1
|
Zhao L, Liao J, Wang T, Zhao H. Enhancement of Nutritional Value and Sensory Characteristics of Quinoa Fermented Milk via Fermentation with Specific Lactic Acid Bacteria. Foods 2025; 14:1406. [PMID: 40282807 PMCID: PMC12026847 DOI: 10.3390/foods14081406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Quinoa has garnered significant attention for its richness in a variety of nutritional and functional components. Herein, quinoa was fermented with individual or a combination of various lactic acid bacteria (LAB) strains to assess the impact of fermentation on nutrients, functional components, and digestibility. The results indicate that specific LAB fermentation significantly decreased the starch and dietary fiber content while markedly increasing the content and antioxidant capacity of free phenolics. The highest content of free phenolics in fermented quinoa reached 5.64 mg GAE/g, with a 2.01-fold increase in bioavailability. A comprehensive PCA evaluation identified the MS2 mixed strain (a 1:1:1 mixture of L. casei89, L. fermentum61, and L. rhamnosus05) as a superior quinoa fermentation agent. Quinoa fermented milk prepared with MS2 exhibited favorable taste and aroma properties. After 21 days of storage, the viable bacteria count remained above 10 log CFU/mL, and both the water-holding capacity and suspension stability were still strong. This study provides practical evidence for developing quinoa into a functional food.
Collapse
Affiliation(s)
- Li Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | | | | | | |
Collapse
|
2
|
García-Barón SE, Carmona-Escutia RP, Herrera-López EJ, Leyva-Trinidad DA, Gschaedler-Mathis A. Consumers' Drivers of Perception and Preference of Fermented Food Products and Beverages: A Systematic Review. Foods 2025; 14:713. [PMID: 40077416 PMCID: PMC11899150 DOI: 10.3390/foods14050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
The fermentation of food products is a transformation and preservation process in which different metabolites are generated, contributing to consumer health. In this sense, this systematic review aims to analyze the factors that guide the perception and preference for fermented foods. In addition, different perspectives are proposed based on the findings. The systematic search was carried out in four databases: Emerald Insight, Science Direct, Wiley Online Library, and Multidisciplinary Digital Publishing Institute. The keywords used were (Title/Abstract): fermented products, overall liking, purchase intention, expectations, emotions, interculturality, perception, and consumers. Ninety-two articles (n = 92) were selected and classified. The factors identified were (1) biological and physiological, (2) extrinsic product characteristics, (3) intrinsic product characteristics, (4) psychological, (5) situational, and (6) sociocultural. Intrinsic product characteristics were the most relevant, while the situational factors were the least studied. Our main contribution was a multidisciplinary approach to addressing the different factors in an integrated way, allowing a broader perspective of both products and consumers. This approach could help the reader understand consumer behavior and propose product improvements.
Collapse
Affiliation(s)
- Sergio Erick García-Barón
- ESDAI, Universidad Panamericana, Augusto Rodin 498, Ciudad de México 03920, Mexico;
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Mexico
| | - Rosa Pilar Carmona-Escutia
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Guadalajara 44270, Mexico;
| | - Enrique J. Herrera-López
- Laboratorio para la Innovación en Bioelectrónica e Inteligencia Artificial, LINBIA, Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Mexico
| | - Doris Arianna Leyva-Trinidad
- Coordinación de Desarrollo Regional, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Mexico;
| | - Anne Gschaedler-Mathis
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Mexico
| |
Collapse
|
3
|
Huang W, Yang S, Wätjen AP, Gumulya Y, Fernández-Pacheco P, Marcellin E, Prakash S, Bang-Berthelsen CH, Turner MS. Isolation of an exopolysaccharide-producing Weissella confusa strain from lettuce and exploring its application as a texture modifying adjunct culture in a soy milk alternative. Int J Food Microbiol 2025; 428:110992. [PMID: 39612662 DOI: 10.1016/j.ijfoodmicro.2024.110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
Consumers often seek healthier options but still desire the familiar eating experience of traditional dairy. Incorporating exopolysaccharide (EPS)-producing cultures into fermented plant-based milk alternatives (PBMAs) offers a promising approach to improving the textural quality of these products. For this, it is essential that the EPS-producing cultures are able to produce EPS in the plant-based substrate. The present study screened 593 plant-derived lactic acid bacteria (LAB) for their ability to produce EPS on a soy milk agar medium. Fifteen LAB isolates (eight Weissella spp. and seven Leuconostoc spp.) exhibited high EPS production. One of the strongest EPS producers was a Weissella confusa strain, and genome sequencing revealed the presence of two potential related EPS genes. To identify the key gene responsible for EPS production in soy milk, 70,000 colonies were screened on soy milk agar and a spontaneous EPS-defective mutant was isolated. The mutant (W. confusa dsr1) had a mutation in a putative dextransucrase gene, which could encode the enzyme catalysing the transfer of glucose from sucrose into a growing chain of dextran. The mutation introduced a premature stop codon, disrupting the enzyme production. Another mutant (W. confusa sac) found during this screen had impaired acidification and growth in soy milk, which was linked to a mutation in the sucrose metabolism gene cluster. Soy milk fermentations using the W. confusa wild-type or sac mutant, significantly increased water holding capacity and viscosity. This suggests their potential to enhance EPS production in fermented PBMAs, bringing their texture closer to that of traditional dairy.
Collapse
Affiliation(s)
- Wenkang Huang
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Queensland, Australia.
| | - Shuyu Yang
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Queensland, Australia.
| | - Anders Peter Wätjen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Yosephine Gumulya
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Queensland, Australia.
| | - Pilar Fernández-Pacheco
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, Spain.
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.
| | - Sangeeta Prakash
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Queensland, Australia.
| | | | - Mark S Turner
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Manhokwe S, Musarurwa T, Jombo TZ, Mugadza DT, Mugari A, Bare J, Mguni S, Chigondo F, Muchekeza JT. Development of a Quinoa-Based Fermentation Medium for Propagation of Lactobacillus Plantarum and Weissella Confusa in Opaque Beer Production. Int J Microbiol 2025; 2025:5745539. [PMID: 39963294 PMCID: PMC11832262 DOI: 10.1155/ijm/5745539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/06/2024] [Indexed: 02/20/2025] Open
Abstract
Product inconsistency of opaque beer has for long been a tenacious problem in the brewing industry since the current process relies on spontaneous lactic acid fermentation. In order to impede this challenge, there is a need to add lactic acid bacteria (LAB) starter cultures in opaque beer brewing to improve its organoleptic qualities. This study sought to develop a quinoa-based fermentation medium for propagation of Lactobacillus plantarum and Weissella confusa as potential starter cultures in opaque beer production. An evaluation of the stability and tolerance of the LAB under various stress conditions was also done. Fermentation wort from opaque beer brewing and different quinoa-based synthetic media with varying nutritional components was prepared for propagation of LAB. Physiochemical analyses which included pH, Brix value and total titratable acidity (TTA) of monocultured and cocultured synthetic media were measured. The measurements were done at 24 h time intervals ranging from 0 to 96 h. Tolerance studies which included the effect of heat shock, cold shock, oxidative stress and osmotic pressure on the survival rate of LAB were conducted to determine the stability of LAB. MRS with L. plantarum monoculture (MRSp) had a notable change in pH from 4.5 to 3.6 after 24 h. The cocultured (M5p + w) synthetic media and cocultured MRS (MRSp + w) also exhibited change in pH from 4.3 to 3.2 and 4.3 to 3.3, respectively, after 72 h. Brix value in all media samples decreased after 24 h except for the uninoculated MRS sample (MRS C). The synthetic and coculture medium (M5p + w) exhibited an increase in TTA (0.79% (m/v) lactic acid) within the first 24 h. Exposure to heat shock had a significance effect (p < 0.05) on the survival rate of L. plantarum and W. confusa. The W. confusa in synthetic media recorded a higher survival rate (27 ± 0.03%) upon exposure to heat shock than L. plantarum (7 ± 0.01%). In contrast, L. plantarum in MRS recorded a higher survival rate (67 ± 0.02%) upon exposure to cold shock and oxidative stress (34 ± 0.01%). The starter cultures tested survived upon exposure to the stress conditions, indicating their potential use in opaque beer production.
Collapse
Affiliation(s)
- Shepherd Manhokwe
- Department of Food Science and Nutrition, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| | - Tatenda Musarurwa
- Department of Food Science and Nutrition, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| | - Talknice Z. Jombo
- Department of Food Science and Nutrition, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| | - Desmond T. Mugadza
- Department of Food Science and Nutrition, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| | - Amiel Mugari
- Department of Food Science and Nutrition, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| | - Joseph Bare
- Department of Applied Biosciences and Biotechnology, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| | - Scelo Mguni
- Department of Applied Biosciences and Biotechnology, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| | - Fidelis Chigondo
- Department of Chemical Sciences, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| | - Jane Tafadzwa Muchekeza
- Department of Animal and Wildlife Sciences, Midlands State University, P Bag 9055, Gweru, Zimbabwe
| |
Collapse
|
5
|
Praveen M, Brogi S. Microbial Fermentation in Food and Beverage Industries: Innovations, Challenges, and Opportunities. Foods 2025; 14:114. [PMID: 39796404 PMCID: PMC11719914 DOI: 10.3390/foods14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Microbial fermentation is a primary method by which a variety of foods and beverages are produced. The term refers to the use of microbes such as bacteria, yeasts, and molds to transform carbohydrates into different substances. Fermentation is important for preserving, enhancing flavor, and improving the nutritional quality of various perishable foods. Historical records clearly show that fermented foods and drinks, such as wine, beer, and bread, have been consumed for more than 7000 years. The main microorganisms employed were Saccharomyces cerevisiae, which are predominantly used in alcohol fermentation, and Lactobacillus in dairy and vegetable fermentation. Typical fermented foods and drinks made from yogurt, cheese, beer, wine, cider, and pickles from vegetables are examples. Although there are risks of contamination and spoilage by pathogenic and undesirable microorganisms, advanced technologies and proper control procedures can mitigate these risks. This review addresses microbial fermentation and clarifies its past importance and contribution to food preservation, flavoring, and nutrition. It systematically separates yeasts, molds, and bacteria and explains how they are used in food products such as bread, yogurt, beer, and pickles. Larger producers employ primary production methods such as the artisanal approach, which are explored along with future trends such as solid-state fermentation, the potential of biotechnology in developing new products, and sustainability in new product development. Future research and development strategies can lead to innovations in methods that improve efficiency, product range, and sustainability.
