1
|
Wang A, Zhang F, Zhang W, Gong J, Sun X. PPM1D ameliorates Alzheimer's disease by promoting mitophagy. Exp Neurol 2025; 388:115218. [PMID: 40090398 DOI: 10.1016/j.expneurol.2025.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Mitochondrial autophagy (mitophagy) plays an essential role in the maintenance of mitochondrial homeostasis. Defective mitophagy triggered by amyloid beta (Aβ) is linked to neuronal deterioration and neurodegeneration in Alzheimer's disease (AD). However, the molecular mechanism underlying the defective mitophagy in AD is still not fully illustrated. Protein phosphatase Mn2+/Mg2+-dependent 1D (PPM1D) triggers autophagy in mouse embryonic fibroblasts. Downregulated PPM1D was shown in the hippocampus of APP/PS1 mice. This study aims to investigate the role of PPM1D in the progression of AD. Here, APP/PS1 mice were used to mimic AD, and rAAV2 vectors expressing PPM1D were injected into the bilateral hippocampus. In vitro, the mouse hippocampal neuron cell line HT22 was stimulated by Aβ1-42 to trigger neuronal damage. High PPM1D expression alleviated the impairments of spatial cognition and memory in APP/PS1 mice. Additionally, PPM1D enhanced autophagosome formation, lysosomal degradation of impaired mitochondria, amyloid plaque deposition, and neuronal degeneration and apoptosis in the hippocampus of APP/PS1 mice. Similar effects of PPM1D on neuronal apoptosis and mitophagy were observed in Aβ1-42-treated HT22 cells, and the effects could be reversed by the mitophagy inhibitor cyclosporine A. In conclusion, PPM1D facilitates mitophagy to inhibit the progression of AD-like disease. Taken together, the present work uncovers defective mitophagy in AD may be associated with down-regulated PPM1D, and PPM1D may be a potential therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Aiming Wang
- Department of Neurology, Tieling Central Hospital, Tieling, Liaoning, People's Republic of China; Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Fan Zhang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Wenqiang Zhang
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, People's Republic of China
| | - Jian Gong
- Tieling Center for Disease Control and Prevention, Tieling, Liaoning, People's Republic of China
| | - Xiaohong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Li MJ, Lan MN, Du YX, Liu Y, Zhang HY, Guo M, Liu SW, Xia HY, Wu ZJ, Zheng HJ. EPRCN exerts neuroprotective function by regulating gut microbiota and restoring gut immune homeostasis in Alzheimer's disease model mice. J Alzheimers Dis 2025:13872877251339762. [PMID: 40325871 DOI: 10.1177/13872877251339762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
BackgroundNo effective drug treatment is currently available for Alzheimer's disease (AD), highlighting the urgent need to develop efficient therapeutic options. We have developed a formula based on medicine and food homology (MFH) consisting of egg yolk oil, perilla seed oil, raphani seed oil, cinnamon oil, and noni puree (EPRCN), and demonstrated that it can treat AD by alleviating neuroinflammation and oxidative stress. However, whether EPRCN can improve AD by regulating gut microbiota remains unknown.ObjectiveThe current study aimed to evaluate the effect of EPRCN on regulating gut microbiota and neuroprotection.Methods16S rRNA sequencing was used to assess the structure of gut microbiota. Hematoxylin-eosin (HE) staining, qRT-PCR, and ELISA were used to evaluate gut inflammation. Detected indexes associated with cholinergic dysfunction and neuronal damage to investigate the neuroprotective effects of EPRCN.Results16S rRNA gene analysis revealed that EPRCN remodeled the gut microbiota, inhibited gut metabolic disorders, and promoted CoA biosynthesis in scopolamine-induced mice. EPRCN can ameliorates gut inflammation by activating the cholinergic anti-inflammatory pathway. The results further indicated that EPRCN improved cholinergic dysfunction by inhibiting the activity of acetylcholinesterase and restoring cholinergic receptors. Additionally, EPRCN administration suppressed the neuronal loss and elevated brain derived neurotrophic factor expression in hippocampus. Correlation analysis found that alteration of several gut microbes was associated with indexes improved by EPRCN.ConclusionsThese findings suggest that EPRCN may serve as a promising dietary intervention for treating AD by regulating the microbiota-gut-brain axis and exerting neuroprotective function.
Collapse
Affiliation(s)
- Ming-Jie Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, China
| | - Meng-Ning Lan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yao-Xuan Du
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yue Liu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Hua-Yue Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Min Guo
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Shi-Wei Liu
- Shanghai Xizuo Biotechnology Co., Ltd, Shanghai, China
| | - Hai-Yang Xia
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Zheng-Jun Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| |
Collapse
|
3
|
Zhang X, Zhang H, Liu Z, Huang T, Yi R, Ma Z, Gao Y. Salidroside improves blood-brain barrier integrity and cognitive function in hypobaric hypoxia mice by inhibiting microglia activation through GSK3β. Phytother Res 2025; 39:1808-1825. [PMID: 39364585 DOI: 10.1002/ptr.8264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 10/05/2024]
Abstract
Salidroside, an active component found in Rhodiola rosea L., has emerged as a potential therapeutic agent for the prevention and treatment of hypoxic brain injury, while the precise target and mechanism of salidroside were remain unclear. The study utilized techniques such as network pharmacology, transcriptome sequencing to investigate the mechanism and target of salidroside in regulating blood-brain barrier (BBB) function to protect hypoxic brain injury in vivo. Utilized macromolecular docking and molecular biology techniques to explore the molecular mechanism of salidroside in alleviating brain injury induced by hypoxia in BV2 cell model. The results show that salidroside alleviated the learning and memory dysfunction and pathological injury in mice exposed to hypobaric hypoxia, reduced brain water content and attenuate the inflammatory response and oxidative stress, effectively reversed S100β in serum and promoted the repair of BBB. GSK3β is an important therapeutic target of salidroside in the treatment of hypoxic cognitive impairment, and salidroside can specifically bind GSK3β in the ATP binding pocket, inducing the phosphorylation of GSK3β, targeting downstream Nrf-2 to regulate microglia activity, promoting the accumulation of β-catenin, thereby inhibiting microglial activation, improving the BBB integrity injury and achieving a neuroprotective effect. This study demonstrates that salidroside can inhibit the activation of microglia by inducing GSK3β phosphorylation, achieve neuroprotective effects and alleviate learning and memory dysfunction in hypobaric hypoxia mice. This study provides a theoretical basis for the development of salidroside and the clinical application of Rhodiola rosea L.
Collapse
Affiliation(s)
- Xianxie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Huiting Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Zuoxu Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Tianke Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Ru Yi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zengchun Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|
4
|
Zeng Y, Yang S, Xie Z, Li Q, Wang Y, Xiong Q, Liang X, Lu H, Cheng W. Tianqi Yizhi Granule alleviates cognitive dysfunction and neurodegeneration in SAMP8 mice via the PKC/ERK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156542. [PMID: 39986222 DOI: 10.1016/j.phymed.2025.156542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/02/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Given the lack of satisfactory clinical treatments for Alzheimer's disease (AD), a neurodegenerative condition detrimental to health, developing alternative therapies is critical. Tianqi Yizhi Granule (TQYZ) is a preparation used to treat AD based on traditional Chinese medicine theory, the latent mechanisms of which await elucidation. PURPOSE This study sought to investigate the neuroprotective properties of TQYZ while exploring its potential therapeutic mechanisms using network pharmacology analyses and experimental validation. METHODS Network pharmacology analyses were performed. Cognitive and neurodegenerative alterations were evaluated through behavioral tests and histological staining. For in vivo and in vitro experiments, short hairpin RNA sequences were transfected via adeno-associated virus vectors to verify the predicted mechanism. RESULTS A total of 159 potential therapeutic targets of TQYZ overlapped with AD-related targets. In senescence-accelerated mouse prone 8 (SAMP8) mice, treatment with TQYZ significantly improved cognitive function, ameliorated neuronal damage and apoptosis, and upregulated the protein expression of PKC/ERK pathway members. TQYZ maintained the mitochondrial membrane potential, reduced the generation of reactive oxygen species, and inhibited neuronal apoptosis in Aβ25-35-induced HT22 cells. However, these neuroprotective effects were notably reduced in shRNA PRKCB-transfected HT22 cells and SAMP8 mice. CONCLUSIONS TQYZ mitigates the pathological degeneration process and cognitive impairment in SAMP8 mice and suppresses mitochondrial dysfunction and apoptosis in HT22 cells treated with Aβ25-35. Its neuroprotective mechanism is linked to PKC/ERK pathway activation. This study highlights a promising strategy for AD therapy.
Collapse
Affiliation(s)
- Yi Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, PR China
| | - Sixia Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Qitian Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Qiaowu Xiong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Xiaotong Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Hui Lu
- Department of Geriatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| | - Weidong Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China.
| |
Collapse
|
5
|
Zu R, Lu H, Liu W, Shao S, Zheng J, Ying X, Zhou Y, Li Z, Wang W, Li D, Peng Q, Ma H, Zhang Z, Sun Y. Research Progress in the Molecular Mechanism of NLRP3 Inflammasome in Alzheimer's Disease and Regulation by Natural Plant Products. Mol Neurobiol 2025:10.1007/s12035-025-04715-w. [PMID: 39875780 DOI: 10.1007/s12035-025-04715-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Alzheimer's disease (AD) is a prominent neurodegenerative disorder affecting the central nervous system in the elderly. Current understanding of AD primarily centers on the gradual decline in cognitive and memory functions, believed to be influenced by factors including mitochondrial dysfunction, β-amyloid aggregation, and neuroinflammation. Emerging research indicates that neuroinflammation plays a significant role in the development of AD, with the inflammasome potentially mediating inflammatory responses that contribute to neurodegeneration. Recent studies in AD pathology have identified a novel form of inflammasome referred to as NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome. Pathological alterations closely associated with NLRP3 inflammasome activation have been observed in the brain tissues of AD patients, transgenic mice, and in vitro neurocyte models. Numerous studies have demonstrated the potent neuroprotective properties of natural plant products (NPPs) against NLRP3 inflammasome-mediated AD pathology. This review provides a comprehensive examination of the NLRP3 inflammasome, its involvement in AD pathology, and the mechanisms underlying the therapeutic effects of NPP targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Runru Zu
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Hao Lu
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Wanting Liu
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Simai Shao
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Jiayao Zheng
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Xiran Ying
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Yangang Zhou
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Zhonghua Li
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Wang Wang
- School of Basic Medicine, Nanchang Medical College, Nanchang, 330052, Jiangxi, PR China
| | - Dejuan Li
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Quekun Peng
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China.
| | - Huifen Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Zhenqiang Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China.
| |
Collapse
|
6
|
Nie T, You L, Tang F, Duan Y, Nepovimova E, Kuca K, Wu Q, Wei W. Microbiota-Gut-Brain Axis in Age-Related Neurodegenerative Diseases. Curr Neuropharmacol 2025; 23:524-546. [PMID: 39501955 DOI: 10.2174/1570159x23666241101093436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Age-related neurodegenerative diseases (NDs) pose a formidable challenge to healthcare systems worldwide due to their complex pathogenesis, significant morbidity, and mortality. Scope and Approach: This comprehensive review aims to elucidate the central role of the microbiotagut- brain axis (MGBA) in ND pathogenesis. Specifically, it delves into the perturbations within the gut microbiota and its metabolomic landscape, as well as the structural and functional transformations of the gastrointestinal and blood-brain barrier interfaces in ND patients. Additionally, it provides a comprehensive overview of the recent advancements in medicinal and dietary interventions tailored to modulate the MGBA for ND therapy. CONCLUSION Accumulating evidence underscores the pivotal role of the gut microbiota in ND pathogenesis through the MGBA. Dysbiosis of the gut microbiota and associated metabolites instigate structural modifications and augmented permeability of both the gastrointestinal barrier and the blood-brain barrier (BBB). These alterations facilitate the transit of microbial molecules from the gut to the brain via neural, endocrine, and immune pathways, potentially contributing to the etiology of NDs. Numerous investigational strategies, encompassing prebiotic and probiotic interventions, pharmaceutical trials, and dietary adaptations, are actively explored to harness the microbiota for ND treatment. This work endeavors to enhance our comprehension of the intricate mechanisms underpinning ND pathogenesis, offering valuable insights for the development of innovative therapeutic modalities targeting these debilitating disorders.
