1
|
Gong D, Mo J, Zhai M, Zhou F, Wang G, Ma S, Dai X, Deng X. Advances, challenges and future applications of liver organoids in experimental regenerative medicine. Front Med (Lausanne) 2025; 11:1521851. [PMID: 39927267 PMCID: PMC11804114 DOI: 10.3389/fmed.2024.1521851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/20/2024] [Indexed: 02/11/2025] Open
Abstract
The liver is a vital organ responsible for numerous metabolic processes in the human body, including the metabolism of drugs and nutrients. After liver damage, the organ can rapidly return to its original size if the causative factor is promptly eliminated. However, when the harmful stimulus persists, the liver's regenerative capacity becomes compromised. Substantial theoretical feasibility has been demonstrated at the levels of gene expression, molecular interactions, and intercellular dynamics, complemented by numerous successful animal studies. However, a robust model and carrier that closely resemble human physiology are still lacking for translating these theories into practice. The potential for liver regeneration has been a central focus of ongoing research. Over the past decade, the advent of organoid technology has provided improved models and materials for advancing research efforts. Liver organoid technology represents a novel in vitro culture system. After several years of refinement, human liver organoids can now accurately replicate the liver's morphological structure, nutrient and drug metabolism, gene expression, and secretory functions, providing a robust model for liver disease research. Regenerative medicine aims to replicate human organ or tissue functions to repair or replace damaged tissues, restore their structure or function, or stimulate the regeneration of tissues or organs within the body. Liver organoids possess the same structure and function as liver tissue, offering the potential to serve as a viable replacement for the liver, aligning with the goals of regenerative medicine. This review examines the role of liver organoids in regenerative medicine.
Collapse
Affiliation(s)
- Da Gong
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiaye Mo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
- Guangxi University of Chinese Medicine, Nanning, China
| | - Mei Zhai
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Fulin Zhou
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Guocai Wang
- Department of Physiology, School of Medicine and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University Shenzhen International Graduate School, Guangdong, China
| | - Xiaoyong Dai
- Department of Physiology, School of Medicine and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Tsinghua University Shenzhen International Graduate School, Guangdong, China
| | - Xuesong Deng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
2
|
Teschke R, Qi X, Xuan TD, Eickhoff A. Tropical herb-induced liver injury by pyrrolizidine alkaloids. TREATMENT AND MANAGEMENT OF TROPICAL LIVER DISEASE 2025:182-187. [DOI: 10.1016/b978-0-323-87031-3.00031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Song Z, Chen G, Chen CYC. AI empowering traditional Chinese medicine? Chem Sci 2024; 15:d4sc04107k. [PMID: 39355231 PMCID: PMC11440359 DOI: 10.1039/d4sc04107k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
For centuries, Traditional Chinese Medicine (TCM) has been a prominent treatment method in China, incorporating acupuncture, herbal remedies, massage, and dietary therapy to promote holistic health and healing. TCM has played a major role in drug discovery, with over 60% of small-molecule drugs approved by the FDA from 1981 to 2019 being derived from natural products. However, TCM modernization faces challenges such as data standardization and the complexity of TCM formulations. The establishment of comprehensive TCM databases has significantly improved the efficiency and accuracy of TCM research, enabling easier access to information on TCM ingredients and encouraging interdisciplinary collaborations. These databases have revolutionized TCM research, facilitating advancements in TCM modernization and patient care. In addition, advancements in AI algorithms and database data quality have accelerated progress in AI for TCM. The application of AI in TCM encompasses a wide range of areas, including herbal screening and new drug discovery, diagnostic and treatment principles, pharmacological mechanisms, network pharmacology, and the incorporation of innovative AI technologies. AI also has the potential to enable personalized medicine by identifying patterns and correlations in patient data, leading to more accurate diagnoses and tailored treatments. The potential benefits of AI for TCM are vast and diverse, promising continued progress and innovation in the field.
Collapse
Affiliation(s)
- Zhilin Song
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University Shenzhen Guangdong 518107 China
| | - Calvin Yu-Chian Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- Department of Medical Research, China Medical University Hospital Taichung 40447 Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taichung 41354 Taiwan
- Guangdong L-Med Biotechnology Co., Ltd Meizhou Guangdong 514699 China
| |
Collapse
|
4
|
Peng T, Rao J, Zhang T, Wang Y, Li N, Gao Q, Feng X, Song Z, Wang K, Qiu F. Elucidation of the relationship between evodiamine-induced liver injury and CYP3A4-mediated metabolic activation by UPLC-MS/MS analysis. Anal Bioanal Chem 2023; 415:5619-5635. [PMID: 37433953 DOI: 10.1007/s00216-023-04831-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/03/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023]
Abstract
Evodiamine (EVD), which has been reported to cause liver damage, is the main constituent of Evodia rutaecarpa (Juss.) Benth and may be bioactivated into reactive metabolites mediated by cytochrome P450. However, the relationships between bioactivation and EVD-induced hepatotoxicity remain unknown. In this study, comprehensive hepatotoxicity evaluation was explored, which demonstrated that EVD caused hepatotoxicity in both time- and dose-dependent manners in mice. By application of UPLC-Q/TOF-MS/MS, two GSH conjugates (GM1 and GM2) derived from reactive metabolites of EVD were identified, in microsomal incubation systems exposed to EVD with glutathione (GSH) as trapping agents. CYP3A4 was proved to be the main metabolic enzyme. Correspondingly, the N-acetyl-L-cysteine conjugate derived from the degradation of GM2 was detected in the urine of mice after exposure to EVD. For the first time, the iminoquinone intermediate was found in EVD-pretreated rat bile by the high-resolution MS platform. Pretreatment with ketoconazole protected the animals from hepatotoxicity, decreased the protein expression of cleaved caspase-1 and -3, but increased the area under the serum-concentration-time curve of EVD in blood determined by UPLC-QQQ-MS/MS. Depletion of GSH by buthionine sulfoximine exacerbated EVD-induced hepatotoxicity. These results implicated that the CYP3A4-mediated metabolic activation was responsible for the observed hepatotoxicity induced by EVD.
Collapse
Affiliation(s)
- Ting Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Tingting Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Zhaohui Song
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co Ltd, Tianjin, 300410, People's Republic of China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
5
|
Zhou Y, Yang J, He Y, Lv Y, Wang C, Deng H, Huang J. Characteristic analysis of clinical trials for new traditional Chinese medicines in mainland China from 2013 to 2021. Front Med (Lausanne) 2022; 9:1008683. [PMID: 36330068 PMCID: PMC9622921 DOI: 10.3389/fmed.2022.1008683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022] Open
Abstract
Objective Based on the clinical trials registered on the platform for the registry and publicity of clinical drug trials of the National Medical Products Administration (NMPA), the registration and approval of clinical trials of traditional Chinese medicines (TCMs) in mainland China from 2013 to 2021 were reviewed. Methods Clinical trials of new TCMs published in Chinese were retrieved from the platform for the registry and publicity of clinical drug trials. The number of registered trials and approved trials, status of clinical trials, therapeutic area of clinical trials for the treatment of diseases, type of trial design, sample size, sponsors, and leading clinical trial centers were evaluated. Results From 2013 to 2021, a total of 965 clinical trials of new drugs applied in TCM were registered on the aforementioned NMPA platform, comprising 117 phase I trials, 586 phase II trials, 174 phase III trials, 40 phase IV trials, and 48 other clinical trials. The treatment fields included the respiratory system, alimentary tract and metabolism, genetic system and reproductive hormones, and cardiovascular system. Among the 760 phase II and phase III trials, 98.9% were randomized, 95.4% were double-blind, and 98.2% were parallel controlled trials, and the proportion of placebo-controlled trials increased year by year from 2013 to 2021. From 2013 to 2021, 123 new TCMs were approved in mainland China. Conclusion From 2015 to 2021, the number of registered clinical trials of new TCMs remained low. The approval rate was also low, but the clinical trial design was greatly improved.
Collapse
Affiliation(s)
- Yinghong Zhou
- Science and Information Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juan Yang
- Center for Drug Clinical Research, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingchun He
- Center for Drug Clinical Research, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinghua Lv
- Center for Drug Clinical Research, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunli Wang
- Information Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hongyong Deng
- Science and Information Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jihan Huang
- Center for Drug Clinical Research, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Yang F, Zhang S, Pan W, Yao R, Zhang W, Zhang Y, Wang G, Zhang Q, Cheng Y, Dong J, Ruan C, Cui L, Wu H, Xue F. Signaling repurposable drug combinations against COVID-19 by developing the heterogeneous deep herb-graph method. Brief Bioinform 2022; 23:6580251. [PMID: 35514205 DOI: 10.1093/bib/bbac124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/07/2022] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has spurred a boom in uncovering repurposable existing drugs. Drug repurposing is a strategy for identifying new uses for approved or investigational drugs that are outside the scope of the original medical indication. MOTIVATION Current works of drug repurposing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are mostly limited to only focusing on chemical medicines, analysis of single drug targeting single SARS-CoV-2 protein, one-size-fits-all strategy using the same treatment (same drug) for different infected stages of SARS-CoV-2. To dilute these issues, we initially set the research focusing on herbal medicines. We then proposed a heterogeneous graph embedding method to signaled candidate repurposing herbs for each SARS-CoV-2 protein, and employed the variational graph convolutional network approach to recommend the precision herb combinations as the potential candidate treatments against the specific infected stage. METHOD We initially employed the virtual screening method to construct the 'Herb-Compound' and 'Compound-Protein' docking graph based on 480 herbal medicines, 12,735 associated chemical compounds and 24 SARS-CoV-2 proteins. Sequentially, the 'Herb-Compound-Protein' heterogeneous network was constructed by means of the metapath-based embedding approach. We then proposed the heterogeneous-information-network-based graph embedding method to generate the candidate ranking lists of herbs that target structural, nonstructural and accessory SARS-CoV-2 proteins, individually. To obtain precision synthetic effective treatments forvarious COVID-19 infected stages, we employed the variational graph convolutional network method to generate candidate herb combinations as the recommended therapeutic therapies. RESULTS There were 24 ranking lists, each containing top-10 herbs, targeting 24 SARS-CoV-2 proteins correspondingly, and 20 herb combinations were generated as the candidate-specific treatment to target the four infected stages. The code and supplementary materials are freely available at https://github.com/fanyang-AI/TCM-COVID19.
Collapse
Affiliation(s)
- Fan Yang
- The Department of Epidemiology and Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, China
| | - Shuaijie Zhang
- The Department of Epidemiology and Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, China
| | - Wei Pan
- The Department of Epidemiology and Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, China
| | - Ruiyuan Yao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weiguo Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanchun Zhang
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Australia; The Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Guoyin Wang
- Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Qianghua Zhang
- Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yunlong Cheng
- Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Jihua Dong
- The School of Foreign Languages and Literature, Shandong University
| | - Chunyang Ruan
- Department of Data Science and Big Data Technology, Shanghai International Studies University, Shanghai, 200083, China
| | - Lizhen Cui
- School of Software, Shandong University, Jinan, China
| | - Hao Wu
- School of Software, Shandong University, Jinan, China
| | - Fuzhong Xue
- The Department of Epidemiology and Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, China
| |
Collapse
|
7
|
Wang X, Ding Z, Ma K, Sun C, Zheng X, You Y, Zhang S, Peng Y, Zheng J. Cysteine-Based Protein Covalent Binding and Hepatotoxicity Induced by Emodin. Chem Res Toxicol 2022; 35:293-302. [DOI: 10.1021/acs.chemrestox.1c00358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Zifang Ding
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Kaiqi Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Chen Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xiaojiao Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yutong You
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Shiyu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
8
|
Teschke R, Danan G. Causality Assessment in Pharmacovigilance for Herbal Medicines. PHARMACOVIGILANCE FOR HERBAL AND TRADITIONAL MEDICINES 2022:189-209. [DOI: 10.1007/978-3-031-07275-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Cicalău GIP, Babes PA, Calniceanu H, Popa A, Ciavoi G, Iova GM, Ganea M, Scrobotă I. Anti-Inflammatory and Antioxidant Properties of Carvacrol and Magnolol, in Periodontal Disease and Diabetes Mellitus. Molecules 2021; 26:6899. [PMID: 34833990 PMCID: PMC8623889 DOI: 10.3390/molecules26226899] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022] Open
Abstract
Periodontal disease and diabetes mellitus are two pathologies that are extremely widespread worldwide and share the feature of chronic inflammation. Carvacrol is a phenolic monoterpenoid, produced by a variety of herbs, the most well-known of which is Origanum vulgare. Magnolol is a traditional polyphenolic compound isolated from the stem bark of Magnolia officinalis, mainly used in Chinese medicine. The purpose of this paper is to review the therapeutic properties of these bioactive compounds, in the treatment of periodontitis and diabetes. Based on our search strategy we conducted a literature search in the PubMed and Google Scholar databases to identify studies. A total of one hundred eighty-four papers were included in the current review. The results show that carvacrol and magnolol have anti-inflammatory, antioxidant, antimicrobial, anti-osteoclastic, and anti-diabetic properties that benefit both pathologies. Knowledge of the multiple activities of carvacrol and magnolol can assist with the development of new treatment strategies, and the design of clinical animal and human trials will maximize the potential benefits of these extracts in subjects suffering from periodontitis or diabetes.