Collapse
Affiliation(s)
- Mallari Praveen
- Department of Research and Development, Academy of Bioelectric Meridian Massage Australia (ABMMA), Noosaville, QLD 4566, Australia;
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
6
|
Li H, Zhu F, Li G. Beverages developed from pseudocereals (quinoa, buckwheat, and amaranth): Nutritional and functional properties. Compr Rev Food Sci Food Saf 2025; 24:e70081. [PMID: 39731715 DOI: 10.1111/1541-4337.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 12/30/2024]
Abstract
The rising global demand for nutritious, sustainable, and plant-based beverages has catalyzed interest in pseudocereal-based products, offering an innovative alternative to traditional cereals. Pseudocereals such as quinoa, buckwheat, and amaranth are valued for their exceptional nutritional profiles, including high-quality proteins, dietary fibers, and bioactive compounds. This review explores the development of pseudocereal-based beverages, emphasizing their potential as milk alternatives, fermented drinks, and beer products. The fermentation process enhances their nutritional value, bioavailability, and sensory attributes, while also reducing antinutritional factors like phytates and saponins. Moreover, these beverages exhibit promising health benefits, including antioxidant, hypoglycemic, antidiabetic, and antihypertensive effects. This review provides a comprehensive evaluation of pseudocereal-based beverages from regulatory considerations to production processes, highlighting the potential of these ancient grains in reshaping the beverage industry while addressing modern nutritional needs. Future research directions on pseudocereal-based beverages are also suggested.
Collapse
Affiliation(s)
- Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
7
|
Maoloni A, Cirlini M, Del Vecchio L, Torrijos R, Carini E, Rampanti G, Cardinali F, Milanović V, Garofalo C, Osimani A, Aquilanti L. A Novel Non-Alcoholic Einkorn-Based Beverage Produced by Lactic Acid Fermentation: Microbiological, Chemical, and Sensory Assessment. Foods 2024; 13:3923. [PMID: 39682995 DOI: 10.3390/foods13233923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Einkorn (Triticum monococcum L. ssp. monococcum) is gaining renewed interest for its high nutritional value and digestibility. Lactic acid fermentation could enhance these properties by improving micronutrient bioavailability, sensory properties, and shelf life. This study aimed to develop a novel non-alcoholic einkorn-based beverage through lactic acid fermentation. A multiple-strain starter was selected based on acidifying properties and inoculated into an einkorn-based substrate to produce a yogurt-like beverage. Prototypes were evaluated through physico-chemical, chemical, and microbiological analyses and compared to uninoculated controls. A sensory analysis was also performed to assess flavor attributes before and after lactic acid fermentation. The inoculated starter culture reached a load of approximately 9 Log CFU g⁻¹ and remained viable throughout storage, leading to an increase in lactic acid concentration and high titratable acidity, corresponding to low pH values. Total polyphenol content increased during fermentation and remained stable during storage, whereas antioxidant activity did not show significant differences over time. An increase in monosaccharides, acids, and ketones was observed during fermentation and storage. The prototypes exhibited a distinctive proximate composition, along with yogurt and fruity aroma notes. These results suggest the feasibility of producing a safe and stable non-alcoholic einkorn-based fermented beverage with appealing sensory characteristics.
Collapse
Affiliation(s)
- Antonietta Maoloni
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Martina Cirlini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Lorenzo Del Vecchio
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Raquel Torrijos
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Eleonora Carini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
8
|
Montagano F, Dell'Orco F, Prete R, Corsetti A. Health benefits of fermented olives, olive pomace and their polyphenols: a focus on the role of lactic acid bacteria. Front Nutr 2024; 11:1467724. [PMID: 39360269 PMCID: PMC11444980 DOI: 10.3389/fnut.2024.1467724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Fermented foods have regained popularity in Western diets for their health-promoting potential, mainly related to the role of lactic acid bacteria (LAB) during the fermentation process. Nowadays, there is an increasing demand for vegetable-based fermented foods, representing an environmentally sustainable options to overcome the limitations of lactose intolerance, vegetarian, or cholesterol-restricted diets. Among them, table olives and their co-products (i.e., olive pomace) represent important plant-origin matrices, whose exploitation is still limited. Olives are an important source of fiber and bioactive molecules such as phenolic compounds with recognized health-promoting effects. Based on that, this minireview offer a brief overview about the potential beneficial role of fermented table olives/olive pomace, with a particular focus on the role of LAB to obtain healthy and/or probiotic-enriched fermented foods.
Collapse
Affiliation(s)
- Federica Montagano
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Francesca Dell'Orco
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Roberta Prete
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Aldo Corsetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
9
|
Yang H, Hao L, Jin Y, Huang J, Zhou R, Wu C. Functional roles and engineering strategies to improve the industrial functionalities of lactic acid bacteria during food fermentation. Biotechnol Adv 2024; 74:108397. [PMID: 38909664 DOI: 10.1016/j.biotechadv.2024.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
In order to improve the flavor profiles, food security, probiotic effects and shorten the fermentation period of traditional fermented foods, lactic acid bacteria (LAB) were often considered as the ideal candidate to participate in the fermentation process. In general, LAB strains possessed the ability to develop flavor compounds via carbohydrate metabolism, protein hydrolysis and amino acid metabolism, lipid hydrolysis and fatty acid metabolism. Based on the functional properties to inhibit spoilage microbes, foodborne pathogens and fungi, those species could improve the safety properties and prolong the shelf life of fermented products. Meanwhile, influence of LAB on texture and functionality of fermented food were also involved in this review. As for the adverse effect carried by environmental challenges during fermentation process, engineering strategies based on exogenous addition, cross protection, and metabolic engineering to improve the robustness and of LAB were also discussed in this review. Besides, this review also summarized the potential strategies including microbial co-culture and metabolic engineering for improvement of fermentation performance in LAB strains. The authors hope this review could contribute to provide an understanding and insight into improving the industrial functionalities of LAB.
Collapse
Affiliation(s)
- Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Devecioglu D, Kara D, Tapan R, Karbancioglu‐Guler F, Kahveci D. Enhanced production of gamma-aminobutyric acid in fermented carrot juice by utilizing pectin hydrolysate derived from pomegranate waste. Food Sci Nutr 2024; 12:6534-6547. [PMID: 39554334 PMCID: PMC11561847 DOI: 10.1002/fsn3.4282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 11/19/2024] Open
Abstract
In this study, a functional fermented beverage enriched with gamma-aminobutyric acid (GABA) was produced. To achieve this, the prebiotic abilities of pectin obtained from pomegranate peel and its enzymatic hydrolysates were evaluated. Additionally, a functional fermented beverage enriched with GABA was produced by fermenting carrot juice with pectin hydrolysates. First, pectin was obtained at a yield of 8.91% from pomegranate peels. Pectinase-catalyzed hydrolysis of the obtained pectin was applied using different enzyme concentrations and hydrolysis times, and the effect of these hydrolysates on the growth of Levilactobacillus brevis was determined. Although the Fourier transform infrared (FT-IR) spectra of the resulting hydrolysates were similar, their degree of esterification compared to that of pectin was statistically different (p < .05). Considering the viability analysis and GABA production of L. brevis in the liquid medium supplemented with pectin or its hydrolysate, the hydrolysate obtained by treatment with 400 μL enzyme for 2 h and having a high glucose content (216.80 mg/100 g) was selected for application in fermented carrot juice. During fermentation (24, 48, and 72 h), a remarkable change was observed, especially in the amounts of lactic acid and malic acid, while the amount of GABA in carrot juice varied between 25 and 46 mg/mL and increased with the increase in hydrolysate concentration. It was observed that the total phenolic content and antioxidant activity of carrot juice were highly affected by the hydrolysate concentration. This study demonstrated that pectin hydrolysate obtained from food waste could be a potential prebiotic and could be used in the production of a functional beverage with improved GABA content.
Collapse
Affiliation(s)
- Dilara Devecioglu
- Faculty of Chemical and Metallurgical Engineering, Department of Food EngineeringIstanbul Technical UniversityMaslakTurkey
| | - Didem Kara
- Faculty of Chemical and Metallurgical Engineering, Department of Food EngineeringIstanbul Technical UniversityMaslakTurkey
| | - Rabia Tapan
- Faculty of Chemical and Metallurgical Engineering, Department of Food EngineeringIstanbul Technical UniversityMaslakTurkey
| | - Funda Karbancioglu‐Guler
- Faculty of Chemical and Metallurgical Engineering, Department of Food EngineeringIstanbul Technical UniversityMaslakTurkey
| | - Derya Kahveci
- Faculty of Chemical and Metallurgical Engineering, Department of Food EngineeringIstanbul Technical UniversityMaslakTurkey
| |
Collapse
|
11
|
Vicente-Sánchez ML, Castro-Alija MJ, Jiménez JM, María LV, María Jose C, Pastor R, Albertos I. Influence of salinity, germination, malting and fermentation on quinoa nutritional and bioactive profile. Crit Rev Food Sci Nutr 2024; 64:7632-7647. [PMID: 36960631 DOI: 10.1080/10408398.2023.2188948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The depletion of freshwater resources, as well as climate change and population growth, are threatening the livelihoods of thousands of people around the world. The introduction of underutilized crops such as quinoa may be important in countries with limited productivity and/or limited access to water due to its resistance to different abiotic stresses and its high nutritional value. The aim of this review is to assess whether techniques such as germination, malting and fermentation would improve the nutritional and bioactive profile of quinoa. The use of nitrogen oxide-donating, oxygen-reactive and calcium-source substances increases germination. The ecotype used, temperature, humidity and germination time are determining factors in germination. The presence of lactic acid bacteria of the rust-type phenotype can improve the volume and texture during baking of the doughs, increase the fiber content and act as a prebiotic. These techniques produce a significant increase in the content of proteins, amino acids and bioactive compounds, as well as a decrease in anti-nutritional compounds. Further studies are needed to determine which conditions are the most suitable to achieve the best nutritional, functional, technological, and organoleptic quinoa properties.