Collapse
Affiliation(s)
- Tong Nie
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, 401520, China
| | - Fang Tang
- College of Humanities and New Media, Yangtze University, Jingzhou, 434025, China
| | - Yanhui Duan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital of Hradec Králové, 500 05, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to The Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
7
|
Li W, Liu Z, Song M, Shi Z, Zhang J, Zhou J, Liu Y, Qiao Y, Liu D. Mechanism of Yi-Qi-Bu-Shen Recipe for the Treatment of Diabetic Nephropathy Complicated with Cognitive Dysfunction Based on Network Pharmacology and Experimental Validation. Diabetes Metab Syndr Obes 2024; 17:3943-3963. [PMID: 39465123 PMCID: PMC11512782 DOI: 10.2147/dmso.s481740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024] Open
Abstract
Context Diabetic nephropathy (DN) and cognitive dysfunction (CD) are common complications of diabetes. Yi-Qi-Bu-Shen Recipe (YQBS) can effectively reduce blood glucose, improve insulin resistance, and delay the progression of diabetic complications. The underlying mechanisms of its effects need to be further studied. Objective This study elucidates the mechanism of YQBS in DN with CD through network pharmacology and experimental validation. Materials and Methods Protein-protein interaction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. Male Sprague-Dawley (SD) rats were divided into 6 groups: model, YQBS (2, 4, 8 g/kg), positive control (metformin, 200 mg/kg), and control; the DN model was established by high sugar and high fat diet combined with intraperitoneal streptozotocin injection. After the DN model was established, the rats were gavaged for 10 weeks. Serum, kidneys, and hippocampus tissues were collected to measure the expression levels of TLR4, NF-κB, TNF-α, and IL-6. Results The network pharmacology analysis showed that quercetin and kaempferol were the main active components of YQBS. TNF and IL-6 were the key targets, and TLR4/NF-κB pathway was crucial to YQBS in treating DN complicated with CD. Experimental validation showed that the intervention of YQBS can reduce TNF-α and IL-6 in serum, and also significantly decreases the protein expression of TLR4 and NF-κB. Conclusion YQBS exerts anti-inflammatory effects on DN with CD through TLR4/NF-κB pathway. This study provides a biological basis for the scientific usage of YQBS in inflammation diseases and supplies experimental evidence for future traditional Chinese medicine development.
Collapse
Affiliation(s)
- Wenyi Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Zhenguo Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Min Song
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Zhenpeng Shi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Jihang Zhang
- Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Junyu Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yidan Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
8
|
Lu S, Zhao Q, Guan Y, Sun Z, Li W, Guo S, Zhang A. The communication mechanism of the gut-brain axis and its effect on central nervous system diseases: A systematic review. Biomed Pharmacother 2024; 178:117207. [PMID: 39067168 DOI: 10.1016/j.biopha.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Gut microbiota is involved in intricate and active metabolic processes the host's brain function, especially its role in immune responses, secondary metabolism, and symbiotic connections with the host. Gut microbiota can promote the production of essential metabolites, neurotransmitters, and other neuroactive chemicals that affect the development and treatment of central nervous system diseases. This article introduces the relevant pathways and manners of the communication between the brain and gut, summarizes a comprehensive overview of the current research status of key gut microbiota metabolites that affect the functions of the nervous system, revealing those adverse factors that affect typical communication between the brain-gut axis, and outlining the efforts made by researchers to alleviate these neurological diseases through targeted microbial interventions. The relevant pathways and manners of communication between the brain and gut contribute to the experimental design of new treatment plans and drug development. The factors that may cause changes in gut microbiota and affect metabolites, as well as current intervention methods are summarized, which helps improve gut microbiota brain dialogue, prevent adverse triggering factors from interfering with the gut microbiota system, and minimize neuropathological changes.
Collapse
Affiliation(s)
- Shengwen Lu
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Qiqi Zhao
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yu Guan
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Zhiwen Sun
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wenhao Li
- School of Basic Medical Science of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China; INTI International University, Nilai 71800, Malaysia.
| |
Collapse
|
9
|
Ling Q, Zhang J, Zhong L, Li X, Sun T, Xiang H, Manyande A, Zhao G, Shi Y, Zhu Q. The role of gut microbiota in chronic restraint stress-induced cognitive deficits in mice. BMC Microbiol 2024; 24:289. [PMID: 39095715 PMCID: PMC11295512 DOI: 10.1186/s12866-024-03435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Chronic stress induces cognitive deficits. There is a well-established connection between the enteric and central nervous systems through the microbiota-gut-brain (MGB) axis. However, the effects of the gut microbiota on cognitive deficits remain unclear. The present study aimed to elucidate the microbiota composition in cognitive deficits and explore its potential in predicting chronic stress-induced cognitive deficits. METHODS Mice were randomly divided into control and chronic restraint stress (CRS) groups. The mice subjected to CRS were further divided into cognitive deficit (CRS-CD) and non-cognitive deficit (CRS-NCD) groups using hierarchical cluster analysis of novel object recognition test results. The composition and diversity of the gut microbiota were analyzed. RESULTS After being subjected to chronic restraint distress, the CRS-CD mice travelled shorter movement distances (p = 0.034 vs. CRS-NCD; p < 0.001 vs. control) and had a lower recognition index than the CRS-NCD (p < 0.0001 vs. CRS-NCD; p < 0.0001 vs. control) and control mice. The results revealed that 5 gut bacteria at genus levels were significantly different in the fecal samples of mice in the three groups. Further analyses demonstrated that Muricomes were not only significantly enriched in the CRS-CD group but also correlated with a decreased cognitive index. The area under the receiver operating curve of Muricomes for CRS-induced cognitive deficits was 0.96. CONCLUSIONS Our study indicates that the composition of the gut microbiota is involved in the development of cognitive deficits induced by chronic restraint stress. Further analysis revealed that Muricomes have the potential to predict the development of chronic stress-induced cognitive deficits in mice.
Collapse
Affiliation(s)
- Qiong Ling
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou, 510120, China
| | - Junhong Zhang
- Department of Research Public Service Center, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Zhong
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou, 510120, China
| | - Xiangyu Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou, 510120, China
| | - Tianning Sun
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Gaofeng Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou, 510120, China.
| | - Yongyong Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou, 510120, China.
| | - Qianqian Zhu
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|
10
|
Zhang Z, Wu H, Wang S, Li Y, Yang P, Xu L, Liu Y, Liu M. PRG ameliorates cognitive impairment in Alzheimer's disease mice by regulating β-amyloid and targeting the ERK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155671. [PMID: 38763005 DOI: 10.1016/j.phymed.2024.155671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/13/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND PRG is derived from Phellinus ribis and is a homogeneous polysaccharide with well-defined structural information. PRG was found to have significant in vitro neurotrophic and neuroprotective activities. Thus, PRG might be a potential treatment for Alzheimer's disease. However, the related mechanisms of action are still unclear, so deeper in vivo experimental validation and the potential mechanisms need to be investigated. PURPOSE The effects of PRG on AD mice were investigated using Senescence-accelerated SAMP8 mice as an AD model to elucidate the crucial molecular mechanisms. METHODS PRG was obtained from Phellinus ribis by water-alcohol precipitation, column chromatography, and ultrafiltration. The Morris water maze and novel object recognition behavioral assays were used to evaluate the effects of PRG in AD mice. Nissl staining, the TUNEL apoptosis assay, and Golgi staining were used to assess brain neuronal cell damage, apoptosis, and neuronal status. Enzyme-linked immunosorbent assays, Western blotting, and immunofluorescence were used to explore the impacts of correlated factors and protein pathways under relevant mechanisms. RESULTS The findings suggest that PRG improved learning ability and spatial memory capacity in SAMP8 mice. PRG hastened the disintegration of β-amyloid, reduced the content and abnormal accumulation of the toxic Aβ1-42 protein, and decreased apoptosis. PRG activated the BDNF/ERK/CREB signaling pathway through a cascade, exerted neurotrophic effects, regulated cell proliferation and differentiation, increased neuronal dendritic branching and spine density, and improved synaptic plasticity. CONCLUSION PRG promoted β-amyloid degradation to reduce neuronal damage and apoptosis. It exerted neurotrophic effects by activating the BDNF/ERK/CREB pathway, promoting neuronal dendritic branching and dendritic spine growth, regulating cell proliferation and differentiation, and improving synaptic plasticity, which improved AD. Taken together, as a novel natural active polysaccharide with a well-defined structure, PRG affected AD symptoms in senescence-accelerated mice by interacting with multiple targets. The results indicate that PRG is a promising potential anti-AD drug candidate.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haoran Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuai Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuanyuan Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pei Yang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lingchuan Xu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Maoxuan Liu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
11
|
Fei SF, Hou C, Jia F. Effects of salidroside on atherosclerosis: potential contribution of gut microbiota. Front Pharmacol 2024; 15:1400981. [PMID: 39092226 PMCID: PMC11292615 DOI: 10.3389/fphar.2024.1400981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Much research describes gut microbiota in atherosclerotic cardiovascular diseases (ASCVD) for that the composition of the intestinal microbiome or its metabolites can directly participate in the development of endothelial dysfunction, atherosclerosis and its adverse complications. Salidroside, a natural phenylpropane glycoside, exhibits promising biological activity against the progression of ASCVD. Recent studies suggested that the gut microbiota played a crucial role in mediating the diverse beneficial effects of salidroside on health. Here, we describe the protective effects of salidroside against the progression of atherosclerosis. Salidroside regulates the abundance of gut microbiotas and gut microbe-dependent metabolites. Moreover, salidroside improves intestinal barrier function and maintains intestinal epithelial barrier function integrity. In addition, salidroside attenuates the inflammatory responses exacerbated by gut microbiota disturbance. This review delves into how salidroside functions to ameliorate atherosclerosis by focusing on its interaction with gut microbiota, uncovering the potential roles of gut microbiota in the diverse biological impacts of salidroside.
Collapse
Affiliation(s)
| | | | - Fang Jia
- Department of Cardiovascular Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
12
|
Liu M, Li T, Liang H, Zhong P. Herbal medicines in Alzheimer's disease and the involvement of gut microbiota. Front Pharmacol 2024; 15:1416502. [PMID: 39081953 PMCID: PMC11286407 DOI: 10.3389/fphar.2024.1416502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory loss and cognitive impairment. It severely affects the quality of life of victims. The prevalence of AD has been increasing in recent years. Therefore, it is of great importance to elucidate the pathogenic mechanism of AD and search for effective therapeutic approaches. Gut microbiota dysbiosis, an altered state of gut microbiota, has been well known for its involvement in the pathogenesis of AD. Much effort has been made in searching for approaches capable of modulating the composition of gut microbiota in recent years. Herbal medicines have attracted extensive attention in recent decades for the prevention and treatment of AD. Here, we gave an overview of the recent research progress on the modulatory effects of herbal medicines and herbal formulae on gut microbiota as well as the possible beneficial effects on AD, which may provide new insights into the discovery of anti-AD agents and their therapeutic potential for AD through modulating the composition of gut microbiota.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Neurology, Yangpu District Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Tuming Li
- Department of Neurology, Yangpu District Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Huazheng Liang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Monash Suzhou Research Institute, Suzhou, China
| | - Ping Zhong
- Department of Neurology, Yangpu District Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
13
|
Chai Y, Chen F, Li H, Sun X, Yang P, Xi Y. Mechanism of salidroside regulating autophagy based on network pharmacology and molecular docking. Anticancer Drugs 2024; 35:525-534. [PMID: 38502854 DOI: 10.1097/cad.0000000000001601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Salidroside is a natural product of phenols with a wide range of pharmacological functions, but whether it plays a role in regulating autophagy is unclear. We systematically investigated the regulatory effect and molecular mechanism of salidroside on autophagy through network pharmacology, which provided a theoretical basis for subsequent experimental research. First, the target genes of salidroside were obtained using the Chinese Medicine System Pharmacology Database and Analysis Platform, and the target genes were converted into standardized gene names using the Uniprot website. At the same time, autophagy-related genes were collected from GeneCards, and preliminary handling of data to obtain intersecting genes. Then, the String website was used to construct a protein-protein interaction network, and to perform the Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis. To observe the specific molecular mechanism by which salidroside regulates autophagy, we constructed a drug component-target genes-autophagy network. Finally, we performed molecular docking to verify the possible binding conformation between salidroside and the candidate target. By searching the database and analyzing the data, we found that 113 target genes in salidroside interact with autophagy. Salidroside regulate autophagy in relation to a number of important oncogenes and signaling pathways. Molecular docking confirmed that salidroside has high affinity with mTOR, SIRT1, and AKT1. Through network pharmacology combined with molecular docking-validated research methods, we revealed the underlying mechanism of salidroside regulation of autophagy. This study not only provides new systematic insights into the underlying mechanism of salidroside in autophagy, but also provides new ideas for network approaches for autophagy-related research.
