis and provide new possibilities for the treatment of psoriasis.
Collapse
|
38
|
Evaluation of probiotics for inhibiting hyperproliferation and inflammation relevant to psoriasis in vitro. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
39
|
Kim H, Shin M, Ryu S, Yun B, Oh S, Park DJ, Kim Y. Evaluation of Probiotic Characteristics of Newly Isolated Lactic Acid Bacteria from Dry-Aged Hanwoo Beef. Food Sci Anim Resour 2021; 41:468-480. [PMID: 34017955 PMCID: PMC8112308 DOI: 10.5851/kosfa.2021.e11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/26/2021] [Accepted: 03/06/2021] [Indexed: 11/09/2022] Open
Abstract
Dry aging is a traditional method that improves meat quality, and diverse
microbial communities are changed during the process. Lactic acid bacteria (LAB)
are widely present in fermented foods and has many beneficial effects, such as
immune enhancement and maintenance of intestinal homeostasis. In this study, we
conducted metagenomic analysis to evaluate the changes in the microbial
composition of dry-aged beef. We found that lactic acid bacterial strains were
abundant in dry-aged beef including Lactobacillus sakei and
Enterococcus faecalis. We investigated their abilities in
acid and bile tolerance, adhesion to the host, antibiotic resistance, and
antimicrobial activity as potential probiotics, confirming that L.
sakei and E. faecalis strains had remarkable
capability as probiotics. The isolates from dry-aged beef showed at least
70% survival under acidic conditions in addition to an increase in the
survival level under bile conditions. Antibiotic susceptibility and
antibacterial activity assays further verified their effectiveness in inhibiting
all pathogenic bacteria tested, and most of them had low resistance to
antibiotics. Finally, we used the Caenorhabditis elegans model
to confirm their life extension and influence on host resistance. In the model
system, 12D26 and 20D48 strains had great abilities to extend the nematode
lifespan and to improve host resistance, respectively. These results suggest the
potential use of newly isolated LAB strains from dry-aged beef as probiotic
candidates for production of fermented meat.
Collapse
Affiliation(s)
- Hayoung Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Minhye Shin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Sangdon Ryu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Bohyun Yun
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | | | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
40
|
Psoriasis and Gut Microbiome-Current State of Art. Int J Mol Sci 2021; 22:ijms22094529. [PMID: 33926088 PMCID: PMC8123672 DOI: 10.3390/ijms22094529] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a chronic, immune-mediated inflammatory disease that affects around 125 million people worldwide. Several studies concerning the gut microbiota composition and its role in disease pathogenesis recently demonstrated significant alterations among psoriatic patients. Certain parameters such as Firmicutes/Bacteroidetes ratio or Psoriasis Microbiome Index were developed in order to distinguish between psoriatic and healthy individuals. The “leaky gut syndrome” and bacterial translocation is considered by some authors as a triggering factor for the onset of the disease, as it promotes chronic systemic inflammation. The alterations were also found to resemble those in inflammatory bowel diseases, obesity and certain cardiovascular diseases. Microbiota dysbiosis, depletion in SCFAs production, increased amount of produced TMAO, dysregulation of the pathways affecting the balance between lymphocytes populations seem to be the most significant findings concerning gut physiology in psoriatic patients. The gut microbiota may serve as a potential response-to-treatment biomarker in certain cases of biological treatment. Oral probiotics administration as well as fecal microbial transplantation were most reported in bringing health benefits to psoriatic patients. However, the issue of psoriatic bacterial gut composition, its role and healing potential needs further investigation. Here we reviewed the literature on the current state of the relationship between psoriasis and gut microbiome.