Collapse
Affiliation(s)
- Georgiana Ioana Potra Cicalău
- Doctoral School of Biomedical Science, University of Oradea, 1st University Street, 410087 Oradea, Romania;
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Petru Aurel Babes
- Doctoral School of Biomedical Science, University of Oradea, 1st University Street, 410087 Oradea, Romania;
| | - Horia Calniceanu
- Department of Periodontology, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Periodontal and Periimplant Diseases Research Center “Prof. Dr. Anton Sculean”, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adelina Popa
- Department of Orthodontics, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Orthodontic Research Center (ORTHO-CENTER), Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Gabriela Ciavoi
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Gilda Mihaela Iova
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania;
| | - Ioana Scrobotă
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| |
Collapse
|
10
|
Metabolic Toxification of 1,2-Unsaturated Pyrrolizidine Alkaloids Causes Human Hepatic Sinusoidal Obstruction Syndrome: The Update. Int J Mol Sci 2021; 22:ijms221910419. [PMID: 34638760 PMCID: PMC8508847 DOI: 10.3390/ijms221910419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Saturated and unsaturated pyrrolizidine alkaloids (PAs) are present in more than 6000 plant species growing in countries all over the world. They have a typical heterocyclic structure in common, but differ in their potential toxicity, depending on the presence or absence of a double bond between C1 and C2. Fortunately, most plants contain saturated PAs without this double bond and are therefore not toxic for consumption by humans or animals. In a minority of plants, however, PAs with this double bond between C1 and C2 exhibit strong hepatotoxic, genotoxic, cytotoxic, neurotoxic, and tumorigenic potentials. If consumed in error and in large emouns, plants with 1,2-unsaturated PAs induce metabolic breaking-off of the double bonds of the unsaturated PAs, generating PA radicals that may trigger severe liver injury through a process involving microsomal P450 (CYP), with preference of its isoforms CYP 2A6, CYP 3A4, and CYP 3A5. This toxifying CYP-dependent conversion occurs primarily in the endoplasmic reticulum of the hepatocytes equivalent to the microsomal fraction. Toxified PAs injure the protein membranes of hepatocytes, and after passing their plasma membranes, more so the liver sinusoidal endothelial cells (LSECs), leading to life-threatening hepatic sinusoidal obstruction syndrome (HSOS). This injury is easily diagnosed by blood pyrrolizidine protein adducts, which are perfect diagnostic biomarkers, supporting causality evaluation using the updated RUCAM (Roussel Uclaf Causality Assessment Method). HSOS is clinically characterized by weight gain due to fluid accumulation (ascites, pleural effusion, and edema), and may lead to acute liver failure, liver transplantation, or death. In conclusion, plant-derived PAs with a double bond between C1 and C2 are potentially hepatotoxic after metabolic removal of the double bond, and may cause PA-HSOS with a potential lethal outcome, even if PA consumption is stopped.
Collapse
|
11
|
Teschke R, Eickhoff A, Schulze J, Danan G. Herb-induced liver injury (HILI) with 12,068 worldwide cases published with causality assessments by Roussel Uclaf Causality Assessment Method (RUCAM): an overview. Transl Gastroenterol Hepatol 2021; 6:51. [PMID: 34423172 PMCID: PMC8343418 DOI: 10.21037/tgh-20-149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Herbal products including herbal medicines are worldwide used in large amounts for treating minor ailments and for disease prevention. However, efficacy of most herbal products has rarely been well documented through randomized controlled trials in line with evidence-based medicine concepts, which could be used to estimate the benefit/risk ratio. Instead, much better documented are adverse reactions such as liver injury associated with the consumption of some herbal products, so called herb-induced liver injury (HILI), which represents a clinical challenge. In order to establish HILI as valid diagnosis, the use of a diagnostic algorithms such as Roussel Uclaf Causality Assessment Method (RUCAM) is widely recommended, although physicians in some countries are reluctant to use RUCAM for their HILI cases. This review on worldwide HILI and RUCAM, developed as part of the artificial intelligence ideas, reveals that China is the leading country with 24 publications on HILI cases that were all assessed for causality using RUCAM, followed by Korea with 15 reports, Germany with 9 reports, the US with 7 reports, and Spain with 6 reports, whereas the remaining countries provided less than 4 reports. The total number of assessed HILI cases is 12,068 worldwide derived from 80 publications but in each report HILI case numbers were variable in a range from 1 up to 6,971. This figure compares with 46,266 cases of drug-induced liver injury (DILI) published worldwide from 2014 to early 2019 also assessed for causality by RUCAM. The original version of RUCAM was validated and established in 1993 and updated in 2016 that should be used in future HILI cases. RUCAM is an objective, structured, and validated method, specifically designed for liver injury. It is a scoring system including case data elements to be assessed and scored individually to provide a final score in five causality gradings. Among the 11,404/12,068 HILI (94.5%) cases assessable for evaluation, causality gradings were highly probable in 4.2%, probable in 15.5%, possible in 70.3%, and unlikely or excluded in 10.0%. To improve the future reporting of RUCAM based HILI cases, recommendations include the strict adherence to instructions outlined in the updated RUCAM and, in particular, to follow prospective data collection on the cases to ensure completeness of case data. In conclusion, RUCAM can well be used to assess causality in suspected HILI cases, and additional efforts are now required to increase the quality of the reported cases.
Collapse
Affiliation(s)
- Rolf Teschke
- Division of Gastroenterology and Hepatology, Department of Internal Medicine II, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
| | - Axel Eickhoff
- Division of Gastroenterology and Hepatology, Department of Internal Medicine II, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
| | - Johannes Schulze
- Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt/Main, Frankfurt/Main, Germany
| | - Gaby Danan
- Pharmacovigilance consultancy, Paris, France
| |
Collapse
|
12
|
Detection Method and System of the Human Body Characteristic Index Based on TCM. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5549842. [PMID: 33986941 PMCID: PMC8093036 DOI: 10.1155/2021/5549842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/20/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022]
Abstract
As traditional Chinese medicine (TCM) has gained more and more recognition in the world, Chinese medicine has also played its important role. However, traditional Chinese medicine equipment is relatively deficient, with insufficient functions and low degree of digitalization. For example, existing auscultation equipment can obtain few human characteristic indicators, which is difficult to meet the needs of reference in traditional Chinese medicine diagnosis. Based on this, this paper designed a human body characteristic index detection system based on the principle of traditional Chinese medicine, which includes respiratory and heartbeat signal acquisition device, meridian and acupoint signal acquisition device, temperature signal acquisition device, pulse and blood pressure acquisition device, processing module, keyword module, and output module. The respiratory and heartbeat signal acquisition device is used to collect the respiratory and heartbeat signal of human body. Meridian acupoint signal acquisition device is used to collect human meridian acupoint radio signals. The temperature signal acquisition device is used to collect the infrared temperature light wave signal of human body. Pulse and blood pressure acquisition devices are used to collect pulse and blood pressure signals. The processing module is used to obtain one or more human body characteristic indicators according to one or more of the respiration and heartbeat signals, meridians and acupoints signals, temperature signals, pulse, and blood pressure, including Qi and blood characteristic indicators, viscera and six meridian characteristic indicators, and temperature characteristic indicators. The keyword corresponding module is used to obtain the corresponding keyword representing the physiological state information of human body according to the one or more human body characteristic indicators. The output module is used to output the human body characteristic index and the key words. It includes the key words of Qi and blood state information, the key words of viscera state information, the key words of Qi and blood state information, etc. The system can be used for serious disease screening, chronic disease management, and risk early warning.
Collapse
|
13
|
Xia C, Liu Y, Yao H, Zhu W, Ding J, Jin J. Causality assessment of skyfruit-induced liver injury using the updated RUCAM: a case report and review of the literature. J Int Med Res 2021; 48:300060520917569. [PMID: 32293220 PMCID: PMC7160776 DOI: 10.1177/0300060520917569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In many Asian countries, herbs are used to treat disease. However, herbs also
have adverse effects. Herb-induced liver injury has become a serious public
health problem requiring urgent attention. The seeds of Swietenia
macrophylla, a member of the family Polygonaceae, are often called
skyfruit. We recently encountered a case of liver injury caused by skyfruit. The
patient suffered from hepatocellular injury. We applied the updated Roussel
Uclaf Causality Assessment Method (RUCAM) and the results indicated a highly
probable relationship with skyfruit (total score 10). Moreover, we summarize
another six cases of skyfruit-induced liver injury from the literature. The aim
of our report is to help clinicians become more aware of the potential
hepatotoxic effects of skyfruit and to accurately describe the clinical and
laboratory characteristics of skyfruit-induced liver injury.
Collapse
Affiliation(s)
- Caixia Xia
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weihong Zhu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiexia Ding
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Jin
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Wang X, Zhang W, Yang Y, Chen Y, Zhuge Y, Xiong A, Yang L, Wang Z. Blood microRNA Signatures Serve as Potential Diagnostic Biomarkers for Hepatic Sinusoidal Obstruction Syndrome Caused by Gynura japonica Containing Pyrrolizidine Alkaloids. Front Pharmacol 2021; 12:627126. [PMID: 33679405 PMCID: PMC7933570 DOI: 10.3389/fphar.2021.627126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background and Aims: The Gynura japonica-induced hepatic sinusoidal obstruction syndrome (HSOS) is closely related to pyrrolizidine alkaloids (PAs), and its prevalence has been increasing worldwide in recent years. However, no effective therapy for PA-induced HSOS in clinics is available, partially due to the failure of quick diagnosis. This study aims to identify blood microRNA (miRNA) signatures as potential biomarkers for PA-induced HSOS in clinics. Methods: The microarray-based miRNA profiling was performed on blood samples of the discovery cohort, which consisted of nine patients with HSOS and nine healthy donors. Differentially expressed miRNAs were further confirmed using a validation cohort, which consisted of 20 independent patients with HSOS. In addition, the rat model was established through the oral administration of the total alkaloid extract from G. japonica to investigate the association of miRNA biomarkers with the progression of HSOS. Bioinformatic analyses, including GO and KEGG enrichment, receiver operating characteristics curve, and correlation analyses were conducted to evaluate the accuracy of the potential miRNA biomarkers. Results: Three miRNAs, namely miR-148a-3p, miR-362-5p, and miR-194-5p, were overexpressed in patients and rats with PA-induced HSOS. These miRNAs were positively related to the severity of liver injury and displayed considerable diagnostic accuracy for patients with HSOS with areas under the curve over 0.87. Conclusion: In summary, this study demonstrated that three miRNAs, hsa-miR-148a-3p, hsa-miR-362-5p, and hsa-miR-194-5p, might serve as potential biomarkers for PA-induced HSOS in clinics.