Collapse
Affiliation(s)
- Yihong Chai
- The First Clinical Medical College of Lanzhou University
| | - Feng Chen
- The First Clinical Medical College of Lanzhou University
| | - Hongxing Li
- The First Clinical Medical College of Lanzhou University
- Department of Obstetrics and Gynaecology
| | - Xiaohong Sun
- The First Clinical Medical College of Lanzhou University
| | - Panpan Yang
- The First Clinical Medical College of Lanzhou University
- Department of Obstetrics and Gynaecology
| | - YaMing Xi
- The First Clinical Medical College of Lanzhou University
- Department of Hematology, First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Ma BQ, Jia JX, Wang H, Li SJ, Yang ZJ, Wang XX, Yan XS. Cannabidiol improves the cognitive function of SAMP8 AD model mice involving the microbiota-gut-brain axis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:471-479. [PMID: 38590254 DOI: 10.1080/15287394.2024.2338914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cannabidiol (CBD), a natural component extracted from Cannabis sativa L. exerts neuroprotective, antioxidant, and anti-inflammatory effects in Alzheimer's disease (AD), a disease characterized by impaired cognition and accumulation of amyloid-B peptides (Aβ). Interactions between the gut and central nervous system (microbiota-gut-brain axis) play a critical role in the pathogenesis of neurodegenerative disorder AD. At present investigations into the mechanisms underlying the neuroprotective action of CBD in AD are not conclusive. The aim of this study was thus to examine the influence of CBD on cognition and involvement of the microbiota-gut-brain axis using a senescence-accelerated mouse prone 8 (SAMP8) model. Data demonstrated that administration of CBD to SAMP8 mice improved cognitive function as evidenced from the Morris water maze test and increased hippocampal activated microglia shift from M1 to M2. In addition, CBD elevated levels of Bacteriodetes associated with a fall in Firmicutes providing morphologically a protective intestinal barrier which subsequently reduced leakage of intestinal toxic metabolites. Further, CBD was found to reduce the levels of hippocampal and colon epithelial cells lipopolysaccharide (LPS), known to be increased in AD leading to impaired gastrointestinal motility, thereby promoting neuroinflammation and subsequent neuronal death. Our findings demonstrated that CBD may be considered a beneficial therapeutic drug to counteract AD-mediated cognitive impairment and restore gut microbial functions associated with the observed neuroprotective mechanisms.
Collapse
Affiliation(s)
- Bing-Qian Ma
- Basic Medical and Forensic Medicine, Baotou Medical College, Inner Mongolia, China
| | - Jian-Xin Jia
- Basic Medical and Forensic Medicine, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Inner Mongolia, China
| | - He Wang
- School of Health Sciences, University of Newcastle, Newcastle, Australia
| | - Si-Jia Li
- Teaching and Research Department of Golden Chamber, Liaoning University of Traditional Chinese Medicine, Liaoning, China
| | - Zhan-Jun Yang
- Basic Medical and Forensic Medicine, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Inner Mongolia, China
- Department of Human Anatomy, Chifeng University, Inner Mongolia, China
| | - Xin-Xin Wang
- Basic Medical and Forensic Medicine, Baotou Medical College, Inner Mongolia, China
- Teaching and Research Department of Golden Chamber, Liaoning University of Traditional Chinese Medicine, Liaoning, China
| | - Xu-Sheng Yan
- Basic Medical and Forensic Medicine, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Inner Mongolia, China
| |
Collapse
|
15
|
Takahashi S, Nakagawa K, Nagata W, Koizumi A, Ishizuka T. A preliminary therapeutic study of the effects of molecular hydrogen on intestinal dysbiosis and small intestinal injury in high-fat diet-loaded senescence-accelerated mice. Nutrition 2024; 122:112372. [PMID: 38428218 DOI: 10.1016/j.nut.2024.112372] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVES Aging and excessive fat intake may additively induce dysbiosis of the gut microbiota and intestinal inflammatory damage. Here, we analyzed microbiota dysbiosis and intestinal injury in high-fat diet-loaded senescence-accelerated mice (SAMP8). Additionally, we examined whether treatment with molecular hydrogen could improve the intestinal environment. METHODS SAMP8 and SAMR1 (control) mice were first fed a normal diet (ND) or high-fat diet (HFD) for 10 wk (n = 10 each group). Subsequently, HFD was supplemented with a placebo jelly or hydrogen-rich jelly (HRJ) for 4 wk. After treatment, isolated small intestinal tissues were used for hematoxylin and eosin staining, immunofluorescence staining, and thiobarbituric acid reactive substances (TBARS) assay. Furthermore, we analyzed alterations in the microbiota composition in cecal feces using 16S rRNA gene analysis for microbiota profiling. Statistical analyses were performed using unpaired Student's t tests or one-way analysis of variance and Tukey's post hoc test for multiple comparisons. RESULT HFD feeding reduced the expression of caudal-related homeobox transcription factor 2 (CDX2) and 5-bromo-2'-deoxyuridine (BrdU) and enhanced malondialdehyde (MDA) levels in the small intestine of SAMP8. HRJ treatment improved the reduction in CDX2 and BrdU and enhanced MDA levels. We performed a sequence analysis of the gut microbiota at the genus level and identified 283 different bacterial genera from the 30 samples analyzed in the study. Among them, Parvibacter positively correlated with both HFD intake and aging, whereas 10 bacteria, including Anaerofustis, Anaerosporobacter, Butyricicoccus, and Ruminococcus were negatively correlated with both HFD and aging. HRJ treatment increased Lactinobactor and decreased Akkermansia, Gracilibacter, and Marvinbryantia abundance. CONCLUSION Our findings suggest that treatment with molecular hydrogen may affect microbiota profiling and suppress intestinal injury in HFD-loaded SAMP8.
Collapse
Affiliation(s)
- Sayaka Takahashi
- Department of Pharmacology of National Defense Medical College, Saitama, Japan.
| | - Keiichi Nakagawa
- Department of Pharmacology of National Defense Medical College, Saitama, Japan
| | - Wataru Nagata
- Department of Pharmacology of National Defense Medical College, Saitama, Japan
| | - Akiho Koizumi
- Department of Pharmacology of National Defense Medical College, Saitama, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology of National Defense Medical College, Saitama, Japan
| |
Collapse
|
16
|
He C, Jiang J, Liu J, Zhou L, Ge Y, Yang Z. Pseudostellaria heterophylla polysaccharide mitigates Alzheimer's-like pathology via regulating the microbiota-gut-brain axis in 5 × FAD mice. Int J Biol Macromol 2024; 270:132372. [PMID: 38750854 DOI: 10.1016/j.ijbiomac.2024.132372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by neuroinflammation, for which gut dysbiosis may be implicated. Our previous study showed that treatment with Pseudostellaria heterophylla aqueous extract and one of its cyclopeptides, heterophyllin B, attenuate memory deficits via immunomodulation and neurite regeneration. However, whether Pseudostellaria heterophylla polysaccharide (PH-PS) exerts neuroprotective effects against AD and its underlying mechanisms remain unclear. The infrared spectrum, molecular weight, and carbohydrate composition of the PH-PS were determined. The results showed that PH-PS (Mw 8.771 kDa) was composed of glucose (57.78 %), galactose (41.52 %), and arabinose (0.70 %). PH-PS treatment ameliorated learning and spatial memory deficits, reduced amyloid β build-up, and suppressed reactive glia and astrocytes in 5 × FAD mice. 16S rRNA sequencing further showed that PH-PS remodelled the intestinal flora composition by promoting probiotic microbiota, such as Lactobacillus, Muribaculum, Monoglobus, and [Eubacterium]_siraeum_group, and suppressing inflammation-related UCG-009 and Blautia. Additionally, PH-PS restored intestinal barrier function; ameliorated peripheral inflammation by reducing the secretion of inflammatory cytokines, thereby converting M1 microglia and A1 astrocyte toward beneficial M2 and A2 phenotypes; and contributed to Aβ plaques clearance by upregulation of insulin degradation enzyme and neprilysin. Collectively, our findings demonstrate that PH-PS may prevent the progression of AD via modulation of the gut microbiota and regulation of glial polarisation, which could provide evidence to design a potential diet therapy for preventing or curing AD.
Collapse
Affiliation(s)
- Chuantong He
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China
| | - Jiahui Jiang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China
| | - Junxin Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China
| | - Longjian Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China
| | - Yuewei Ge
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhiyou Yang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China.
| |
Collapse
|
17
|
Zou X, Zou G, Zou X, Wang K, Chen Z. Gut microbiota and its metabolites in Alzheimer's disease: from pathogenesis to treatment. PeerJ 2024; 12:e17061. [PMID: 38495755 PMCID: PMC10944166 DOI: 10.7717/peerj.17061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction An increasing number of studies have demonstrated that altered microbial diversity and function (such as metabolites), or ecological disorders, regulate bowel-brain axis involvement in the pathophysiologic processes in Alzheimer's disease (AD). The dysregulation of microbes and their metabolites can be a double-edged sword in AD, presenting the possibility of microbiome-based treatment options. This review describes the link between ecological imbalances and AD, the interactions between AD treatment modalities and the microbiota, and the potential of interventions such as prebiotics, probiotics, synbiotics, fecal microbiota transplantation, and dietary interventions as complementary therapeutic strategies targeting AD pathogenesis and progression. Survey methodology Articles from PubMed and china.com on intestinal flora and AD were summarized to analyze the data and conclusions carefully to ensure the comprehensiveness, completeness, and accuracy of this review. Conclusions Regulating the gut flora ecological balance upregulates neurotrophic factor expression, regulates the microbiota-gut-brain (MGB) axis, and suppresses the inflammatory responses. Based on emerging research, this review explored novel directions for future AD research and clinical interventions, injecting new vitality into microbiota research development.