Collapse
Affiliation(s)
| | - María José Castro-Alija
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles, University of Valladolid, Valladolid, Spain
- Faculty of Nursing, University of Valladolid, Valladolid, Spain
| | - José María Jiménez
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles, University of Valladolid, Valladolid, Spain
- Faculty of Nursing, University of Valladolid, Valladolid, Spain
| | - López-Valdecillo María
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles, University of Valladolid, Valladolid, Spain
- Faculty of Nursing, University of Valladolid, Valladolid, Spain
| | - Cao María Jose
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles, University of Valladolid, Valladolid, Spain
- Faculty of Nursing, University of Valladolid, Valladolid, Spain
| | - Rosario Pastor
- Faculty of Health Sciences, Universidad Católica de Ávila (UCAV), Ávila, Spain
| | - Irene Albertos
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles, University of Valladolid, Valladolid, Spain
- Faculty of Nursing, University of Valladolid, Valladolid, Spain
| |
Collapse
|
12
|
Wu Q, Kan J, Cui Z, Ma Y, Liu X, Dong R, Huang D, Chen L, Du J, Fu C. Understanding the nutritional benefits through plant proteins-probiotics interactions: mechanisms, challenges, and perspectives. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 38922612 DOI: 10.1080/10408398.2024.2369694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The nutritional benefits of combining probiotics with plant proteins have sparked increasing research interest and drawn significant attention. The interactions between plant proteins and probiotics demonstrate substantial potential for enhancing the functionality of plant proteins. Fermented plant protein foods offer a unique blend of bioactive components and beneficial microorganisms that can enhance gut health and combat chronic diseases. Utilizing various probiotic strains and plant protein sources opens doors to develop innovative probiotic products with enhanced functionalities. Nonetheless, the mechanisms and synergistic effects of these interactions remain not fully understood. This review aims to delve into the roles of promoting health through the intricate interplay of plant proteins and probiotics. The regulatory mechanisms have been elucidated to showcase the synergistic effects, accompanied by a discussion on the challenges and future research prospects. It is essential to recognize that the interactions between plant proteins and probiotics encompass multiple mechanisms, highlighting the need for further research to address challenges in achieving a comprehensive understanding of these mechanisms and their associated health benefits.
Collapse
Affiliation(s)
- Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Zhengying Cui
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Yuchen Ma
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Xin Liu
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Ruifang Dong
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Lin Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Caili Fu
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| |
Collapse
|
13
|
Singla D, Malik T, Singh A, Thakur S, Kumar P. Advances in understanding wheat-related disorders: A comprehensive review on gluten-free products with emphasis on wheat allergy, celiac and non-celiac gluten sensitivity. FOOD CHEMISTRY ADVANCES 2024; 4:100627. [DOI: 10.1016/j.focha.2024.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Alkay Z, Falah F, Cankurt H, Dertli E. Exploring the Nutritional Impact of Sourdough Fermentation: Its Mechanisms and Functional Potential. Foods 2024; 13:1732. [PMID: 38890959 PMCID: PMC11172170 DOI: 10.3390/foods13111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Sourdough fermentation is one of the oldest traditional methods in food technology and occurs as a result of fermentation of flour prepared from grains. The nutritional role of sourdough is related to the final composition of fermented foods prepared through sourdough fermentation, and recently, sourdough has become an important application to improve nutrition characteristics of bread. Thanks to lactic acid bacteria (LAB) presented in sourdough microflora and metabolites partially produced by yeasts, technological and important nutritional features of the bread improve and an increase in shelf life is achieved. In addition, sourdough bread has a low glycemic index value, high protein digestibility, high mineral and antioxidant content, and improved dietary fiber composition, making it more attractive for human nutrition compared to regular bread. When the sourdough process is applied, the chemical and physical properties of fibers vary according to the degree of fermentation, revealing the physiological importance of dietary fiber and its importance to humans' large intestine microbiota. Therefore, taking these approach frameworks into consideration, this review highlights the benefits of sourdough fermentation in increasing nutrient availability and contributing positively to support human health.
Collapse
Affiliation(s)
- Zuhal Alkay
- Food Engineering Department, Faculty of Engineering, Necmettin Erbakan University, Konya 42010, Türkiye;
| | - Fereshteh Falah
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Hasan Cankurt
- Food Technology Department, Safiye Cikrikcioglu Vocational School, Kayseri University, Kayseri 38000, Türkiye;
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campüs, Istanbul 34210, Türkiye
| |
Collapse
|
15
|
Liang S, Wang X, Li C, Liu L. Biological Activity of Lactic Acid Bacteria Exopolysaccharides and Their Applications in the Food and Pharmaceutical Industries. Foods 2024; 13:1621. [PMID: 38890849 PMCID: PMC11172363 DOI: 10.3390/foods13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Exopolysaccharides are natural macromolecular bioactive substances produced by lactic acid bacteria. With their unique physiological activity and structural characteristics, they are gradually showing broad application prospects in the food and pharmaceutical industries. Exopolysaccharides have various biological functions, such as exerting antioxidant and anti-tumor activities and regulating gut microbiota. Meanwhile, as a food additive, exopolysaccharides can significantly enhance the taste and quality of food, bringing consumers a better eating experience. In the field of medicine, exopolysaccharides have been widely used as drug carriers due to their non-toxic properties and good biocompatibility. This article summarizes the biological activities of exopolysaccharides produced by lactic acid bacteria, their synthesis, and their applications in food and pharmaceutical industries, aiming to promote further research and development in this field.
Collapse
Affiliation(s)
- Shengnan Liang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chun Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Libo Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
16
|
Yilmaz-Ersan L, Suna G. Comparison of the targeted metabolomics and nutritional quality indices of the probiotic cheese enriched with microalgae. Talanta 2024; 272:125801. [PMID: 38447466 DOI: 10.1016/j.talanta.2024.125801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
The objective of this study is to evaluate the influence of mixed L. acidophilus LA-5 and enrichment with microalgae (C. vulgaris and A. platensis) on metabolomic formation in a brined cheese matrix. Microbiological, compositional, and metabolomic characterization were investigated during the ripening. It was found that the nutritional quality indices of the samples were based on amino acid and fatty acid characterization. Fifty-six metabolomics including fatty acids, amino acids, organic acids, minerals, and vitamins were detected using the HPLC-DAD, GC-MS, and ICP-OES-based methods. The results indicated that the enrichment with probiotic strain and microalgae led to an increase in the nutritional quality indices such as EAAI, NI, BV, MUFA/SFA, h/H, and DFA. The chemometric analysis (e.g. HCA and PCA) presented the variance between the cheese samples based on their attributes. The identification of cheese metabolomics throughout the ripening could be used for a better understanding of the functional ingredients-cheese matrix relationships and as a directive approach for novel dairy products in other metabolomic-related studies.
Collapse
Affiliation(s)
- Lutfiye Yilmaz-Ersan
- Bursa Uludag University, Faculty of Agriculture, Department of Food Engineering, Bursa, Turkiye.
| | - Gizem Suna
- Bursa Uludag University, Graduate School of Natural and Applied Sciences, Bursa, Turkiye
| |
Collapse
|
17
|
Zhang K, Liu S, Liang S, Xiang F, Wang X, Lian H, Li B, Liu F. Exopolysaccharides of lactic acid bacteria: Structure, biological activity, structure-activity relationship, and application in the food industry: A review. Int J Biol Macromol 2024; 257:128733. [PMID: 38092118 DOI: 10.1016/j.ijbiomac.2023.128733] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Over the past few decades, researchers have discovered that probiotics play an important role in our daily lives. With the further deepening of research, more and more evidence show that bacterial metabolites have an important role in food and human health, which opens up a new direction for the research of lactic acid bacteria (LAB) in the food and pharmaceutical industry. Many LAB have been widely studied because of the ability of exopolysaccharides (EPS). Lactic acid bacteria exopolysaccharides (LAB EPS) not only have great potential in the treatment of human diseases but also can become natural ingredients in the food industry to provide special qualitative structure and flavor. This paper has organized and summarized the biosynthesis, strain selection, production process parameters, structure, and biological activity of LAB EPS, filling in the monotony and incompleteness of previous articles' descriptions of LAB EPS. Therefore, this paper focuses on the general biosynthetic pathway, structural characterization, structure-activity relationship, biological activity of LAB EPS, and their application in the food industry, which will help to deepen people's understanding of LAB EPS and develop new active drugs from LAB EPS. Although the research results are relatively affluent, the low yield, complex structure, and few clinical trials of EPS are still the reasons that hinder its development. Therefore, future knowledge expansion should focus on the regulation of structure, physicochemical properties, function, higher production of EPS, and clinical trial applications, which can further increase the commercial significance and value of EPS. Furthermore, better understanding the structure-function relationship of EPS in food remains a challenge to date.