Collapse
|
41
|
Gulnaz A, Nadeem J, Han JH, Lew LC, Son JD, Park YH, Rather IA, Hor YY. Lactobacillus Sps in Reducing the Risk of Diabetes in High-Fat Diet-Induced Diabetic Mice by Modulating the Gut Microbiome and Inhibiting Key Digestive Enzymes Associated with Diabetes. BIOLOGY 2021; 10:biology10040348. [PMID: 33924088 PMCID: PMC8074288 DOI: 10.3390/biology10040348] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary Type 2 diabetes (T2D) is increasingly spreading across the globe. The disease is linked to a disruption of gut microbiome. Probiotics are essential gut microbiota modulators proven to restore microbiota changes, thereby conferring health to its host. This study aimed to use probiotics (lactobacilli) and their metabolites as natural anti-diabetic therapy through the modulation of gut microbiota and inhibit diabetes-causing enzymes. Lactobacillus-treated high-fat diet mice showed lower blood glucose levels and body weight. Interestingly, our study also proved that the lactobacilli altered gut microbiota composition by suppressing opportunistic bacteria that are highly associated with metabolic diseases. Our findings substantiate the use of probiotics as natural anti-diabetic therapeutics. Abstract Obesity caused by a high-fat diet (HFD) affects gut microbiota linked to the risk of type-2 diabetes (T2D). This study evaluates live cells and ethanolic extract (SEL) of Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093 as natural anti-diabetic compounds. In-vitro anti-diabetic effects were determined based on the inhibition of α-glucosidase and α-amylase enzymes. The SEL of Probio65 and Probio-093 significantly retarded α-glucosidase and α-amylase enzymes (p < 0.05). Live Probio65 and Probio-093 inhibited α-glucosidase and α-amylase, respectively (p < 0.05). In mice fed with a 45% kcal high-fat diet (HFD), the SEL and live cells of both strains reduced body weight significantly compared to HFD control (p < 0.05). Probio-093 also improved blood glucose level compared to control (p < 0.05). The gut microbiota modulatory effects of lactobacilli on HFD-induced diabetic mice were analyzed with qPCR method. The SEL and live cells of both strains reduced phyla Deferribacteres compared to HFD control (p < 0.05). The SEL and live cells of Probio-093 promoted more Actinobacteria (phyla), Bifidobacterium, and Prevotella (genus) compared to control (p < 0.05). Both strains exerted metabolic-modulatory effects, with strain Probio-093 showing more prominent alteration in gut microbiota, substantiating the role of probiotics in gut microbiome modulations and anti-diabetic effect. Both lactobacilli are potential candidates to lessen obesity-linked T2D.
Collapse
Affiliation(s)
- Aneela Gulnaz
- Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea; (A.G.); (J.N.); (J.-H.H.); (Y.-H.P.)
| | - Jawad Nadeem
- Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea; (A.G.); (J.N.); (J.-H.H.); (Y.-H.P.)
| | - Jong-Hun Han
- Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea; (A.G.); (J.N.); (J.-H.H.); (Y.-H.P.)
| | - Lee-Ching Lew
- Probionic Corp. Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si, Jeollabuk-do 38541, Korea;
| | - Jae-Dong Son
- Department of Veterinary Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju-si, Gyeongsangnam-do 52828, Korea;
| | - Yong-Ha Park
- Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea; (A.G.); (J.N.); (J.-H.H.); (Y.-H.P.)
- Probionic Corp. Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si, Jeollabuk-do 38541, Korea;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: or (I.A.R.); (Y.-Y.H.)
| | - Yan-Yan Hor
- Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea; (A.G.); (J.N.); (J.-H.H.); (Y.-H.P.)
- Correspondence: or (I.A.R.); (Y.-Y.H.)
| |
Collapse
|
42
|
Puebla-Barragan S, Reid G. Probiotics in Cosmetic and Personal Care Products: Trends and Challenges. Molecules 2021; 26:1249. [PMID: 33652548 PMCID: PMC7956298 DOI: 10.3390/molecules26051249] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Probiotics, defined as "live microorganisms that, when administered in adequate amounts, confer a health benefit on the host," are becoming increasingly popular and marketable. However, too many of the products currently labelled as probiotics fail to comply with the defining characteristics. In recent years, the cosmetic industry has increased the number of products classified as probiotics. While there are several potential applications for probiotics in personal care products, specifically for oral, skin, and intimate care, proper regulation of the labelling and marketing standards is still required to guarantee that consumers are indeed purchasing a probiotic product. This review explores the current market, regulatory aspects, and potential applications of probiotics in the personal care industry.