Collapse
Affiliation(s)
- Xinfu Zou
- Subject of Integrated Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guoqiang Zou
- Subject of Traditional Chinese Medicine, Shandong University Of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinyan Zou
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Kangfeng Wang
- Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zetao Chen
- Subject of Integrated Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
18
|
Chen L, Jiang L, Shi X, Yang J, Wang R, Li W. Constituents, pharmacological activities, pharmacokinetic studies, clinical applications, and safety profile on the classical prescription Kaixinsan. Front Pharmacol 2024; 15:1338024. [PMID: 38362144 PMCID: PMC10867185 DOI: 10.3389/fphar.2024.1338024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Kaixinsan (KXS) is a noteworthy classical prescription, which consists of four Chinese medicinal herbs, namely Polygalae Radix, Ginseng Radix et Rhizoma, Poria, and Acori Tatarinowii Rhizoma. KXS was initially documented in the Chinese ancient book Beiji Qianjin Yaofang written by Sun Simiao of the Tang Dynasty in 652 A.D. As a traditional Chinese medicine (TCM) prescription, it functions to nourish the heart and replenish Qi, calm the heart tranquilize the mind, and excrete dampness. Originally used to treat amnesia, it is now also effective in memory decline and applied to depression. Although there remains an abundance of literature investigating KXS from multiple aspects, few reviews summarize the features and research, which impedes better exploration and exploitation of KXS. This article intends to comprehensively analyze and summarize up-to-date information concerning the chemical constituents, pharmacology, pharmacokinetics, clinical applications, and safety of KXS based on the scientific literature, as well as to examine possible scientific gaps in current research and tackle issues in the next step. The chemical constituents of KXS primarily consist of saponins, xanthones, oligosaccharide esters, triterpenoids, volatile oils, and flavonoids. Of these, saponins are the predominant active ingredients, and increasing evidence has indicated that they exert therapeutic properties against mental disease. Pharmacokinetic research has illustrated that the crucial exposed substances in rat plasma after KXS administration are ginsenoside Re (GRe), ginsenoside Rb1 (GRb1), and polygalaxanthone III (POL). This article provides additional descriptions of the safety. In this review, current issues are highlighted to guide further comprehensive research of KXS and other classical prescriptions.
Collapse
Affiliation(s)
- Liping Chen
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Lin Jiang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoyu Shi
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jihong Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Rong Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Wenbin Li
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| |
Collapse
|
19
|
Zhu Y, Hu Z, Liu Y, Yan T, Liu L, Wang Y, Bai B. AChE activity self-breathing control mechanisms regulated by H 2S n and GSH: Persulfidation and glutathionylation on sulfhydryl after disulfide bonds cleavage. Int J Biol Macromol 2024; 259:129117. [PMID: 38211930 DOI: 10.1016/j.ijbiomac.2023.129117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
Hydrogen sulfide (H2S), or dihydrogen sulfane (H2Sn), acts as a signal molecule through the beneficial mechanism of persulfidation, known as the post-translational transformation of cysteine residues to persulfides. We previously reported that Glutathione (GSH) could regulate enzyme activity through S-desulfurization or glutathionylation of residues to generate protein-SG or protein-SSG, releasing H2S. However, little is known about the mechanisms by which H2Sn and GSH affect the disulfide bonds. In this study, we provide direct evidences that H2Sn and GSH modify the sulfhydryl group on Cys272, which forms disulfide bonds in acetylcholinesterase (AChE), to generate Cys-SSH and Cys-SSG, respectively. Glutathionylation of disulfide is a two-step reaction based on nucleophilic substitution, in which the first CS bond is broken, then the SS bond is broken to release H2S. H2Sn and GSH controlled self-breathing motion in enzyme catalysis by disconnecting specific disulfide bonds and modifying cysteine residues, thereby regulating AChE activity. Here, we elucidated H2Sn and GSH mechanisms on disulfide in the AChE system and proposed a self-breathing control theory induced by H2Sn and GSH. These theoretical findings shed light on the biological functions of H2Sn and GSH on sulfhydryl and disulfide bonds and enrich the theory of enzyme activity regulation.
Collapse
Affiliation(s)
- Yanwen Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhaoliang Hu
- Department of Surgical Oncology, First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Yunen Liu
- Shenyang Medical College, Shenyang 110034, China
| | - Tingcai Yan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Ling Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanqun Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Bing Bai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
20
|
Zhang S, Li M, Chang L, Mao X, Jiang Y, Shen X, Niu K, Lu X, Zhang R, Song Y, Ma K, Li H, Wei C, Hou Y, Wu Y. Bazi Bushen capsule improves the deterioration of the intestinal barrier function by inhibiting NLRP3 inflammasome-mediated pyroptosis through microbiota-gut-brain axis. Front Microbiol 2024; 14:1320202. [PMID: 38260869 PMCID: PMC10801200 DOI: 10.3389/fmicb.2023.1320202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose The senescence-accelerated prone mouse 8 (SAMP8) is a widely used model for accelerating aging, especially in central aging. Mounting evidence indicates that the microbiota-gut-brain axis may be involved in the pathogenesis and progression of central aging-related diseases. This study aims to investigate whether Bazi Bushen capsule (BZBS) attenuates the deterioration of the intestinal function in the central aging animal model. Methods In our study, the SAMP8 mice were randomly divided into the model group, the BZ-low group (0.5 g/kg/d BZBS), the BZ-high group (1 g/kg/d BZBS) and the RAPA group (2 mg/kg/d rapamycin). Age-matched SAMR1 mice were used as the control group. Next, cognitive function was detected through Nissl staining and two-photon microscopy. The gut microbiota composition of fecal samples was analyzed by 16S rRNA gene sequencing. The Ileum tissue morphology was observed by hematoxylin and eosin staining, and the intestinal barrier function was observed by immunofluorescence. The expression of senescence-associated secretory phenotype (SASP) factors, including P53, TNF-α, NF-κB, IL-4, IL-6, and IL-10 was measured by real-time quantitative PCR. Macrophage infiltration and the proliferation and differentiation of intestinal cells were assessed by immunohistochemistry. We also detected the inflammasome and pyroptosis levels in ileum tissue by western blotting. Results BZBS improved the cognitive function and neuronal density of SAMP8 mice. BZBS also restored the intestinal villus structure and barrier function, which were damaged in SAMP8 mice. BZBS reduced the expression of SASP factors and the infiltration of macrophages in the ileum tissues, indicating a lower level of inflammation. BZBS enhanced the proliferation and differentiation of intestinal cells, which are essential for maintaining intestinal homeostasis. BZBS modulated the gut microbiota composition, by which BZBS inhibited the activation of inflammasomes and pyroptosis in the intestine. Conclusion BZBS could restore the dysbiosis of the gut microbiota and prevent the deterioration of intestinal barrier function by inhibiting NLRP3 inflammasome-mediated pyroptosis. These results suggested that BZBS attenuated the cognitive aging of SAMP8 mice, at least partially, by targeting the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Shixiong Zhang
- College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Mengnan Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
| | - Liping Chang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
| | - Xinjing Mao
- College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Yuning Jiang
- College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Xiaogang Shen
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Kunxu Niu
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Xuan Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Runtao Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Yahui Song
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Kun Ma
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Hongrong Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
| | - Cong Wei
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
| | - Yunlong Hou
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Yiling Wu
- College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| |
Collapse
|
21
|
Zhu T, Liu H, Gao S, Jiang N, Chen S, Xie W. Effect of salidroside on neuroprotection and psychiatric sequelae during the COVID-19 pandemic: A review. Biomed Pharmacother 2024; 170:115999. [PMID: 38091637 DOI: 10.1016/j.biopha.2023.115999] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected the mental health of individuals worldwide, and the risk of psychiatric sequelae and consequent mental disorders has increased among the general population, health care workers and patients with COVID-19. Achieving effective and widespread prevention of pandemic-related psychiatric sequelae to protect the mental health of the global population is a serious challenge. Salidroside, as a natural agent, has substantial pharmacological activity and health effects, exerts obvious neuroprotective effects, and may be effective in preventing and treating psychiatric sequelae and mental disorders resulting from stress stemming from the COVID-19 pandemic. Herein, we systematically summarise, analyse and discuss the therapeutic effects of salidroside in the prevention and treatment of psychiatric sequelae as well as its roles in preventing the progression of mental disorders, and fully clarify the potential of salidroside as a widely applicable agent for preventing mental disorders caused by stress; the mechanisms underlying the potential protective effects of salidroside are involved in the regulation of the oxidative stress, neuroinflammation, neural regeneration and cell apoptosis in the brain, the network homeostasis of neurotransmission, HPA axis and cholinergic system, and the improvement of synaptic plasticity. Notably, this review innovatively proposes that salidroside is a potential agent for treating stress-induced health issues during the COVID-19 pandemic and provides scientific evidence and a theoretical basis for the use of natural products to combat the current mental health crisis.
Collapse
Affiliation(s)
- Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Hui Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shiman Gao
- Department of Clinical Pharmacy, Women and Children's Hospital, Qingdao University, Qingdao 266034, China
| | - Ning Jiang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Shuai Chen
- School of Public Health, Wuhan University, Donghu Road No. 115, Wuchang District, Wuhan 430071, China.
| | - Weijie Xie
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai 200122, China.
| |
Collapse
|
22
|
Su W, Yang Y, Zhao X, Cheng J, Li Y, Wu S, Wu C. Potential efficacy and mechanism of eight mild-natured and bitter-flavored TCMs based on gut microbiota: A review. CHINESE HERBAL MEDICINES 2024; 16:42-55. [PMID: 38375054 PMCID: PMC10874767 DOI: 10.1016/j.chmed.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/02/2023] [Accepted: 08/04/2023] [Indexed: 02/21/2024] Open
Abstract
The mild-natured and bitter-flavored traditional Chinese medicines (MB-TCMs) are an important class of TCMs that have been widely used in clinical practice and recognized as safe long-term treatments for chronic diseases. However, as an important class of TCMs, the panorama of pharmacological effects and the mechanisms of MB-TCMs have not been systemically reviewed. Compelling studies have shown that gut microbiota can mediate the therapeutic activity of TCMs and help to elucidate the core principles of TCM medicinal theory. In this systematic review, we found that MB-TCMs commonly participated in the modulation of metabolic syndrome, intestinal inflammation, nervous system disease and cardiovascular system disease in association with promoting the growth of beneficial bacteria Bacteroides, Akkermansia, Lactobacillus, Bifidobacterium, Roseburia as well as inhibiting the proliferation of harmful bacteria Helicobacter, Enterococcus, Desulfovibrio and Escherichia-Shigella. These alterations, correspondingly, enhance the generation of protective metabolites, mainly including short-chain fatty acids (SCFAs), bile acid (BAs), 5-hydroxytryptamine (5-HT), indole and gamma-aminobutyric acid (GABA), and inhibit the generation of harmful metabolites, such as proinflammatory factors trimethylamine oxide (TAMO) and lipopolysaccharide (LPS), to further exert multiplicative effects for the maintenance of human health through several different signaling pathways. Altogether, this present review has attempted to comprehensively summarize the relationship between MB-TCMs and gut microbiota by establishing the TCMs-gut microbiota-metabolite-signaling pathway-diseases axis, which may provide new insight into the study of TCM medicinal theories and their clinical applications.
Collapse
Affiliation(s)
- Wenquan Su
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yanan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaohui Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiale Cheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuan Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Shengxian Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
23
|
Choi PG, Park SH, Jeong HY, Kim HS, Hahm JH, Seo HD, Ahn J, Jung CH. Geniposide attenuates muscle atrophy via the inhibition of FoxO1 in senescence-accelerated mouse prone-8. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155281. [PMID: 38103316 DOI: 10.1016/j.phymed.2023.155281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Geniposide (GP) is an iridoid glycoside that is present in nearly 40 species, including Gardenia jasminoides Ellis. GP has been reported to exhibit neuroprotective effects in various Alzheimer's disease (AD) models; however, the effects of GP on AD models of Caenorhabditis elegans (C. elegans) and aging-accelerated mouse predisposition-8 (SAMP8) mice have not yet been evaluated. PURPOSE To determine whether GP improves the pathology of AD and sarcopenia. METHODS AD models of C. elegans and SAMP8 mice were employed and subjected to behavioral analyses. Further, RT-PCR, histological analysis, and western blot analyses were performed to assess the expression of genes and proteins related to AD and muscle atrophy. RESULTS GP treatment in the AD model of C. elegans significantly restored the observed deterioration in lifespan and motility. In SAMP8 mice, GP did not improve cognitive function deterioration by accelerated aging but ameliorated physical function deterioration. Furthermore, in differentiated C2C12 cells, GP ameliorated muscle atrophy induced by dexamethasone treatment and inhibited FoxO1 activity by activating AKT. CONCLUSION Although GP did not improve the AD pathology in SAMP8 mice, we suggest that GP has the potential to improve muscle deterioration caused by aging. This effect of GP may be attributed to the suppression of FoxO1 activity.