Collapse
Affiliation(s)
- Kangyong Zhang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Sibo Liu
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Shengnan Liang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Fangqin Xiang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodong Wang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Huiqiang Lian
- Guangdong Jinhaikang Medical Nutrition Co., Ltd, Meizhou, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Liu
- Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
18
|
Liwinski T, Lang UE, Brühl AB, Schneider E. Exploring the Therapeutic Potential of Gamma-Aminobutyric Acid in Stress and Depressive Disorders through the Gut-Brain Axis. Biomedicines 2023; 11:3128. [PMID: 38137351 PMCID: PMC10741010 DOI: 10.3390/biomedicines11123128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Research conducted on individuals with depression reveals that major depressive disorders (MDDs) coincide with diminished levels of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) in the brain, as well as modifications in the subunit composition of the primary receptors (GABAA receptors) responsible for mediating GABAergic inhibition. Furthermore, there is substantial evidence supporting the significant role of GABA in regulating stress within the brain, which is a pivotal vulnerability factor in mood disorders. GABA is readily available and approved as a food supplement in many countries. Although there is substantial evidence indicating that orally ingested GABA may affect GABA receptors in peripheral tissues, there is comparatively less evidence supporting its direct action within the brain. Emerging evidence highlights that oral GABA intake may exert beneficial effects on the brain and psyche through the gut-brain axis. While GABA enjoys wide consumer acceptance in Eastern Asian markets, with many consumers reporting favorable effects on stress regulation, mood, and sleep, rigorous independent research is still largely lacking. Basic research, coupled with initial clinical findings, makes GABA an intriguing neuro-nutritional compound deserving of clinical studies in individuals with depression and other psychological problems.
Collapse
Affiliation(s)
| | | | | | - Else Schneider
- University Psychiatric Clinics Basel, Clinic for Adults, University of Basel, CH-4002 Basel, Switzerland; (T.L.); (U.E.L.); (A.B.B.)
| |
Collapse
|
19
|
El-Menawy RK, Mohamed DM, Ismail MM, Hassan AM. Optimal combination of cow and quinoa milk for manufacturing of functional fermented milk with high levels of antioxidant, essential amino acids and probiotics. Sci Rep 2023; 13:20638. [PMID: 38001129 PMCID: PMC10673919 DOI: 10.1038/s41598-023-47839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this research was to produce Rayeb milk, a bio-fermented milk product that has important benefits for health and nutrition. The Rayeb milk was divided into five different treatments: T1 from cow milk, T2 from quinoa milk, T3 from a mixture of cow and quinoa milk (50%:50%), T4 from a mixture of cow and quinoa milk (75%:25%), and T5 from a mixture of cow and quinoa milk (25%:75%). As a starting culture, ABT-5 culture was used. The results demonstrated that blending quinoa milk with cow milk increased the total solids, fat, total protein, pH, acetaldehyde, and diacetyl values of the resulting Rayeb milk. Additionally, the total phenolic content, antioxidant activity, minerals, and amino acids-particularly important amino acids-in Rayeb milk with quinoa milk were higher. In Rayeb milk prepared from a cow and quinoa milk mixture, Lactobacillus acidophilus and Bifidobacterium bifidum were highly stimulated. All Rayeb milk samples, particularly those that contained quinoa milk, possessed more bifidobacteria than the recommended count of 106 cfu g-1 for use as a probiotic. Based on the sensory evaluation results, it is possible to manufacture a bio-Rayeb milk acceptable to the consumer and has a high nutritional and health values using a mixture of cow milk and quinoa milk (75%:25% or 50%:50%) and ABT-5 culture.
Collapse
Affiliation(s)
- Reham Kamal El-Menawy
- Dairy Technology Research Department, Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | - Doaa Mamdoh Mohamed
- Dairy Microbiology Research Department, Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | - Magdy Mohamed Ismail
- Dairy Technology Research Department, Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt.
| | - Amina Mahmoud Hassan
- Dairy Technology Research Department, Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| |
Collapse
|
20
|
Shabbir I, Al-Asmari F, Saima H, Nadeem MT, Ambreen S, Kasankala LM, Khalid MZ, Rahim MA, Özogul F, Bartkiene E, Rocha JM. The Biochemical, Microbiological, Antioxidant and Sensory Characterization of Fermented Skimmed Milk Drinks Supplemented with Probiotics Lacticaseibacillus casei and Lacticaseibacillus rhamnosus. Microorganisms 2023; 11:2523. [PMID: 37894180 PMCID: PMC10608993 DOI: 10.3390/microorganisms11102523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
A variety of foods fermented with lactic acid bacteria (LAB) serve as dietary staples in many countries. The incorporation of health-promoting probiotics into fermented milk products can have profound effects on human health. Considering the health benefits of Yakult, the current study was undertaken to develop an enriched Yakult-like fermented skimmed milk drink by the addition of two probiotic strains, namely Lacticaseibacillus casei (Lc) and Lacticaseibacillus rhamnosus (Lr). The prepared drinks were compared in terms of various parameters, including their physicochemical properties, proximate chemical composition, mineral estimation, microbial viable count, antioxidant activity, and sensory evaluation. Each strain was employed at five different concentrations, including 1% (T1), 1.5% (T2), 2% (T3), 2.5% (T4), and 3% (T5). The prepared Yakult samples were stored at 4 °C and analyzed on days 0, 7, 14, 21, and 28 to evaluate biochemical changes. The findings revealed that the concentration of the starter culture had a significant (p ≤ 0.05) impact on the pH value and moisture and protein contents, but had no marked impact on the fat or ash content of the developed product. With the Lc strain, Yakult's moisture content ranged from 84.25 ± 0.09 to 85.65 ± 0.13%, whereas with the Lr strain, it was from 84.24 ± 0.08 to 88.75 ± 0.13%. Protein levels reached their highest values with T5 (3% concentration). The acidity of all treatments increased significantly due to fermentation and, subsequently, pH showed a downward trend (p ≤ 0.05). The total soluble solids (TSS) content decreased during storage with Lc as compared to Lr, but the presence of carbohydrates had no appreciable impact. The drink with Lc exhibited a more uniform texture and smaller pore size than Yakult with Lr. Except for the iron values, which showed an increasing trend, the contents of other minerals decreased in increasing order of the added probiotic concentration used: 1% (T1), 1.5% (T2), 2% (T3), 2.5% (T4), and 3% (T5). The highest lactobacilli viable count of 8.69 ± 0.43 colony-forming units (CFU)/mL was observed with the T1 Lr-containing drink at the end of the storage period. Regarding the storage stability of the drink, the highest value for DPPH (88.75 ± 0.13%) was found with the T1 Lc drink on day 15, while the highest values for FRAP (4.86 ± 2.80 mmol Fe2+/L), TPC (5.97 ± 0.29 mg GAE/mL), and TFC (3.59 ± 0.17 mg GAE/mL) were found with the T5 Lr drink on day 28 of storage. However, the maximum value for ABTS (3.59 ± 0.17%) was noted with the T5 Lr drink on the first day of storage. The results of this study prove that Lc and Lr can be used in dairy-based fermented products and stored at refrigerated temperatures.
Collapse
Affiliation(s)
- Iqra Shabbir
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (I.S.); (H.S.); or (M.T.N.); (M.Z.K.)
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Hafiza Saima
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (I.S.); (H.S.); or (M.T.N.); (M.Z.K.)
| | - Muhammad Tahir Nadeem
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (I.S.); (H.S.); or (M.T.N.); (M.Z.K.)
| | - Saadia Ambreen
- University Institute of Food Science & Technology, The University of Lahore, Lahore 54590, Pakistan;
| | | | - Muhammad Zubair Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (I.S.); (H.S.); or (M.T.N.); (M.Z.K.)
| | - Muhammad Abdul Rahim
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (I.S.); (H.S.); or (M.T.N.); (M.Z.K.)
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Balcali, Adana 01330, Turkey;
- Biotechnology Research and Application Center, Cukurova University, Balcali, Adana 01330, Turkey
| | - Elena Bartkiene
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
21
|
Cui H, Li S, Roy D, Guo Q, Ye A. Modifying quinoa protein for enhanced functional properties and digestibility: A review. Curr Res Food Sci 2023; 7:100604. [PMID: 37840699 PMCID: PMC10570007 DOI: 10.1016/j.crfs.2023.100604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a pseudocereal plant that originally came from South America. The trend of consuming quinoa is propelled by its well‒balanced amino acid profile compared to that of other plants. In addition, its gluten‒free nature makes quinoa a promising diet option for celiac disease patients. Protein accounts for approximately 17% of the quinoa seed composition and quinoa protein possesses excellent quality. Quinoa protein is mainly composed of 11S globulins (37%) and 2S albumins (35%), both of which are stabilized by disulfide bonds. To date, the alkaline extraction method is the most commonly used method to extract quinoa protein. The functional properties and digestibility of quinoa protein can be improved with the help of various modification methods, and as a result, the application of quinoa protein will be extended. In this review, the extraction method, modification of functional properties and digestibility of quinoa protein are thoroughly discussed, providing insights into the application of quinoa protein in plant‒based foods.
