1
|
Cruz-Rodríguez M, Chevet E, Muñoz-Pinedo C. Glucose sensing and the unfolded protein response. FEBS J 2025. [PMID: 40272086 DOI: 10.1111/febs.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/17/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
The unfolded protein response (UPR) is activated primarily upon alteration of protein folding in the endoplasmic reticulum (ER). This occurs under physiological situations that cause an abrupt increase in protein synthesis, or under redox and metabolic stresses. Among the latter, hyperglycemia and glucose scarcity have been identified as major modulators of UPR signaling. Indeed, the first mammalian UPR effector, the glucose-regulated protein 78, also known as BiP, was identified in response to glucose deprivation. Tunicamycin, arguably the most commonly used drug to induce ER stress responses in vitro and in vivo, is an inhibitor of N-glycosylation. We compile here evidence that the UPR is activated upon physiological and pathological conditions that alter glucose levels and that this is mostly mediated by alterations of protein N-glycosylation, ATP levels, or redox balance. The three branches of the UPR transduced by PERK/ATF4, IRE1/XBP1s, and ATF6, as well as non-canonical ER sensors such as SCAP/SREBP, sense ER protein glycosylation status driven by glucose and other glucose-derived metabolites. The outcomes of UPR activation range from restoring protein N-glycosylation and protein folding flux to stimulating autophagy, organelle recycling, and mitochondrial respiration, and in some cases, cell death. Anabolic responses to glucose levels are also stimulated by glucose through components of the UPR. Therefore, the UPR should be further studied as a potential biomarker and mediator of glucose-associated diseases.
Collapse
Affiliation(s)
- Mabel Cruz-Rodríguez
- Preclinical and Experimental Research in Thoracic Tumors (PRETT) Group, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Eric Chevet
- INSERM U1242, Univ Rennes, Centre de Lutte contre le Cancer Eugène Marquis, France
| | - Cristina Muñoz-Pinedo
- Preclinical and Experimental Research in Thoracic Tumors (PRETT) Group, IDIBELL, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
2
|
Prindle V, Richardson AE, Sher KR, Kongpachith S, Kentala K, Petiwala S, Cheng D, Widomski D, Le P, Torrent M, Chen A, Walker S, Palczewski MB, Mitra D, Manaves V, Shi X, Lu C, Sandoval S, Dezso Z, Buchanan FG, Verduzco D, Bierie B, Meulbroek JA, Pappano WN, Plotnik JP. Synthetic lethality of mRNA quality control complexes in cancer. Nature 2025; 638:1095-1103. [PMID: 39910291 PMCID: PMC11864970 DOI: 10.1038/s41586-024-08398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/13/2024] [Indexed: 02/07/2025]
Abstract
Synthetic lethality exploits the genetic vulnerabilities of cancer cells to enable a targeted, precision approach to treat cancer1. Over the past 15 years, synthetic lethal cancer target discovery approaches have led to clinical successes of PARP inhibitors2 and ushered several next-generation therapeutic targets such as WRN3, USP14, PKMYT15, POLQ6 and PRMT57 into the clinic. Here we identify, in human cancer, a novel synthetic lethal interaction between the PELO-HBS1L and SKI complexes of the mRNA quality control pathway. In distinct genetic contexts, including 9p21.3-deleted and high microsatellite instability (MSI-H) tumours, we found that phenotypically destabilized SKI complex leads to dependence on the PELO-HBS1L ribosomal rescue complex. PELO-HBS1L and SKI complex synthetic lethality alters the normal cell cycle and drives the unfolded protein response through the activation of IRE1, as well as robust tumour growth inhibition. Our results indicate that PELO and HBS1L represent novel therapeutic targets whose dependence converges upon SKI complex destabilization, a common phenotypic biomarker in diverse genetic contexts representing a significant population of patients with cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anlu Chen
- AbbVie Bay Area, South San Francisco, CA, USA
| | | | | | | | | | - Xu Shi
- AbbVie Bay Area, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Borck PC, Boyle I, Jankovic K, Bick N, Foster K, Lau AC, Parker-Burns LI, Lubicki DA, Li T, Borah AA, Lofaso NJ, Das Sharma S, Chan T, Kishen RV, Adeagbo A, Raghavan S, Aquilanti E, Prensner JR, Krill-Burger JM, Golub TR, Campbell CD, Dempster JM, Chan EM, Vazquez F. SKI complex loss renders 9p21.3-deleted or MSI-H cancers dependent on PELO. Nature 2025; 638:1104-1111. [PMID: 39910293 PMCID: PMC11864980 DOI: 10.1038/s41586-024-08509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/10/2024] [Indexed: 02/07/2025]
Abstract
Cancer genome alterations often lead to vulnerabilities that can be used to selectively target cancer cells. Various inhibitors of such synthetic lethal targets have been approved by the FDA or are in clinical trials, highlighting the potential of this approach1-3. Here we analysed large-scale CRISPR knockout screening data from the Cancer Dependency Map and identified a new synthetic lethal target, PELO, for two independent molecular subtypes of cancer: biallelic deletion of chromosomal region 9p21.3 or microsatellite instability-high (MSI-H). In 9p21.3-deleted cancers, PELO dependency emerges from biallelic deletion of the 9p21.3 gene FOCAD, a stabilizer of the superkiller complex (SKIc). In MSI-H cancers, PELO is required owing to MSI-H-associated mutations in TTC37 (also known as SKIC3), a critical component of the SKIc. We show that both cancer subtypes converge to destabilize the SKIc, which extracts mRNA from stalled ribosomes. In SKIc-deficient cells, PELO depletion induces the unfolded protein response, a stress response to accumulation of misfolded or unfolded nascent polypeptides. Together, our findings indicate PELO as a promising therapeutic target for a large patient population with cancers characterized as MSI-H with deleterious TTC37 mutations or with biallelic 9p21.3 deletions involving FOCAD.
Collapse
Affiliation(s)
| | | | - Kristina Jankovic
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Nolan Bick
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyla Foster
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anthony C Lau
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lucy I Parker-Burns
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Tianxia Li
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ashir A Borah
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas J Lofaso
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sohani Das Sharma
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Tessla Chan
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Riya V Kishen
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Srivatsan Raghavan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elisa Aquilanti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Neuro-Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John R Prensner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics and Biological Chemistry, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Edmond M Chan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Division of Hematology/Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | | |
Collapse
|
4
|
Ottens F, Efstathiou S, Hoppe T. Cutting through the stress: RNA decay pathways at the endoplasmic reticulum. Trends Cell Biol 2024; 34:1056-1068. [PMID: 38008608 DOI: 10.1016/j.tcb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
The endoplasmic reticulum (ER) is central to the processing of luminal, transmembrane, and secretory proteins, and maintaining a functional ER is essential for organismal physiology and health. Increased protein-folding load on the ER causes ER stress, which activates quality control mechanisms to restore ER function and protein homeostasis. Beyond protein quality control, mRNA decay pathways have emerged as potent ER fidelity regulators, but their mechanistic roles in ER quality control and their interrelationships remain incompletely understood. Herein, we review ER-associated RNA decay pathways - including regulated inositol-requiring enzyme 1α (IRE1α)-dependent mRNA decay (RIDD), nonsense-mediated mRNA decay (NMD), and Argonaute-dependent RNA silencing - in ER homeostasis, and highlight the intricate coordination of ER-targeted RNA and protein decay mechanisms and their association with antiviral defense.
Collapse
Affiliation(s)
- Franziska Ottens
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sotirios Efstathiou
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Karasik A, Guydosh NR. The Unusual Role of Ribonuclease L in Innate Immunity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1878. [PMID: 39727035 PMCID: PMC11672174 DOI: 10.1002/wrna.1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Ribonuclease L is an endonuclease that is activated as part of the dsRNA-driven innate immune response. Active RNase L cleaves pathogenic RNAs as a way to eliminate infections. However, there are additional and unexpected ways that RNase L causes changes in the host that promote an immune response and contribute to its role in host defense. Central to these unconventional mechanisms is the observation that RNase L also degrades the mRNA of the host. In turn, mRNA fragments that RNase L generates can be translated. This causes activation of a ribosome collision sensor that leads to downstream signaling and cell death. Additionally, the liberation of RNA binding proteins after RNA decay appears to affect gene expression. In this review, we discuss these and other recent advances that focus on novel and unusual ways RNase L contributes to innate immunity.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Nicholas R. Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
6
|
Luo S, Alwattar B, Li Q, Bora K, Blomfield AK, Lin J, Fulton A, Chen J, Agrawal PB. HBS1L deficiency causes retinal dystrophy in a child and in a mouse model associated with defective development of photoreceptor cells. Dis Model Mech 2024; 17:dmm050557. [PMID: 38966981 PMCID: PMC11317091 DOI: 10.1242/dmm.050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
Inherited retinal diseases encompass a genetically diverse group of conditions caused by variants in genes critical to retinal function, including handful of ribosome-associated genes. This study focuses on the HBS1L gene, which encodes for the HBS1-like translational GTPase that is crucial for ribosomal rescue. We have reported a female child carrying biallelic HBS1L variants, manifesting with poor growth and neurodevelopmental delay. Here, we describe the ophthalmologic findings in the patient and in Hbs1ltm1a/tm1a hypomorph mice and describe the associated microscopic and molecular perturbations. The patient has impaired visual function, showing dampened amplitudes of a- and b-waves in both rod- and cone-mediated responses. Hbs1ltm1a/tm1a mice exhibited profound thinning of the entire retina, specifically of the outer photoreceptor layer, due to extensive photoreceptor cell apoptosis. Loss of Hbs1l resulted in comprehensive proteomic alterations by mass spectrometry analysis, with an increase in the levels of 169 proteins and a decrease in the levels of 480 proteins, including rhodopsin (Rho) and peripherin 2 (Prph2). Gene Ontology biological process and gene set enrichment analyses reveal that the downregulated proteins are primarily involved in phototransduction, cilium assembly and photoreceptor cell development. These findings underscore the importance of ribosomal rescue proteins in maintaining retinal health, particularly in photoreceptor cells.