Collapse
Affiliation(s)
- Pyeong Geun Choi
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do, Republic of Korea; Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - So-Hyun Park
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do, Republic of Korea; Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hang Yeon Jeong
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hee Soo Kim
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do, Republic of Korea; Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hyo-Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jiyun Ahn
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do, Republic of Korea; Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Chang Hwa Jung
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do, Republic of Korea; Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
24
|
Chen XD, Wei JX, Wang HY, Peng YY, Tang C, Ding Y, Li S, Long ZY, Lu XM, Wang YT. Effects and mechanisms of salidroside on the behavior of SPS-induced PTSD rats. Neuropharmacology 2023; 240:109728. [PMID: 37742716 DOI: 10.1016/j.neuropharm.2023.109728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex mental disorder, closely associated with stress and traumatic events. Salidroside (Sal) has been reported to possess neuroprotective effects. However, the behavioral effects and mechanisms of Sal on PTSD remain unknown. In this study, we utilized a rat model of PTSD induced by single prolonged stress (SPS) and administered Sal intraperitoneally (25, 50, 75 mg/kg/d) for 14 days. We then examined the behavioral effects and underlying mechanisms of Sal on SPS-induced PTSD rats. Our findings demonstrated that Sal alleviated anxiety-like behavior and spatial learning and memory impairment in SPS-induced PTSD rats. Furthermore, Sal treatment preserved the histomorphology of the hippocampal region. It was observed that Sal protected against hippocampal neuronal apoptosis in PTSD rats by reducing the number of TUNEL-positive cells and modulating apoptosis-related proteins (Bcl-2 and Bax). Additionally, Sal inhibited the activation of the NF-κB/iNOS/COX-2 signaling pathway in the hippocampus of PTSD rats, thereby suppressing the release of inflammatory factors (TNF-α and IL-1β) and the activation of microglia. Notably, Sal increased the expression of synapse-associated proteins PSD95 and Synapsin I in the hippocampus, while also enhancing dendritic density in the region. In conclusion, our results demonstrated that Sal could attenuate SPS-induced PTSD-like behaviors by inhibiting hippocampal neuronal apoptosis, enhancing hippocampal synaptic plasticity, and reducing neuroinflammatory responses. These findings may provide a foundation for the potential clinical application of Sal in the treatment of PTSD.
Collapse
Affiliation(s)
- Xing-Dong Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jing-Xiang Wei
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
25
|
Zhang N, Nao J, Dong X. Neuroprotective Mechanisms of Salidroside in Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17597-17614. [PMID: 37934032 DOI: 10.1021/acs.jafc.3c06672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system that occurs in old age and pre-aging, characterized by progressive cognitive dysfunction and behavioral impairment. Salidroside (Sal) is a phenylpropanoid mainly isolated from Rhodiola species with various pharmacological effects. However, the exact anti-AD mechanism of Sal has not been clearly elucidated. This meta-analysis aims to investigate the possible mechanisms by which Sal exerts its anti-AD effects by evaluating behavioral indicators and biochemical characteristics. A total of 20 studies were included, and the results showed that the Sal treatment significantly improved behavior abnormalities in AD animal models. With regard to neurobiochemical indicators, Sal treatment could effectively increase the antioxidant enzyme superoxide dismutase, decrease the oxidative stress indicator malondialdehyde, and decrease the inflammatory indicators interleukin 1β, interleukin 6, and tumor necrosis factor α. Sal treatment was effective in reducing neuropathological indicators, such as amyloid-β levels and the number of apoptotic cells. When the relevant literature on the treatment of rodent AD models is combined with Sal, the therapeutic potential of Sal through multiple mechanisms was confirmed. However, further confirmation by higher quality studies, larger sample sizes, and more comprehensive outcome evaluations in clinical trials is needed in the future.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Seventh Clinical College of China Medical University, 24 Central Street, Xinfu District, Fushun, Liaoning 113000, People's Republic of China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110000, People's Republic of China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110000, People's Republic of China
| |
Collapse
|
26
|
Wu W, Huang J, Han P, Zhang J, Wang Y, Jin F, Zhou Y. Research Progress on Natural Plant Molecules in Regulating the Blood-Brain Barrier in Alzheimer's Disease. Molecules 2023; 28:7631. [PMID: 38005352 PMCID: PMC10674591 DOI: 10.3390/molecules28227631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. With the aging population and the continuous development of risk factors associated with AD, it will impose a significant burden on individuals, families, and society. Currently, commonly used therapeutic drugs such as Cholinesterase inhibitors, N-methyl-D-aspartate antagonists, and multiple AD pathology removal drugs have been shown to have beneficial effects on certain pathological conditions of AD. However, their clinical efficacy is minimal and they are associated with certain adverse reactions. Furthermore, the underlying pathological mechanism of AD remains unclear, posing a challenge for drug development. In contrast, natural plant molecules, widely available, offer multiple targeting pathways and demonstrate inherent advantages in modifying the typical pathologic features of AD by influencing the blood-brain barrier (BBB). We provide a comprehensive review of recent in vivo and in vitro studies on natural plant molecules that impact the BBB in the treatment of AD. Additionally, we analyze their specific mechanisms to offer novel insights for the development of safe and effective targeted drugs as well as guidance for experimental research and the clinical application of drugs for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Weidong Wu
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Jiahao Huang
- Department of Chinese Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Pengfei Han
- Science and Education Section, Zhangjiakou First Hospital, Zhangjiakou 075041, China;
| | - Jian Zhang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Yuxin Wang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Fangfang Jin
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanyan Zhou
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| |
Collapse
|
27
|
Liang J, Liu B, Dong X, Wang Y, Cai W, Zhang N, Zhang H. Decoding the role of gut microbiota in Alzheimer's pathogenesis and envisioning future therapeutic avenues. Front Neurosci 2023; 17:1242254. [PMID: 37790586 PMCID: PMC10544353 DOI: 10.3389/fnins.2023.1242254] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Alzheimer's disease (AD) emerges as a perturbing neurodegenerative malady, with a profound comprehension of its underlying pathogenic mechanisms continuing to evade our intellectual grasp. Within the intricate tapestry of human health and affliction, the enteric microbial consortium, ensconced within the milieu of the human gastrointestinal tract, assumes a role of cardinal significance. Recent epochs have borne witness to investigations that posit marked divergences in the composition of the gut microbiota between individuals grappling with AD and those favored by robust health. The composite vicissitudes in the configuration of the enteric microbial assembly are posited to choreograph a participatory role in the inception and progression of AD, facilitated by the intricate conduit acknowledged as the gut-brain axis. Notwithstanding, the precise nature of this interlaced relationship remains enshrouded within the recesses of obscurity, poised for an exhaustive revelation. This review embarks upon the endeavor to focalize meticulously upon the mechanistic sway exerted by the enteric microbiota upon AD, plunging profoundly into the execution of interventions that govern the milieu of enteric microorganisms. In doing so, it bestows relevance upon the therapeutic stratagems that form the bedrock of AD's management, all whilst casting a prospective gaze into the horizon of medical advancements.
Collapse
Affiliation(s)
- Junyi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaohong Dong
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Yueyang Wang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Wenhui Cai
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Ning Zhang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Hong Zhang
- Heilongjiang Jiamusi Central Hospital, Jiamusi, Heilongjiang, China
| |
Collapse
|
28
|
Ma L, Jiang X, Huang Q, Chen W, Zhang H, Pei H, Cao Y, Wang H, Li H. Traditional Chinese medicine for the treatment of Alzheimer's disease: A focus on the microbiota-gut-brain axis. Biomed Pharmacother 2023; 165:115244. [PMID: 37516021 DOI: 10.1016/j.biopha.2023.115244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is a neurodegenerative disorder characterised by a progressive decline in cognitive function that is associated with the formation of amyloid beta plaques and neurofibrillary tangles. Gut microbiota comprises of a complex community of microorganisms residing in the gastrointestinal ecosystem. These microorganisms can participate in gut-brain axis activities, thereby affecting cognitive function and associated behaviours. Increasing evidence has indicated that gut dysbiosis can jeopardise host immune responses and promote inflammation, which may be an initiating factor for the onset and evolution of AD. Traditional Chinese medicine (TCM) is a promising resource which encompasses immense chemical diversity and multiple-target characteristics for the treatment of AD. Many TCMs regulate the gut microbiota during treatment of diseases, indicating that gut microbiota may be an important target for TCM efficacy. In this review, we summarised the role of the microbiota-gut-brain axis in the development of AD and the effects of TCM in treating AD by regulating the gut microbiota. We anticipate that this review will provide novel perspectives and strategies for future AD research and treatments.
Collapse
Affiliation(s)
- Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Xuefan Jiang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Qiaoyi Huang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Wenxuan Chen
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Hui Pei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Huichan Wang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, PR China.
| |
Collapse
|
29
|
Wang XH, Zuo ZF, Meng L, Yang Q, Lv P, Zhao LP, Wang XB, Wang YF, Huang Y, Fu C, Liu WQ, Liu XZ, Zheng DY. Neuroprotective effect of salidroside on hippocampal neurons in diabetic mice via PI3K/Akt/GSK-3β signaling pathway. Psychopharmacology (Berl) 2023; 240:1865-1876. [PMID: 37490132 DOI: 10.1007/s00213-023-06373-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/08/2022] [Indexed: 07/26/2023]
Abstract
BACKGROUND Diabetic encephalopathy is manifested by cognitive dysfunction. Salidroside, a nature compound isolated from Rhodiola rosea L, has the effects of anti-inflammatory and antioxidant, hypoglycemic and lipid-lowering, improving insulin resistance, inhibiting cell apoptosis, and protecting neurons. However, the mechanism by which salidroside alleviates neuronal degeneration and improves learning and memory impairment in diabetic mice remains unclear. OBJECTIVE To investigate the effects and mechanisms of salidroside on hippocampal neurons in streptozotocin-induced diabetic mice. MATERIALS AND METHODS C57BL/6 mice were randomly divided into 4 groups to receive either sham (control group (CON)), diabetes mellitus (diabetes group (DM)), diabetes mellitus + salidroside (salidroside group (DM + SAL)), and diabetes mellitus + salidroside + phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (diabetes mellitus + salidroside + LY294002 group (DM + SAL + LY294002)). After 12 weeks of diabetes onset, the cognitive behaviors were tested using Morris water maze. The number of hippocampal neurons was detected by Nissl staining. The expressions of PI3K, p-PI3K, Akt, p-Akt, GSK-3β, p-GSK-3β, cleaved caspase-3, caspase-3, Bax, Bcl-2, MAP2, and SYN in the hippocampus were detected by Western blot. Moreover, the expression of MAP2 and SYN in the hippocampus was further confirmed by immunofluorescence staining. RESULTS Salidroside increased the time of diabetic mice in the platform quadrant and reduced the escape latency of diabetic mice. Salidroside also increased the expression of p-PI3K, p-Akt, p-GSK-3β, MAP2, SYN, Bcl-2, while suppressed the expression of cleaved caspase-3, caspase3, and Bax in the DM + SAL group compared with the DM group (P < 0.05). The Nissl staining showed that the number of hippocampus neurons in the DM + SAL group was increased with the intact, compact, and regular arrangement, compared with the DM groups (P < 0.05). Interestingly, the protective effects of salidroside on diabetic cognitive dysfunction, hippocampal morphological alterations, and protein expressions were abolished by inhibition of PI3K with LY294002. CONCLUSIONS Salidroside exerts neuroprotective properties in diabetic cognitive dysfunction partly via activating the PI3K/Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Xue-Hua Wang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Zhong-Fu Zuo
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- Department of Anatomy, Histology and Embryology, Postdoctoral Research Station, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lu Meng
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Qi Yang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Pan Lv
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Li-Pan Zhao
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xiao-Bai Wang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Yu-Fei Wang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Ying Huang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Cong Fu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Wen-Qiang Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xue-Zheng Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - De-Yu Zheng
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
30
|
Liu J, Cai J, Fan P, Dong X, Zhang N, Tai J, Cao Y. Salidroside alleviates dextran sulfate sodium-induced colitis in mice by modulating the gut microbiota. Food Funct 2023; 14:7506-7519. [PMID: 37504971 DOI: 10.1039/d3fo01929b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Dysbiosis causes continuous progress of inflammatory bowel disease (IBD). Herein, we aim to explore whether Salidroside (Sal), which is a major glycoside extracted from Rhodiola rosea L., could ameliorate dextran sulfate sodium (DSS)-induced colitis by modulating the microbiota. Results showed that oral treatment with 15 mg kg-1 of Sal inhibited DSS-induced colitis in mice as evidenced by colon length, histological analysis, disease activity index (DAI) score, and the proportion and number of macrophages in the intestine. The gut microbiota of colitic mice was also partly restored by Sal. A fecal microbiota transplantation (FMT) study was designed to verify the causality. Compared with DSS-treated mice, FM from the Sal-treated donor mice significantly mitigated the symptoms of colitic mice, including reducing the DAI score, alleviating tissue damage, boosting the expression of mucin protein (mucin-2) and tight junction (TJ) proteins (occludin and zonula occludens-1 (ZO-1), and decreasing M1 macrophages in the gut. It was found that both Sal and FMT affected the structure and abundance of the gut microbiota as reflected by the decreased relative abundance of Turicibacter, Alistipes, Romboutsia and the increased relative abundance of Lactobacillus at the genus level. Moreover, the anti-inflammatory effect of Sal disappeared when the gut microbiota was depleted by antibiotics, demonstrating that Sal alleviated the intestinal inflammation in a gut microbiota-dependent manner. Thus, Sal could be a remarkable candidate as a functional food for colitis.