Collapse
Affiliation(s)
- Xunjiang Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Wei Zhang
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, Affiliated to Nanjing University Medical School, Nanjing, China
| | - Yongfeng Yang
- Department of Liver Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiran Chen
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, Affiliated to Nanjing University Medical School, Nanjing, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, Affiliated to Nanjing University Medical School, Nanjing, China
| | - Aizhen Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| |
Collapse
|
15
|
Tsai SC, Lu CC, Bau DT, Chiu YJ, Yen YT, Hsu YM, Fu CW, Kuo SC, Lo YS, Chiu HY, Juan YN, Tsai FJ, Yang JS. Approaches towards fighting the COVID‑19 pandemic (Review). Int J Mol Med 2021; 47:3-22. [PMID: 33236131 PMCID: PMC7723515 DOI: 10.3892/ijmm.2020.4794] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/04/2020] [Indexed: 11/05/2022] Open
Abstract
The coronavirus disease 2019 (COVID‑19) outbreak, which has caused >46 millions confirmed infections and >1.2 million coronavirus related deaths, is one of the most devastating worldwide crises in recent years. Infection with COVID‑19 results in a fever, dry cough, general fatigue, respiratory symptoms, diarrhoea and a sore throat, similar to those of acute respiratory distress syndrome. The causative agent of COVID‑19, SARS‑CoV‑2, is a novel coronavirus strain. To date, remdesivir has been granted emergency use authorization for use in the management of infection. Additionally, several efficient diagnostic tools are being actively developed, and novel drugs and vaccines are being evaluated for their efficacy as therapeutic agents against COVID‑19, or in the prevention of infection. The present review highlights the prevalent clinical manifestations of COVID‑19, characterizes the SARS‑CoV‑2 viral genome sequence and life cycle, highlights the optimal methods for preventing viral transmission, and discusses possible molecular pharmacological mechanisms and approaches in the development of anti‑SARS‑CoV‑2 therapeutic agents. In addition, the use of traditional Chinese medicines for management of COVID‑19 is discussed. It is expected that novel anti‑viral agents, vaccines or an effective combination therapy for treatment/management of SARS‑CoV‑2 infection and spread therapy will be developed and implemented in 2021, and we would like to extend our best regards to the frontline health workers across the world in their fight against COVID‑19.
Collapse
Affiliation(s)
- Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University
| | - Chi-Cheng Lu
- Department of Sport Performance, National Taiwan University of Sport
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354
| | - Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veteran General Hospital
- Department of Surgery, School of Medicine, National Yang Ming University, Taipei 11217
| | - Yu-Ting Yen
- Drug Development Center, Institute of New Drug Development, China Medical University, Taichung 40402
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University
| | - Chih-Wei Fu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401
| | - Sheng-Chu Kuo
- School of Pharmacy, China Medical University, Taichung 40402
| | - Yu-Shiang Lo
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 97002
- Master and PhD Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 97004
- General Education Center, Tzu Chi University of Science and Technology, Hualien 97005
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University
- China Medical University Children's Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447
| |
Collapse
|
16
|
Anh LH, Quan NV, Lam VQ, Iuchi Y, Takami A, Teschke R, Xuan TD. Antioxidant, Anti-tyrosinase, Anti-α-amylase, and Cytotoxic Potentials of the Invasive Weed Andropogon virginicus. PLANTS 2020; 10:plants10010069. [PMID: 33396235 PMCID: PMC7824498 DOI: 10.3390/plants10010069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/20/2020] [Accepted: 12/25/2020] [Indexed: 12/31/2022]
Abstract
Andropogon virginicus is an invasive weed that seriously threatens agricultural production and economics worldwide. In this research, dried aerial parts of A. virginicus were extracted, applying Soxhlet and liquid-liquid phase methods to acquire the total crude (T-Anvi), hexane (H-Anvi), ethyl acetate (E-Anvi), butanol (B-Anvi), and water (W-Anvi) extracts, respectively. In which, T-Anvi contains the highest total phenolic and flavonoid contents (24.80 mg gallic acid and 37.40 mg rutin equivalents per g dry weight, respectively). Via anti-radical (ABTS and DPPH), and reducing power assays, E-Anvi exhibits the most potent activities (IC50 = 13.96, 43.59 and 124.11 µg/mL, respectively), stronger than butylated hydroxytoluene (BHT), a standard antioxidant, while the lipid peroxidation inhibitory effect of E-Anvi (LPI = 90.85% at the concentration of 500 µg/mL) is close to BHT. E-Anvi shows the most substantial inhibition (IC50 = 2.58 mg/mL) on tyrosinase. Notably, α-amylase is significantly suppressed by H-Anvi (IC50 = 0.72 mg/mL), over twice stronger than the positive control, palmitic acid. In the cytotoxic assay, E-Anvi is the strongest extract inhibiting K562 cells (IC50 = 112.01 µg/mL). Meanwhile, T-Anvi shows the highest prevention on Meg-01 expansion (IC50 = 91.40 µg/mL). Dominant compounds detected in E-Anvi by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) are identified as flavonoids. However, among four major compounds identified in H-Anvi by gas chromatography-mass spectrometry (GC-MS), palmitic acid and phytol are the most abundant compounds with peak areas of 27.97% and 16.42%, respectively. In essence, this is the first report describing that A. virginicus is a potential natural source of antioxidants, tyrosinase and α-amylase inhibitors, and anti-chronic myeloid leukemia (CML) agents which may be useful in future therapeutics as promising alternative medicines.
Collapse
Affiliation(s)
- La Hoang Anh
- Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8529, Japan; (L.H.A.); (N.V.Q.); (Y.I.)
| | - Nguyen Van Quan
- Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8529, Japan; (L.H.A.); (N.V.Q.); (Y.I.)
| | - Vu Quang Lam
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (V.Q.L.); (A.T.)
| | - Yu Iuchi
- Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8529, Japan; (L.H.A.); (N.V.Q.); (Y.I.)
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (V.Q.L.); (A.T.)
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 63450 Hanau, Germany;
| | - Tran Dang Xuan
- Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8529, Japan; (L.H.A.); (N.V.Q.); (Y.I.)
- Correspondence: ; Tel./Fax: +81-82-424-6927
| |
Collapse
|
17
|
Tao LT, Huang TL, Zheng DW, Zou X. Case of professor Xu ZOU's acupuncture technique for "benefiting kidney and strengthening anti-pathogenic qi" in promoting the absorption of COVID-19. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2020; 30:167-170. [PMID: 32837109 PMCID: PMC7377728 DOI: 10.1016/j.wjam.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A case of the absorption of corona virus disease 2019 (COVID-19) promoted by professor Xu ZOU's acupuncture technique for "benefiting kidney and strengthening anti-pathogenic qi" is introduced. A female patient suffered from COVID-19, 64 years old, had been treated with acupuncture and Chinese herb granules for 10 days on the base of the oral administration of moxifloxacin. In the re-examination, the chest CT image indicated that the absorption of COVID-19 was obvious as compared with before, the nucleic acid test of novel corona virus was negative and the patient narrated no obvious discomfort. Acupuncture therapy plays its active adjuvant effect in the whole process of the treatment of COVID-19.
Collapse
Affiliation(s)
- Lan-Ting Tao
- Second Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China (, 510405, )
| | - Tao-Liang Huang
- Second Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China (, 510405, )
| | - Dan-Wen Zheng
- Second Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China (, 510405, )
| | - Xu Zou
- Second Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China (, 510405, )
| |
Collapse
|
18
|
Wu ZT, Li ZQ, Shi W, Wang LL, Jiang Y, Li P, Li HJ. The crucial role of metabolic regulation in differential hepatotoxicity induced by furanoids in Dioscorea bulbifera. Chin J Nat Med 2020; 18:57-69. [PMID: 31955824 DOI: 10.1016/s1875-5364(20)30005-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Indexed: 01/31/2023]
Abstract
Diterpenoid lactones (DLs), a group of furan-containing compounds found in Dioscorea bulbifera L. (DB), have been reported to be associated with hepatotoxicity. Different hepatotoxicities of these DLs have been observed in vitro, but reasonable explanations for the differential hepatotoxicity have not been provided. Herein, the present study aimed to confirm the potential factors that contribute to varied hepatotoxicity of four representative DLs (diosbulbins A, B, C, F). In vitro toxic effects were evaluated in various cell models and the interactions between DLs and CYP3A4 at the atomic level were simulated by molecular docking. Results showed that DLs exhibited varied cytotoxicities, and that CYP3A4 played a modulatory role in this process. Moreover, structural variation may cause different affinities between DLs and CYP3A4, which was positively correlated with the observation of cytotoxicity. In addition, analysis of the glutathione (GSH) conjugates indicated that reactive intermediates were formed by metabolic oxidation that occurred on the furan moiety of DLs, whereas, GSH consumption analysis reflected the consistency between the reactive metabolites and the hepatotoxicity. Collectively, our findings illustrated that the metabolic regulation played a crucial role in generating the varied hepatotoxicity of DLs.
Collapse
Affiliation(s)
- Zi-Tian Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhuo-Qing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Li Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
19
|
Teschke R, Zhu Y, Jing J. Herb-induced Liver Injury in Asia and Current Role of RUCAM for Causality Assessment in 11,160 Published Cases. J Clin Transl Hepatol 2020; 8:200-214. [PMID: 32832401 PMCID: PMC7438347 DOI: 10.14218/jcth.2020.00009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Herb-induced liver injuries (HILI) by traditional herbal medicines are particular challenges in Asian countries, with issues over the best approach to establish causality. The aim of the current analysis was to provide an overview on how causality was assessed in HILI cases from Asian countries and whether the Roussel Uclaf Causality Assessment Method (RUCAM) was the preferred diagnostic algorithm, as shown before in worldwide evaluated cases of drug-induced liver injury (DILI). Using the PubMed database, publications in English language were preferred to allow for reevaluation by peers. Overall 11,160 HILI cases have assessed causality using RUCAM and were published by first authors working in Asian countries. With 21 evaluable reports, most publications came from mainland China, with Hong Kong and Taiwan, followed by Korea (n=15), Singapore (n=2), and Japan (n=1), while other Asian countries were not contributory. Most publications provided case and RUCAM data of good quality. For better presentation of future cases, however, the following recommendations are given: (1) preference of prospective study design with use of the updated RUCAM version; (2) clear separation of HILI cohorts from those of other herbal products or DILI; (3) case series for epidemiology studies should contain many essential data, possibly also as supplementary material; (4) otherwise, preference of single case reports providing individual case data and RUCAM-based causality gradings, and applying liver test threshold values; and (5) publication in English language journals. In conclusion, China and Korea are top in presenting RUCAM-based HILI cases, other Asian countries are encouraged to follow.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
- Correspondence to: Rolf Teschke, Department of Internal Medicine II, Klinikum Hanau, Teaching Hospital of the Goethe University of Frankfurt/Main, Leimenstrasse 20, D-63450 Hanau, Germany. Tel: +49-6181-21859, Fax: +49-6181-2964211, E-mail:
| | - Yun Zhu
- The Fifth Medical Center, General Hospital of PLA, Beijing, China
| | - Jing Jing
- The Fifth Medical Center, General Hospital of PLA, Beijing, China
| |
Collapse
|
20
|
Tan Y, Chen H, Zhou X, Sun L. RUCAM-based assessment of liver injury by xiang-tian-guo (Swietenia macrophylla) seeds, a plant used for treatment of hypertension and diabetes. Ann Hepatol 2020; 18:406-407. [PMID: 31056362 DOI: 10.1016/j.aohep.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Youwen Tan
- Department of Hepatology, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China.