Collapse
Affiliation(s)
- Scarlett Puebla-Barragan
- Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON N6C 2R5, Canada
- Departments of Microbiology & Immunology and Surgery, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Gregor Reid
- Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON N6C 2R5, Canada
- Departments of Microbiology & Immunology and Surgery, University of Western Ontario, London, ON N6A 3K7, Canada;
| |
Collapse
|
43
|
The Complete Genome of Probiotic Lactobacillus sakei Derived from Plateau Yak Feces. Genes (Basel) 2020; 11:genes11121527. [PMID: 33371298 PMCID: PMC7766009 DOI: 10.3390/genes11121527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/13/2020] [Accepted: 12/18/2020] [Indexed: 11/18/2022] Open
Abstract
Probiotic bacteria are receiving increased attention due to the potential benefits to their hosts. Plateau yaks have resistance against diseases and stress, which is potentially related to their inner probiotics. To uncover the potential functional genes of yak probiotics, we sequenced the whole genome of Lactobacillus sakei (L. sakei). The results showed that the genome length of L. sakei was 1.99 Mbp, with 1943 protein coding genes (21 rRNA, 65 tRNA, and 1 tmRNA). There were three plasmids found in this bacteria, with 88 protein coding genes. EggNOG annotation uncovered that the L. sakei genes were found to belong to J (translation, ribosomal structure, and biogenesis), L (replication, recombination, and repair), G (carbohydrate transport and metabolism), and K (transcription). GO annotation showed that most of the L. sakei genes were related to cellular processes, metabolic processes, biological regulation, localization, response to stimulus, and organization or biogenesis of cellular components. CAZy annotation found that there were 123 CAZys in the L. sakei genome, with glycosyl transferases and glycoside hydrolases. Our results revealed the genome characteristics of L. sakei, which may give insight into the future employment of this probiotic bacterium for its functional benefits.
Collapse
|
44
|
Chen L, Li J, Zhu W, Kuang Y, Liu T, Zhang W, Chen X, Peng C. Skin and Gut Microbiome in Psoriasis: Gaining Insight Into the Pathophysiology of It and Finding Novel Therapeutic Strategies. Front Microbiol 2020; 11:589726. [PMID: 33384669 PMCID: PMC7769758 DOI: 10.3389/fmicb.2020.589726] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Psoriasis affects the health of myriad populations around the world. The pathogenesis is multifactorial, and the exact driving factor remains unclear. This condition arises from the interaction between hyperproliferative keratinocytes and infiltrating immune cells, with poor prognosis and high recurrence. Better clinical treatments remain to be explored. There is much evidence that alterations in the skin and intestinal microbiome play an important role in the pathogenesis of psoriasis, and restoration of the microbiome is a promising preventive and therapeutic strategy for psoriasis. Herein, we have reviewed recent studies on the psoriasis-related microbiome in an attempt to confidently identify the “core” microbiome of psoriasis patients, understand the role of microbiome in the pathogenesis of psoriasis, and explore new therapeutic strategies for psoriasis through microbial intervention.
Collapse
Affiliation(s)
- Lihui Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Tao Liu
- Central Laboratory, Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| |
Collapse
|
45
|
Rigon RB, de Freitas ACP, Bicas JL, Cogo-Müller K, Kurebayashi AK, Magalhães RF, Leonardi GR. Skin microbiota as a therapeutic target for psoriasis treatment: Trends and perspectives. J Cosmet Dermatol 2020; 20:1066-1072. [PMID: 32998180 DOI: 10.1111/jocd.13752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/27/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
Psoriasis is a chronic, immune-mediated disease that has a major negative impact on a patient's quality of life. Although several literature reviews indicate that skin microbiota may play an important role in the development and regulation of the immune and inflammatory response of psoriasis, few clinical studies are demonstrating the benefits of using pre-, pro- and synbiotics as a therapeutic alternative at the management of the disease. In this review, we showed the use of probiotic microorganisms that may contribute to skin homeostasis and compiled the clinical trials that demonstrate the effect of therapy with probiotics on patients with psoriasis, an important area for scientific exploration in dermatology and being the first review article to compile this information.