Collapse
Affiliation(s)
- Jiuxi Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, 130062 Changchun, People's Republic of China.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, People's Republic of China
| | - Jiapei Cai
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, 130062 Changchun, People's Republic of China.
| | - Peng Fan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, 130062 Changchun, People's Republic of China.
| | - Xue Dong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, 130062 Changchun, People's Republic of China.
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, 130062 Changchun, People's Republic of China.
| | - Jiandong Tai
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, 130021 Changchun, People's Republic of China.
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, 130062 Changchun, People's Republic of China.
- Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, People's Republic of China
| |
Collapse
|
31
|
Liu J, Cai J, Fan P, Dong X, Zhang N, Tai J, Cao Y. Salidroside protects mice from high-fat diet-induced obesity by modulating the gut microbiota. Int Immunopharmacol 2023; 120:110278. [PMID: 37192552 DOI: 10.1016/j.intimp.2023.110278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/18/2023]
Abstract
Obesity is a systemic disease with multisystem inflammation associated with gut dysbiosis. Salidroside (SAL) which is a major glycoside extracted from Rhodiola rosea L. has a wide range of pharmacological effects, but the role of gut microbiota in the protective effects of SAL on obesity has not been studied. Herein, we aim to explore whether SAL could ameliorate high-fat diet (HFD)-induced obesity in mice by modulating microbiota. Results showed that oral treatment with SAL alleviated HFD-induced obesity in mice as evidenced by body weight and fat weight. SAL supplementation effectively attenuated fat accumulation, lipid synthesis genes expression, liver inflammation, and metabolic endotoxemia. In addition, SAL treatment alleviated intestinal damage and increased the expression of mucin protein (Mucin-2) and tight junction (TJ) proteins (Occludin and Zonula Occludens-1). 16S rRNA sequencing analysis revealed that the gut microbiota of obese mice was also partly improved by SAL via restoring the microbial community structure and diversity. A fecal microbiota transplantation (FMT) study was designed to verify the causality. Compared with fecal transplantation (FM) from the HFD-treated mice, FM from the SAL-treated mice significantly mitigate the symptoms of obese mice, including decreasing body weight, fat accumulation, and attenuating pathological damage in the gut. Thus, SAL could be a remarkable candidate to prevent obesity.
Collapse
Affiliation(s)
- Jiuxi Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China; Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Jiapei Cai
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Peng Fan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Xue Dong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Jiandong Tai
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China.
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China; Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|
32
|
Yang S, Wang L, Zeng Y, Wang Y, Pei T, Xie Z, Xiong Q, Wei H, Li W, Li J, Su Q, Wei D, Cheng W. Salidroside alleviates cognitive impairment by inhibiting ferroptosis via activation of the Nrf2/GPX4 axis in SAMP8 mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154762. [PMID: 36965372 DOI: 10.1016/j.phymed.2023.154762] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurogenerative disease and remains no effective method for stopping its progress. Ferroptosis and adaptive immunity have been proven to contribute to AD pathogenesis. Salidroside exhibits neuroprotective and immunomodulatory effects. However, the underlying mechanisms linking salidroside, ferroptosis, and adaptive immunity in AD remain uncertain. PURPOSE The objective of this study is to explore the neuroprotective effects and the potential molecular mechanisms of salidroside against neuronal ferroptosis and CD8+ T cell infiltration in senescence-accelerated mouse prone 8 (SAMP8) mice. STUDY DESIGN AND METHODS SAMP8 mice were employed as an AD model and were treated with salidroside for 12 weeks. Behavioral tests, immunohistochemistry, HE and Nissl staining, immunofluorescence, transmission electron microscopy, quantitative proteomics, bioinformatic analysis, flow cytometry, iron staining, western blotting, and molecular docking were performed. RESULTS Treatment with salidroside dose-dependently attenuated cognitive impairment, reduced the accumulation of Aβ plaques and restored neuronal damage. Salidroside also suppressed the infiltration of CD8+T cells, oxidative stress, and inflammatory cytokines, and improved mitochondrial metabolism, iron metabolism, lipid metabolism, and redox in the SAMP8 mice brain. The administration of salidroside decreased iron deposition, reduced TFR1, and ACSL4 protein expression, upregulated SLC7A11, and GPX4 protein expression, and promoted the Nrf2/GPX4 axis activation. CONCLUSION In conclusion, neuronal ferroptosis and CD8+T cells are involved in the process of cognitive impairment in SAMP8 mice. Salidroside alleviates cognitive impairment and inhibits neuronal ferroptosis. The underlying mechanisms may involve the Nrf2/GPX4 axis activation and reduction in CD8+T cells infiltration. This study provides some evidence for the roles of salidroside in adaptive immunity and neuronal ferroptosis in SAMP8 mice.
Collapse
Affiliation(s)
- Sixia Yang
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou 510260, China; School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen Nei, Dongcheng District, Beijing 100700, China
| | - Yi Zeng
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Yong Wang
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou 510260, China
| | - Tingting Pei
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Qiaowu Xiong
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Hui Wei
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Wenxu Li
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Jiaqi Li
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Qian Su
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen Nei, Dongcheng District, Beijing 100700, China.
| | - Weidong Cheng
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou 510260, China; School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China.
| |
Collapse
|
33
|
Zhao D, Yang K, Guo H, Zeng J, Wang S, Xu H, Ge A, Zeng L, Chen S, Ge J. Mechanisms of ferroptosis in Alzheimer's disease and therapeutic effects of natural plant products: A review. Biomed Pharmacother 2023; 164:114312. [PMID: 37210894 DOI: 10.1016/j.biopha.2023.114312] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 05/23/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are characterized by massive loss of specific neurons. It is a progressive disabling, severe and fatal complex disease. Due to its complex pathogenesis and limitations of clinical treatment strategies, it poses a serious medical challenge and medical burden worldwide. The pathogenesis of AD is not clear, and its potential biological mechanisms include aggregation of soluble amyloid to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFT), neuroinflammation, ferroptosis, oxidative stress and metal ion disorders. Among them, ferroptosis is a newly discovered programmed cell death induced by iron-dependent lipid peroxidation and reactive oxygen species. Recent studies have shown that ferroptosis is closely related to AD, but the mechanism remains unclear. It may be induced by iron metabolism, amino acid metabolism and lipid metabolism affecting the accumulation of iron ions. Some iron chelating agents (deferoxamine, deferiprone), chloroiodohydroxyquine and its derivatives, antioxidants (vitamin E, lipoic acid, selenium), chloroiodohydroxyquine and its derivatives Fer-1, tet, etc. have been shown in animal studies to be effective in AD and exert neuroprotective effects. This review summarizes the mechanism of ferroptosis in AD and the regulation of natural plant products on ferroptosis in AD, in order to provide reference information for future research on the development of ferroptosis inhibitors.
Collapse
Affiliation(s)
- Da Zhao
- Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shanshan Wang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, China
| | - Shaowu Chen
- Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
34
|
Zhang Y, Chen Y, Yuan S, Yu Q, Fu J, Chen L, Liu J, He Y. Effect of gastrodin against cognitive impairment and neurodegeneration in APP/PS1 mice via regulating gut microbiota-gut-brain axis. Exp Brain Res 2023; 241:1661-1673. [PMID: 37199774 DOI: 10.1007/s00221-023-06632-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Gastrodin (Gas) has exhibited protective activity in neurological disorders. Here, we investigated the neuroprotective effect and potential mechanisms of Gas against cognitive impairment via regulating gut microbiota. APPswe/PSEN1dE9 transgenic (APP/PS1) mice were treated intragastrically with Gas for 4 weeks, and then cognitive deficits, deposits of amyloid-β (Aβ) and phosphorylation of tau were analyzed. The expression levels of insulin-like growth factor-1 (IGF-1) pathway-related proteins, such as cAMP response element-binding protein (CREB), were detected. Meanwhile, gut microbiota composition was evaluated. Our results showed that Gas treatment significantly improved cognitive deficits and Aβ deposition in APP/PS1 mice. Moreover, Gas treatment increased the level of Bcl-2 and decreased level of Bax and ultimately inhibited neuronal apoptosis. Gas treatment markedly increased the expression levels of IGF-1 and CREB in APP/PS1 mice. Moreover, Gas treatment improved abnormal composition and structure of gut microbiota in APP/PS1 mice. These findings revealed that Gas actively participated in regulating the IGF-1 pathway to inhibit neuronal apoptosis via the gut-brain axis and that it can be considered a new therapeutic strategy against Alzheimer's disease.
Collapse
Affiliation(s)
- Yuhe Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yan Chen
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, 311899, Zhejiang, China
| | - Shushu Yuan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qingxia Yu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jianjiong Fu
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, 311899, Zhejiang, China
| | - Luyun Chen
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, 311899, Zhejiang, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Yuping He
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, 311899, Zhejiang, China.
| |
Collapse
|
35
|
Li L, Yao W. The Therapeutic Potential of Salidroside for Parkinson's Disease. PLANTA MEDICA 2023; 89:353-363. [PMID: 36130710 DOI: 10.1055/a-1948-3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parkinson's disease (PD), a neurological disorder, is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. Its incidence increases with age. Salidroside, a phenolic compound extracted from Sedum roseum, reportedly has multiple biological and pharmacological activities in the nervous system. However, its effects on PD remain unclear. In this review, we summarize the effects of salidroside on PD with regard to DA metabolism, neuronal protection, and glial activation. In addition, we summarize the susceptibility genes and their underlying mechanisms related to antioxidation, inflammation, and autophagy by regulating mitochondrial function, ubiquitin, and multiple signaling pathways involving NF-κB, mTOR, and PI3K/Akt. Although recent studies were based on animal and cellular experiments, this review provides evidence for further clinical utilization of salidroside for PD.
Collapse
Affiliation(s)
- Li Li
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan, China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Fei SF, Tong DB, Jia F. Antiatherosclerotic Effect and Molecular Mechanism of Salidroside. Rev Cardiovasc Med 2023; 24:97. [PMID: 39076283 PMCID: PMC11273014 DOI: 10.31083/j.rcm2404097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 07/31/2024] Open
Abstract
Atherosclerotic cardiovascular disease is currently the leading cause of death worldwide. Its pathophysiological basis includes endothelial dysfunction, macrophage activation, vascular smooth muscle cell (VSMC) proliferation, lipid metabolism, platelet aggregation, and changes in the gut microbiota. Salidroside has beneficial effects on atherosclerosis through multiple pathways. In this review, we present studies on the regulatory effect of salidroside on atherosclerosis. Furthermore, we report the protective effects of salidroside against atherosclerosis by ameliorating endothelial dysfunction, suppressing macrophage activation and polarization, inhibiting VSMC proliferation, adjusting lipid metabolism, attenuating platelet aggregation, and modulating the gut microbiota. This review provides further understanding of the molecular mechanism of salidroside and new ideas for atherosclerosis management.