| | - Hongbo Chen
- Department of Infection, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Xinbei Zhou
- Department of Hepatology, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Li Sun
- Department of Hepatology, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| |
Collapse
|
21
|
Teschke R, Eickhoff A, Brown AC, Neuman MG, Schulze J. Diagnostic Biomarkers in Liver Injury by Drugs, Herbs, and Alcohol: Tricky Dilemma after EMA Correctly and Officially Retracted Letter of Support. Int J Mol Sci 2019; 21:ijms21010212. [PMID: 31892250 PMCID: PMC6981464 DOI: 10.3390/ijms21010212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Liver injuries caused by the use of exogenous compounds such as drugs, herbs, and alcohol are commonly well diagnosed using laboratory tests, toxin analyses, or eventually reactive intermediates generated during metabolic degradation of the respective chemical in the liver and subject to covalent binding by target proteins. Conditions are somewhat different for idiosyncratic drug induced liver injury (DILI), for which metabolic intermediates as diagnostic aids are rarely available. Although the diagnosis of idiosyncratic DILI can well be established using the validated, liver specific, structured, and quantitative RUCAM (Roussel Uclaf Causality Assessment Method), there is an ongoing search for new diagnostic biomarkers that could assist in and also confirm RUCAM-based DILI diagnoses. With respect to idiosyncratic DILI and following previous regulatory letters of recommendations, selected biomarkers reached the clinical focus, including microRNA-122, microRNA-192, cytokeratin analogues, glutamate dehydrogenase, total HMGB-1 (High Mobility Group Box), and hyperacetylated HMGB-1 proteins. However, the new parameters total HMGB-1, and even more so the acetylated HMGB-1, came under critical scientific fire after misconduct at one of the collaborating partner centers, leading the EMA to recommend no longer the exploratory hyperacetylated HMGB1 isoform biomarkers in clinical studies. The overall promising nature of the recommended biomarkers was considered by EMA as highly dependent on the outstanding results of the now incriminated biomarker hyperacetylated HMGB-1. The EMA therefore correctly decided to officially retract its Letter of Support affecting all biomarkers listed above. New biomarkers are now under heavy scrutiny that will require re-evaluations prior to newly adapted recommendations. With Integrin beta 3 (ITGB3), however, a new diagnostic biomarker may emerge, possibly being drug specific but tested in only 16 patients; due to substantial remaining uncertainties, final recommendations would be premature. In conclusion, most of the currently recommended new biomarkers have lost regulatory support due to scientific misconduct, requiring now innovative approaches and re-evaluation before they can be assimilated into clinical practice.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-63450 Hanau, Germany;
- Correspondence: ; Tel.: +49-6181-21859; Fax: +49-6181-2964211
| | - Axel Eickhoff
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-63450 Hanau, Germany;
| | - Amy C. Brown
- Department of Complementary and Integrative Medicine, University of Hawai’i at Manoa, Honolulu, HI 96813, USA;
| | - Manuela G. Neuman
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M2 R1 W6, Canada;
| | - Johannes Schulze
- Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt/Main, D-60590 Frankfurt/Main, Germany;
| |
Collapse
|
22
|
Meunier L, Larrey D. Drug-Induced Liver Injury: Biomarkers, Requirements, Candidates, and Validation. Front Pharmacol 2019; 10:1482. [PMID: 31920666 PMCID: PMC6917655 DOI: 10.3389/fphar.2019.01482] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
The hepatotoxicity of drugs is the main cause of drug withdrawal from the pharmaceutical market and interruption of the development of new molecules. Biomarkers are useful in several situations. In case of suspected drug-induced liver injury (DILI), biomarkers can be used to confirm liver damage, its severity, prognosis, confirm drug causality, or define the type of DILI. In this review, we will first present the currently used biomarkers and candidate biomarkers for the future. The current biomarkers are certainly very helpful including with the assistance of diagnostic method such the Roussel Uclaf Causality Assessment Method, but provide a limited information for the early detection of liver injury, the role of specific drug and the prediction of DILI. Some biomarkers are promising but they are not yet available for routine use. Studies are still needed to confirm their interest, particularly in comparison to Roussel Uclaf Causality Assessment Method.
Collapse
Affiliation(s)
| | - Dominique Larrey
- Liver and Transplantation Unit, Montpellier School of Medicine and IRB-INSERM-1183, Montpellier, France
| |
Collapse
|
23
|
A Computational Toxicology Approach to Screen the Hepatotoxic Ingredients in Traditional Chinese Medicines: Polygonum multiflorum Thunb as a Case Study. Biomolecules 2019; 9:biom9100577. [PMID: 31591318 PMCID: PMC6843577 DOI: 10.3390/biom9100577] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/29/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, liver injury induced by Traditional Chinese Medicines (TCMs) has gained increasing attention worldwide. Assessing the hepatotoxicity of compounds in TCMs is essential and inevitable for both doctors and regulatory agencies. However, there has been no effective method to screen the hepatotoxic ingredients in TCMs available until now. In the present study, we initially built a large scale dataset of drug-induced liver injuries (DILIs). Then, 13 types of molecular fingerprints/descriptors and eight machine learning algorithms were utilized to develop single classifiers for DILI, which resulted in 5416 single classifiers. Next, the NaiveBayes algorithm was adopted to integrate the best single classifier of each machine learning algorithm, by which we attempted to build a combined classifier. The accuracy, sensitivity, specificity, and area under the curve of the combined classifier were 72.798, 0.732, 0.724, and 0.793, respectively. Compared to several prior studies, the combined classifier provided better performance both in cross validation and external validation. In our prior study, we developed a herb-hepatotoxic ingredient network and a herb-induced liver injury (HILI) dataset based on pre-clinical evidence published in the scientific literature. Herein, by combining that and the combined classifier developed in this work, we proposed the first instance of a computational toxicology to screen the hepatotoxic ingredients in TCMs. Then Polygonum multiflorum Thunb (PmT) was used as a case to investigate the reliability of the approach proposed. Consequently, a total of 25 ingredients in PmT were identified as hepatotoxicants. The results were highly consistent with records in the literature, indicating that our computational toxicology approach is reliable and effective for the screening of hepatotoxic ingredients in Pmt. The combined classifier developed in this work can be used to assess the hepatotoxic risk of both natural compounds and synthetic drugs. The computational toxicology approach presented in this work will assist with screening the hepatotoxic ingredients in TCMs, which will further lay the foundation for exploring the hepatotoxic mechanisms of TCMs. In addition, the method proposed in this work can be applied to research focused on other adverse effects of TCMs/synthetic drugs.
Collapse
|
24
|
Influence Factors on the Hepatotoxicity of Polygoni Multiflori Radix. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5482896. [PMID: 31662776 PMCID: PMC6778938 DOI: 10.1155/2019/5482896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Background Chinese herbal medicine (CHM) with reported hepatotoxicity is identified, in which Polygoni Multiflori Radix (HSW) attracts most attention. According to the Traditional Chinese Medicine (TCM) theory, processing is believed to be able to reduce the toxicity of HSW, but in publications, both processed and unprocessed HSW are reported to cause liver injury. Methods This article reviews the case reports and experimental researches involving liver damage associated with HSW from the following aspects: clinical features, hepatic toxicity components, hepatotoxicity mechanism, and so on. Results HSW has hepatotoxicity in different degrees and even leads to death, and the reason is multioriginal. Conclusions People should be educated to have a broad understanding on ensuring drug use safety and lower drug-induced risks when taking HSW preparations.
Collapse
|
25
|
Danan G, Teschke R. Roussel Uclaf Causality Assessment Method for Drug-Induced Liver Injury: Present and Future. Front Pharmacol 2019; 10:853. [PMID: 31417407 PMCID: PMC6680600 DOI: 10.3389/fphar.2019.00853] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Among the causality assessment methods used for the diagnosis of drug-induced liver injury (DILI), Roussel Uclaf Causality Assessment Method (RUCAM) remains the most widely used not only for individual cases but also for prospective and retrospective studies worldwide. This first place is justified by the characteristics of the method such as precise definition and classification of the liver injury, which determines the right scale in the scoring system, precise definition of the seven criteria, and the validation approach based on cases with positive rechallenge. RUCAM is used not only for any types of drugs but also for herbal medicines causing herb-induced liver injury, (HILI) and dietary supplements. In 2016, the updated RUCAM provided further specifications of criteria and instructions to improve interobserver variability. Although this method was criticized for criteria such as the age and alcohol consumption, recent consensus meeting of experts has recognized their value and recommended their incorporation into any method. While early studies searching for DILI in large databases especially in electronic medical records were based on codes of diseases or natural language without causality assessment, the recommendation is now to include RUCAM in the search for DILI/HILI. There are still studies on DILI detection or the identification of biomarkers that take into consideration the cases assessed as “possible,” although it is well known that these cases reduce the strength of the association between the cases and the offending compound or the new biomarker to be validated. Attempts to build electronic RUCAM or automatized application of this method were successful despite some weaknesses to be corrected. In the future, more reflections are needed on an expert system to standardize the exclusion of alternative causes according to the clinical context. Education and training on RUCAM should be encouraged to improve the results of the studies and the day-to-day work in pharmacovigilance departments in companies or in regulatory agencies. It is also expected to improve RUCAM with biomarkers or other criteria provided that the validation process replaces expert opinion by robust standards such as those used for the original method.
Collapse
Affiliation(s)
- Gaby Danan
- Pharmacovigilance Consultancy, Paris, France
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University, Frankfurt, Germany
| |
Collapse
|
26
|
Uetrecht J. Mechanistic Studies of Idiosyncratic DILI: Clinical Implications. Front Pharmacol 2019; 10:837. [PMID: 31402866 PMCID: PMC6676790 DOI: 10.3389/fphar.2019.00837] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022] Open
Abstract
The idiosyncratic nature of idiosyncratic drug-induced liver injury (IDILI) makes mechanistic studies very difficult, and little is known with certainty. However, the fact that the IDILI caused by some drugs is associated with specific HLA genotypes provides strong evidence that it is mediated by the adaptive immune system. This is also consistent with the histology and the general characteristics of IDILI. However, there are other mechanistic hypotheses. Various in vitro and in vivo systems have been used to test hypotheses. Two other hypotheses are mitochondrial injury and inhibition of the bile salt export pump. It is possible that these mechanisms are responsible for some cases of IDILI or that these mechanisms are complementary and are involved in initiating an immune response. In general, it is believed that the initiation of an immune response requires activation of antigen-presenting cells by molecules such as danger-associated molecular pattern molecules (DAMPs). An attractive hypothesis for the mechanism by which DAMPs induce an immune response is through the activation of inflammasomes. The dominant immune response in the liver is immune tolerance, and it is only when immune tolerance fails that significant liver injury occurs. Consistent with this concept, an animal model was developed in which immune checkpoint inhibition unmasked the ability of drugs to cause liver injury. Although it appears that the liver damage is mediated by the adaptive immune system, an innate immune response is required for an adaptive immune response. The innate immune response is not dependent on specific HLA genes or T cell receptors and may occur in most patients and animals treated with a drug that can cause IDILI. Studies of the subclinical innate immune response to drugs may provide important mechanistic clues and provide a method to screen drugs for their potential to cause IDILI.
Collapse
Affiliation(s)
- Jack Uetrecht
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Teschke R. Idiosyncratic DILI: Analysis of 46,266 Cases Assessed for Causality by RUCAM and Published From 2014 to Early 2019. Front Pharmacol 2019; 10:730. [PMID: 31396080 PMCID: PMC6664244 DOI: 10.3389/fphar.2019.00730] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
One of the most difficult challenges in clinical hepatology is the diagnosis of a drug-induced liver injury (DILI). The timing of the events, exclusion of alternative causes, and taking into account the clinical context should be systematically assessed and scored in a transparent manner. RUCAM (Roussel Uclaf Causality Assessment Method) is a well-established diagnostic algorithm and scale to assess causality in patients with suspected DILI. First published in 1993 and updated in 2016, RUCAM is now the worldwide most commonly used causality assessment method (CAM) for DILI. The following manuscript highlights the recent implementation of RUCAM around the world, by reviewing the literature for publications that utilized RUCAM, and provides a review of “best practices” for the use of RUCAM in cases of suspected DILI. The worldwide appreciation of RUCAM is substantiated by the current analysis of 46,266 DILI cases, all tested for causality using RUCAM. These cases derived from 31 reports published from 2014 to early 2019. Their first authors came from 10 countries, with China on top, followed by the US, and Germany on the third rank. Importantly, all RUCAM-based DILI reports were published in high profile journals. Many other reports were published earlier from 1993 up to 2013 in support of RUCAM. Although most of the studies were of high quality, the current case analysis revealed shortcomings in few studies, not at the level of RUCAM itself but rather associated with the work of the users. To ensure in future DILI cases a better performance by the users, a list of essential elements is proposed. As an example, all suspected DILI cases should be evaluated 1) by the updated RUCAM to facilitate result comparisons, 2) according to a prospective study protocol to ensure complete data sets, 3) after exclusion of cases with herb induced liver injury (HILI) from a DILI cohort to prevent confounding variables, and 4) according to inclusion of DILI cases with RUCAM-based causality gradings of highly probable or probable, in order to increase the specificity of the results. In conclusion, RUCAM benefits from its high appreciation and performs well provided the users adhere to published recommendations to prevent confounding variability.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, Germany
| |
Collapse
|
28
|
Yang H, Guo D, Xu Y, Zhu M, Yao C, Chen C, Jia W. Comparison of Different Liver Test Thresholds for Drug-Induced Liver Injury: Updated RUCAM versus Other Methods. Front Pharmacol 2019; 10:816. [PMID: 31379581 PMCID: PMC6658872 DOI: 10.3389/fphar.2019.00816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022] Open
Abstract
According to the updated Roussel Uclaf Causality Assessment Method (RUCAM), drug-induced liver injury (DILI) is currently defined based on thresholds of alanine aminotransferase (ALT) levels above 5 × the upper limit of normal (ULN) and/or alkaline phosphatase (ALP) levels greater than 2 × the ULN. However, many parameters with different thresholds are also currently used in the clinic. We therefore performed a comparative analysis to evaluate which set of criteria was the most appropriate to detect DILI. We enrolled hospitalized patients who received fluoroquinolones to treat or prevent infections. Three liver test criteria were used to diagnose DILI in these patients. RUCAM criteria were defined as the gold standard, and the other two criteria were as follows: 1) ALT or aspartate aminotransferase (AST) levels greater than 5 × the ULN on two consecutive occasions and/or ALP levels greater than 2 × the ULN on two consecutive occasions [issued by DILI Network (DILIN)]; 2) ALT levels greater than 1 × the ULN on two consecutive occasions or ALT levels greater than 2 × the ULN [issued by the National Medical Products Administration (NMPA) of China]. We found that the RUCAM criteria resulted in 657 warnings, DILIN criteria resulted in 358, NMPA criteria resulted in 1,377, and the positive predictive value (PPV) were 9.74%, 10.89%, and 9.73% (P = 0.80), respectively. The levels of agreement of the DILIN and NMPA criteria with the RUCAM criteria were moderate, but the agreement between the DILIN criteria and NMPA criteria was poor. In conclusion, the NMPA criteria with relatively lax thresholds for the parameters require much more labor to determine the diagnosis, making them unsuitable for clinical practice. Conversely, the DILIN criteria employing stricter thresholds for the parameters were more effective but would miss some positive cases, and the cases it identified were usually quite serious, which is not conductive to early intervention. Therefore, we still recommend the use of the RUCAM criteria in clinical practice.