Collapse
Affiliation(s)
- Shiyu Luo
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bilal Alwattar
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kiran Bora
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra K. Blomfield
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmine Lin
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anne Fulton
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pankaj B. Agrawal
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Karasik A, Lorenzi HA, DePass AV, Guydosh NR. Endonucleolytic RNA cleavage drives changes in gene expression during the innate immune response. Cell Rep 2024; 43:114287. [PMID: 38823018 PMCID: PMC11251458 DOI: 10.1016/j.celrep.2024.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
Viral infection triggers several double-stranded RNA (dsRNA) sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, ribonuclease L (RNase L), that cleaves single-stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here, we show that this fragmentation induces the ribotoxic stress response via ZAKα, potentially through stalled ribosomes and/or ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes. Intriguingly, we found that the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hernan A Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
González-Esparragoza D, Carrasco-Carballo A, Rosas-Murrieta NH, Millán-Pérez Peña L, Luna F, Herrera-Camacho I. In Silico Analysis of Protein-Protein Interactions of Putative Endoplasmic Reticulum Metallopeptidase 1 in Schizosaccharomyces pombe. Curr Issues Mol Biol 2024; 46:4609-4629. [PMID: 38785548 PMCID: PMC11120530 DOI: 10.3390/cimb46050280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Ermp1 is a putative metalloprotease from Schizosaccharomyces pombe and a member of the Fxna peptidases. Although their function is unknown, orthologous proteins from rats and humans have been associated with the maturation of ovarian follicles and increased ER stress. This study focuses on proposing the first prediction of PPI by comparison of the interologues between humans and yeasts, as well as the molecular docking and dynamics of the M28 domain of Ermp1 with possible target proteins. As results, 45 proteins are proposed that could interact with the metalloprotease. Most of these proteins are related to the transport of Ca2+ and the metabolism of amino acids and proteins. Docking and molecular dynamics suggest that the M28 domain of Ermp1 could hydrolyze leucine and methionine residues of Amk2, Ypt5 and Pex12. These results could support future experimental investigations of other Fxna peptidases, such as human ERMP1.
Collapse
Affiliation(s)
- Dalia González-Esparragoza
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.G.-E.); (N.H.R.-M.); (L.M.-P.P.)
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Instituto de Ciencias de la Universidad Autónoma de Puebla (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Alan Carrasco-Carballo
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Instituto de Ciencias de la Universidad Autónoma de Puebla (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
- Consejo Nacional de Humanidades Ciencia y Tecnología, Instituto de Ciencias de la Universidad Autónoma de Puebla (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Nora H. Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.G.-E.); (N.H.R.-M.); (L.M.-P.P.)
| | - Lourdes Millán-Pérez Peña
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.G.-E.); (N.H.R.-M.); (L.M.-P.P.)
| | - Felix Luna
- Laboratorio de Neuroendocrinología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.G.-E.); (N.H.R.-M.); (L.M.-P.P.)
| |
Collapse
|
9
|
Xi J, Snieckute G, Martínez JF, Arendrup FSW, Asthana A, Gaughan C, Lund AH, Bekker-Jensen S, Silverman RH. Initiation of a ZAKα-dependent ribotoxic stress response by the innate immunity endoribonuclease RNase L. Cell Rep 2024; 43:113998. [PMID: 38551960 PMCID: PMC11090160 DOI: 10.1016/j.celrep.2024.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
RNase L is an endoribonuclease of higher vertebrates that functions in antiviral innate immunity. Interferons induce oligoadenylate synthetase enzymes that sense double-stranded RNA of viral origin leading to the synthesis of 2',5'-oligoadenylate (2-5A) activators of RNase L. However, it is unknown precisely how RNase L remodels the host cell transcriptome. To isolate effects of RNase L from other effects of double-stranded RNA or virus, 2-5A is directly introduced into cells. Here, we report that RNase L activation by 2-5A causes a ribotoxic stress response involving the MAP kinase kinase kinase (MAP3K) ZAKα, MAP2Ks, and the stress-activated protein kinases JNK and p38α. RNase L activation profoundly alters the transcriptome by widespread depletion of mRNAs associated with different cellular functions but also by JNK/p38α-stimulated induction of inflammatory genes. These results show that the 2-5A/RNase L system triggers a protein kinase cascade leading to proinflammatory signaling and apoptosis.
Collapse
Affiliation(s)
- Jiajia Xi
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA.
| | - Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - José Francisco Martínez
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | - Abhishek Asthana
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Christina Gaughan
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Anders H Lund
- Biotech Research and Innovation Center, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Robert H Silverman
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
10
|
Tanaka M. Transcriptional and post-transcriptional regulation of genes encoding secretory proteins in Aspergillus oryzae. Biosci Biotechnol Biochem 2024; 88:381-388. [PMID: 38211972 DOI: 10.1093/bbb/zbae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
Aspergillus oryzae, also known as the yellow koji mold, produces various hydrolytic enzymes that are widely used in different industries. Its high capacity to produce secretory proteins makes this filamentous fungus a suitable host for heterologous protein production. Amylolytic gene promoter is widely used to express heterologous genes in A. oryzae. The expression of this promoter is strictly regulated by several transcription factors, whose activation involves various factors. Furthermore, the expression levels of amylolytic and heterologous genes are post-transcriptionally regulated by mRNA degradation mechanisms in response to aberrant transcriptional termination or endoplasmic reticulum stress. This review discusses the transcriptional and post-transcriptional regulatory mechanisms controlling the expression of genes encoding secretory proteins in A. oryzae.
Collapse
Affiliation(s)
- Mizuki Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
11
|
Ashraf A, Majeed Y, Gul I, Banday M, Ramzan K, Fazili KM. Elucidating the EXOSC3-IRE1α interaction: a convergent study incorporating computational, in vitro and in vivo studies. J Biomol Struct Dyn 2024:1-11. [PMID: 38407190 DOI: 10.1080/07391102.2024.2320252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
The Unfolded protein response (UPR) is an adaptive signalling pathway which is triggered by accumulation of unfolded/misfolded protein in ER lumen. The UPR consist of three transmembrane proteins-IRE1α, PERK and ATF6 that sense ER stress which leads to activation and downstream signaling from ER lumen to cytosol to restore homeostasis. IRE1α is an evolutionary conserved arm of UPR and acts as an interaction platform for many potential proteins that become activated under ER stress conditions. We investigated potential partners of IRE1 α through MS studies and found EXOSC3 as one of the binding partner of IRE1α. Exosomal complex proteins have 3'5' exonuclease properties (EXOSC3) that play an important role in mRNA surveillance. This property of exosomal proteins coincides with IRE1α ribonuclease activities and its mechanism of action is similar to that of IRE1α-RIDD pathway which degrades any unstable mRNA that disrupts cellular homeostasis. At the same time, studies have shown that knockdown of EXOSC3 causes ER stress in human cells, so we speculated that there might be a functional crosstalk between IRE1α and EXOSC3 under ER stress conditions. Therefore, we employed computational tools to predict and explore the stability and dynamics of the IRE1α-EXOSC3 complex. The analysis indicates that IRE1α and EXOSC3 exhibit potential interaction with the involvement of ScanNet, predicting binding pockets between the two proteins. Further, the interaction was validated via co-immunoprecipitation and yeast two-hybrid assays, thus suggesting EXOSC3 as a component of the UPRosome complex. Hence, this functional crosstalk might influence the dynamic functional output of IRE1α.
Collapse
Affiliation(s)
- Ariha Ashraf
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Younis Majeed
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Irfan Gul
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Mariam Banday
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Khalida Ramzan
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | | |
Collapse
|
12
|
Pavlova N, Traykovska M, Penchovsky R. Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development. Antibiotics (Basel) 2023; 12:1607. [PMID: 37998809 PMCID: PMC10668854 DOI: 10.3390/antibiotics12111607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial drug resistance has emerged as a significant challenge in contemporary medicine due to the proliferation of numerous bacterial strains resistant to all existing antibiotics. Meanwhile, riboswitches have emerged as promising targets for discovering antibacterial drugs. Riboswitches are regulatory elements in certain bacterial mRNAs that can bind to specific molecules and control gene expression via transcriptional termination, prevention of translation, or mRNA destabilization. By targeting riboswitches, we aim to develop innovative strategies to combat antibiotic-resistant bacteria and enhance the efficacy of antibacterial treatments. This convergence of challenges and opportunities underscores the ongoing quest to revolutionize medical approaches against evolving bacterial threats. For the first time, this innovative review describes the rational design and applications of chimeric antisense oligonucleotides as antibacterial agents targeting four riboswitches selected based on genome-wide bioinformatic analyses. The antisense oligonucleotides are coupled with the cell-penetrating oligopeptide pVEC, which penetrates Gram-positive and Gram-negative bacteria and specifically targets glmS, FMN, TPP, and SAM-I riboswitches in Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. The average antibiotic dosage of antisense oligonucleotides that inhibits 80% of bacterial growth is around 700 nM (4.5 μg/mL). Antisense oligonucleotides do not exhibit toxicity in human cell lines at this concentration. The results demonstrate that these riboswitches are suitable targets for antibacterial drug development using antisense oligonucleotide technology. The approach is fully rational because selecting suitable riboswitch targets and designing ASOs that target them are based on predefined criteria. The approach can be used to develop narrow or broad-spectrum antibiotics against multidrug-resistant bacterial strains for a short time. The approach is easily adaptive to new resistance using targeting NGS technology.