Collapse
Affiliation(s)
- Si-Fan Fei
- Department of Cardiovascular Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, 213000 Changzhou, Jiangsu, China
| | - De-Bing Tong
- Department of Cardiovascular Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, 213000 Changzhou, Jiangsu, China
| | - Fang Jia
- Department of Cardiovascular Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, 213000 Changzhou, Jiangsu, China
| |
Collapse
|
37
|
Tuo J, Peng Y, Linghu Y, Tao M, Huang S, Xu Z. Natural products regulate mitochondrial function in cognitive dysfunction-A scoping review. Front Pharmacol 2023; 14:1091879. [PMID: 36959855 PMCID: PMC10027783 DOI: 10.3389/fphar.2023.1091879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Medicines from natural products can not only treat neurodegenerative diseases but also improve the cognitive dysfunction caused by treatments with western medicines. This study reviews the literature related to the regulation of mitochondrial participation in cognitive function by natural products. In this study, we focused on English articles in PubMed, Web of Science, and Google Scholar, from 15 October 2017, to 15 October 2022. Fourteen studies that followed the inclusion criteria were integrated, analyzed, and summarized. Several studies have shown that natural products can improve or reduce cognitive dysfunction by ameliorating mitochondrial dysfunction. These results suggest that natural products may serve as new therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yan Peng
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yushuang Linghu
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ming Tao
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shiming Huang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
38
|
Chai Y, Chen F, Li Z, Yang P, Zhou Q, Liu W, Xi Y. Mechanism of salidroside in the treatment of chronic myeloid leukemia based on the network pharmacology and molecular docking. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:384-395. [PMID: 36369630 DOI: 10.1007/s12094-022-02990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Salidroside is a phenolic natural product, which is a kind of Rhodiola rosea. It has been confirmed that it has inhibitory effects on chronic myeloid leukemia, but the specific performance of its molecular effects is still unclear. OBJECTIVE To systematically study the pharmacological mechanism of salidroside on chronic myeloid leukemia by means of network pharmacology. METHODS First, the possible target genes of salidroside were predicted through the Traditional Chinese Medicine Pharmacology Database and Analysis Platform, the target gene names were converted into standardized gene names using the Uniprot website. At the same time, the related target genes of chronic myeloid leukemia were collected from GeneCards and DisGenet; Collect summary data and screen for commonly targeted genes. Then, the above-mentioned intersected genes were imported into the String website to construct the protein-protein interaction (PPI) network, and the Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were further analyzed. To investigate the overall pharmacological effects of salidroside on chronic myeloid leukemia, we constructed a drug component-target gene-disease (CTD) network. Finally, molecular docking was performed to verify the possible binding conformation between salidroside and the candidate target. RESULTS A total of 126 salidroside target genes were retrieved, and 106 of them had interactions with chronic myeloid leukemia. The pharmacological effects of salidroside on chronic myeloid leukemia are related to some important oncogenes and signaling pathways. Molecular docking studies confirmed that the main role of salidroside binding to the target genes is hydrogen bonding. CONCLUSIONS We revealed the potential mechanism of action of salidroside against chronic myeloid leukemia, verified by network pharmacology combined with molecular docking. However, salidroside is a promising drug for the prevention and treatment of chronic myeloid leukemia, and further research is needed to prove it.
Collapse
Affiliation(s)
- Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zijian Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.,Department of Hematology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Panpan Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.,Department of Hematology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Wenling Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China. .,Department of Hematology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
39
|
Hou JY, Xu H, Cao GZ, Tian LL, Wang LH, Zhu NQ, Zhang JJ, Yang HJ. Multi-omics reveals Dengzhan Shengmai formulation ameliorates cognitive impairments in D-galactose-induced aging mouse model by regulating CXCL12/CXCR4 and gut microbiota. Front Pharmacol 2023; 14:1175970. [PMID: 37101548 PMCID: PMC10123283 DOI: 10.3389/fphar.2023.1175970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
Dengzhan Shengmai (DZSM), a traditional Chinese medicine formulation, has been administered extensively to elderly individuals with cognitive impairment (CI). However, the underlying mechanisms by which Dengzhan Shengmai improves cognitive impairment remains unknown. This study aimed to elucidate the underlying mechanism of the effect of Dengzhan Shengmai on aging-associated cognitive impairment via a comprehensive combination of transcriptomics and microbiota assessment. Dengzhan Shengmai was orally administered to a D-galactose-induced aging mouse model, and evaluation with an open field task (OFT), Morris water maze (MWM), and histopathological staining was performed. Transcriptomics and 16S rDNA sequencing were applied to elucidate the mechanism of Dengzhan Shengmai in alleviating cognitive deficits, and enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (PCR), and immunofluorescence were employed to verify the results. The results first confirmed the therapeutic effects of Dengzhan Shengmai against cognitive defects; specifically, Dengzhan Shengmai improved learning and impairment, suppressed neuro loss, and increased Nissl body morphology repair. Comprehensive integrated transcriptomics and microbiota analysis indicated that chemokine CXC motif receptor 4 (CXCR4) and its ligand CXC chemokine ligand 12 (CXCL12) were targets for improving cognitive impairments with Dengzhan Shengmai and also indirectly suppressed the intestinal flora composition. Furthermore, in vivo results confirmed that Dengzhan Shengmai suppressed the expression of CXC motif receptor 4, CXC chemokine ligand 12, and inflammatory cytokines. This suggested that Dengzhan Shengmai inhibited CXC chemokine ligand 12/CXC motif receptor 4 expression and modulated intestinal microbiome composition by influencing inflammatory factors. Thus, Dengzhan Shengmai improves aging-related cognitive impairment effects via decreased CXC chemokine ligand 12/CXC motif receptor 4 and inflammatory factor modulation to improve gut microbiota composition.
Collapse
Affiliation(s)
- Jing-Yi Hou
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences and MEGAROBO, Beijing, China
- Postdoctoral Mobile Research Station of China Academy of Chinese Medicine Sciences, Beijing, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang-Zhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang-Liang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Han Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences and MEGAROBO, Beijing, China
- Postdoctoral Mobile Research Station of China Academy of Chinese Medicine Sciences, Beijing, China
| | - Nai-Qiang Zhu
- Postdoctoral Mobile Research Station of China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jing-Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jing-Jing Zhang, ; Hong-Jun Yang,
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences and MEGAROBO, Beijing, China
- *Correspondence: Jing-Jing Zhang, ; Hong-Jun Yang,
| |
Collapse
|
40
|
Asbjornsdottir B, Miranda-Ribera A, Fiorentino M, Konno T, Cetinbas M, Lan J, Sadreyev RI, Gudmundsson LS, Gottfredsson M, Lauth B, Birgisdottir BE, Fasano A. Prophylactic Effect of Bovine Colostrum on Intestinal Microbiota and Behavior in Wild-Type and Zonulin Transgenic Mice. Biomedicines 2022; 11:biomedicines11010091. [PMID: 36672598 PMCID: PMC9855927 DOI: 10.3390/biomedicines11010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The microbiota-gut-brain axis (MGBA) involves bidirectional communication between intestinal microbiota and the gastrointestinal (GI) tract, central nervous system (CNS), neuroendocrine/neuroimmune systems, hypothalamic-pituitary-adrenal (HPA) axis, and enteric nervous system (ENS). The intestinal microbiota can influence host physiology and pathology. Dysbiosis involves the loss of beneficial microbial input or signal, diversity, and expansion of pathobionts, which can lead to loss of barrier function and increased intestinal permeability (IP). Colostrum, the first milk from mammals after birth, is a natural source of nutrients and is rich in oligosaccharides, immunoglobulins, growth factors, and anti-microbial components. The aim of this study was to investigate if bovine colostrum (BC) administration might modulate intestinal microbiota and, in turn, behavior in two mouse models, wild-type (WT) and Zonulin transgenic (Ztm)-the latter of which is characterized by dysbiotic microbiota, increased intestinal permeability, and mild hyperactivity-and to compare with control mice. Bioinformatics analysis of the microbiome showed that consumption of BC was associated with increased taxonomy abundance (p = 0.001) and diversity (p = 0.004) of potentially beneficial species in WT mice and shifted dysbiotic microbial community towards eubiosis in Ztm mice (p = 0.001). BC induced an anxiolytic effect in WT female mice compared with WT female control mice (p = 0.0003), and it reduced anxiogenic behavior in Ztm female mice compared with WT female control mice (p = 0.001), as well as in Ztm male mice compared with WT BC male mice (p = 0.03). As evidenced in MGBA interactions, BC supplementation may well be applied for prophylactic approaches in the future. Further research is needed to explore human interdependencies between intestinal microbiota, including eubiosis and pathobionts, and neuroinflammation, and the potential value of BC for human use. The MGH Institutional Animal Care and Use Committee authorized the animal study (2013N000013).
Collapse
Affiliation(s)
- Birna Asbjornsdottir
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
- School of Health Sciences, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Unit for Nutrition Research, Landspitali University Hospital and Faculty of Food Science and Nutrition, University of Iceland, 101 Reykjavik, Iceland
- Correspondence:
| | - Alba Miranda-Ribera
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
| | - Maria Fiorentino
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
| | - Takumi Konno
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
| | - Murat Cetinbas
- Department of Molecular Biology and Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jinggang Lan
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology and Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Larus S. Gudmundsson
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, 101 Reykjavik, Iceland
| | - Magnus Gottfredsson
- School of Health Sciences, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Department of Scientific Affairs, Landspitali University Hospital, 101 Reykjavik, Iceland
- Department of Infectious Diseases, Landspitali University Hospital, 101 Reykjavik, Iceland
| | - Bertrand Lauth
- School of Health Sciences, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Department of Child and Adolescent Psychiatry, Landspitali University Hospital, 105 Reykjavik, Iceland
| | - Bryndis Eva Birgisdottir
- Unit for Nutrition Research, Landspitali University Hospital and Faculty of Food Science and Nutrition, University of Iceland, 101 Reykjavik, Iceland
| | - Alessio Fasano
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA 02114, USA
| |
Collapse
|
41
|
Zhang C, Xue P, Zhang H, Tan C, Zhao S, Li X, Sun L, Zheng H, Wang J, Zhang B, Lang W. Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies. Front Cell Infect Microbiol 2022; 12:1072341. [PMID: 36569198 PMCID: PMC9772886 DOI: 10.3389/fcimb.2022.1072341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis is the process of differentiation of neural stem cells (NSCs) into neurons and glial cells in certain areas of the adult brain. Defects in neurogenesis can lead to neurodegenerative diseases, mental disorders, and other maladies. This process is directionally regulated by transcription factors, the Wnt and Notch pathway, the extracellular matrix, and various growth factors. External factors like stress, physical exercise, diet, medications, etc., affect neurogenesis and the gut microbiota. The gut microbiota may affect NSCs through vagal, immune and chemical pathways, and other pathways. Traditional Chinese medicine (TCM) has been proven to affect NSCs proliferation and differentiation and can regulate the abundance and metabolites produced by intestinal microorganisms. However, the underlying mechanisms by which these factors regulate neurogenesis through the gut microbiota are not fully understood. In this review, we describe the recent evidence on the role of the gut microbiota in neurogenesis. Moreover, we hypothesize on the characteristics of the microbiota-gut-brain axis based on bacterial phyla, including microbiota's metabolites, and neuronal and immune pathways while providing an outlook on TCM's potential effects on adult neurogenesis by regulating gut microbiota.