Collapse
Affiliation(s)
- Hao Cui
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Siqi Li
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Debashree Roy
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Qing Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| |
Collapse
|
22
|
Demarinis C, Montemurro M, Torreggiani A, Pontonio E, Verni M, Rizzello CG. Use of Selected Lactic Acid Bacteria and Carob Flour for the Production of a High-Fibre and "Clean Label" Plant-Based Yogurt-like Product. Microorganisms 2023; 11:1607. [PMID: 37375109 DOI: 10.3390/microorganisms11061607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Carob, an underutilized crop with several ecological and economic advantages, was traditionally used as animal feed and excluded from the human diet. Yet, nowadays, its beneficial effects on health are making it an interesting candidate as a food ingredient. In this study, a carob-based yogurt-like product was designed and fermented with six lactic acid bacteria strains, whose performances after fermentation and during shelf life were assessed through microbial and biochemical characterization. The strains showed different aptitudes to ferment the rice-carob matrix. Particularly, Lactiplantibacillus plantarum T6B10 was among the strains with the lowest latency phase and highest acidification at the end of fermentation. T6B10 also showed discrete proteolysis during storage, so free amino acids were up to 3-fold higher compared to the beverages fermented with the other strains. Overall, fermentation resulted in the inhibition of spoilage microorganisms, while an increase in yeasts was found in the chemically acidified control. The yogurt-like product was characterized by high-fiber and low-fat content; moreover, compared to the control, fermentation decreased the predicted glycemic index (-9%) and improved the sensory acceptability. Thus, this work demonstrated that the combination of carob flour and fermentation with selected lactic acid bacteria strains represents a sustainable and effective option to obtain safe and nutritious yogurt-like products.
Collapse
Affiliation(s)
- Chiara Demarinis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy
| | - Andrea Torreggiani
- Department of Environmental Biology, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
- Department of Environmental Biology, "Sapienza" University of Rome, 00185 Rome, Italy
| | | |
Collapse
|
23
|
Zareie Z, Moayedi A, Garavand F, Tabar-Heydar K, Khomeiri M, Maghsoudlou Y. Probiotic Properties, Safety Assessment, and Aroma-Generating Attributes of Some Lactic Acid Bacteria Isolated from Iranian Traditional Cheese. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Artisanal cheeses are known as the source of beneficial lactic acid bacteria (LAB). Therefore, this study aimed to isolate and characterize LAB with different proteolytic activities from Iranian artisanal white cheeses. The isolates were classified into low, medium, and high proteolytic activity clusters via K-means clustering and identified as Lactiplantibacillus (Lpb.) pentosus L11, Lpb. plantarum L33, and Enterococcus faecium L13, respectively. Some safety tests (such as resistance to antibiotics, hemolytic activity, and biogenic amine production), probiotic properties (including cell surface hydrophobicity, auto/co-aggregation, and antibacterial activity), and production of volatile compounds were evaluated. These were non-hemolytic and non-biogenic amine producers, and showed no irregular antibiotic resistance. Lpb. plantarum L33 had the highest hydrophobicity (30.55%) and auto-aggregation (49.56%), and the highest co-aggregation was observed for Lpb. pentosus L11 with Staphylococcus aureus (61.51%). The isolates also showed a remarkable antibacterial effect against pathogenic bacteria. Moreover, Lpb. pentosus L11 and Lpb. plantarum L33 with low and medium proteolytic activity produced a wider range of volatile compounds in milk compared to the strain with a high proteolytic effect. The results showed that a probiotic strain with low or medium proteolytic activity could improve the flavor characteristics of fermented milk.
Collapse
|
24
|
Collier ES, Harris KL, Bendtsen M, Norman C, Niimi J. Just a matter of taste? Understanding rationalizations for dairy consumption and their associations with sensory expectations of plant-based milk alternatives. Food Qual Prefer 2023. [DOI: 10.1016/j.foodqual.2022.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives. Foods 2023; 12:foods12051005. [PMID: 36900522 PMCID: PMC10000644 DOI: 10.3390/foods12051005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Fermentation was traditionally used all over the world, having the preservation of plant and animal foods as a primary role. Owing to the rise of dairy and meat alternatives, fermentation is booming as an effective technology to improve the sensory, nutritional, and functional profiles of the new generation of plant-based products. This article intends to review the market landscape of fermented plant-based products with a focus on dairy and meat alternatives. Fermentation contributes to improving the organoleptic properties and nutritional profile of dairy and meat alternatives. Precision fermentation provides more opportunities for plant-based meat and dairy manufacturers to deliver a meat/dairy-like experience. Seizing the opportunities that the progress of digitalization is offering would boost the production of high-value ingredients such as enzymes, fats, proteins, and vitamins. Innovative technologies such as 3D printing could be an effective post-processing solution following fermentation in order to mimic the structure and texture of conventional products.
Collapse
|
26
|
Sandez Penidez SH, Velasco Manini MA, Gerez CL, Rollan GC. Consortia of lactic acid bacteria strains increase the antioxidant activity and bioactive compounds of quinoa sourdough - based biscuits. World J Microbiol Biotechnol 2023; 39:95. [PMID: 36759385 DOI: 10.1007/s11274-023-03538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
The aim of this work was to use consortia (two or three strains) of lactic acid bacteria (LAB) [Lactiplantibacillus plantarum CRL 1964 and CRL 1973, and Leuconostoc mesenteroides subsp. mesenteroides CRL 2131] to obtain quinoa sourdoughs (QS) for further manufacturing of quinoa sourdough-based biscuits (QB). Microbial grow and acidification were evaluated in QS while antioxidant activity (AOA), total phenolic compounds (TPC) and total flavonoid compounds (TFC) were determined in QS and QB. QS inoculated with LAB consortia respect to monocultures showed higher growth and acidification, AOA (7.9?42.6%), TPC (19.9?35.0%) and TFC (6.1?31.6%). QB prepared with QS inoculated by LAB consortia showed higher AOA (5.0-81.1%), TPC (22.5?57.5%) and TFC (14.0-79.9%) than biscuits inoculated by monocultures sourdoughs. These results were attributed to a synergic effect from LAB consortia. Principal component analysis showed the highest scores of the evaluated characteristics for biscuits made with consortia sourdough of two (CRL1964?+?CRL2131) and three (CRL1964?+?CRL1973?+?CRL2131) strains.
Collapse
Affiliation(s)
- S H Sandez Penidez
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina
| | - M A Velasco Manini
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina
| | - C L Gerez
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina
| | - G C Rollan
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina.
| |
Collapse
|
27
|
Montemurro M, Verni M, Rizzello CG, Pontonio E. Design of a Plant-Based Yogurt-Like Product Fortified with Hemp Flour: Formulation and Characterization. Foods 2023; 12:485. [PMID: 36766014 PMCID: PMC9914809 DOI: 10.3390/foods12030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Plant-based milk alternatives have gained massive popularity among consumers because of their sustainable production compared to bovine milk and because of meeting the nutritional requests of consumers affected by cow milk allergies and lactose intolerance. In this work, hemp flour, in a blend with rice flour, was used to design a novel lactose- and gluten-free yogurt-like (YL) product with suitable nutritional, functional, and sensory features. The growth and the acidification of three different lactic acid bacteria strains were monitored to better set up the biotechnological protocol for making the YL product. Hemp flour conferred the high fiber (circa 2.6 g/100 g), protein (circa 4 g/100 g), and mineral contents of the YL product, while fermentation by selected lactic acid bacteria increased the antioxidant properties (+8%) and the soluble fiber (+0.3 g/100 g), decreasing the predicted glycemic index (-10%). As demonstrated by the sensory analysis, the biotechnological process decreased the earthy flavor (typical of raw hemp flour) and increased the acidic and creamy sensory perceptions. Supplementation with natural clean-label vanilla powder and agave syrup was proposed to further decrease the astringent and bitter flavors. The evaluation of the starter survival and biochemical properties of the product under refrigerated conditions suggests an estimated shelf-life of 30 days. This work demonstrated that hemp flour might be used as a nutritional improver, while fermentation with a selected starter represents a sustainable and effective option for exploiting its potential.
Collapse
Affiliation(s)
- Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy
| | - Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| | | | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
28
|
Kouamé KJEP, Bora AFM, Li X, Sun Y, Tian S, Hussain M, Liu L, Coulibaly I. Development and characterization of probiotic (co)encapsulates in biopolymeric matrices and evaluation of survival in a millet yogurt formulation. J Food Sci 2023; 88:9-27. [PMID: 36443949 DOI: 10.1111/1750-3841.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/28/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022]
Abstract
The formulation of probiotics-enriched products still remains a challenge for the food industry due to the loss of viability, mainly occurring upon consumption and during storage. To tackle this challenge, the current study investigated the potential of using sodium alginate and inulin (SIN) in combination with various encapsulating materials such as skim milk (SKIM), whey protein concentrate (WPC), soy protein concentrate (SPC), and flaxseed oil (FS) to increase the viability of Lactobacillus casei upon freeze-drying, under simulated gastrointestinal conditions, during 28 days of storage at 4°C, and in a formulation of millet yogurt. Microstructural properties of microcapsules and co-microcapsules by SEM, oxidative stability of flaxseed oil in co-microcapsules, and physicochemical and sensory analysis of the product were performed. The produced microcapsules (SIN-PRO-SKIM, SIN-PRO-WP, and SIN-PRO-SP) and co-microcapsules (SIN-PRO-FS-SKIM, SIN-PRO-FS-WP, and SIN-PRO-FS-SP) had a high encapsulation rate >90%. Moreover, encapsulated and co-encapsulated strains exhibited a high in vitro viability accounting for 9.24 log10 CFU/g (SIN-PRO-SKIM), 8.96 log10 CFU/g (SIN-PRO-WP), and 8.74 log10 CFU/g (SIN-PRO-SP) for encapsulated and 10.08 log10 CFU/g (SIN-PRO-FS-SKIM), 10.03 log10 CFU/g (SIN-PRO-FS-WP), and 10.14 log10 CFU/g (SIN-PRO-FS-SP) for co-encapsulated. Moreover, encapsulated and co-encapsulated cells showed higher survival upon storage than free cells. Also, the SEM analysis showed spherical particles of 77.92-230.13 µm in size. The physicochemical and sensory analysis revealed an interesting nutritional content in the millet yogurt. The results indicate that the SIN matrix has significant promise as probiotic encapsulating material as it may provide efficient cell protection while also providing considerable physicochemical and nutritional benefits in functional foods.