Collapse
Affiliation(s)
| | | | - Robert Penchovsky
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
13
|
Tomecki R, Drazkowska K, Kobylecki K, Tudek A. SKI complex: A multifaceted cytoplasmic RNA exosome cofactor in mRNA metabolism with links to disease, developmental processes, and antiviral responses. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1795. [PMID: 37384835 DOI: 10.1002/wrna.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
RNA stability and quality control are integral parts of gene expression regulation. A key factor shaping eukaryotic transcriptomes, mainly via 3'-5' exoribonucleolytic trimming or degradation of diverse transcripts in nuclear and cytoplasmic compartments, is the RNA exosome. Precise exosome targeting to various RNA molecules requires strict collaboration with specialized auxiliary factors, which facilitate interactions with its substrates. The predominant class of cytoplasmic RNA targeted by the exosome are protein-coding transcripts, which are carefully scrutinized for errors during translation. Normal, functional mRNAs are turned over following protein synthesis by the exosome or by Xrn1 5'-3'-exonuclease, acting in concert with Dcp1/2 decapping complex. In turn, aberrant transcripts are eliminated by dedicated surveillance pathways, triggered whenever ribosome translocation is impaired. Cytoplasmic 3'-5' mRNA decay and surveillance are dependent on the tight cooperation between the exosome and its evolutionary conserved co-factor-the SKI (superkiller) complex (SKIc). Here, we summarize recent findings from structural, biochemical, and functional studies of SKIc roles in controlling cytoplasmic RNA metabolism, including links to various cellular processes. Mechanism of SKIc action is illuminated by presentation of its spatial structure and details of its interactions with exosome and ribosome. Furthermore, contribution of SKIc and exosome to various mRNA decay pathways, usually converging on recycling of ribosomal subunits, is delineated. A crucial physiological role of SKIc is emphasized by describing association between its dysfunction and devastating human disease-a trichohepatoenteric syndrome (THES). Eventually, we discuss SKIc functions in the regulation of antiviral defense systems, cell signaling and developmental transitions, emerging from interdisciplinary investigations. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Drazkowska
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Kobylecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Tudek
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Meydan S, Guydosh NR. Is there a localized role for translational quality control? RNA (NEW YORK, N.Y.) 2023; 29:1623-1643. [PMID: 37582617 PMCID: PMC10578494 DOI: 10.1261/rna.079683.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
It is known that mRNAs and the machinery that translates them are not uniformly distributed throughout the cytoplasm. As a result, the expression of some genes is localized to particular parts of the cell and this makes it possible to carry out important activities, such as growth and signaling, in three-dimensional space. However, the functions of localized gene expression are not fully understood, and the underlying mechanisms that enable localized expression have not been determined in many cases. One consideration that could help in addressing these challenges is the role of quality control (QC) mechanisms that monitor translating ribosomes. On a global level, QC pathways are critical for detecting aberrant translation events, such as a ribosome that stalls while translating, and responding by activating stress pathways and resolving problematic ribosomes and mRNAs at the molecular level. However, it is unclear how these pathways, even when uniformly active throughout the cell, affect local translation. Importantly, some QC pathways have themselves been reported to be enriched in the proximity of particular organelles, but the extent of such localized activity remains largely unknown. Here, we describe the major QC pathways and review studies that have begun to explore their roles in localized translation. Given the limited data in this area, we also pose broad questions about the possibilities and limitations for how QC pathways could facilitate localized gene expression in the cell with the goal of offering ideas for future experimentation.
Collapse
Affiliation(s)
- Sezen Meydan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nicholas R Guydosh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
15
|
Luo S, Alwattar B, Li Q, Bora K, Blomfield AK, Lin J, Fulton A, Chen J, Agrawal PB. Genetic deficiency of ribosomal rescue factor HBS1L causes retinal dystrophy associated with Pelota and EDF1 depletion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562924. [PMID: 37905068 PMCID: PMC10614867 DOI: 10.1101/2023.10.18.562924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Inherited retinal diseases (IRDs) encompass a genetically diverse group of conditions in which mutations in genes critical to retinal function lead to progressive loss of photoreceptor cells and subsequent visual impairment. A handful of ribosome-associated genes have been implicated in retinal disorders alongside neurological phenotypes. This study focuses on the HBS1L gene, encoding HBS1 Like Translational GTPase which has been recognized as a critical ribosomal rescue factor. Previously, we have reported a female child carrying biallelic HBS1L mutations, manifesting growth restriction, developmental delay, and hypotonia. In this study, we describe her ophthalmologic findings, compare them with the Hbs1ltm1a/tm1a hypomorph mouse model, and evaluate the underlying microscopic and molecular perturbations. The patient was noted to have impaired visual function observed by electroretinogram (ERG), with dampened amplitudes of a- and b-waves in both rod- and cone-mediated responses. Hbs1ltm1a/tm1a mice exhibited profound retinal thinning of the entire retina, specifically of the outer retinal photoreceptor layer, detected using in vivo imaging of optical coherence tomography (OCT) and retinal cross sections. TUNEL assay revealed retinal degeneration due to extensive photoreceptor cell apoptosis. Loss of HBS1L resulted in comprehensive proteomic alterations in mass spectrometry analysis, with169 proteins increased and 480 proteins decreased including many critical IRD-related proteins. GO biological process and GSEA analyses reveal that these downregulated proteins are primarily involved in photoreceptor cell development, cilium assembly, phototransduction, and aerobic respiration. Furthermore, apart from the diminished level of PELO, a known partner protein, HBS1L depletion was accompanied by reduction in translation machinery associated 7 homolog (Tma7), and Endothelial differentiation-related factor 1(Edf1) proteins, the latter of which coordinates cellular responses to ribosome collisions. This novel connection between HBS1L and ribosome collision sensor (EDF1) further highlights the intricate mechanisms underpinning ribosomal rescue and quality control that are essential to maintain homeostasis of key proteins of retinal health, such as rhodopsin.
Collapse
Affiliation(s)
- Shiyu Luo
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children’s Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston, MA 02115, USA
| | - Bilal Alwattar
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School; Boston, MA 02115, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children’s Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston, MA 02115, USA
| | - Kiran Bora
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School; Boston, MA 02115, USA
| | - Alexandra K. Blomfield
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School; Boston, MA 02115, USA
| | - Jasmine Lin
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston, MA 02115, USA
| | - Anne Fulton
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School; Boston, MA 02115, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School; Boston, MA 02115, USA
| | - Pankaj B. Agrawal
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children’s Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston, MA 02115, USA
| |
Collapse
|
16
|
Ishiwata-Kimata Y, Kimata Y. Fundamental and Applicative Aspects of the Unfolded Protein Response in Yeasts. J Fungi (Basel) 2023; 9:989. [PMID: 37888245 PMCID: PMC10608004 DOI: 10.3390/jof9100989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Upon the dysfunction or functional shortage of the endoplasmic reticulum (ER), namely, ER stress, eukaryotic cells commonly provoke a protective gene expression program called the unfolded protein response (UPR). The molecular mechanism of UPR has been uncovered through frontier genetic studies using Saccharomyces cerevisiae as a model organism. Ire1 is an ER-located transmembrane protein that directly senses ER stress and is activated as an RNase. During ER stress, Ire1 promotes the splicing of HAC1 mRNA, which is then translated into a transcription factor that induces the expression of various genes, including those encoding ER-located molecular chaperones and protein modification enzymes. While this mainstream intracellular UPR signaling pathway was elucidated in the 1990s, new intriguing insights have been gained up to now. For instance, various additional factors allow UPR evocation strictly in response to ER stress. The UPR machineries in other yeasts and fungi, including pathogenic species, are another important research topic. Moreover, industrially beneficial yeast strains carrying an enforced and enlarged ER have been produced through the artificial and constitutive induction of the UPR. In this article, we review canonical and up-to-date insights concerning the yeast UPR, mainly from the viewpoint of the functions and regulation of Ire1 and HAC1.
Collapse
Affiliation(s)
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
17
|
Karasik A, Lorenzi HA, DePass AV, Guydosh NR. Endonucleolytic RNA cleavage drives changes in gene expression during the innate immune response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555507. [PMID: 37693516 PMCID: PMC10491309 DOI: 10.1101/2023.09.01.555507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Viral infection triggers several dsRNA sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, RNase L, that cleaves single stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here we show that this fragmentation induces the Ribotoxic Stress Response via ZAKα, potentially through ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes, including antiviral IFIT mRNAs and GADD34 that encodes an antagonist of the Integrated Stress Response. Intriguingly, we found the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Hernan A Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
18
|
Mingjie Y, Yair A, Tali G. The RIDD activity of C. elegans IRE1 modifies neuroendocrine signaling in anticipation of environment stress to ensure survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552841. [PMID: 37609168 PMCID: PMC10441387 DOI: 10.1101/2023.08.10.552841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Xbp1 splicing and regulated IRE1-dependent RNA decay (RIDD) are two RNase activities of the ER stress sensor IRE1. While Xbp1 splicing has important roles in stress responses and animal physiology, the physiological role(s) of RIDD remain enigmatic. Genetic evidence in C. elegans connects XBP1-independent IRE1 activity to organismal stress adaptation, but whether this is via RIDD, and what are the targets is yet unknown. We show that cytosolic kinase/RNase domain of C. elegans IRE1 is indeed capable of RIDD in human cells, and that sensory neurons use RIDD to signal environmental stress, by degrading mRNA of TGFβ-like growth factor DAF-7. daf-7 was degraded in human cells by both human and worm IRE1 RNAse activity with same efficiency and specificity as Blos1, confirming daf-7 as RIDD substrate. Surprisingly, daf-7 degradation in vivo was triggered by concentrations of ER stressor tunicamycin too low for xbp-1 splicing. Decrease in DAF-7 normally signals food limitation and harsh environment, triggering adaptive changes to promote population survival. Because C. elegans is a bacteriovore, and tunicamycin, like other common ER stressors, is an antibiotic secreted by Streptomyces spp., we asked whether daf-7 degradation by RIDD could signal pending food deprivation. Indeed, pre-emptive tunicamycin exposure increased survival of C. elegans populations under food limiting/high temperature stress, and this protection was abrogated by overexpression of DAF-7. Thus, C. elegans uses stress-inducing metabolites in its environment as danger signals, and employs IRE1's RIDD activity to modulate the neuroendocrine signaling for survival of upcoming environmental challenge.