Collapse
Affiliation(s)
- Hongyi Yang
- Department of Pharmaceutical Care, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Daihong Guo
- Department of Pharmaceutical Care, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yuanjie Xu
- Department of Pharmaceutical Care, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Man Zhu
- Department of Pharmaceutical Care, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chong Yao
- Department of Pharmaceutical Care, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chao Chen
- Department of Pharmaceutical Care, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wangping Jia
- Department of Pharmaceutical Care, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
29
|
Gynura Rhizoma containing pyrrolizidine alkaloids induces the hepatic sinusoidal obstruction syndrome in mice via upregulating fibrosis-related factors. Acta Pharmacol Sin 2019; 40:781-789. [PMID: 30367152 DOI: 10.1038/s41401-018-0155-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022]
Abstract
Recently, hepatic sinusoidal obstruction syndrome (HSOS) caused by herbal preparations containing pyrrolizidine alkaloids (PAs), such as Gynura Rhizoma (Tusanqi), has gained global attention. However, the lack of a reliable and reproducible animal model has greatly hampered mechanistic studies. Therefore, we aimed to establish a reproducible HSOS mouse model and investigate the hepatotoxic mechanism. The model was established by intragastrical administration of Gynura Rhizoma extract, i.e., 1.0 g extract/kg per day (equal to 16.7 g crude drug/kg per day based on extraction rate and 49.1 mg PA/kg per day based on the total PA content in the extract determined) for 40 successive days. Then, the mice were sacrificed, and their blood samples and livers were collected for analyses. Using hematoxylin-eosin (HE) and Masson staining, scanning electron microscopy imaging, clinical biomarkers, and other assays, we showed that the HSOS was successfully induced in our mouse model. Furthermore, we detected the key factors involved in liver fibrosis in the mice, revealing significantly increased hydroxyproline concentration; elevated expression of α-smooth muscle actin (α-SMA) and fibrosis-related genes such as Collagen-1, Collagen-3, Mmp2, Mmp13, Timp1, Timp3, and Activin, upregulated Smad3 phosphorylation, and increased serum TGF-β levels. Moreover, pro-inflammatory cytokines, including Tnf-α, Il-1β, and Il-6, were also increased in the model. All these results demonstrate the key roles of the TGF-β-Smad3 and inflammatory signaling pathways in this Gynura Rhizoma-induced HSOS mouse model, suggesting that blockade of fibrosis and/or inflammation should be an effective treatment for HSOS.
Collapse
|
30
|
A proposed pathologic sub-classification of drug-induced liver injury. Hepatol Int 2019; 13:339-351. [PMID: 30977034 DOI: 10.1007/s12072-019-09940-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/18/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND The aim of this study was to establish a new pathologic sub-classification of drug-induced liver injury (DILI) in combination with serum chemistry parameters and clinical observations. METHODS From 777 DILI cases diagnosed in China-Japan Friendship Hospital from 2003 to 2014, 590 cases without other concomitant liver diseases were selected for the study. Pathological classification was established. Pathology and serum biochemical correlation analyses in 208 acute cases with complete biochemical data and prognostic information were conducted. RESULTS We established a pathological classification of DILI according to the target cells of the liver (hepatocytes, bile duct epithelial cells, liver vascular and sinusoidal endothelial cells). In the 590 cases of DILI analyzed, hepatocyte injury accounted for 67.0%, bile duct epithelial injury (including cholestasis and mixed type of injury) 23.9%, and vascular injury 8.8%; about half of them were caused by the administration of traditional Chinese herbal medicines. Acute hepatocyte injury (lobular hepatitis) is further divided into mild, moderate and severe subtypes, while the mixed type of injury is categorized as cholestatic hepatitis and mixed hepatitis. The dynamic liver enzyme curves were established between lobular hepatitis and mixed-type hepatitis based on the combined consideration of histopathology and serum chemistry data. We proved that R value > 5 with cholestasis is a special feature of mixed hepatitis, which clarified the suspicion of the previous clinical classification of R value. Greater attention should be paid to drug-induced bile duct vanishing syndrome and drug-induced vascular injury. CONCLUSION The pathological classification is simple to adopt and practically useful, which demonstrates the consistency between clinical features and liver pathology. The correlation between pathology and clinical biochemistry is an important way to acquire further understanding of DILI.
Collapse
|
31
|
Tu C, He Q, Li CY, Niu M, Han ZX, Ge FL, Zhou YY, Zhang L, Wang XH, Zhu JX, Li RS, Song HB, Xiao XH, Wang JB. Susceptibility-Related Factor and Biomarkers of Dietary Supplement Polygonum multiflorum-Induced Liver Injury in Rats. Front Pharmacol 2019; 10:335. [PMID: 31024306 PMCID: PMC6459954 DOI: 10.3389/fphar.2019.00335] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Polygonum multiflorum [PM, synonym Reynoutria multiflora (Thunb.) Moldenke.], a well-known and commonly used Traditional Chinese Medicine and herbal dietary supplement for nourishing the kidney and liver, etc., has aroused wide concern for its reported potential hepatotoxicity. Previous clinical cases and experimental studies have suggested that mild immune stress (MIS) may be one of the susceptibility-related factors of idiosyncratic drug-induced liver injury (IDILI) caused by PM. In this paper, we found that the same dose of PM caused abnormal liver biochemical indicators and liver tissue damage in MIS model rats, while it did not result in liver injury in normal rats, further confirming that MIS is a susceptibility factor for PM-IDILI. Plasma chemokine/cytokine profiling indicated that the MIS model group was significantly different from the other groups, showing a significant upregulation of plasma chemokines, while the MIS/PM group showed upregulated expression of chemokines or pro-inflammatory cytokines. Liver histopathological examination indicated a small amount of inflammatory cytokine infiltration in the MIS group, but no hepatocyte injury, consistent with the plasma profiles of increased chemokines and unchanged inflammatory cytokines. Notably, metabolomics characterization showed that MIS caused reprogramming of these metabolic pathways (such as phenylalanine and glutamate pathways), which was associated with acute phase reactions and inflammatory responses. These results suggested that MIS may promote an immune response to the initial cellular injury induced by PM in the liver, and MIS-induced upregulation of chemokines and metabolic reprogramming may an important mechanism that mediates the susceptibility to PM-IDILI. Furthermore, via receiver operating characteristic (ROC) curves analysis, we identified 12 plasma cytokines (e.g., IP-10, MCP-1 and MIP-1α) and nine metabolomics biomarkers (e.g., L-Phenylalanine, Creatinine, and L-glutamine) with differential capabilities (all ROC AUC > 0.9) of identifying susceptibility model animals from normal ones, which might be of referable value for the clinical recognition of PM-IDILI susceptible individuals.
Collapse
Affiliation(s)
- Can Tu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qin He
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Chun-Yu Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zi-Xin Han
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fei-Lin Ge
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuan-Yuan Zhou
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Le Zhang
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Hui Wang
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jing-Xiao Zhu
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Rui-Sheng Li
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hai-Bo Song
- Center for Drug Reevaluation, China National Medical Product Administration, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
32
|
Zhang L, Wang T, Zhao BS, Zhang JX, Yang S, Fan CL, Li P. Effect of 2″- O-Rhamnosyl Icariside II, Baohuoside I and Baohuoside II in Herba Epimedii on Cytotoxicity Indices in HL-7702 and HepG2 Cells. Molecules 2019; 24:molecules24071263. [PMID: 30939785 PMCID: PMC6479309 DOI: 10.3390/molecules24071263] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 01/14/2023] Open
Abstract
Herba Epimedii, a commonly used Chinese medicine, has attracted much attention recently because of its potential hepatotoxic effects. 2″-O-Rhamnosyl icariside II, baohuoside I and baohuoside II are the main components of Herba Epimedii, and previous research indicates that these three compounds are related to the hepatotoxicity of Herba Epimedii. To test this idea, in this study, HL-7702 and HepG2 cells were chosen as the in vitro models and the influences of these three compounds on a series of cytotoxicity indices, including ALT, AST, LDH, SOD, GSH, MDA, ROS and MMP, were determined. The results showed that at certain concentrations, the three compounds had different effects on the indices. Among them, baohuoside I at high concentration (32 μg/mL) displayed more significant cytotoxicity than the other two compounds; therefore, it was inferred to be more closely correlated with the liver injury induced by Herba Epimedii combined with the previous study, and its toxic mechanisms may be involved in increasing oxidative stress and inducing apoptosis. The findings of this study may provide evidence of the toxic composition of Herba Epimedii to preliminarily discuss the toxic mechanisms and provide improved guidance for its clinical safety.
Collapse
Affiliation(s)
- Lin Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing 10029, China.
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing 10029, China.
| | - Bao-Sheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing 10029, China.
| | - Jing-Xuan Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing 10029, China.
| | - Song Yang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing 10029, China.
| | - Chun-Lan Fan
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing 10029, China.
| | - Pin Li
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing 10029, China.
| |
Collapse
|
33
|
Gao Y, Wang Z, Tang J, Liu X, Shi W, Qin N, Wang X, Pang Y, Li R, Zhang Y, Wang J, Niu M, Bai Z, Xiao X. New incompatible pair of TCM: Epimedii Folium combined with Psoraleae Fructus induces idiosyncratic hepatotoxicity under immunological stress conditions. Front Med 2019; 14:68-80. [PMID: 30924023 DOI: 10.1007/s11684-019-0690-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/27/2018] [Indexed: 12/19/2022]
Abstract
Epimedii Folium (EF) combined with Psoraleae Fructus (PF) is a common modern preparation, but liver injury caused by Chinese patent medicine preparations containing EF and PF has been frequently reported in recent years. Zhuangguguanjiewan pills (ZGW), which contain EF and PF, could induce immune idiosyncratic liver injury according to clinical case reports and a nonhepatotoxic dose of lipopolysaccharide (LPS) model. This present study evaluated the liver injury induced by EF or PF alone or in combination and investigated the related mechanism by using the LPS model. Liver function indexes and pathological results showed that either EF or PF alone or in combination led to liver injury in normal rats; however, EF or PF alone could lead to liver injury in LPS-treated rats. Moreover, EF combined with PF could induce a greater degree of injury than that caused by EF or PF alone in LPS-treated rats. Furthermore, EF or PF alone or in combination enhanced the LPS-stimulated inflammatory cytokine production, implying that IL-1β, which is processed and released by activating the NLRP3 inflammasome, is a specific indicator of EF-induced immune idiosyncratic hepatotoxicity. Thus, EF may induce liver injury through enhancing the LPS-mediated proinflammatory cytokine production and activating the NLRP3 inflammasome. In addition, the metabolomics analysis results showed that PF affected more metabolites in glycerophospholipid and sphingolipid metabolic pathways compared with EF in LPS model, suggesting that PF increased the responsiveness of the liver to LPS or other inflammatory mediators via modulation of multiple metabolic pathways. Therefore, EF and PF combination indicates traditional Chinese medicine incompatibility, considering that it induces idiosyncratic hepatotoxicity under immunological stress conditions.