Collapse
Affiliation(s)
- Kouadio Jean Eric-Parfait Kouamé
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Awa Fanny Massounga Bora
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaodong Li
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yue Sun
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Songfan Tian
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Muhammad Hussain
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Lu Liu
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Ibourahema Coulibaly
- Department of Biochemistry-Microbiology, Jean Lorougnon Guédé University, Daloa, Côte d'Ivoire
| |
Collapse
|
29
|
de Souza EL, de Oliveira KÁR, de Oliveira MEG. Influence of lactic acid bacteria metabolites on physical and chemical food properties. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Vila-Real C, Pimenta-Martins A, Mbugua S, Hagrétou SL, Katina K, Maina NH, Pinto E, Gomes AM. Novel synbiotic fermented finger millet-based yoghurt-like beverage: Nutritional, physicochemical, and sensory characterization. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
31
|
Lappi J, Silventoinen-Veijalainen P, Vanhatalo S, Rosa-Sibakov N, Sozer N. The nutritional quality of animal-alternative processed foods based on plant or microbial proteins and the role of the food matrix. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Fan X, Li X, Du L, Li J, Xu J, Shi Z, Li C, Tu M, Zeng X, Wu Z, Pan D. The effect of natural plant-based homogenates as additives on the quality of yogurt: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
The Role of Amaranth, Quinoa, and Millets for the Development of Healthy, Sustainable Food Products-A Concise Review. Foods 2022; 11:foods11162442. [PMID: 36010444 PMCID: PMC9407507 DOI: 10.3390/foods11162442] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 01/08/2023] Open
Abstract
The selection of sustainable crops adaptable to the rapidly changing environment, which also cater to the dietary needs of the growing population, is a primary challenge in meeting food security. Grains from ancient crops such as amaranth, quinoa, and millets are positioned to address this challenge and hence have gained dietary predominance among cereals and pseudocereals due to their nutritional value and energy efficiency. From a nutritional perspective, they are recognized for their complete protein, phenolic compounds and flavonoids, prebiotic fibers, and essential micronutrients, including minerals and vitamins. Bioactive peptides from their proteins have shown antihypertensive, antidiabetic, antioxidant, and anticancer properties. The nutritional diversity of these grains makes them a preferred choice over traditional cereals for developing healthy, sustainable food products such as plant-based dairy, vegan meats, and gluten-free products. With growing consumer awareness about sustainability and health, the categories mentioned above are transitioning from ‘emerging’ to ‘mainstream’; however, there is still a significant need to include such healthy grains to fulfill the nutritional gap. This review article emphasizes the health benefits of amaranth, quinoa, and millet grains and discusses the recent research progress in understanding their application in new sustainable food categories. The challenges associated with their incorporation into novel foods and future research directions are also provided.
Collapse
|
34
|
Naibaho J, Butula N, Jonuzi E, Korzeniowska M, Chodaczek G, Yang B. The roles of brewers' spent grain derivatives in coconut-based yogurt-alternatives: Microstructural characteristic and the evaluation of physico-chemical properties during the storage. Curr Res Food Sci 2022; 5:1195-1204. [PMID: 35992631 PMCID: PMC9382424 DOI: 10.1016/j.crfs.2022.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Water soluble coconut extract (WSCE) was reported as a suitable matrix for probiotic delivery as yogurt alternatives. The study aimed to evaluate the roles of brewers' spent grain (BSG) derivatives in enhancing the properties of WSCE-based yogurt alternatives. BSG flour (BSGF) and 3 different protein extracts (BSGPs) including protein control (BSGP-C), protamex treatment (BSGP-P), and protamex combined with flavourzyme treatment (BSGP-PF) were incorporated in WSCE-based yogurt alternatives. Confocal laser scanning microscopy showed that BSGPs prepared with protease treatment generated less dense fat distribution and more homogenous globules compared to that in WSCE control yogurt. It also resulted in a softer, denser and more homogenous matrix. The modification in microstructural properties was aligned with differences in several functional groups including ⍺-glycosidic bond and hydroxyl groups from polysaccharides, aliphatic ethers and acid functional groups as well as aromatic hydrocarbons of lignin, amide I, acetyl groups and amide III. BSGF and BSGPs increased the mechanical properties, viscosity and modified flow behaviour properties demonstrating its ability in maintaining textural and gel formation. After 14 days of storage, maintenance in flow behaviour, syneresis and mechanical properties was identified. Furthermore, BSG derivatives enhanced lactic acid production up to 3 folds. In conclusion, BSG derivatives maintained the microstructure and gel formation, improved the properties of WSCE-based yogurt alternatives and preserved its behaviour during 14 days of storage.
Collapse
Affiliation(s)
- Joncer Naibaho
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| | - Nika Butula
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Emir Jonuzi
- Department of Chemistry, Faculty of Natural Sciences and Mathematics, University of Tetova, 1200, Tetovo, Macedonia
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066, Wroclaw, Poland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, 20014, Turku, Finland
| |
Collapse
|
35
|
Kataria A, Sharma S, Khatkar SK. Antioxidative, structural and thermal characterisation of simulated fermented matrix of quinoa, chia and teff with caseinate. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ankita Kataria
- Department of Food Science and Technology Punjab Agricultural University (PAU) Ludhiana 141004 Punjab India
| | - Savita Sharma
- Department of Food Science and Technology Punjab Agricultural University (PAU) Ludhiana 141004 Punjab India
| | - Sunil Kumar Khatkar
- Byproducts Utilization Lab, Department of Dairy Technology College of Dairy Science and Technology, Guru Angad Dev Veterinary & Animal Sciences University (GADVASU) Ludhiana 141004 Punjab India
| |
Collapse
|
36
|
Zhao X, Liang Q. EPS-Producing Lactobacillus plantarum MC5 as a Compound Starter Improves Rheology, Texture, and Antioxidant Activity of Yogurt during Storage. Foods 2022; 11:foods11111660. [PMID: 35681410 PMCID: PMC9179970 DOI: 10.3390/foods11111660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
This study evaluated the effects of probiotic Lactobacillus plantarum MC5 on the quality, antioxidant activity, and storage stability of yogurt, to determine its possible application as a starter in milk fermentation. Four groups of yogurt were made with different proportions of probiotic L. plantarum MC5 and commercial starters. The yogurt samples’ rheological properties, texture properties, antioxidant activity, storage stability, and exopolysaccharides (EPS) content during storage were determined. The results showed that 2:1 and 1:1 yogurt samples (supplemented with L. plantarum MC5) attained the highest EPS content (982.42 mg/L and 751.71 mg/L) during storage. The apparent viscosity, consistency, cohesiveness, and water holding capacity (WHC) of yogurt samples supplemented with L. plantarum MC5 were significantly higher than those of the control group (p < 0.05). Further evaluation of antioxidant activity revealed that yogurt samples containing MC5 starter significantly increased in DPPH, ABTS, OH, and ferric iron-reducing power. The study also found that adding MC5 can promote the growth of Streptococcus thermophilus. Therefore, yogurt containing L. plantarum MC5 had favorable rheological properties, texture, and health effects. The probiotic MC5 usage in milk fermentation showed adequate potential for industrial application.
Collapse
Affiliation(s)
| | - Qi Liang
- Correspondence: ; Tel.: +86-139-1903-4438
| |
Collapse
|
37
|
Meng FB, Zhou L, Li JJ, Li YC, Wang M, Zou LH, Liu DY, Chen WJ. The combined effect of protein hydrolysis and Lactobacillus plantarum fermentation on antioxidant activity and metabolomic profiles of quinoa beverage. Food Res Int 2022; 157:111416. [DOI: 10.1016/j.foodres.2022.111416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/25/2022]
|
38
|
Werning ML, Hernández-Alcántara AM, Ruiz MJ, Soto LP, Dueñas MT, López P, Frizzo LS. Biological Functions of Exopolysaccharides from Lactic Acid Bacteria and Their Potential Benefits for Humans and Farmed Animals. Foods 2022; 11:1284. [PMID: 35564008 PMCID: PMC9101012 DOI: 10.3390/foods11091284] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lactic acid bacteria (LAB) synthesize exopolysaccharides (EPS), which are structurally diverse biopolymers with a broad range of technological properties and bioactivities. There is scientific evidence that these polymers have health-promoting properties. Most commercialized probiotic microorganisms for consumption by humans and farmed animals are LAB and some of them are EPS-producers indicating that some of their beneficial properties could be due to these polymers. Probiotic LAB are currently used to improve human health and for the prevention and treatment of specific pathologic conditions. They are also used in food-producing animal husbandry, mainly due to their abilities to promote growth and inhibit pathogens via different mechanisms, among which the production of EPS could be involved. Thus, the aim of this review is to discuss the current knowledge of the characteristics, usage and biological role of EPS from LAB, as well as their postbiotic action in humans and animals, and to predict the future contribution that they could have on the diet of food animals to improve productivity, animal health status and impact on public health.