Collapse
Affiliation(s)
- Ying Mingjie
- Department of Biology, Drexel University, Philadelphia, PA
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Argon Yair
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
19
|
Kim JH, Modena MS, Sehgal E, Courney A, Neudorf C, Arribere J. SMG-6 mRNA cleavage stalls ribosomes near premature stop codons in vivo. Nucleic Acids Res 2022; 50:8852-8866. [PMID: 35950494 PMCID: PMC9410879 DOI: 10.1093/nar/gkac681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 12/24/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) protects cells from the toxic and potentially dominant effects of truncated proteins. Targeting of mRNAs with early stop codons is mediated by the ribosome and spatiotemporally aligned with translation termination. Previously we identified a novel NMD intermediate: ribosomes stalled on cleaved stop codons, raising the possibility that NMD begins even prior to ribosome removal from the stop codon. Here we show that this intermediate is the result of mRNA cleavage by the endonuclease SMG-6. Our work supports a model in which ribosomes stall secondary to SMG-6 mRNA cleavage in Caenorhabditis elegans and humans, i.e. that the novel NMD intermediate occurs after a prior ribosome elicits NMD. Our genetic analysis of C. elegans' SMG-6 supports a central role for SMG-6 in metazoan NMD, and provides a context for evaluating its function in other metazoans.
Collapse
Affiliation(s)
- John H Kim
- Department of MCD Biology, UC Santa Cruz, California, USA
| | | | - Enisha Sehgal
- Department of MCD Biology, UC Santa Cruz, California, USA
| | - Annie Courney
- Department of MCD Biology, UC Santa Cruz, California, USA
| | - Celine W Neudorf
- Department of Biomolecular Engineering, UC Santa Cruz, California, USA
| | | |
Collapse
|
20
|
Young DJ, Guydosh NR. Rebirth of the translational machinery: The importance of recycling ribosomes. Bioessays 2022; 44:e2100269. [PMID: 35147231 PMCID: PMC9270684 DOI: 10.1002/bies.202100269] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Abstract
Translation of the genetic code occurs in a cycle where ribosomes engage mRNAs, synthesize protein, and then disengage in order to repeat the process again. The final part of this process-ribosome recycling, where ribosomes dissociate from mRNAs-involves a complex molecular choreography of specific protein factors to remove the large and small subunits of the ribosome in a coordinated fashion. Errors in this process can lead to the accumulation of ribosomes at stop codons or translation of downstream open reading frames (ORFs). Ribosome recycling is also critical when a ribosome stalls during the elongation phase of translation and must be rescued to allow continued translation of the mRNA. Here we discuss the molecular interactions that drive ribosome recycling, and their regulation in the cell. We also examine the consequences of inefficient recycling with regards to disease, and its functional roles in synthesis of novel peptides, regulation of gene expression, and control of mRNA-associated proteins. Alterations in ribosome recycling efficiency have the potential to impact many cellular functions but additional work is needed to understand how this regulatory power is utilized.
Collapse
Affiliation(s)
- David J Young
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Pelizzari Raymundo D, Eriksson LA, Chevet E, Guillory X. Structure-Based Drug Discovery of IRE1 Modulators. Methods Mol Biol 2022; 2378:293-315. [PMID: 34985708 DOI: 10.1007/978-1-0716-1732-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
IRE1α (inositol-requiring enzyme 1 alpha, referred to IRE1 hereafter) is an Endoplasmic Reticulum (ER) resident transmembrane enzyme with cytosolic kinase/RNAse activities. Upon ER stress IRE1 is activated through trans-autophosphorylation and oligomerization, resulting in a conformational change of the RNase domain, thereby promoting two signaling pathways: i) the non-conventional splicing of XBP1 mRNA and ii) the regulated IRE1-dependent decay of RNA (RIDD). IRE1 RNase activity has been linked to diverse pathologies such as cancer or inflammatory, metabolic, and degenerative diseases and the modulation of IRE1 activity is emerging as an appealing therapeutic strategy against these diseases. Several modulators of IRE1 activity have been reported in the past, but none have successfully translated into the clinics as yet. Based on our expertise in the field, we describe in this chapter the approaches and protocols we used to discover novel IRE1 modulators and characterize their effect on IRE1 activity.
Collapse
Affiliation(s)
- Diana Pelizzari Raymundo
- INSERM U1242, Université de Rennes, Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France.
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Eric Chevet
- INSERM U1242, Université de Rennes, Rennes, France
- Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Xavier Guillory
- INSERM U1242, Université de Rennes, Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France.
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France.
| |
Collapse
|
22
|
De S, Mühlemann O. A comprehensive coverage insurance for cells: revealing links between ribosome collisions, stress responses and mRNA surveillance. RNA Biol 2021; 19:609-621. [PMID: 35491909 PMCID: PMC9067528 DOI: 10.1080/15476286.2022.2065116] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/02/2022] [Indexed: 11/02/2022] Open
Abstract
Cells of metazoans respond to internal and external stressors by activating stress response pathways that aim for re-establishing cellular homoeostasis or, if this cannot be achieved, triggering programmed cell death. Problems during translation, arising from defective mRNAs, tRNAs, ribosomes or protein misfolding, can activate stress response pathways as well as mRNA surveillance and ribosome quality control programs. Recently, ribosome collisions have emerged as a central signal for translational stress and shown to elicit different stress responses. Here, we review our current knowledge about the intricate mutual connections between ribosome collisions, stress response pathways and mRNA surveillance. A central factor connecting the sensing of collided ribosomes with degradation of the nascent polypeptides, dissociation of the stalled ribosomes and degradation of the mRNA by no-go or non-stop decay is the E3-ligase ZNF598. We tested whether ZNF598 also plays a role in nonsense-mediated mRNA decay (NMD) but found that it is dispensable for this translation termination-associated mRNA surveillance pathway, which in combination with other recent data argues against stable ribosome stalling at termination codons being the NMD-triggering signal.
Collapse
Affiliation(s)
- Soumasree De
- University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Bern, Switzerland
| | - Oliver Mühlemann
- University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Bern, Switzerland
| |
Collapse
|
23
|
Decoding non-canonical mRNA decay by the endoplasmic-reticulum stress sensor IRE1α. Nat Commun 2021; 12:7310. [PMID: 34911951 PMCID: PMC8674358 DOI: 10.1038/s41467-021-27597-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
Inositol requiring enzyme 1 (IRE1) mitigates endoplasmic-reticulum (ER) stress by orchestrating the unfolded-protein response (UPR). IRE1 spans the ER membrane, and signals through a cytosolic kinase-endoribonuclease module. The endoribonuclease generates the transcription factor XBP1s by intron excision between similar RNA stem-loop endomotifs, and depletes select cellular mRNAs through regulated IRE1-dependent decay (RIDD). Paradoxically, in mammals RIDD seems to target only mRNAs with XBP1-like endomotifs, while in flies RIDD exhibits little sequence restriction. By comparing nascent and total IRE1α-controlled mRNAs in human cells, we identify not only canonical endomotif-containing RIDD substrates, but also targets without such motifs-degraded by a process we coin RIDDLE, for RIDD lacking endomotif. IRE1α displays two basic endoribonuclease modalities: highly specific, endomotif-directed cleavage, minimally requiring dimers; and more promiscuous, endomotif-independent processing, requiring phospho-oligomers. An oligomer-deficient IRE1α mutant fails to support RIDDLE in vitro and in cells. Our results advance current mechanistic understanding of the UPR.
Collapse
|
24
|
Verma K, Verma M, Chaphalkar A, Chakraborty K. Recent advances in understanding the role of proteostasis. Fac Rev 2021; 10:72. [PMID: 34632458 PMCID: PMC8483240 DOI: 10.12703/r/10-72] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Maintenance of a functional proteome is achieved through the mechanism of proteostasis that involves precise coordination between molecular machineries assisting a protein from its conception to demise. Although each organelle within a cell has its own set of proteostasis machinery, inter-organellar communication and cell non-autonomous signaling bring forth the multidimensional nature of the proteostasis network. Exposure to extrinsic and intrinsic stressors can challenge the proteostasis network, leading to the accumulation of aberrant proteins or a decline in the proteostasis components, as seen during aging and in several diseases. Here, we summarize recent advances in understanding the role of proteostasis and its regulation in aging and disease, including monogenetic and infectious diseases. We highlight some of the emerging as well as unresolved questions in proteostasis that need to be addressed to overcome pathologies associated with damaged proteins and to promote healthy aging.