Collapse
Affiliation(s)
- Yuan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhilei Wang
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinfa Tang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Xiaoyi Liu
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Shi
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Jiangxi, 330004, China
| | - Nan Qin
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Jiangxi, 330004, China
| | - Xiaoyan Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Yu Pang
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yaming Zhang
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Jiabo Wang
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Ming Niu
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Zhaofang Bai
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiaohe Xiao
- Integrative Medical Centre, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
34
|
Xiong A, Shao Y, Fang L, Yang X, Zhang S, Zheng J, Ding W, Yang L, Wang Z. Comparative analysis of toxic components in different medicinal parts of Gynura japonica and its toxicity assessment on mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:77-88. [PMID: 30668385 DOI: 10.1016/j.phymed.2018.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/27/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The roots of Gynura japonica are used as traditional medicine for treating blood stasis or traumatic injury even though hundreds of hepatic sinusoidal obstruction syndrome cases have been reported after consumption of the roots, which contain large amounts of hepatotoxic pyrrolizidine alkaloids (HPAs). However, no information is available about the toxic compounds in the aerial parts of G. japonica, which are also used as herbal medicines and even vegetables in several areas. Thus, the toxic chemicals in the aerial parts of G. japonica, i.e., HPAs, must be urgently identified. PURPOSE In this study, we aimed to 1) identify the toxic compounds in different medicinal parts and 2) examine the hepatotoxicity of G. japonica. STUDY DESIGN A total of 35 batches of the roots and aerial parts of G. japonica were collected from different sources and analyzed for HPAs. The hepatotoxicity of different extracts (i.e., total extracts [TE] and total alkaloids [TA]) and a single compound (i.e., senecionine) was evaluated on mice. METHODS Qualitative analysis of HPAs was performed using an ultra-performance liquid chromatography (UPLC)-mass spectrometry (MS)-parent ion scan approach, whereas a quantitative assay was performed by a UPLC-MS-selected ion monitoring approach. Male C57BL mice were orally administered the different extracts or the single compound at dosages equivalent to 50 mg HPAs/kg body weight. The sera and the livers were collected at 48 h after treatment and used to evaluate the hepatotoxicity through serum clinical biomarkers assay, liver histology, and bile acid profiling. RESULTS A total of 21 HPAs were identified in the roots and the aerial parts. The roots contained higher levels of HPAs (4.90 mg/g) than did the aerial parts (2.21 mg/g). TE and TA induced similar acute liver injuries, but senecionine was considerably more toxic than these extracts. Mice treated with TE showed significantly impaired bile acid homeostasis in the sera and the livers. CONCLUSION The roots and aerial parts of G. japonica contained large amounts of HPAs, including senecionine, which were responsible for the hepatotoxicity of G. japonica. Bile acid homeostasis was uniquely impaired after exposure to the plant. Therefore, neither the roots nor the aerial parts of G. japonica should be consumed as medicines or vegetables.
Collapse
Affiliation(s)
- Aizhen Xiong
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Youlin Shao
- The Third Hospital of Changzhou, Changzhou, Jiangsu Province 213001, China
| | - Lianxiang Fang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiao Yang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Suocai Zhang
- The Third Hospital of Changzhou, Changzhou, Jiangsu Province 213001, China
| | - Jian Zheng
- The Third Hospital of Changzhou, Changzhou, Jiangsu Province 213001, China
| | - Wenxing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Li Yang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| | - Zhengtao Wang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
35
|
Zhu Y, Niu M, Wang JB, Wang RL, Li JY, Ma YQ, Zhao YL, Zhang YF, He TT, Yu SM, Guo YM, Zhang F, Xiao XH, Schulze J. Predictors of poor outcomes in 488 patients with herb-induced liver injury. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2019; 30:47-58. [PMID: 30289391 PMCID: PMC6389292 DOI: 10.5152/tjg.2018.17847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/11/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIMS Herb-induced liver injury (HILI) can lead to chronic liver injury, liver transplantation, or even death. This study aimed to identify the predictors of poor HILI outcomes, especially chronic HILI. MATERIALS AND METHODS Clinical data of 488 patients with HILI were retrospectively analyzed from a Chinese center between January 2010 and January 2014. Logistic regression and C-statistic were used to identify risk factors and prognostic models for HILI outcomes. RESULTS In all patients, 69 (14.1%) developed chronic HILI, and 20 (4.1%) died due to liver injury or underwent liver transplantation. To predict the fatal HILI prognosis, the model for end-stage liver disease (MELD) with a C-statistic of 0.981 (95%CI 0.968-0.995) was better than Hy's law (C-statistic 0.569; 95%CI 0.449-0.689). The latency, course of peak alanine aminotransferase decreasing >50% after discontinuation of herb application, peak triglyceride value, and platelet count at liver injury onset were identified as independent risk factors for chronicity with the adjusted odds ratios of 1.268 (95% confidence interval [CI] 1.034-1.554), 2.303 (95%CI 1.588-3.340), 0.580 (95%CI 0.343-0.978), and 0.183 (95%CI 0.091-0.368), respectively. A prognostic model for chronic HILI based on these four factors yielded the best prediction with a C-statistic of 0.812 (95%CI 0.755-0.868), compared with MELD (C-statistic 0.506; 95%CI 0.431-0.581) and Hy's law (C-statistic 0.418; 95%CI 0.343-0.492). CONCLUSION Model for end-stage liver disease can be used to predict the fatal prognosis of HILI. A long latency, slow recovery, and low triglyceride value and platelet counts are important determinants for chronic HILI.
Collapse
Affiliation(s)
- Yun Zhu
- Integrative Medical Center, 302 Military Hospital, Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, China
| | - Rui-Lin Wang
- Integrative Medical Center, 302 Military Hospital, Beijing, China
| | - Jian-Yu Li
- Integrative Medical Center, 302 Military Hospital, Beijing, China
| | - Yan-Qi Ma
- Kassel University School of Electrical Engineering and Computer Science, Kassel, Germany
| | - Yan-Ling Zhao
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, China
| | - Yan-Fang Zhang
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, China
| | - Ting-Ting He
- Integrative Medical Center, 302 Military Hospital, Beijing, China
| | - Si-Miao Yu
- Integrative Medical Center, 302 Military Hospital, Beijing, China
| | - Yu-Ming Guo
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, China
| | - Fan Zhang
- Integrative Medical Center, 302 Military Hospital, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, China
| | - Johannes Schulze
- Institute of Industrial, Environmental and Social Medicine, Goethe University School of Medicine, Frankfurt, Germany
| |
Collapse
|
36
|
Danan G, Teschke R. Roussel Uclaf Causality Assessment Method for Drug-Induced Liver Injury: Present and Future. Front Pharmacol 2019. [PMID: 31417407 DOI: 10.3389/fphar2019.00853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Among the causality assessment methods used for the diagnosis of drug-induced liver injury (DILI), Roussel Uclaf Causality Assessment Method (RUCAM) remains the most widely used not only for individual cases but also for prospective and retrospective studies worldwide. This first place is justified by the characteristics of the method such as precise definition and classification of the liver injury, which determines the right scale in the scoring system, precise definition of the seven criteria, and the validation approach based on cases with positive rechallenge. RUCAM is used not only for any types of drugs but also for herbal medicines causing herb-induced liver injury, (HILI) and dietary supplements. In 2016, the updated RUCAM provided further specifications of criteria and instructions to improve interobserver variability. Although this method was criticized for criteria such as the age and alcohol consumption, recent consensus meeting of experts has recognized their value and recommended their incorporation into any method. While early studies searching for DILI in large databases especially in electronic medical records were based on codes of diseases or natural language without causality assessment, the recommendation is now to include RUCAM in the search for DILI/HILI. There are still studies on DILI detection or the identification of biomarkers that take into consideration the cases assessed as "possible," although it is well known that these cases reduce the strength of the association between the cases and the offending compound or the new biomarker to be validated. Attempts to build electronic RUCAM or automatized application of this method were successful despite some weaknesses to be corrected. In the future, more reflections are needed on an expert system to standardize the exclusion of alternative causes according to the clinical context. Education and training on RUCAM should be encouraged to improve the results of the studies and the day-to-day work in pharmacovigilance departments in companies or in regulatory agencies. It is also expected to improve RUCAM with biomarkers or other criteria provided that the validation process replaces expert opinion by robust standards such as those used for the original method.
Collapse
Affiliation(s)
- Gaby Danan
- Pharmacovigilance Consultancy, Paris, France
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University, Frankfurt, Germany
| |
Collapse
|
37
|
Teschke R. Idiosyncratic DILI: Analysis of 46,266 Cases Assessed for Causality by RUCAM and Published From 2014 to Early 2019. Front Pharmacol 2019. [PMID: 31396080 DOI: 10.389/fphar.2019.00730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
One of the most difficult challenges in clinical hepatology is the diagnosis of a drug-induced liver injury (DILI). The timing of the events, exclusion of alternative causes, and taking into account the clinical context should be systematically assessed and scored in a transparent manner. RUCAM (Roussel Uclaf Causality Assessment Method) is a well-established diagnostic algorithm and scale to assess causality in patients with suspected DILI. First published in 1993 and updated in 2016, RUCAM is now the worldwide most commonly used causality assessment method (CAM) for DILI. The following manuscript highlights the recent implementation of RUCAM around the world, by reviewing the literature for publications that utilized RUCAM, and provides a review of "best practices" for the use of RUCAM in cases of suspected DILI. The worldwide appreciation of RUCAM is substantiated by the current analysis of 46,266 DILI cases, all tested for causality using RUCAM. These cases derived from 31 reports published from 2014 to early 2019. Their first authors came from 10 countries, with China on top, followed by the US, and Germany on the third rank. Importantly, all RUCAM-based DILI reports were published in high profile journals. Many other reports were published earlier from 1993 up to 2013 in support of RUCAM. Although most of the studies were of high quality, the current case analysis revealed shortcomings in few studies, not at the level of RUCAM itself but rather associated with the work of the users. To ensure in future DILI cases a better performance by the users, a list of essential elements is proposed. As an example, all suspected DILI cases should be evaluated 1) by the updated RUCAM to facilitate result comparisons, 2) according to a prospective study protocol to ensure complete data sets, 3) after exclusion of cases with herb induced liver injury (HILI) from a DILI cohort to prevent confounding variables, and 4) according to inclusion of DILI cases with RUCAM-based causality gradings of highly probable or probable, in order to increase the specificity of the results. In conclusion, RUCAM benefits from its high appreciation and performs well provided the users adhere to published recommendations to prevent confounding variability.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, Germany
| |
Collapse
|
38
|
Zhuang Gu Guan Jie Wan: Reasonable Application Can Alleviate the Liver Injury for Osteoarthritis Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6716529. [PMID: 30538762 PMCID: PMC6260402 DOI: 10.1155/2018/6716529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/23/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022]
Abstract
The potential toxicity of herbal drugs, particularly drug-induced liver injury (DILI), has received extensive attention as the use of Chinese herbal medicine has rapidly increased globally. As a classic Chinese patent medicine, Zhuang Gu Guan Jie Wan (ZGGJW) has been brought into focus recently because of its satisfactory therapeutic effects on osteoarthritis (OA) as well as its unanticipated side effects. This study aimed to decipher the puzzling phenomenon of liver injury developing in response to ZGGJW that varies by the subtype of OA. Normal, anterior cruciate ligament transaction (ACLT) and partial medial meniscectomy (MMx) induced OA and ovariectomy combined with ACLT and partial MMx induced rat models were used and treated orally with ZGGJW or distilled water for 30 days. The results from histopathology, biochemistry, and immunohistochemistry showed that ZGGJW induced liver injury, increased the level of malondialdehyde (MDA), and decreased the levels of total antioxidation capability (T-AOC), superoxide dismutase (SOD), interleukin-22 (IL-22), and signal transducer and activator of transcription factor 3 (STAT3) in the liver of normal rats, while liver injury was alleviated and showed different tendencies in the above markers for ACLT and partial MMx induction rats and ovariectomy combined with ACLT and partial MMx induction rats after ZGGJW treatment. In the OA disease states, hepatic injury induced by ZGGJW could be associated with an impairment in antioxidant capacity and the high levels of IL-22 and STAT3 after ZGGJW treatment may be responsible for the slight hepatic injury of ZGGJW based on the subtype of OA. This study provides a novel approach to better understanding of the risks and limitations when using potentially toxic Chinese patent medicine in clinical applications.