Collapse
Affiliation(s)
- María Laura Werning
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
| | - Annel M. Hernández-Alcántara
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - María Julia Ruiz
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Buenos Aires 7000, Argentina
| | - Lorena Paola Soto
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| | - María Teresa Dueñas
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain;
| | - Paloma López
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - Laureano Sebastián Frizzo
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| |
Collapse
|
39
|
Sun X, Wang J, Li C, Zheng M, Zhang Q, Xiang W, Tang J. The Use of γ-Aminobutyric Acid-Producing Saccharomyces cerevisiae SC125 for Functional Fermented Beverage Production from Apple Juice. Foods 2022; 11:foods11091202. [PMID: 35563926 PMCID: PMC9102084 DOI: 10.3390/foods11091202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
The development of functional fermented beverages enriched with γ-aminobutyric acid (GABA) has been pursued because of the health benefits of GABA; however, few studies have described GABA production by yeast. Therefore, this study aimed to produce fermented apple beverages enriched with GABA produced by Saccharomyces cerevisiae SC125. Golden Delicious apples were fermented by S. cerevisiae SC125 to produce a novel functional beverage; commercial yeast was used as the control. The GABA, organic acid, and volatile compound content during the fermentation process was investigated by high-performance liquid chromatography and headspace solid-phase microextraction/gas chromatography-mass spectrometry. A yield of 898.35 ± 10.10 mg/L GABA was achieved by the efficient bioconversion of L-monosodium glutamate. Notably, the S. cerevisiae SC125-fermented beverage produced several unique volatile compounds, such as esters, alcohols, 6-decenoic acid, and 3-hydroxy−2-butanone, and showed significantly enhanced contents of organic acids, including malic acids, citric acid, and quinic acid. Sensory analysis demonstrated that the S. cerevisiae SC125-fermented apple beverage had improved aroma, flavor, and overall acceptability. In conclusion, a fermented functional apple beverage containing GABA was efficiently produced using S. cerevisiae SC125.
Collapse
|
40
|
Harper AR, Dobson RCJ, Morris VK, Moggré GJ. Fermentation of plant-based dairy alternatives by lactic acid bacteria. Microb Biotechnol 2022; 15:1404-1421. [PMID: 35393728 PMCID: PMC9049613 DOI: 10.1111/1751-7915.14008] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
Ethical, environmental and health concerns around dairy products are driving a fast‐growing industry for plant‐based dairy alternatives, but undesirable flavours and textures in available products are limiting their uptake into the mainstream. The molecular processes initiated during fermentation by lactic acid bacteria in dairy products is well understood, such as proteolysis of caseins into peptides and amino acids, and the utilisation of carbohydrates to form lactic acid and exopolysaccharides. These processes are fundamental to developing the flavour and texture of fermented dairy products like cheese and yoghurt, yet how these processes work in plant‐based alternatives is poorly understood. With this knowledge, bespoke fermentative processes could be engineered for specific food qualities in plant‐based foods. This review will provide an overview of recent research that reveals how fermentation occurs in plant‐based milk, with a focus on how differences in plant proteins and carbohydrate structure affect how they undergo the fermentation process. The practical aspects of how this knowledge has been used to develop plant‐based cheeses and yoghurts is also discussed.
Collapse
Affiliation(s)
- Aimee R Harper
- Biomolecular Interaction Centre, Food Transitions 2050 Joint Postgraduate School, and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,The New Zealand Institute for Plant and Food Research Limited, 74 Gerald St, Lincoln, 7608, New Zealand.,The Riddet Institute, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, Food Transitions 2050 Joint Postgraduate School, and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,The Riddet Institute, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., 3010, Australia
| | - Vanessa K Morris
- Biomolecular Interaction Centre, Food Transitions 2050 Joint Postgraduate School, and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Gert-Jan Moggré
- The New Zealand Institute for Plant and Food Research Limited, 74 Gerald St, Lincoln, 7608, New Zealand
| |
Collapse
|
41
|
Therapeutic Anti-Depressant Potential of Microbial GABA Produced by Lactobacillus rhamnosus Strains for GABAergic Signaling Restoration and Inhibition of Addiction-Induced HPA Axis Hyperactivity. Curr Issues Mol Biol 2022; 44:1434-1451. [PMID: 35723354 PMCID: PMC9164062 DOI: 10.3390/cimb44040096] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
The role of the microbiota–gut–brain (MGB) axis in mood regulation and depression treatment has gained attention in recent years, as evidenced by the growing number of animal and human studies that have reported the anti-depressive and associated gamma-aminobutyric acid-ergic (GABAergic) effects of probiotics developed from Lactobacillus rhamnosus bacterial strains in the gut microbiome. The depressive states attenuated by these probiotics in patients suffering from clinical depression also characterize the severe and relapse-inducing withdrawal phase of the addiction cycle, which has been found to arise from the intoxication-enabled hyperregulation of the hypothalamic–pituitary–adrenal (HPA) axis, the body’s major stress response system, and a corresponding attenuation of its main inhibitory system, the gamma-aminobutyric acid (GABA) signaling system. Therefore, the use of probiotics in the treatment of general cases of depression provides hope for a novel therapeutic approach to withdrawal depression remediation. This review discusses potential therapeutic avenues by which probiotic application of Lactobacillus rhamnosus strains can be used to restore the central GABAergic activity responsible for attenuating the depression-inducing HPA axis hyperactivity in addiction withdrawal. Also, information is provided on brain GABAergic signaling from other known GABA-producing strains of gut microbiota.
Collapse
|
42
|
Ingredients, Processing, and Fermentation: Addressing the Organoleptic Boundaries of Plant-Based Dairy Analogues. Foods 2022; 11:foods11060875. [PMID: 35327297 PMCID: PMC8952883 DOI: 10.3390/foods11060875] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Consumer interest and research in plant-based dairy analogues has been growing in recent years because of increasingly negative implications of animal-derived products on human health, animal wellbeing, and the environment. However, plant-based dairy analogues face many challenges in mimicking the organoleptic properties of dairy products due to their undesirable off-flavours and textures. This article thus reviews fermentation as a viable pathway to developing clean-label plant-based dairy analogues with satisfactory consumer acceptability. Discussions on complementary strategies such as raw material selection and extraction technologies are also included. An overview of plant raw materials with the potential to be applied in dairy analogues is first discussed, followed by a review of the processing steps and innovative techniques required to transform these plant raw materials into functional ingredients such as plant-based aqueous extracts or flours for subsequent fermentation. Finally, the various fermentation (bacterial, yeast, and fungal) methodologies applied for the improvement of texture and other sensory qualities of plant-based dairy analogues are covered. Concerted research efforts would be required in the future to tailor and optimise the presented wide diversity of options to produce plant-based fermented dairy analogues that are both delicious and nutritionally adequate.
Collapse
|
43
|
Gupta MK, Torrico DD, Ong L, Gras SL, Dunshea FR, Cottrell JJ. Plant and Dairy-Based Yogurts: A Comparison of Consumer Sensory Acceptability Linked to Textural Analysis. Foods 2022; 11:463. [PMID: 35159613 PMCID: PMC8834546 DOI: 10.3390/foods11030463] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Yogurt, readily available in plant and dairy-based formulations, is widely consumed and linked with health benefits. This research is aimed to understand the sensory and textural spectrum of commercially available dairy and plant-based yogurts. In a preliminary study, qualitative focus group discussions (4 groups; n = 32) were used to determine perceptions of 28 dairy and plant-based yogurts, identifying positive consumer perceptions of plant-based yogurts. A smaller subset of five spoonable and one drinkable yogurts-(Reference, Soy, Coconut, Cookies, Berry, and Drinkable) was subsequently selected for rheological and structural measurements, showing wide variations in the microstructure and rheology of selected yogurt samples. A quantitative blind sensory tasting (n = 117) showed varying yogurt acceptability, with Berry being the least-liked and Cookies being the most-liked yogurt, in terms of overall liking. The multi-factor analysis confirmed that compositional and textural elements, including protein content, gel firmness, and consistency coefficient, displayed a positive relationship with overall liking. In contrast, fat, sugar, and calories were negatively correlated to the overall liking. This research showed that texture and other compositional factors are significant determinants of the consumer acceptability of yogurt products and are essential properties to consider in product development.
Collapse
Affiliation(s)
- Mitali K. Gupta
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (M.K.G.); (F.R.D.)
- Future Food Hallmark Research Initiative Project, The University of Melbourne, Parkville, VIC 3010, Australia; (L.O.); (S.L.G.)
| | - Damir D. Torrico
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Lydia Ong
- Future Food Hallmark Research Initiative Project, The University of Melbourne, Parkville, VIC 3010, Australia; (L.O.); (S.L.G.)
- The Bio21 Molecular Science and Biotechnology Institute, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sally L. Gras
- Future Food Hallmark Research Initiative Project, The University of Melbourne, Parkville, VIC 3010, Australia; (L.O.); (S.L.G.)
- The Bio21 Molecular Science and Biotechnology Institute, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (M.K.G.); (F.R.D.)
- Future Food Hallmark Research Initiative Project, The University of Melbourne, Parkville, VIC 3010, Australia; (L.O.); (S.L.G.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Jeremy J. Cottrell
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (M.K.G.); (F.R.D.)
- Future Food Hallmark Research Initiative Project, The University of Melbourne, Parkville, VIC 3010, Australia; (L.O.); (S.L.G.)
| |
Collapse
|
44
|
Nabot M, Guérin M, Sivakumar D, Remize F, Garcia C. Variability of Bacterial Homopolysaccharide Production and Properties during Food Processing. BIOLOGY 2022; 11:171. [PMID: 35205038 PMCID: PMC8869377 DOI: 10.3390/biology11020171] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 02/05/2023]
Abstract
Various homopolysaccharides (HoPSs) can be produced by bacteria: α- and β-glucans, β-fructans and α-galactans, which are polymers of glucose, fructose and galactose, respectively. The synthesis of these compounds is catalyzed by glycosyltransferases (glycansucrases), which are able to transfer the monosaccharides in a specific substrate to the medium, which results in the growth of polysaccharide chains. The range of HoPS sizes is very large, from 104 to 109 Da, and mostly depends on the carbon source in the medium and the catalyzing enzyme. However, factors such as nitrogen nutrients, pH, water activity, temperature and duration of bacterial culture also impact the size and yield of production. The sequence of the enzyme influences the structure of the HoPS, by modulating the type of linkage between monomers, both for the linear chain and for the ramifications. HoPSs' size and structure have an effect on rheological properties of some foods by their influence on viscosity index. As a consequence, the control of structural and environmental factors opens ways to guide the production of specific HoPS in foods by bacteria, either by in situ or ex situ production, but requires a better knowledge of HoPS production conditions.