Collapse
Affiliation(s)
- Kanika Verma
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Monika Verma
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Aseem Chaphalkar
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Kausik Chakraborty
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
25
|
Levi-Ferber M, Shalash R, Le-Thomas A, Salzberg Y, Shurgi M, Benichou JI, Ashkenazi A, Henis-Korenblit S. Neuronal regulated ire- 1-dependent mRNA decay controls germline differentiation in Caenorhabditis elegans. eLife 2021; 10:65644. [PMID: 34477553 PMCID: PMC8416019 DOI: 10.7554/elife.65644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
Understanding the molecular events that regulate cell pluripotency versus acquisition of differentiated somatic cell fate is fundamentally important. Studies in Caenorhabditis elegans demonstrate that knockout of the germline-specific translation repressor gld-1 causes germ cells within tumorous gonads to form germline-derived teratoma. Previously we demonstrated that endoplasmic reticulum (ER) stress enhances this phenotype to suppress germline tumor progression(Levi-Ferber et al., 2015). Here, we identify a neuronal circuit that non-autonomously suppresses germline differentiation and show that it communicates with the gonad via the neurotransmitter serotonin to limit somatic differentiation of the tumorous germline. ER stress controls this circuit through regulated inositol requiring enzyme-1 (IRE-1)-dependent mRNA decay of transcripts encoding the neuropeptide FLP-6. Depletion of FLP-6 disrupts the circuit’s integrity and hence its ability to prevent somatic-fate acquisition by germline tumor cells. Our findings reveal mechanistically how ER stress enhances ectopic germline differentiation and demonstrate that regulated Ire1-dependent decay can affect animal physiology by controlling a specific neuronal circuit.
Collapse
Affiliation(s)
- Mor Levi-Ferber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Rewayd Shalash
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Adrien Le-Thomas
- Cancer Immunology, Genentech, South San Francisco, United States
| | - Yehuda Salzberg
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Maor Shurgi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Jennifer Ic Benichou
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Avi Ashkenazi
- Cancer Immunology, Genentech, South San Francisco, United States
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
26
|
Karasik A, Jones GD, DePass AV, Guydosh NR. Activation of the antiviral factor RNase L triggers translation of non-coding mRNA sequences. Nucleic Acids Res 2021; 49:6007-6026. [PMID: 33556964 DOI: 10.1093/nar/gkab036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/06/2021] [Accepted: 02/03/2021] [Indexed: 11/15/2022] Open
Abstract
Ribonuclease L (RNase L) is activated as part of the innate immune response and plays an important role in the clearance of viral infections. When activated, it endonucleolytically cleaves both viral and host RNAs, leading to a global reduction in protein synthesis. However, it remains unknown how widespread RNA decay, and consequent changes in the translatome, promote the elimination of viruses. To study how this altered transcriptome is translated, we assayed the global distribution of ribosomes in RNase L activated human cells with ribosome profiling. We found that RNase L activation leads to a substantial increase in the fraction of translating ribosomes in ORFs internal to coding sequences (iORFs) and ORFs within 5' and 3' UTRs (uORFs and dORFs). Translation of these alternative ORFs was dependent on RNase L's cleavage activity, suggesting that mRNA decay fragments are translated to produce short peptides that may be important for antiviral activity.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grant D Jones
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Duangchan T, Tawonsawatruk T, Angsanuntsukh C, Trachoo O, Hongeng S, Kitiyanant N, Supokawej A. Amelioration of osteogenesis in iPSC-derived mesenchymal stem cells from osteogenesis imperfecta patients by endoplasmic reticulum stress inhibitor. Life Sci 2021; 278:119628. [PMID: 34015290 DOI: 10.1016/j.lfs.2021.119628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022]
Abstract
AIM Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder primarily caused by mutations in COL1A1 or COL1A2, which encode type I collagen. These mutations affect the quantity and/or quality of collagen composition in bones, leading to bone fragility. Currently, there is still a lack of treatment that addresses disease-causing factors due to an insufficient understanding of the pathological mechanisms involved. MAIN METHODS Induced pluripotent stem cells (iPSCs) were generated from OI patients with glycine substitution mutations in COL1A1 and COL1A2 and developed into mesenchymal stem cells (iPS-MSCs). OI-derived iPS-MSCs underwent in vitro osteogenic induction to study cell growth, osteogenic differentiation capacity, mRNA expression of osteogenic and unfolded protein response (UPR) markers and apoptosis. The effects of 4-phenylbutyric acid (4-PBA) were examined after treatment of OI iPS-MSCs during osteogenesis. KEY FINDINGS OI-derived iPS-MSCs exhibited decreased cell growth and impaired osteogenic differentiation and collagen expression. Expression of UPR genes was increased, which led to an increase in apoptotic cell death. 4-PBA treatment decreased apoptotic cells and reduced expression of UPR genes, including HSPA5, XBP1, ATF4, DDIT3, and ATF6. Osteogenic phenotypes, including RUNX2, SPP1, BGLAP, and IBPS expression, as well as calcium mineralization, were also improved. SIGNIFICANCE MSCs differentiated from disease-specific iPSCs have utility as a disease model for identifying disease-specific treatments. In addition, the ER stress-associated UPR could be a pathogenic mechanism associated with OI. Treatment with 4-PBA alleviated OI pathogenesis by attenuating UPR markers and apoptotic cell death.
Collapse
Affiliation(s)
- Thitinat Duangchan
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Tulyapruek Tawonsawatruk
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Chanika Angsanuntsukh
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Objoon Trachoo
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Narisorn Kitiyanant
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
28
|
Ohtsuka H, Kobayashi M, Shimasaki T, Sato T, Akanuma G, Kitaura Y, Otsubo Y, Yamashita A, Aiba H. Magnesium depletion extends fission yeast lifespan via general amino acid control activation. Microbiologyopen 2021; 10:e1176. [PMID: 33970532 PMCID: PMC8088111 DOI: 10.1002/mbo3.1176] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
Nutrients including glucose, nitrogen, sulfur, zinc, and iron are involved in the regulation of chronological lifespan (CLS) of yeast, which serves as a model of the lifespan of differentiated cells of higher organisms. Herein, we show that magnesium (Mg2+) depletion extends CLS of the fission yeast Schizosaccharomyces pombe through a mechanism involving the Ecl1 gene family. We discovered that ecl1+ expression, which extends CLS, responds to Mg2+ depletion. Therefore, we investigated the underlying intracellular responses. In amino acid auxotrophic strains, Mg2+ depletion robustly induces ecl1+ expression through the activation of the general amino acid control (GAAC) pathway—the equivalent of the amino acid response of mammals. Polysome analysis indicated that the expression of Ecl1 family genes was required for regulating ribosome amount when cells were starved, suggesting that Ecl1 family gene products control the abundance of ribosomes, which contributes to longevity through the activation of the evolutionarily conserved GAAC pathway. The present study extends our understanding of the cellular response to Mg2+ depletion and its influence on the mechanism controlling longevity.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Mikuto Kobayashi
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Teppei Sato
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Genki Akanuma
- Department of Life Science, College of Sciences, Rikkyo University, Tokyo, Japan.,Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Yasuyuki Kitaura
- Laboratory of Nutritional Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoko Otsubo
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Japan.,National Institute for Fusion Science, Toki, Japan.,Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Japan
| | - Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Japan.,Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies, Okazaki, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
29
|
Li W, Crotty K, Garrido Ruiz D, Voorhies M, Rivera C, Sil A, Mullins RD, Jacobson MP, Peschek J, Walter P. Protomer alignment modulates specificity of RNA substrate recognition by Ire1. eLife 2021; 10:e67425. [PMID: 33904404 PMCID: PMC8104961 DOI: 10.7554/elife.67425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
The unfolded protein response (UPR) maintains protein folding homeostasis in the endoplasmic reticulum (ER). In metazoan cells, the Ire1 branch of the UPR initiates two functional outputs-non-conventional mRNA splicing and selective mRNA decay (RIDD). By contrast, Ire1 orthologs from Saccharomyces cerevisiae and Schizosaccharomyces pombe are specialized for only splicing or RIDD, respectively. Previously, we showed that the functional specialization lies in Ire1's RNase activity, which is either stringently splice-site specific or promiscuous (Li et al., 2018). Here, we developed an assay that reports on Ire1's RNase promiscuity. We found that conversion of two amino acids within the RNase domain of S. cerevisiae Ire1 to their S. pombe counterparts rendered it promiscuous. Using biochemical assays and computational modeling, we show that the mutations rewired a pair of salt bridges at Ire1 RNase domain's dimer interface, changing its protomer alignment. Thus, Ire1 protomer alignment affects its substrates specificity.