Collapse
|
39
|
Teschke R. Alcoholic Liver Disease: Alcohol Metabolism, Cascade of Molecular Mechanisms, Cellular Targets, and Clinical Aspects. Biomedicines 2018; 6:E106. [PMID: 30424581 PMCID: PMC6316574 DOI: 10.3390/biomedicines6040106] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/13/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease is the result of cascade events, which clinically first lead to alcoholic fatty liver, and then mostly via alcoholic steatohepatitis or alcoholic hepatitis potentially to cirrhosis and hepatocellular carcinoma. Pathogenetic events are linked to the metabolism of ethanol and acetaldehyde as its first oxidation product generated via hepatic alcohol dehydrogenase (ADH) and the microsomal ethanol-oxidizing system (MEOS), which depends on cytochrome P450 2E1 (CYP 2E1), and is inducible by chronic alcohol use. MEOS induction accelerates the metabolism of ethanol to acetaldehyde that facilitates organ injury including the liver, and it produces via CYP 2E1 many reactive oxygen species (ROS) such as ethoxy radical, hydroxyethyl radical, acetyl radical, singlet radical, superoxide radical, hydrogen peroxide, hydroxyl radical, alkoxyl radical, and peroxyl radical. These attack hepatocytes, Kupffer cells, stellate cells, and liver sinusoidal endothelial cells, and their signaling mediators such as interleukins, interferons, and growth factors, help to initiate liver injury including fibrosis and cirrhosis in susceptible individuals with specific risk factors. Through CYP 2E1-dependent ROS, more evidence is emerging that alcohol generates lipid peroxides and modifies the intestinal microbiome, thereby stimulating actions of endotoxins produced by intestinal bacteria; lipid peroxides and endotoxins are potential causes that are involved in alcoholic liver injury. Alcohol modifies SIRT1 (Sirtuin-1; derived from Silent mating type Information Regulation) and SIRT2, and most importantly, the innate and adapted immune systems, which may explain the individual differences of injury susceptibility. Metabolic pathways are also influenced by circadian rhythms, specific conditions known from living organisms including plants. Open for discussion is a 5-hit working hypothesis, attempting to define key elements involved in injury progression. In essence, although abundant biochemical mechanisms are proposed for the initiation and perpetuation of liver injury, patients with an alcohol problem benefit from permanent alcohol abstinence alone.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Leimenstrasse 20, D-63450 Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, Frankfurt/Main, Germany.
| |
Collapse
|
40
|
Danan G, Teschke R. Drug-Induced Liver Injury: Why is the Roussel Uclaf Causality Assessment Method (RUCAM) Still Used 25 Years After Its Launch? Drug Saf 2018; 41:735-743. [PMID: 29502198 DOI: 10.1007/s40264-018-0654-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Launched in 1993 and partially based on the results of an international consensus meeting organized under the auspices of the Council of International Organizations of Medical Sciences (CIOMS), the Roussel Uclaf Causality Assessment Method (RUCAM) is the most used causality assessment tool worldwide for the diagnosis of drug-induced liver injury (DILI) and herb-induced liver injury (HILI) in a large number of epidemiological studies, case reports, and case series. The 25-year experience of RUCAM use confirmed that the success was due to its objective, standardized, and liver-injury-specific approach structured with defined key elements derived from a series of DILI cases with positive rechallenge. Using this series, the validation procedure avoided arbitrary definitions and confirmed scores to key items. The algorithm provides a quantitative causality grading of highly probable, probable, possible, unlikely, or excluded relationship between the liver injury and the suspected product(s). Despite challenges, prospective use of RUCAM fosters case data completeness and transparent causality adjudication in real time, as opposed to subjective opinion resulting from several rounds by experts lacking defined key elements and scores. In 2016, RUCAM was updated with specification of alcohol use and Hepatitis E Virus (HEV) biomarkers and simplified item handling to further reduce inter-observer variability. RUCAM-based probable and highly probable DILI and HILI cases are essential for the detection of new hepatotoxins, confirmation of new biomarkers, description of clinical features and risk factors, and determination of incidence in pharmacoepidemiological studies. This article is intended to encourage systematic use of sophisticated causality assessment methods such as RUCAM to improve DILI and HILI case evaluation and to increase confidence in published cases.
Collapse
Affiliation(s)
- Gaby Danan
- Pharmacovigilance Consultancy, 18, rue des ormeaux, 75020, Paris, France.
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Germany
- Teaching Hospital of the Medical Faculty, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
41
|
Teschke R. Top-ranking drugs out of 3312 drug-induced liver injury cases evaluated by the Roussel Uclaf Causality Assessment Method. Expert Opin Drug Metab Toxicol 2018; 14:1169-1187. [PMID: 30354694 DOI: 10.1080/17425255.2018.1539077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION A list presenting a valid ranking of drugs most commonly implicated is hardly to be found. Areas covered: Published cases of drug-induced liver injury (DILI) with verified causality using RUCAM (Roussel Uclaf Causality Assessment Method) were used for a ranking of drugs most commonly implicated in causing DILI. Expert opinion: RUCAM-based DILI cases were retrieved from 15 reports published by six international databases of DILI registries and three large medical centers, which provided 3312 cases. Overall 48 drugs with the highest number of DILI cases were listed. Among the top 10 ranking drugs implicated in causing DILI were, in decreasing order: amoxicillin-clavulanate, flucloxacilllin, atorvastatin, disulfiram, diclofenac, simvastatin, carbamazepine, ibuprofen, erythromycin, and anabolic steroids as bodybuilding agents. For these 10 drugs, respective DILI case numbers were highest for Amoxicillin-clavulanate (n=333) and lowest for anabolic steroids (n=26). The author classifies the databases of national DILI registries and large medical centers as best sources of drugs implicated in DILI. Presently discouraged is the use of the LiverTox website because many cases were derived from published cases of poor quality and could previously not be classified as DILI, calling for the inclusion of DILI cases with established causality by the updated RUCAM.
Collapse
Affiliation(s)
- Rolf Teschke
- a Department of Internal Medicine II, Division of Gastroenterology and Hepatology , Klinikum Hanau , Hanau , Germany.,b Academic Teaching Hospital of the Medical Faculty , Goethe University Frankfurt/Main , Frankfurt/Main , Germany
| |
Collapse
|
42
|
Guo G, Zhou J, Yang X, Feng J, Shao Y, Jia T, Huang Q, Li Y, Zhong Y, Nagarkatti PS, Nagarkatti M. Role of MicroRNAs Induced by Chinese Herbal Medicines Against Hepatocellular Carcinoma: A Brief Review. Integr Cancer Ther 2018; 17:1059-1067. [PMID: 30343602 PMCID: PMC6247546 DOI: 10.1177/1534735418805564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are highly conserved, noncoding small RNAs that regulate gene
expression, and consequently several important functions including early embryo
development, cell cycle, programmed cell death, cell differentiation, and
metabolism. While there are no effective treatments available against
hepatocellular carcinoma (HCC), some Chinese herbal medicines have been shown to
regulate growth, differentiation, invasion, and metastasis of HCC. Many studies
have shown that Chinese herbal medicines regulate the expression of miRNAs and
this may be associated with their ability to control the development of HCC. In
this article, the effects of Chinese herbal medicines on the expression of
miRNAs and their functions in the regulation of HCC have been reviewed and
discussed. miRNAs such as miRNA-221 and miRNA-222 mediated by Chinese herbal
medicines may be good biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Ge Guo
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Juhua Zhou
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Xiaogaung Yang
- 2 Hangzhou Hesti Biotechnology Co, Ltd, Hangzhou, Zhejiang, People's Republic of China
| | - Jiang Feng
- 2 Hangzhou Hesti Biotechnology Co, Ltd, Hangzhou, Zhejiang, People's Republic of China
| | - Yanxia Shao
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Tingting Jia
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Qingrong Huang
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Yanmin Li
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Yin Zhong
- 3 University of South Carolina, Columbia, SC, USA
| | | | | |
Collapse
|
43
|
Yang QJ, Chen L, Chen LL, Guo C. Acute and chronic liver injury induced by Chinese patent medicine: Causes and precautions. Shijie Huaren Xiaohua Zazhi 2018; 26:1273-1279. [DOI: 10.11569/wcjd.v26.i21.1273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chinese patent medicines are popular due to their definite clinical efficacy, reliable quality, and good safety. However, Chinese medicine and its preparations are one of the main causes of drug induced liver damage. The hepatotoxic ingredients of Chinese patent medicines and the irrational application of Chinese patent medicines are the two main reasons for their hepatotoxicity. However, there are no systematic studies on the causes, types, and preventive measures for liver injury caused by Chinese patent medicines. This article aims to briefly review the causes and preventive measures of acute and chronic liver injury caused by Chinese patent medicines.
Collapse
Affiliation(s)
- Quan-Jun Yang
- Department of Pharmacy, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, China
| | - Li Chen
- Department of Pharmacy, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, China
| | - Lin-Lin Chen
- Department of Pharmacy, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, China
| | - Cheng Guo
- Department of Pharmacy, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, China
| |
Collapse
|
44
|
Sun W, Gao Y, Yu X, Yuan Y, Yi J, Zhang Z, Cheng Y, Li Y, Peng X, Cha X. 'Psoriasis 1' reduces psoriasis‑like skin inflammation by inhibiting the VDR‑mediated nuclear NF‑κB and STAT signaling pathways. Mol Med Rep 2018; 18:2733-2743. [PMID: 30015892 PMCID: PMC6102645 DOI: 10.3892/mmr.2018.9262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022] Open
Abstract
‘Psoriasis 1’, a Chinese herbal medicine (CHM) formulation, is extensively used to treat psoriasis in China. Although this CHM formulation yields good therapeutic effect, the underlying mechanism of how this works remains unknown. The present study aimed to test the hypothesis that the CHM formulation ‘psoriasis 1’ inhibits vitamin D receptor (VDR)-mediated inflammation in psoriasis. To test this, a model of psoriasis was established by stimulating keratinocytes (HaCaT cells) with tumor necrosis factor (TNF)-α; these cells were subsequently transfected with a lentiviral VDR RNA interference expression vector. The expression levels of 25-hydroxyvitamin D3 (25HVD3), TNF-α, interleukin (IL)-4, IL-1, IL-17C, IL-23 and IL-6 were measured using ELISA, and the expression levels of VDR, inhibitor of nuclear factor (NF)-κB (IKK), NF-κB, signal transducer and activator of transcription (STAT) 3 and STAT4 were measured using reverse transcription-quantitative polymerase chain reaction analysis and western blotting. It was observed that ‘psoriasis 1’ downregulated the concentrations of TNF-α, IFN-γ, IL-22, IL-17C, IL-1β and IL-4, and upregulated the concentration of 25HVD3; furthermore, ‘psoriasis 1’ downregulated the expression levels of NF-κB, phosphorylated (p)-NF-κB, IKK, p-IKK, STAT3, p-STAT3, STAT4 and p-STAT4, and upregulated the expression level of VDR in TNF-α-induced HaCaT cells. These results suggested that ‘psoriasis 1’ suppressed the inflammatory response and the activation of the NF-κB and STAT signaling pathways. In addition, it was identified that silencing VDR expression decreased the levels of TNF-α, IFN-γ, IL-22, IL-17C, IL-1β and IL-4, and increased the level of 25HVD3; silencing VDR expression additionally downregulated the expression levels of NF-кB, p-NF-кB, IKK, p-IKK, STAT3, p-STAT3, STAT4 and p-STAT4, and upregulated the level of VDR in TNF-α-induced HaCaT cells. It was concluded that ‘psoriasis 1’ exerts inflammation-suppressive effects in psoriasis by suppressing the NF-кB and STAT signaling pathways.