Collapse
Affiliation(s)
- Roberta B Rigon
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Andréa C P de Freitas
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Juliano L Bicas
- School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Karina Cogo-Müller
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Renata F Magalhães
- School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gislaine R Leonardi
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
46
|
Oral Administration of Live and Dead Cells of Lactobacillus sakei proBio65 Alleviated Atopic Dermatitis in Children and Adolescents: a Randomized, Double-Blind, and Placebo-Controlled Study. Probiotics Antimicrob Proteins 2020; 13:315-326. [PMID: 32949011 DOI: 10.1007/s12602-020-09654-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several studies suggest that probiotics might be useful in the management of atopic dermatitis (AD). However, the efficacy and comparison between both the administration of viable and non-viable probiotics on alleviation of AD is not well studied. Therefore, the purpose of this study was to evaluate the effect of L. sakei proBio65 live and dead cells when administered (1 × 1010 cells/day) for 12 weeks to children and adolescents (aged 3 to 18) with atopic dermatitis. In this randomized double-blind, placebo-controlled study, ninety patients were recruited and randomly allocated to either the L. sakei proBio65 live cells, L. sakei proBio65 dead cells, or placebo groups. Assessment of efficacy was based on the change in SCORing Atopic Dermatitis (SCORAD) score, Investigators Global Assessment (IGA) score, serum inflammatory markers such as the serum eosinophil (count), IgE, eosinophil cationic protein (ECP), CCL17 (thymus and activation-regulated chemokine [TARC]), and CCL27 (cutaneous T cell-attracting chemokine [CTACK]), and changes in skin condition (moisture and sebum) at baseline, week 6 and week 12. The SCORAD total score decreased in the live cells (p = 0.0015) and dead cell group (p = 0.0017) from the baseline after 12 weeks, whereas there were no significant changes in the placebo group when compared with baseline. The skin sebum content increased in both the live cell (p < 0.0001) and the dead cell group (p < 0.0001), suggesting potential improvements in skin barrier functions. Current data suggested a positive improvement in alleviation of AD symptoms upon oral administration of L. sakei proBio65 in both viable and non-viable forms.
Collapse
|
47
|
Unraveling microbial fermentation features in kimchi: from classical to meta-omics approaches. Appl Microbiol Biotechnol 2020; 104:7731-7744. [PMID: 32749526 DOI: 10.1007/s00253-020-10804-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022]
Abstract
Kimchi is a traditional Korean fermented food prepared via spontaneous fermentation by various microorganisms originating from vegetables such as kimchi cabbage, radishes, and garlic. Recent advances in meta-omics approaches that integrate metataxonomics, metagenomics, metatranscriptomics, and metabolomics have contributed to explaining and understanding food fermentation processes. Kimchi microbial communities are composed of majorly lactic acid bacteria such as Leuconostoc, Lactobacillus, and Weissella and fewer eukaryotic microorganisms and kimchi fermentation are accomplished by complex microbial metabolisms to produce diverse metabolites such as lactate, acetate, CO2, ethanol, mannitol, amino acids, formate, malate, diacetyl, acetoin, and 2, 3-butanediol, which determine taste, quality, health benefit, and safety of fermented kimchi products. Therefore, in the future, kimchi researches should be systematically performed using the meta-omics approaches to understand complex microbial metabolisms during kimchi fermentation. KEY POINTS: • Spontaneous fermentation by raw material microbes gives kimchi its unique flavor. • The kimchi microbiome is altered by environmental factors and raw materials. • Through the multi-omics approaches, it is possible to accurately analyze the diversity and metabolic characteristics of kimchi microbiome and discover potential functionalities.
Collapse
|
48
|
Atabati H, Esmaeili SA, Saburi E, Akhlaghi M, Raoofi A, Rezaei N, Momtazi-Borojeni AA. Probiotics with ameliorating effects on the severity of skin inflammation in psoriasis: Evidence from experimental and clinical studies. J Cell Physiol 2020; 235:8925-8937. [PMID: 32346892 DOI: 10.1002/jcp.29737] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Experimental and clinical studies have confirmed safety and the medical benefits of probiotics as immunomodulatory medications. Recent advances have emphasized the critical effect of gastrointestinal bacteria in the pathology of inflammatory disorders, even, outside the gut. Probiotics have shown promising results for curing skin-influencing inflammatory disorders through modulating the immune response by manipulating the gut microbiome. Psoriasis is a complex inflammatory skin disease, which exhibits a microbiome distinct from the normal skin. In the present review, we considered the impact of gastrointestinal microbiota on the psoriasis pathogenesis, and through literature survey, attempted to explore probiotic species utilized for psoriasis treatment.