Collapse
Affiliation(s)
- Weihan Li
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
| | - Kelly Crotty
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
| | - Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California at San FranciscoSan FranciscoUnited States
| | - Mark Voorhies
- Department of Microbiology and Immunology, University of California at San FranciscoSan FranciscoUnited States
| | - Carlos Rivera
- Department of Molecular Biophysics and Biochemistry, Yale School of MedicineNew HavenUnited States
| | - Anita Sil
- Department of Microbiology and Immunology, University of California at San FranciscoSan FranciscoUnited States
| | - R Dyche Mullins
- Howard Hughes Medical InstituteSan FranciscoUnited States
- Department of Cellular and Molecular Pharmacology, University of California at San FranciscoSan FranciscoUnited States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California at San FranciscoSan FranciscoUnited States
| | - Jirka Peschek
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
| |
Collapse
|
30
|
Terrey M, Adamson SI, Chuang JH, Ackerman SL. Defects in translation-dependent quality control pathways lead to convergent molecular and neurodevelopmental pathology. eLife 2021; 10:e66904. [PMID: 33899734 PMCID: PMC8075583 DOI: 10.7554/elife.66904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022] Open
Abstract
Translation-dependent quality control pathways such as no-go decay (NGD), non-stop decay (NSD), and nonsense-mediated decay (NMD) govern protein synthesis and proteostasis by resolving non-translating ribosomes and preventing the production of potentially toxic peptides derived from faulty and aberrant mRNAs. However, how translation is altered and the in vivo defects that arise in the absence of these pathways are poorly understood. Here, we show that the NGD/NSD factors Pelo and Hbs1l are critical in mice for cerebellar neurogenesis but expendable for survival of these neurons after development. Analysis of mutant mouse embryonic fibroblasts revealed translational pauses, alteration of signaling pathways, and translational reprogramming. Similar effects on signaling pathways, including mTOR activation, the translatome and mouse cerebellar development were observed upon deletion of the NMD factor Upf2. Our data reveal that these quality control pathways that function to mitigate errors at distinct steps in translation can evoke similar cellular responses.
Collapse
Affiliation(s)
- Markus Terrey
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, Division of Biological Sciences, University of California San DiegoLa JollaUnited States
- Graduate School of Biomedical Sciences and Engineering, University of MaineOronoUnited States
| | - Scott I Adamson
- The Jackson Laboratory for Genomic MedicineFarmingtonUnited States
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn HealthFarmingtonUnited States
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic MedicineFarmingtonUnited States
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn HealthFarmingtonUnited States
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, Division of Biological Sciences, University of California San DiegoLa JollaUnited States
| |
Collapse
|
31
|
D'Orazio KN, Green R. Ribosome states signal RNA quality control. Mol Cell 2021; 81:1372-1383. [PMID: 33713598 PMCID: PMC8041214 DOI: 10.1016/j.molcel.2021.02.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Eukaryotic cells integrate multiple quality control (QC) responses during protein synthesis in the cytoplasm. These QC responses are signaled by slow or stalled elongating ribosomes. Depending on the nature of the delay, the signal may lead to translational repression, messenger RNA decay, ribosome rescue, and/or nascent protein degradation. Here, we discuss how the structure and composition of an elongating ribosome in a troubled state determine the downstream quality control pathway(s) that ensue. We highlight the intersecting pathways involved in RNA decay and the crosstalk that occurs between RNA decay and ribosome rescue.
Collapse
Affiliation(s)
- Karole N D'Orazio
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
32
|
Knowles CM, McIntyre KM, Panepinto JC. Tools for Assessing Translation in Cryptococcus neoformans. J Fungi (Basel) 2021; 7:jof7030159. [PMID: 33668175 PMCID: PMC7995980 DOI: 10.3390/jof7030159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is a ubiquitous environmental fungus capable of establishing an infection in a human host. Rapid changes in environments and exposure to the host immune system results in a significant amount of cellular stress, which is effectively combated at the level of translatome reprogramming. Repression of translation following stress allows for the specific reallocation of limited resources. Understanding the mechanisms involved in regulating translation in C. neoformans during host infection is critical in the development of new antifungal drugs. In this review, we discuss the main tools available for assessing changes in translation state and translational output during cellular stress.
Collapse
|
33
|
Terrey M, Adamson SI, Gibson AL, Deng T, Ishimura R, Chuang JH, Ackerman SL. GTPBP1 resolves paused ribosomes to maintain neuronal homeostasis. eLife 2020; 9:e62731. [PMID: 33186095 PMCID: PMC7665888 DOI: 10.7554/elife.62731] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Ribosome-associated quality control pathways respond to defects in translational elongation to recycle arrested ribosomes and degrade aberrant polypeptides and mRNAs. Loss of a tRNA gene leads to ribosomal pausing that is resolved by the translational GTPase GTPBP2, and in its absence causes neuron death. Here, we show that loss of the homologous protein GTPBP1 during tRNA deficiency in the mouse brain also leads to codon-specific ribosome pausing and neurodegeneration, suggesting that these non-redundant GTPases function in the same pathway to mitigate ribosome pausing. As observed in Gtpbp2-/- mice (Ishimura et al., 2016), GCN2-mediated activation of the integrated stress response (ISR) was apparent in the Gtpbp1-/- brain. We observed decreased mTORC1 signaling which increased neuronal death, whereas ISR activation was neuroprotective. Our data demonstrate that GTPBP1 functions as an important quality control mechanism during translation elongation and suggest that translational signaling pathways intricately interact to regulate neuronal homeostasis during defective elongation.
Collapse
Affiliation(s)
- Markus Terrey
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
- Graduate School of Biomedical Sciences and Engineering, University of MaineOronoUnited States
| | - Scott I Adamson
- The Jackson Laboratory for Genomic MedicineFarmingtonUnited States
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn HealthFarmingtonUnited States
| | - Alana L Gibson
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Tianda Deng
- Division of Biological Sciences, Section of Molecular Biology, University of California, San DiegoSan DiegoUnited States
| | - Ryuta Ishimura
- The Jackson Laboratory for Mammalian GeneticsBar HarborUnited States
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic MedicineFarmingtonUnited States
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
34
|
A cellular handbook for collided ribosomes: surveillance pathways and collision types. Curr Genet 2020; 67:19-26. [PMID: 33044589 DOI: 10.1007/s00294-020-01111-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 12/29/2022]
Abstract
Translating ribosomes slow down or completely stall when they encounter obstacles on mRNAs. Such events can lead to ribosomes colliding with each other and forming complexes of two (disome), three (trisome) or more ribosomes. While these events can activate surveillance pathways, it has been unclear if collisions are common on endogenous mRNAs and whether they are usually detected by these cellular pathways. Recent genome-wide surveys of collisions revealed widespread distribution of disomes and trisomes across endogenous mRNAs in eukaryotic cells. Several studies further hinted that the recognition of collisions and response to them by multiple surveillance pathways depend on the context and duration of the ribosome stalling. This review considers recent efforts in the identification of endogenous ribosome collisions and cellular pathways dedicated to sense their severity. We further discuss the potential role of collided ribosomes in modulating co-translational events and contributing to cellular homeostasis.
Collapse
|
35
|
Zhao D, Zou CX, Liu XM, Jiang ZD, Yu ZQ, Suo F, Du TY, Dong MQ, He W, Du LL. A UPR-Induced Soluble ER-Phagy Receptor Acts with VAPs to Confer ER Stress Resistance. Mol Cell 2020; 79:963-977.e3. [PMID: 32735772 DOI: 10.1016/j.molcel.2020.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 01/07/2023]
Abstract
Autophagic degradation of the endoplasmic reticulum (ER-phagy) is triggered by ER stress in diverse organisms. However, molecular mechanisms governing ER stress-induced ER-phagy remain insufficiently understood. Here we report that ER stress-induced ER-phagy in the fission yeast Schizosaccharomyces pombe requires Epr1, a soluble Atg8-interacting ER-phagy receptor. Epr1 localizes to the ER through interacting with integral ER membrane proteins VAPs. Bridging an Atg8-VAP association is the main ER-phagy role of Epr1, as it can be bypassed by an artificial Atg8-VAP tether. VAPs contribute to ER-phagy not only by tethering Atg8 to the ER membrane, but also by maintaining the ER-plasma membrane contact. Epr1 is upregulated during ER stress by the unfolded protein response (UPR) regulator Ire1. Loss of Epr1 reduces survival against ER stress. Conversely, increasing Epr1 expression suppresses the ER-phagy defect and ER stress sensitivity of cells lacking Ire1. Our findings expand and deepen the molecular understanding of ER-phagy.
Collapse
Affiliation(s)
- Dan Zhao
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Chen-Xi Zou
- College of Life Sciences, Beijing Normal University, 100875 Beijing, China; National Institute of Biological Sciences, 102206 Beijing, China
| | - Xiao-Man Liu
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Zhao-Di Jiang
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Zhong-Qiu Yu
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Fang Suo
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Tong-Yang Du
- College of Life Sciences, Beijing Normal University, 100875 Beijing, China; National Institute of Biological Sciences, 102206 Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, 102206 Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206 Beijing, China
| | - Wanzhong He
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, 102206 Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206 Beijing, China.
| |
Collapse
|
36
|
Disome and Trisome Profiling Reveal Genome-wide Targets of Ribosome Quality Control. Mol Cell 2020; 79:588-602.e6. [PMID: 32615089 DOI: 10.1016/j.molcel.2020.06.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/07/2020] [Accepted: 06/02/2020] [Indexed: 01/18/2023]
Abstract
The ribosome-associated protein quality control (RQC) system that resolves stalled translation events is activated when ribosomes collide and form disome, trisome, or higher-order complexes. However, it is unclear whether this system distinguishes collision complexes formed on defective mRNAs from those with functional roles on endogenous transcripts. Here, we performed disome and trisome footprint profiling in yeast and found collisions were enriched on diverse sequence motifs known to slow translation. When 60S recycling was inhibited, disomes accumulated at stop codons and could move into the 3' UTR to reinitiate translation. The ubiquitin ligase and RQC factor Hel2/ZNF598 generally recognized collisions but did not induce degradation of endogenous transcripts. However, loss of Hel2 triggered the integrated stress response, via phosphorylation of eIF2α, thus linking these pathways. Our results suggest that Hel2 has a role in sensing ribosome collisions on endogenous mRNAs, and such events may be important for cellular homeostasis.