Collapse
Affiliation(s)
- Wen Sun
- Department of Dermatology, The First People's Hospital of Jingmen, Jingmen, Hubei 448000, P.R. China
| | - Yang Gao
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xianhua Yu
- Department of Dermatology, The First People's Hospital of Jingmen, Jingmen, Hubei 448000, P.R. China
| | - Yuan Yuan
- Department of Anesthesiology, The First People's Hospital of Jingmen, Jingmen, Hubei 448000, P.R. China
| | - Jun Yi
- Department of Vascular Surgery, The First People's Hospital of Jingmen, Jingmen, Hubei 448000, P.R. China
| | - Zhen Zhang
- Department of Spine Surgery, Shenzhen Baoan Shajing People's Hospital, Shenzhen, Guangdong 518104, P.R. China
| | - Yuxing Cheng
- Department of Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yong Li
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xing Peng
- Department of Dermatology, The First People's Hospital of Jingmen, Jingmen, Hubei 448000, P.R. China
| | - Xushan Cha
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
45
|
Teschke R, Danan G. Drug induced liver injury with analysis of alternative causes as confounding variables. Br J Clin Pharmacol 2018; 84:1467-1477. [PMID: 29607530 PMCID: PMC6005631 DOI: 10.1111/bcp.13593] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/18/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
AIMS Drug-induced liver injury (DILI) is rare compared to the worldwide frequent acute or chronic liver diseases. Therefore, patients included in series of suspected DILI are at high risk of not having DILI, whereby alternative causes may confound the DILI diagnosis. The aim of this review is to evaluate published case series of DILI for alternative causes. METHODS Relevant studies were identified using a computerized search of the Medline database for publications from 1993 through 30 October 2017. We used the following terms: drug hepatotoxicity, drug induced liver injury, hepatotoxic drugs combined with diagnosis, causality assessment and alternative causes. RESULTS Alternative causes as variables confounding the DILI diagnosis emerged in 22 published DILI case series, ranging from 4 to 47%. Among 13 335 cases of suspected DILI, alternative causes were found to be more likely in 4555 patients (34.2%), suggesting that the suspected DILI was probably not DILI. Biliary diseases such as biliary obstruction, cholangitis, choledocholithiasis, primary biliary cholangitis and primary sclerosing cholangitis were among the most missed diagnoses. Alternative causes included hepatitis B, C and E, cytomegalovirus, Epstein-Barr virus, ischemic hepatitis, cardiac hepatopathy, autoimmune hepatitis, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and alcoholic liver disease. CONCLUSIONS In more than one-third of published global DILI case series, alternative causes as published in these reports confounded the DILI diagnosis. In the future, published DILI case series should include only patients with secured DILI diagnosis, preferentially established by prospective use of scored items provided by robust diagnostic algorithms such as the updated Roussel Uclaf causality assessment method.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, GoetheUniversity Frankfurt/ MainGermany
| | - Gaby Danan
- Pharmacovigilance ConsultancyParisFrance
| |
Collapse
|
46
|
Thomford NE, Dzobo K, Chimusa E, Andrae-Marobela K, Chirikure S, Wonkam A, Dandara C. Personalized Herbal Medicine? A Roadmap for Convergence of Herbal and Precision Medicine Biomarker Innovations. ACTA ACUST UNITED AC 2018; 22:375-391. [DOI: 10.1089/omi.2018.0074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicholas Ekow Thomford
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- School of Medical Sciences, University of Cape Coast, Cape Coast, PMB, Ghana
| | - Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology, Cape Town component, University of Cape Town, Cape Town, South Africa
- Department of Integrative Biomedical Science, Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emile Chimusa
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kerstin Andrae-Marobela
- Molecular Cell Biology, Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Shadreck Chirikure
- Department of Archaeology, University of Cape Town, Cape Town, South Africa
| | - Ambroise Wonkam
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
47
|
Omagari K, Suruga K, Kyogoku A, Nakamura S, Sakamoto A, Nishioka S, Ichimura M, Miyata Y, Tajima K, Tsuneyama K, Tanaka K. A fermented mixed tea made with camellia (Camellia japonica) and third-crop green tea leaves prevents nonalcoholic steatohepatitis in Sprague-Dawley rats fed a high-fat and high-cholesterol diet. Hepatobiliary Surg Nutr 2018; 7:175-184. [PMID: 30046568 DOI: 10.21037/hbsn.2017.08.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Established treatments for non-alcoholic steatohepatitis (NASH) are few, thus it is imperative to develop novel dietary strategies that can prevent NASH. A fermented mixed tea (FMT) made with Camellia japonica (Japanese camellia) and third- crop green tea leaves by tea-rolling processing was reported to reduce body weight and adipose tissue weight in Sprague-Dawley (SD) rats. Because visceral fat is one of the most important factors for the development of hepatic steatosis, this FMT supplementation can be a candidate dietary strategy for the prevention of NASH. Methods Nine-week-old male SD rats were fed a high-fat and high-cholesterol (HFC) diets with or without FMT (camellia and third-crop green tea leaves at ratios of 1:5, 1:2 and 1:1) for 9 weeks (n=6-7/group). Histopathology, serology and expressions of fibrogenetic, proinflammatory, oxidative stress and lipid metabolism-related genes in the liver were evaluated. Results Histologically, HFC diet with FMT at a ratio of 1:5 dramatically reduced NASH progression (14%) compared to the HFC diet without FMT (100%). FMT at a ratio of 1:5 reduced hepatic steatosis due to the activation of microsomal triglyceride transfer protein, and FMT at a ratio of 1:2 reduced mRNA levels of some proinflammatory, lipid metabolism-related, fibrogenic and oxidative stress marker genes. Conclusions Our data suggest that FMT at a ratio of 1:5 or 1:2 likely possesses a preventive effect on NASH progression.
Collapse
Affiliation(s)
- Katsuhisa Omagari
- Department of Nutrition, Faculty of Nursing and Nutrition, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan.,Division of Nutritional Science, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Kazuhito Suruga
- Department of Nutrition, Faculty of Nursing and Nutrition, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan.,Division of Nutritional Science, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Akira Kyogoku
- Department of Nutrition, Faculty of Nursing and Nutrition, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Satomi Nakamura
- Department of Nutrition, Faculty of Nursing and Nutrition, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Ai Sakamoto
- Department of Nutrition, Faculty of Nursing and Nutrition, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Shinta Nishioka
- Division of Nutritional Science, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Mayuko Ichimura
- Division of Nutritional Science, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Yuji Miyata
- Agriculture and Forestry Technical Development Center, Nagasaki Pref, Tea Laboratory, Nagasaki, Japan
| | - Koichi Tajima
- Agriculture and Forestry Technical Development Center, Nagasaki Pref, Forest Research Section, Nagasaki, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Kazunari Tanaka
- Department of Nutrition, Faculty of Nursing and Nutrition, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan.,Division of Nutritional Science, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| |
Collapse
|
48
|
Teschke R. Alcoholic steatohepatitis (ASH) and alcoholic hepatitis (AH): cascade of events, clinical aspects, and pharmacotherapy options. Expert Opin Pharmacother 2018; 19:779-793. [PMID: 29708448 DOI: 10.1080/14656566.2018.1465929] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Clinicians caring for patients with alcoholic hepatitis (AH) are often confronted with the question of the best pharmacotherapy to be used. AREAS COVERED This article covers metabolic aspects of alcohol as the basis of understanding pharmacotherapy and to facilitate choosing the drug therapeutic options for patients with severe AH. EXPERT OPINION Alcoholic steatohepatitis (ASH) and alcoholic hepatitis (AH) as terms are often used interchangeably in scientific literature but a stringent differentiation is recommended for proper clarity. As opposed to ASH, the clinical course of AH is often severe and requires an effective drug treatment strategy, in addition to absolute alcohol abstinence and nutritional support. Drug options include corticosteroids as a first choice and pentoxifylline, an inhibitor of phosphodiesterase, as a second line therapy, especially in patients with contraindications for a corticosteroid therapy such as infections or sepsis. At seven days under corticosteroids, treatment should be terminated in non-responders, and patients must then be evaluated for liver transplantation. Pentoxifylline is not effective as a rescue therapy for these patients. Other treatments such as infliximab, propylthiouracil, N-acetylcysteine, silymarin, colchicine, insulin and glucagon, oxandrolone, testosterone, and polyunsaturated lecithin are not effective in severe AH. For liver transplantation, few patients will be eligible.
Collapse
Affiliation(s)
- Rolf Teschke
- a Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty , Goethe University Frankfurt/Main , Frankfurt/Main , Germany
| |
Collapse
|
49
|
Liu Y, Wang Q, Yang J, Guo X, Liu W, Ma S, Li S. Polygonum multiflorum Thunb.: A Review on Chemical Analysis, Processing Mechanism, Quality Evaluation, and Hepatotoxicity. Front Pharmacol 2018; 9:364. [PMID: 29713283 PMCID: PMC5912012 DOI: 10.3389/fphar.2018.00364] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/28/2018] [Indexed: 01/14/2023] Open
Abstract
Polygonum multiflorum Thunb. and its processed products have been used in China for centuries due to their multiple beneficial effects to human body. Currently, liver injuries caused by taking P. multiflorum have been reported worldwide, but the potential toxic components and possible mechanism that caused hepatotoxicity remain unclear. It is worth noting that the processing procedure could significantly decrease the toxicity of raw P. multiflorum and the processed products of P. multiflorum are considered to be relatively safe. However, the processing mechanism is still ambiguous, and there is the lack of a scientific approach to control the quality of P. multiflorum praeparata. This study is the first review that summarizes the recently advances (from 2007 to 2017) in the chemical analysis of P. multiflorum, and provides comprehensive information on the quantitative and qualitative analysis of P. multiflorum as well as its related species. In addition, the processing mechanism and quality evaluation of processed P. multiflorum are discussed. Moreover, the toxicity of P. multiflorum is analyzed from the perspectives of exploration of the proposed toxic ingredients, metabolite identification, metabolomics studies, and exogenous contaminant determination. Furthermore, trends and perspectives for future research of this medicine are discussed.
Collapse
Affiliation(s)
- Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Qi Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaohan Guo
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Wenxi Liu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shaoping Li
- State Key Laboratory for Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
50
|
Jing J, Teschke R. Traditional Chinese Medicine and Herb-induced Liver Injury: Comparison with Drug-induced Liver Injury. J Clin Transl Hepatol 2018; 6:57-68. [PMID: 29577033 PMCID: PMC5863000 DOI: 10.14218/jcth.2017.00033] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
Cases of suspected herb-induced liver injury (HILI) caused by herbal Traditional Chinese Medicines (TCMs) and of drug-induced liver injury (DILI) are commonly published in the scientific literature worldwide. As opposed to the multiplicity of botanical chemicals in herbal TCM products, which are often mixtures of several herbs, conventional Western drugs contain only a single synthetic chemical. It is therefore of interest to study how HILI by TCM and DILI compare with each other, and to what extent results from each liver injury type can be transferred to the other. China is among the few countries with a large population using synthetic Western drugs as well as herbal TCM. Therefore, China is well suited to studies of liver injury comparing drugs with TCM herbs. Despite some concordance, recent analyses of liver injury cases with verified causality, using the Roussel Uclaf Causality Assessment Method, revealed major differences in HILI caused by TCMs as compared to DILI with respect to the following features: HILI cases are less frequently observed as compared to DILI, have a smaller proportion of females and less unintentional rechallenge events, and present a higher rate of hepatocellular injury features. Since many results were obtained among Chinese residents who had access to and had used Western drugs and TCM herbs, such ethnic homogeneity supports the contention that the observed differences of HILI and DILI in the assessed population are well founded.
Collapse
Affiliation(s)
- Jing Jing
- Medical School of Chinese PLA, Beijing, China
- Integrative Medical Center, 302 Military Hospital, Beijing, China
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Teaching Hospital of the Medical Faculty of the Goethe University, Frankfurt/Main, Germany
- *Correspondence to: Rolf Teschke, Department of Internal Medicine II, Klinikum Hanau, Teaching Hospital of the Goethe University of Frankfurt/Main, Leimenstrasse 20, Hanau D-63450, Germany. Tel: +49-6181-21859, Fax: +49-6181-2964211, E-mail:
| |
Collapse
|