Collapse
Affiliation(s)
- Hadi Atabati
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Clinical Research Development Center, Imam Hasan Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maedeh Akhlaghi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Amir Raoofi
- Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology and Biology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amir Abbas Momtazi-Borojeni
- Halal Research Center of IRI, FDA, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Rather IA, Bajpai VK, Ching LL, Majumder R, Nam GJ, Indugu N, Singh P, Kumar S, Hajrah NH, Sabir JS, Kamli MR, Park YH. Effect of a bioactive product SEL001 from Lactobacillus sakei probio65 on gut microbiota and its anti-colitis effects in a TNBS-induced colitis mouse model. Saudi J Biol Sci 2020; 27:261-270. [PMID: 31889846 PMCID: PMC6933275 DOI: 10.1016/j.sjbs.2019.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 01/02/2023] Open
Abstract
This study underpins the therapeutic potential of SEL001, a bioactive product isolated from Lactobacillus sakei probio65, in terms of its anti-inflammatory properties and its effect on gut-microbiota in a TNBS-induced ulcerative colitis mouse model. Ulcerative colitis was developed in mice by intra rectal administration of trinitrobenzene sulfonic acid. Bioactive product SEL001 (50 mg/kg b.w.) was administered orally. Myeloperoxidase activity was measured using 3,3', 5,5'-tetramethylbenzidine. The entire colon was sampled for post-mortem clinical assessment. Colonic injury was assessed through histological and histomorphometric examinations. The 454 pyrosequencing and QIIME pipeline were used for gut microbiota analysis and statistical analysis were conducted using R. mRNA extraction from colon tissue and RT-PCR approaches were employed to determine the changes in the level of specific biomarker genes associated with UC. The results depict that SEL001 significantly lowered pro-inflammatory cytokines, including CD4, TNF-α, and interleukin-6. Examination of clinical and histopathological traits revealed that SEL001 was effective and potent in reducing the inflammatory signatures of UC to a similar extent as did by the standard drug mesalamine (5-ASA). Pyro-sequencing 16S data revealed that the reduction in the major member of phylum Firmicutes, which has been previously associated with a higher risk of UC. The SEL001, an anti-inflammatory bioactive product originated from a probiotic strain L. sakei probio65 could be an alternative therapeutic agent for treatment of UC.
Collapse
Affiliation(s)
- Irfan A. Rather
- Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Vivek K. Bajpai
- Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea
| | - Lew L. Ching
- Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Rajib Majumder
- Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Gyeong-Jun Nam
- Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Nagaraju Indugu
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA
| | - Prashant Singh
- Department of Food Science, College of Human Science, Florida State University, Tallahassee, FL 32306, USA
| | - Sanjay Kumar
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Nahid H. Hajrah
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Jamal S.M. Sabir
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Majid Rasool Kamli
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Yong-Ha Park
- Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| |
Collapse
|
50
|
Genomic and metabolic features of Lactobacillus sakei as revealed by its pan-genome and the metatranscriptome of kimchi fermentation. Food Microbiol 2019; 86:103341. [PMID: 31703875 DOI: 10.1016/j.fm.2019.103341] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/08/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022]
Abstract
The genomic and metabolic features of Lactobacillus sakei were investigated using its pan-genome and by analyzing the metatranscriptome of kimchi fermentation. In the genome-based relatedness analysis, the strains were divided into the Lb. sakei ssp. sakei and Lb. sakei ssp. carnosus lineage groups. Genomic and metabolic pathway analysis revealed that all Lb. sakei strains have the capability of producing d/l-lactate, ethanol, acetate, CO2, formate, l-malate, diacetyl, acetoin, and 2,3-butanediol from d-glucose, d-fructose, d-galactose, sucrose, d-lactose, l-arabinose, cellobiose, d-mannose, d-gluconate, and d-ribose through homolactic and heterolactic fermentation, whereas their capability of d-maltose, d-xylose, l-xylulose, d-galacturonate, and d-glucuronate metabolism is strain-specific. All strains carry genes for the biosynthesis of folate and thiamine, whereas genes for biogenic amine and toxin production, hemolysis, and antibiotic resistance were not identified. The metatranscriptomic analysis showed that the expression of Lb. sakei transcripts involved in carbohydrate metabolism increased as kimchi fermentation progressed, suggesting that Lb. sakei is more competitive during late fermentation stage. Homolactic fermentation pathway was highly expressed and generally constant during kimchi fermentation, whereas expression of heterolactic fermentation pathway increased gradually as fermentation progressed. l-Lactate dehydrogenase was more highly expressed than d-lactate dehydrogenase, suggesting that l-lactate is the major lactate metabolized by Lb. sakei.
Collapse
|