Collapse
Affiliation(s)
- Chenxi Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Peng Xue
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Haiyan Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Chenxi Tan
- Department of Infection Control, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shiyao Zhao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihui Sun
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Huihui Zheng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Jun Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, China
| | - Baoling Zhang
- Department of Operating Room, Qiqihar First Hospital, Qiqihar, China
| | - Weiya Lang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China,*Correspondence: Weiya Lang,
| |
Collapse
|
42
|
Jin M, Wang C, Xu Y, Zhang Z, Wu X, Ye R, Zhang Q, Han D. Pharmacological effects of salidroside on central nervous system diseases. Biomed Pharmacother 2022; 156:113746. [DOI: 10.1016/j.biopha.2022.113746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/20/2022] Open
|
43
|
Tan W, Qi L, Hu X, Tan Z. Research progress in traditional Chinese medicine in the treatment of Alzheimer's disease and related dementias. Front Pharmacol 2022; 13:921794. [PMID: 36506569 PMCID: PMC9729772 DOI: 10.3389/fphar.2022.921794] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is the world's leading cause of dementia and has become a huge economic burden on nations and families. However, the exact etiology of AD is still unknown, and there are no efficient medicines or methods to prevent the deterioration of cognition. Traditional Chinese medicine (TCM) has made important contributions in the battle against AD based on the characteristics of multiple targets of TCM. This study reviewed the treatment strategies and new discoveries of traditional Chinese medicine in current research, which may be beneficial to new drug researchers.
Collapse
Affiliation(s)
- Wanying Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingjun Qi
- Sichuan Academy of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenghuai Tan
- Sichuan Academy of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
44
|
Dou Y, Zhao D. Targeting Emerging Pathogenic Mechanisms by Natural Molecules as Potential Therapeutics for Neurodegenerative Diseases. Pharmaceutics 2022; 14:2287. [PMID: 36365106 PMCID: PMC9695024 DOI: 10.3390/pharmaceutics14112287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 10/07/2024] Open
Abstract
Natural molecules with favorable safety profile and broad pharmacological activities have shown great promise in the treatment of various neurodegenerative diseases (NDDs). Current studies applying natural molecules against NDDs mainly focus on well-recognized conventional pathogenesis, such as toxic protein aggregation, oxidative stress, and neuroinflammation. However, accumulating evidence reveals that some underlying pathogenic mechanisms are involved earlier and more deeply in the occurrence and development of NDDs, such as ferroptosis, energy metabolism disorders, autophagy-lysosomal dysfunction, endoplasmic reticulum stress, and gut dysbiosis. Therefore, determining whether natural molecules can play therapeutic roles in these emerging pathogenic mechanisms will help clarify the actual targets of natural molecules and their future clinical translation. Furthermore, how to overcome the inability of most poorly water-soluble natural molecules to cross the blood-brain barrier is also critical for effective NDD treatment. This review summarizes emerging pathogenic mechanisms targeted by natural molecules for NDD treatment, proposes nanocarrier-based drug delivery and intranasal administration to enhance the intracerebral bioavailability of natural molecules, and summarizes the current state of clinical research on natural product-based therapeutics.
Collapse
Affiliation(s)
- Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dongju Zhao
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
45
|
Liaqat H, Parveen A, Kim SY. Neuroprotective Natural Products’ Regulatory Effects on Depression via Gut–Brain Axis Targeting Tryptophan. Nutrients 2022; 14:nu14163270. [PMID: 36014776 PMCID: PMC9413544 DOI: 10.3390/nu14163270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
L-tryptophan (Trp) contributes to regulating bilateral communication of the gut–brain axis. It undergoes three major metabolic pathways, which lead to formation of kynurenine, serotonin (5-HT), and indole derivatives (under the control of the microbiota). Metabolites from the principal Trp pathway, kynurenic acid and quinolinic acid, exhibit neuroprotective activity, while picolinic acid exhibits antioxidant activity, and 5-HT modulates appetite, sleep cycle, and pain. Abnormality in Trp plays crucial roles in diseases, including depression, colitis, ulcer, and gut microbiota-related dysfunctions. To address these diseases, the use of natural products could be a favorable alternative because they are a rich source of compounds that can modulate the activity of Trp and combat various diseases through modulating different signaling pathways, including the gut microbiota, kynurenine pathway, and serotonin pathway. Alterations in the signaling cascade pathways via different phytochemicals may help us explore the deep relationships of the gut–brain axis to study neuroprotection. This review highlights the roles of natural products and their metabolites targeting Trp in different diseases. Additionally, the role of Trp metabolites in the regulation of neuroprotective and gastroprotective activities is discussed. This study compiles the literature on novel, potent neuroprotective agents and their action mechanisms in the gut–brain axis and proposes prospective future studies to identify more pharmaceuticals based on signaling pathways targeting Trp.
Collapse
Affiliation(s)
- Humna Liaqat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domzale, Slovenia
| | - Amna Parveen
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| |
Collapse
|
46
|
Alzheimer's disease: Updated multi-targets therapeutics are in clinical and in progress. Eur J Med Chem 2022; 238:114464. [DOI: 10.1016/j.ejmech.2022.114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
|
47
|
Yang S, Xie Z, Pei T, Zeng Y, Xiong Q, Wei H, Wang Y, Cheng W. Salidroside attenuates neuronal ferroptosis by activating the Nrf2/HO1 signaling pathway in Aβ 1-42-induced Alzheimer's disease mice and glutamate-injured HT22 cells. Chin Med 2022; 17:82. [PMID: 35787281 PMCID: PMC9254541 DOI: 10.1186/s13020-022-00634-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/18/2022] [Indexed: 01/06/2023] Open
Abstract
Background Alzheimer’s disease (AD) is a neurodegenerative disease. Ferroptosis plays a critical role in neurodegenerative diseases. Nuclear factor E2-related factor 2 (Nrf2) is considered an important factor in ferroptosis. Studies have demonstrated that salidroside has a potential therapeutic effect on AD. The intrinsic effect of salidroside on ferroptosis is unclear. The purpose of this study was to investigate the protective effects and pharmacological mechanisms of salidroside on alleviating neuronal ferroptosis in Aβ1−42-induced AD mice and glutamate-injured HT22 cells. Methods HT22 cells were injured by glutamate (Glu), HT22 cells transfected with siRNA Nrf2, and Aβ1−42-induced WT and Nrf2−/−AD mice were treated with salidroside. The mitochondria ultrastructure, intracellular Fe2+, reactive oxygen species, mitochondrial membrane potential, and lipid peroxidation of HT22 cells were detected. Malondialdehyde, reduced glutathione, oxidized glutathione disulfide, and superoxide dismutase were measured. The novel object recognition test, Y-maze, and open field test were used to investigate the protective effects of salidroside on Aβ1−42-induced WT and Nrf2−/−AD mice. The protein expressions of PTGS2, GPX4, Nrf2, and HO1 in the hippocampus were investigated by Western blot. Results Salidroside increased the cell viability and the level of MMP of Glu-injured HT22 cells, reduced the level of lipid peroxidation and ROS, and increased GPX4 and SLC7A11 protein expressions. These changes were not observed in siRNA Nrf2 transfected HT22 cells. Salidroside improved the ultrastructural changes in mitochondria of HT22 cells and Aβ1−42-induced AD mice, but not in Aβ1−42-induced Nrf2−/−AD mice. Salidroside increased protein expression levels of GPX4, HO1, and NQO1 and decreased protein expression of PTGS2 in Aβ1−42-induced AD mice but not in Aβ1−42-induced Nrf2−/−AD mice. Conclusions Salidroside plays a neuroprotective role by inhibiting neuronal ferroptosis in Aβ1−42-induced AD mice and Glu-injured HT22 cells, and its mechanism is related to activation of the Nrf2/HO1 signaling pathway. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Sixia Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Tingting Pei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qiaowu Xiong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hui Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yong Wang
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weidong Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
48
|
Thu Thuy Nguyen V, Endres K. Targeting gut microbiota to alleviate neuroinflammation in Alzheimer's disease. Adv Drug Deliv Rev 2022; 188:114418. [PMID: 35787390 DOI: 10.1016/j.addr.2022.114418] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota came into focus within the last years regarding being associated with or even underlying neuropsychiatric diseases. The existence of the gut-brain-axis makes it highly plausible that bacterial metabolites or toxins that escape the intestinal environment or approach the vagal connections towards the brain, exert devastating effects on the central nervous system. In Alzheimer's disease (AD), growing evidence for dysbiotic changes in the gut microbiota is obtained, even though the question for cause or consequence remains open. Nevertheless, using modulation of microbiota to address inflammatory processes seems an attractive therapeutic approach as certain microbial products such as short chain fatty acids have been proven to exert beneficial cognitive effects. In this review, we summarize, contemporary knowledge on neuroinflammation and inflammatory processes within the brain and even more detailed in the gut in AD, try to conclude whom to target regarding human microbial commensals and report on current interventional trials.
Collapse
Affiliation(s)
- Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany.
| |
Collapse
|
49
|
Liu Y, Chen Z, Li A, Liu R, Yang H, Xia X. The Phytochemical Potential for Brain Disease Therapy and the Possible Nanodelivery Solutions for Brain Access. Front Oncol 2022; 12:936054. [PMID: 35814371 PMCID: PMC9259986 DOI: 10.3389/fonc.2022.936054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Plant-derived phytochemicals have gifted humans with vast therapeutic potentials. Yet, the unique features of the blood-brain barrier significantly limit their accession to the target tissue and thus clinical translation in brain disease treatment. Herein, we explore the medicinal outcomes of both the rare examples of phytochemicals that can easily translocate across the blood-brain barrier and most of the phytochemicals that were reported with brain therapeutic effects, but a bizarre amount of dosage is required due to their chemical nature. Lastly, we offer the nanodelivery platform that is capable of optimizing the targeted delivery and application of the non-permeable phytochemicals as well as utilizing the permeable phytochemicals for boosting novel applications of nanodelivery toward brain therapies.
Collapse
Affiliation(s)
- Yang Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, China
| | - Zhouchun Chen
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, China
| | - Aijie Li
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, China
| | - Runhan Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, China
| | - Haoying Yang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, China
| | - Xue Xia
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
50
|
Fu L, Zhu W, Tian D, Tang Y, Ye Y, Wei Q, Zhang C, Qiu W, Qin D, Yang X, Huang Y. Dietary Supplement of Anoectochilus roxburghii (Wall.) Lindl. Polysaccharides Ameliorates Cognitive Dysfunction Induced by High Fat Diet via “Gut-Brain” Axis. Drug Des Devel Ther 2022; 16:1931-1945. [PMID: 35762015 PMCID: PMC9232844 DOI: 10.2147/dddt.s356934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/12/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Anoectochilus roxburghii (Wall.) Lindl. polysaccharides (ARPs) have been reported to exhibit multiple pharmacological activities including anti-inflammatory and anti-hyperglycemia. This study aims to investigate the effect of ARPs on cognitive dysfunction induced by high fat diet (HFD). Methods Six-week-old male mice were treated with ARPs by dietary supplementation for 14 weeks. The effect of ARPs on cognitive function was determined by assessing the changes in spatial learning and memory ability, neurotrophic factors in hippocampus, inflammatory parameters, intestinal barrier integrity, and gut microbiota. Results ARPs supplementation can effectively ameliorate cognitive dysfunction, decrease the phosphorylation levels of Tau protein in hippocampus. Meanwhile, the increased body weight, plasma glucose, total cholesterol, inflammatory factors induced by HFD were abolished by ARPs treatment. Furthermore, ARPs treatment restored the intestinal epithelial barrier as evidenced by upregulation of intestinal tight junction proteins. Additionally, ARPs supplementation significantly decreased the relative abundance of several bacteria genus such as Parabacteroides, which may play regulatory roles in cognitive function. Conclusion These results suggest that ARPs might be a promising strategy for the treatment of cognitive dysfunction induced by HFD. Mechanistically, alleviation of cognitive dysfunction by ARPs might be associated with the “gut-brain” axis.
Collapse
Affiliation(s)
- Liya Fu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Wanlong Zhu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Dongmei Tian
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yong Tang
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, People’s Republic of China
| | - Yun Ye
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qiming Wei
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Chengbin Zhang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Wenqiao Qiu
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
- Correspondence: Xuping Yang; Yilan Huang, Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China, Email ;
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|