Collapse
Affiliation(s)
- Marion Nabot
- QualiSud, University of Montpellier, UMR QualiSud, 34398 Montpellier, France; (M.N.); (M.G.)
- UMR QualiSud, Université de La Réunion, 7 Chemin de l’Irat, F-97410 Saint Pierre, 97410 Réunion, France
| | - Marie Guérin
- QualiSud, University of Montpellier, UMR QualiSud, 34398 Montpellier, France; (M.N.); (M.G.)
- UMR QualiSud, Université de La Réunion, 7 Chemin de l’Irat, F-97410 Saint Pierre, 97410 Réunion, France
| | - Dharini Sivakumar
- Department of Horticulture, Tshwane University of Technology, Pretoria 0001, South Africa;
| | - Fabienne Remize
- SPO, Université de Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France;
| | - Cyrielle Garcia
- QualiSud, University of Montpellier, UMR QualiSud, 34398 Montpellier, France; (M.N.); (M.G.)
- UMR QualiSud, Université de La Réunion, 7 Chemin de l’Irat, F-97410 Saint Pierre, 97410 Réunion, France
| |
Collapse
|
45
|
Jurášková D, Ribeiro SC, Silva CCG. Exopolysaccharides Produced by Lactic Acid Bacteria: From Biosynthesis to Health-Promoting Properties. Foods 2022; 11:156. [PMID: 35053888 PMCID: PMC8774684 DOI: 10.3390/foods11020156] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
The production of exopolysaccharides (EPS) by lactic acid bacteria (LAB) has attracted particular interest in the food industry. EPS can be considered as natural biothickeners as they are produced in situ by LAB and improve the rheological properties of fermented foods. Moreover, much research has been conducted on the beneficial effects of EPS produced by LAB on modulating the gut microbiome and promoting health. The EPS, which varies widely in composition and structure, may have diverse health effects, such as glycemic control, calcium and magnesium absorption, cholesterol-lowering, anticarcinogenic, immunomodulatory, and antioxidant effects. In this article, the latest advances on structure, biosynthesis, and physicochemical properties of LAB-derived EPS are described in detail. This is followed by a summary of up-to-date methods used to detect, characterize and elucidate the structure of EPS produced by LAB. In addition, current strategies on the use of LAB-produced EPS in food products have been discussed, focusing on beneficial applications in dairy products, gluten-free bakery products, and low-fat meat products, as they positively influence the consistency, stability, and quality of the final product. Highlighting is also placed on reports of health-promoting effects, with particular emphasis on prebiotic, immunomodulatory, antioxidant, cholesterol-lowering, anti-biofilm, antimicrobial, anticancer, and drug-delivery activities.
Collapse
Affiliation(s)
| | | | - Celia C. G. Silva
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Azores, Portugal; (D.J.); (S.C.R.)
| |
Collapse
|
46
|
Ziarno M, Cichońska P. Lactic Acid Bacteria-Fermentable Cereal- and Pseudocereal-Based Beverages. Microorganisms 2021; 9:2532. [PMID: 34946135 PMCID: PMC8706850 DOI: 10.3390/microorganisms9122532] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022] Open
Abstract
Plant beverages are becoming more popular, and fermented cereal- or pseudocereal-based beverages are increasingly used as alternatives for fermented products made from cow milk. This review aimed to describe the basic components of cereal- or pseudocereal-based beverages and determine the feasibility of fermenting them with lactic acid bacteria (LAB) to obtain products with live and active LAB cells and increased dietary value. The technology used for obtaining cereal- or pseudocereal-based milk substitutes primarily involves the extraction of selected plant material, and the obtained beverages differ in their chemical composition and nutritional value (content of proteins, lipids, and carbohydrates, glycemic index, etc.) due to the chemical diversity of the cereal and pseudocereal raw materials and the operations used for their production. Beverages made from cereals or pseudocereals are an excellent matrix for the growth of LAB, and the lactic acid fermentation not only produces desirable changes in the flavor of fermented beverages and the biological availability of nutrients but also contributes to the formation of functional compounds (e.g., B vitamins).
Collapse
Affiliation(s)
- Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), 02-787 Warsaw, Poland;
| | | |
Collapse
|
47
|
Bender D, Schönlechner R. Recent developments and knowledge in pseudocereals including technological aspects. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2021.00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Amaranth, buckwheat, quinoa, and less known, canihua are the most important pseudocereals. Their high nutritional value is well recognized and they are increasingly used for the development of a wide range of starch-based foods, which has been fostered by intensified research data performed in recent years. In addition to health driven motivations, also environmental aspects like the ongoing climate change are an important stimulus to increase agricultural biodiversity again. As pseudocereals are botanically classified as dicotyledonous plants their chemical, physical and processing properties differ significantly from the monocotyledonous cereals. Most important factors that need to be addressed for processing is their smaller seed kernel size, their specific starch structure and granule architecture, their gluten-free protein, but also their dietary fibre and secondary plant metabolites composition. This review gives a condensed overview of the recent developments and gained knowledge with special attention to the technological and food processing aspects of these pseudocereals.
Collapse
Affiliation(s)
- D. Bender
- Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - R. Schönlechner
- Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
48
|
Abstract
Exopolysaccharides (EPS) are biopolymers produced by many microorganisms, including some species of the genus Acetobacter, Bacillus, Fructobacillus, Leuconostoc, Lactobacillus, Lactiplantibacillus, Pediococcus, Pichia, Rhodotorula, Saccharomycodes, Schizosaccharomyces, and Sphingomonas, which have been reported in the microbiota of traditional fermented beverages. Dextran, levan, glucan, gellan, and cellulose, among others, are EPS produced by these genera. Extracellular biopolymers are responsible for contributing to specific characteristics to fermented products, such as modifying their organoleptic properties or contributing to biological activities. However, EPS can be easily found in the dairy industry, where they affect rheological properties in products such as yogurt or cheese, among others. Over the years, LAB has been recognized as good starter strains in spontaneous fermentation, as they can contribute beneficial properties to the final product in conjunction with yeasts. To the best our knowledge, several articles have reported that the EPS produced by LAB and yeasts possess many both biological and technological properties that can be influenced by many factors in which fermentation occurs. Therefore, this review presents traditional Mexican fermented beverages (tavern, tuba, sotol, and aguamiel) and relates them to the microbial EPS, which affect biological and techno-functional activities.
Collapse
|
49
|
Sourdough Fermentation as a Tool to Improve the Nutritional and Health-Promoting Properties of Its Derived-Products. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cereal products are staple foods highly appreciated and consumed worldwide. Nonetheless, due to the presence of gluten proteins, and other co-existing compounds such as amylase-trypsin inhibitors and fermentable short-chain carbohydrates in those products, their preference by consumers has substantially decreased. Gluten affects the small gut of people with celiac disease, triggering a gut inflammation condition via auto-immune response, causing a cascade of health disorders. Amylase-trypsin inhibitors and fermentable short-chain carbohydrate compounds that co-exists with gluten in the cereal-based foods matrix have been associated with several gastrointestinal symptoms in non-celiac gluten sensitivity. Since the symptoms are somewhat overlapped, the relation between celiac disease and irritable bowel syndrome has recently received marked interest by researchers. Sourdough fermentation is one of the oldest ways of bread leavening, by lactic acid bacteria and yeasts population, converting cereal flour into attractive, tastier, and more digestible end-products. Lactic acid bacteria acidification in situ is a key factor to activate several cereal enzymes as well as the synthesis of microbial active metabolites, to positively influence the nutritional/functional and health-promoting benefits of the derived products. This review aims to explore and highlight the potential of sourdough fermentation in the Food Science and Technology field.
Collapse
|
50
|
Sandez Penidez SH, Velasco Manini MA, LeBlanc JG, Gerez CL, Rollán GC. Quinoa sourdough-based biscuits with high antioxidant activity fermented with autochthonous lactic acid bacteria. J Appl Microbiol 2021; 132:2093-2105. [PMID: 34606147 DOI: 10.1111/jam.15315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 01/18/2023]
Abstract
AIMS To evaluate the capacity of autochthonous lactic acid bacteria (LAB) (43) from Andean grains to increase the antioxidant activity (AOA) and total phenolic compounds (TPCs) in quinoa sourdough to select best performing strains to be used as starter cultures in the elaboration of biscuits. METHODS AND RESULTS Microbial growth (CFU per g) and pH were evaluated during quinoa dough fermentation. Counts were increased in a range of 0.61-2.97 log CFU per g and pH values between 3.95 and 4.54 were determined after 24 h at 30°C of fermentation. Methanolic (ME) and aqueous (AE) extracts were obtained at the end of fermentation, and free radical scavenging capacity was performed by the DPPH and ABTS methods. ME was selected for further analysis using other methods and TPC quantification. Principal component analysis showed the highest scores of growth, acidification capacity, AOA and TPC for the strains Lc. mesenteroides subsp. mesenteroides CRL 2131 and L. plantarum CRL 1964 and CRL 1973. AOA and TPC in biscuits made with sourdough from these LAB were higher than the acidified and uninoculated controls. CONCLUSIONS Autochthonous LAB strains (3) increased the AOA of quinoa-based biscuits. SIGNIFICANCE AND IMPACT OF THE STUDY Quinoa sourdough obtained with selected LAB is suitable as an ingredient for bakery foods with improved antioxidant status.
Collapse
Affiliation(s)
| | | | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| | - Carla L Gerez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| | - Graciela C Rollán
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| |
Collapse
|