Collapse
|
37
|
Abstract
Stalled protein synthesis produces defective nascent chains that can harm cells. In response, cells degrade these nascent chains via a process called ribosome-associated quality control (RQC). Here, we review the irregularities in the translation process that cause ribosomes to stall as well as how cells use RQC to detect stalled ribosomes, ubiquitylate their tethered nascent chains, and deliver the ubiquitylated nascent chains to the proteasome. We additionally summarize how cells respond to RQC failure.
Collapse
Affiliation(s)
- Cole S Sitron
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
38
|
Role for ribosome-associated quality control in sampling proteins for MHC class I-mediated antigen presentation. Proc Natl Acad Sci U S A 2020; 117:4099-4108. [PMID: 32047030 PMCID: PMC7049129 DOI: 10.1073/pnas.1914401117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pathogens and tumors are detected by the immune system through the display of intracellular peptides on MHC-I complexes. These peptides are generated by the ubiquitin−proteasome system preferentially from newly synthesized polypeptides. Here we show that the ribosome-associated quality control (RQC) pathway, responsible for proteasomal degradation of polypeptide chains that stall during translation, mediates efficient antigen presentation of model proteins independent of their intrinsic folding properties. Immunopeptidome characterization of RQC-deficient cells shows that RQC contributes to the presentation of a wide variety of proteins, including proteins that may otherwise evade presentation due to efficient folding. By identifying endogenous substrates of the RQC pathway in human cells, our results also enable the analysis of common principles causing ribosome stalling under physiological conditions. Mammalian cells present a fingerprint of their proteome to the adaptive immune system through the display of endogenous peptides on MHC-I complexes. MHC-I−bound peptides originate from protein degradation by the proteasome, suggesting that stably folded, long-lived proteins could evade monitoring. Here, we investigate the role in antigen presentation of the ribosome-associated quality control (RQC) pathway for the degradation of nascent polypeptides that are encoded by defective messenger RNAs and undergo stalling at the ribosome during translation. We find that degradation of model proteins by RQC results in efficient MHC-I presentation, independent of their intrinsic folding properties. Quantitative profiling of MHC-I peptides in wild-type and RQC-deficient cells by mass spectrometry showed that RQC substantially contributes to the composition of the immunopeptidome. Our results also identify endogenous substrates of the RQC pathway in human cells and provide insight into common principles causing ribosome stalling under physiological conditions.
Collapse
|
39
|
Makarova M, Peter M, Balogh G, Glatz A, MacRae JI, Lopez Mora N, Booth P, Makeyev E, Vigh L, Oliferenko S. Delineating the Rules for Structural Adaptation of Membrane-Associated Proteins to Evolutionary Changes in Membrane Lipidome. Curr Biol 2020; 30:367-380.e8. [PMID: 31956022 PMCID: PMC6997885 DOI: 10.1016/j.cub.2019.11.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Membrane function is fundamental to life. Each species explores membrane lipid diversity within a genetically predefined range of possibilities. How membrane lipid composition in turn defines the functional space available for evolution of membrane-centered processes remains largely unknown. We address this fundamental question using related fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus. We show that, unlike S. pombe that generates membranes where both glycerophospholipid acyl tails are predominantly 16-18 carbons long, S. japonicus synthesizes unusual "asymmetrical" glycerophospholipids where the tails differ in length by 6-8 carbons. This results in stiffer bilayers with distinct lipid packing properties. Retroengineered S. pombe synthesizing the S.-japonicus-type phospholipids exhibits unfolded protein response and downregulates secretion. Importantly, our protein sequence comparisons and domain swap experiments support the hypothesis that transmembrane helices co-evolve with membranes, suggesting that, on the evolutionary scale, changes in membrane lipid composition may necessitate extensive adaptation of the membrane-associated proteome.
Collapse
Affiliation(s)
- Maria Makarova
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Maria Peter
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Gabor Balogh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Attila Glatz
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - James I MacRae
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nestor Lopez Mora
- Department of Chemistry, King's College London, Britannia House, London SE1 1DB, UK
| | - Paula Booth
- Department of Chemistry, King's College London, Britannia House, London SE1 1DB, UK
| | - Eugene Makeyev
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Laszlo Vigh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
40
|
Navickas A, Chamois S, Saint-Fort R, Henri J, Torchet C, Benard L. No-Go Decay mRNA cleavage in the ribosome exit tunnel produces 5'-OH ends phosphorylated by Trl1. Nat Commun 2020; 11:122. [PMID: 31913314 PMCID: PMC6949252 DOI: 10.1038/s41467-019-13991-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/11/2019] [Indexed: 11/24/2022] Open
Abstract
The No-Go Decay (NGD) mRNA surveillance pathway degrades mRNAs containing stacks of stalled ribosomes. Although an endoribonuclease has been proposed to initiate cleavages upstream of the stall sequence, the production of two RNA fragments resulting from a unique cleavage has never been demonstrated. Here we use mRNAs expressing a 3'-ribozyme to produce truncated transcripts in vivo to mimic naturally occurring truncated mRNAs known to trigger NGD. This technique allows us to analyse endonucleolytic cleavage events at single-nucleotide resolution starting at the third collided ribosome, which we show to be Hel2-dependent. These cleavages map precisely in the mRNA exit tunnel of the ribosome, 8 nucleotides upstream of the first P-site residue and release 5'-hydroxylated RNA fragments requiring 5'-phosphorylation prior to digestion by the exoribonuclease Xrn1, or alternatively by Dxo1. Finally, we identify the RNA kinase Trl1, alias Rlg1, as an essential player in the degradation of NGD RNAs.
Collapse
Affiliation(s)
- Albertas Navickas
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Sébastien Chamois
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Rénette Saint-Fort
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Julien Henri
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Claire Torchet
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Lionel Benard
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France.
| |
Collapse
|
41
|
Sprooten J, Garg AD. Type I interferons and endoplasmic reticulum stress in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:63-118. [PMID: 32138904 PMCID: PMC7104985 DOI: 10.1016/bs.ircmb.2019.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) comprise of pro-inflammatory cytokines created, as well as sensed, by all nucleated cells with the main objective of blocking pathogens-driven infections. Owing to this broad range of influence, type I IFNs also exhibit critical functions in many sterile inflammatory diseases and immunopathologies, especially those associated with endoplasmic reticulum (ER) stress-driven signaling pathways. Indeed, over the years accumulating evidence has indicated that the presence of ER stress can influence the production, or sensing of, type I IFNs induced by perturbations like pattern recognition receptor (PRR) agonists, infections (bacterial, viral or parasitic) or autoimmunity. In this article we discuss the link between type I IFNs and ER stress in various diseased contexts. We describe how ER stress regulates type I IFNs production or sensing, or how type I IFNs may induce ER stress, in various circumstances like microbial infections, autoimmunity, diabetes, cancer and other ER stress-related contexts.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
42
|
Kurosaki T, Maquat LE. Molecular autopsy provides evidence for widespread ribosome-phased mRNA fragmentation. Nat Struct Mol Biol 2019; 25:299-301. [PMID: 29555971 DOI: 10.1038/s41594-018-0048-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. .,Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
43
|
Park H, Subramaniam AR. Inverted translational control of eukaryotic gene expression by ribosome collisions. PLoS Biol 2019; 17:e3000396. [PMID: 31532761 PMCID: PMC6750593 DOI: 10.1371/journal.pbio.3000396] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022] Open
Abstract
The canonical model of eukaryotic translation posits that efficient translation initiation increases protein expression and mRNA stability. Contrary to this model, we find that increasing initiation rate can decrease both protein expression and stability of certain mRNAs in the budding yeast Saccharomyces cerevisiae. These mRNAs encode a stretch of polybasic residues that cause ribosome stalling. Our computational modeling predicts that the observed decrease in gene expression at high initiation rates occurs when ribosome collisions at stalls stimulate abortive termination of the leading ribosome or cause endonucleolytic mRNA cleavage. Consistent with this prediction, the collision-associated quality-control factors Asc1 and Hel2 (orthologs of human RACK1 and ZNF598, respectively) decrease gene expression from stall-containing mRNAs only at high initiation rates. Remarkably, hundreds of S. cerevisiae mRNAs that contain ribosome stall sequences also exhibit lower translation efficiency. We propose that inefficient translation initiation allows these stall-containing endogenous mRNAs to escape collision-stimulated reduction in gene expression. Higher rates of translation counterintuitively lead to lower protein levels from eukaryotic mRNAs that encode ribosome stalls; modelling suggests that this occurs when ribosome collisions at stalls trigger abortive termination of the leading ribosome or cause endonucleolytic mRNA cleavage.
Collapse
Affiliation(s)
- Heungwon Park
- Basic Sciences Division and Computational Biology Section of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Arvind R. Subramaniam
- Basic Sciences Division and Computational Biology Section of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
44
|
Pule MN, Glover ML, Fire AZ, Arribere JA. Ribosome clearance during RNA interference. RNA (NEW YORK, N.Y.) 2019; 25:963-974. [PMID: 31110136 PMCID: PMC6633202 DOI: 10.1261/rna.070813.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
In the course of identifying and cleaving RNA, the RNAi machinery must encounter and contend with the megadalton-sized ribosomes that carry out translation. We investigated this interface by examining the fate of actively translated mRNAs subjected to RNAi in C. elegans Quantifying RNA levels (RNA-seq) and ongoing translation (Ribo-seq), we found there is a greater fold repression of ongoing translation than expected from loss of RNA alone, observing stronger translation repression relative to RNA repression for multiple, independent double-stranded RNA triggers, and for multiple genes. In animals that lack the RNA helicase SKI complex and the ribosome rescue factor PELOTA, ribosomes stall on the 3' edges of mRNAs at and upstream of the RNAi trigger. One model to explain these observations is that ribosomes are actively cleared from mRNAs by SKI and PELO during or following mRNA cleavage. Our results expand prior studies that show a role for the SKI RNA helicase complex in removing RNA targets following RNAi in flies and plants, illuminating the widespread role of the nonstop translation surveillance in RNA silencing during RNAi. Our results are also consistent with proposals that RNAi can attack messages during active translation.
Collapse
Affiliation(s)
- Makena N Pule
- Department of MCD Biology, UC Santa Cruz, Santa Cruz, California 95064, USA
| | - Marissa L Glover
- Department of MCD Biology, UC Santa Cruz, Santa Cruz, California 95064, USA
| | - Andrew Z Fire
- Departments of Pathology and Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joshua A Arribere
- Department of MCD Biology, UC Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
45
|
Peschek J, Walter P. tRNA ligase structure reveals kinetic competition between non-conventional mRNA splicing and mRNA decay. eLife 2019; 8:44199. [PMID: 31237564 PMCID: PMC6592678 DOI: 10.7554/elife.44199] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/11/2019] [Indexed: 01/11/2023] Open
Abstract
Yeast tRNA ligase (Trl1) is an essential trifunctional enzyme that catalyzes exon-exon ligation during tRNA biogenesis and the non-conventional splicing of HAC1 mRNA during the unfolded protein response (UPR). The UPR regulates the protein folding capacity of the endoplasmic reticulum (ER). ER stress activates Ire1, an ER-resident kinase/RNase, which excises an intron from HAC1 mRNA followed by exon-exon ligation by Trl1. The spliced product encodes for a potent transcription factor that drives the UPR. Here we report the crystal structure of Trl1 RNA ligase domain from Chaetomium thermophilum at 1.9 Å resolution. Structure-based mutational analyses uncovered kinetic competition between RNA ligation and degradation during HAC1 mRNA splicing. Incompletely processed HAC1 mRNA is degraded by Xrn1 and the Ski/exosome complex. We establish cleaved HAC1 mRNA as endogenous substrate for ribosome-associated quality control. We conclude that mRNA decay and surveillance mechanisms collaborate in achieving fidelity of non-conventional mRNA splicing during the UPR.
Collapse
Affiliation(s)
- Jirka Peschek
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Peter Walter
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
46
|
D'Orazio KN, Wu CCC, Sinha N, Loll-Krippleber R, Brown GW, Green R. The endonuclease Cue2 cleaves mRNAs at stalled ribosomes during No Go Decay. eLife 2019; 8:e49117. [PMID: 31219035 PMCID: PMC6598757 DOI: 10.7554/elife.49117] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 01/04/2023] Open
Abstract
Translation of problematic sequences in mRNAs leads to ribosome collisions that trigger a series of quality control events including ribosome rescue, degradation of the stalled nascent polypeptide, and targeting of the mRNA for decay (No Go Decay or NGD). Using a reverse genetic screen in yeast, we identify Cue2 as the conserved endonuclease that is recruited to stalled ribosomes to promote NGD. Ribosome profiling and biochemistry provide strong evidence that Cue2 cleaves mRNA within the A site of the colliding ribosome. We demonstrate that NGD primarily proceeds via Xrn1-mediated exonucleolytic decay and Cue2-mediated endonucleolytic decay normally constitutes a secondary decay pathway. Finally, we show that the Cue2-dependent pathway becomes a major contributor to NGD in cells depleted of factors required for the resolution of stalled ribosome complexes. Together these results provide insights into how multiple decay processes converge to process problematic mRNAs in eukaryotic cells..
Collapse
Affiliation(s)
- Karole N D'Orazio
- Department of Molecular Biology and GeneticsHoward Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Colin Chih-Chien Wu
- Department of Molecular Biology and GeneticsHoward Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Niladri Sinha
- Department of Molecular Biology and GeneticsHoward Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Raphael Loll-Krippleber
- Donnelly Centre for Cellular and Biomolecular Research, Department of BiochemistryUniversity of TorontoTorontoCanada
| | - Grant W Brown
- Donnelly Centre for Cellular and Biomolecular Research, Department of BiochemistryUniversity of TorontoTorontoCanada
| | - Rachel Green
- Department of Molecular Biology and GeneticsHoward Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
47
|
Xia X. Translation Control of HAC1 by Regulation of Splicing in Saccharomyces cerevisiae. Int J Mol Sci 2019; 20:ijms20122860. [PMID: 31212749 PMCID: PMC6627864 DOI: 10.3390/ijms20122860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Hac1p is a key transcription factor regulating the unfolded protein response (UPR) induced by abnormal accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) in Saccharomyces cerevisiae. The accumulation of unfolded/misfolded proteins is sensed by protein Ire1p, which then undergoes trans-autophosphorylation and oligomerization into discrete foci on the ER membrane. HAC1 pre-mRNA, which is exported to the cytoplasm but is blocked from translation by its intron sequence looping back to its 5’UTR to form base-pair interaction, is transported to the Ire1p foci to be spliced, guided by a cis-acting bipartite element at its 3’UTR (3’BE). Spliced HAC1 mRNA can be efficiently translated. The resulting Hac1p enters the nucleus and activates, together with coactivators, a large number of genes encoding proteins such as protein chaperones to restore and maintain ER homeostasis and secretary protein quality control. This review details the translation regulation of Hac1p production, mediated by the nonconventional splicing, in the broad context of translation control and summarizes the evolution and diversification of the UPR signaling pathway among fungal, metazoan and plant lineages.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N 9A7, Canada.
| |
Collapse
|
48
|
Cherry PD, Peach SE, Hesselberth JR. Multiple decay events target HAC1 mRNA during splicing to regulate the unfolded protein response. eLife 2019; 8:e42262. [PMID: 30874502 PMCID: PMC6456296 DOI: 10.7554/elife.42262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/14/2019] [Indexed: 01/24/2023] Open
Abstract
In the unfolded protein response (UPR), stress in the endoplasmic reticulum (ER) activates a large transcriptional program to increase ER folding capacity. During the budding yeast UPR, Ire1 excises an intron from the HAC1 mRNA and the exon products of cleavage are ligated, and the translated protein induces hundreds of stress-response genes. Using cells with mutations in RNA repair and decay enzymes, we show that phosphorylation of two different HAC1 splicing intermediates is required for their degradation by the 5'→3' exonuclease Xrn1 to enact opposing effects on the UPR. We also found that ligated but 2'-phosphorylated HAC1 mRNA is cleaved, yielding a decay intermediate with both 5'- and 2'-phosphates at its 5'-end that inhibit 5'→3' decay and suggesting that Ire1 degrades incompletely processed HAC1. These decay events expand the scope of RNA-based regulation in the budding yeast UPR and have implications for the control of the metazoan UPR.
Collapse
Affiliation(s)
- Patrick D Cherry
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, School of MedicineUniversity of ColoradoAuroraUnited States
- RNA Bioscience Initiative, School of MedicineUniversity of ColoradoAuroraUnited States
| | - Sally E Peach
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, School of MedicineUniversity of ColoradoAuroraUnited States
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, School of MedicineUniversity of ColoradoAuroraUnited States
| |
Collapse
|
49
|
Mohammad F, Green R, Buskirk AR. A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution. eLife 2019; 8:e42591. [PMID: 30724162 PMCID: PMC6377232 DOI: 10.7554/elife.42591] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
In eukaryotes, ribosome profiling provides insight into the mechanism of protein synthesis at the codon level. In bacteria, however, the method has been more problematic and no consensus has emerged for how to best prepare profiling samples. Here, we identify the sources of these problems and describe new solutions for arresting translation and harvesting cells in order to overcome them. These improvements remove confounding artifacts and improve the resolution to allow analyses of ribosome behavior at the codon level. With a clearer view of the translational landscape in vivo, we observe that filtering cultures leads to translational pauses at serine and glycine codons through the reduction of tRNA aminoacylation levels. This observation illustrates how bacterial ribosome profiling studies can yield insight into the mechanism of protein synthesis at the codon level and how these mechanisms are regulated in response to changes in the physiology of the cell.
Collapse
Affiliation(s)
- Fuad Mohammad
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreUnited States
| | - Rachel Green
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Allen R Buskirk
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
50
|
Ikeuchi K, Izawa T, Inada T. Recent Progress on the Molecular Mechanism of Quality Controls Induced by Ribosome Stalling. Front Genet 2019; 9:743. [PMID: 30705686 PMCID: PMC6344382 DOI: 10.3389/fgene.2018.00743] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/22/2018] [Indexed: 11/21/2022] Open
Abstract
Accurate gene expression is a prerequisite for all cellular processes. Cells actively promote correct protein folding, which prevents the accumulation of abnormal and non-functional proteins. Translation elongation is the fundamental step in gene expression to ensure cellular functions, and abnormal translation arrest is recognized and removed by the quality controls. Recent studies demonstrated that ribosome plays crucial roles as a hub for gene regulation and quality controls. Ribosome-interacting factors are critical for the quality control mechanisms responding to abnormal translation arrest by targeting its products for degradation. Aberrant mRNAs are produced by errors in mRNA maturation steps and cause aberrant translation and are eliminated by the quality control system. In this review, we focus on recent progress on two quality controls, Ribosome-associated Quality Control (RQC) and No-Go Decay (NGD), for abnormal translational elongation. These quality controls recognize aberrant ribosome stalling and induce rapid degradation of aberrant polypeptides and mRNAs thereby maintaining protein homeostasis and preventing the protein aggregation.
Collapse
Affiliation(s)
- Ken Ikeuchi
- Gene Regulation Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Toshiaki Izawa
- Gene Regulation Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Toshifumi Inada
- Gene Regulation Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|