451
|
Mehaffey MG, Newton AL, Gandhi MJ, Crossley M, Drachman JG. X-linked thrombocytopenia caused by a novel mutation of GATA-1. Blood 2001; 98:2681-8. [PMID: 11675338 DOI: 10.1182/blood.v98.9.2681] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A family with recessive X-linked thrombocytopenia affecting 4 males in 2 generations, characterized by macrothrombocytopenia, profound bleeding, and mild dyserythropoiesis, is described. Microsatellite linkage analysis identified a region of the X chromosome including the GATA-1 gene, which encodes a critical transcription factor involved in erythrocyte and megakaryocyte development. By sequencing the entire coding region of GATA-1, a 2-base mutation was detected that results in a single amino acid substitution (glycine 208 to serine) within a highly conserved portion of the N-terminal zinc finger domain. Restriction fragment length polymorphism confirmed that this novel mutation segregated with the affected males and female carrier. Although not required for DNA binding, Gly208 of GATA-1 is involved in direct interaction with Friend of GATA-1 (FOG), a cofactor required for normal megakaryocytic and erythroid development. These results demonstrate that the GATA-1-FOG interaction is partially disrupted by the mutation and that the greatest effect involves contact with the FOG zinc finger 9. These findings help describe a novel mutation of GATA-1 in humans as a cause of X-linked thrombocytopenia, and they confirm the vital role played by this transcription factor during in vivo megakaryocyte development.
Collapse
Affiliation(s)
- M G Mehaffey
- Puget Sound Blood Center and Program, Seattle, WA 98104, USA
| | | | | | | | | |
Collapse
|
452
|
Sato M, Tsuji NM, Gotoh H, Yamashita K, Hashimoto K, Tadotsu N, Yamanaka H, Sekikawa K, Hashimoto Y. Overexpression of the Wiskott-Aldrich syndrome protein N-terminal domain in transgenic mice inhibits T cell proliferative responses via TCR signaling without affecting cytoskeletal rearrangements. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4701-9. [PMID: 11591801 DOI: 10.4049/jimmunol.167.8.4701] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterized by thrombocytopenia with small platelets, severe eczema, and recurrent infections due to defects in the immune system. The disease arises from mutations in the gene encoding the WAS protein (WASP), which plays a role as an adaptor molecule in signal transduction accompanied by cytoskeletal rearrangement in T cells. To investigate the functional domain of WASP, we developed transgenic mice overexpressing the WASP N-terminal region (exon 1-5) including the Ena/VASP homology 1 (pleckstrin homology/WASP homology 1) domain, in which the majority of mutations in WAS patients have been observed. WASP transgenic mice develop and grow normally under the specific pathogen-free environment, and showed normal lymphocyte development. However, proliferative responses and cytokine production induced by TCR stimulation were strongly inhibited in transgenic mice, whereas Ag receptor capping and actin polymerization were normal. These findings suggest that overexpressed Ena/VASP homology 1 (pleckstrin homology/WASP homology 1) domain of WASP inhibits the signaling from TCR without coupling of cytoskeletal rearrangement. WASP transgenic mice shown here could be valuable tools for further understanding the WASP-mediated processes.
Collapse
Affiliation(s)
- M Sato
- Department of Molecular Biology and Immunology, National Institute of Agrobiological Sciences, GlaxoWellcome, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
453
|
Pouliot Y, Gao J, Su QJ, Liu GG, Ling XB. DIAN: a novel algorithm for genome ontological classification. Genome Res 2001; 11:1766-79. [PMID: 11591654 PMCID: PMC311153 DOI: 10.1101/gr.183301] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2001] [Accepted: 08/14/2001] [Indexed: 11/24/2022]
Abstract
Faced with the determination of many completely sequenced genomes, computational biology is now faced with the challenge of interpreting the significance of these data sets. A multiplicity of data-related problems impedes this goal: Biological annotations associated with raw data are often not normalized, and the data themselves are often poorly interrelated and their interpretation unclear. All of these problems make interpretation of genomic databases increasingly difficult. With the current explosion of sequences now available from the human genome as well as from model organisms, the importance of sorting this vast amount of conceptually unstructured source data into a limited universe of genes, proteins, functions, structures, and pathways has become a bottleneck for the field. To address this problem, we have developed a method of interrelating data sources by applying a novel method of associating biological objects to ontologies. We have developed an intelligent knowledge-based algorithm, to support biological knowledge mapping, and, in particular, to facilitate the interpretation of genomic data. In this respect, the method makes it possible to inventory genomes by collapsing multiple types of annotations and normalizing them to various ontologies. By relying on a conceptual view of the genome, researchers can now easily navigate the human genome in a biologically intuitive, scientifically accurate manner.
Collapse
Affiliation(s)
- Y Pouliot
- DoubleTwist, Inc., Oakland, California 94612, USA
| | | | | | | | | |
Collapse
|
454
|
Affiliation(s)
- T Suzuki
- Division of Bacterial Infection, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
455
|
Snapper SB, Takeshima F, Antón I, Liu CH, Thomas SM, Nguyen D, Dudley D, Fraser H, Purich D, Lopez-Ilasaca M, Klein C, Davidson L, Bronson R, Mulligan RC, Southwick F, Geha R, Goldberg MB, Rosen FS, Hartwig JH, Alt FW. N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nat Cell Biol 2001; 3:897-904. [PMID: 11584271 DOI: 10.1038/ncb1001-897] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Wiskott-Aldrich syndrome protein (WASP) family of molecules integrates upstream signalling events with changes in the actin cytoskeleton. N-WASP has been implicated both in the formation of cell-surface projections (filopodia) required for cell movement and in the actin-based motility of intracellular pathogens. To examine N-WASP function we have used homologous recombination to inactivate the gene encoding murine N-WASP. Whereas N-WASP-deficient embryos survive beyond gastrulation and initiate organogenesis, they have marked developmental delay and die before embryonic day 12. N-WASP is not required for the actin-based movement of the intracellular pathogen Listeria but is absolutely required for the motility of Shigella and vaccinia virus. Despite these distinct defects in bacterial and viral motility, N-WASP-deficient fibroblasts spread by using lamellipodia and can protrude filopodia. These results imply a crucial and non-redundant role for N-WASP in murine embryogenesis and in the actin-based motility of certain pathogens but not in the general formation of actin-containing structures.
Collapse
Affiliation(s)
- S B Snapper
- Center for Blood Research, 200 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
456
|
Aznar S, Lacal JC. Searching new targets for anticancer drug design: the families of Ras and Rho GTPases and their effectors. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 67:193-234. [PMID: 11525383 DOI: 10.1016/s0079-6603(01)67029-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Ras superfamily of low-molecular-weight GTPases are proteins that, in response to diverse stimuli, control key cellular processes such as cell growth and development, apoptosis, lipid metabolism, cytoarchitecture, membrane trafficking, and transcriptional regulation. More than 100 genes of this superfamily grouped in six subfamilies have been described so far, pointing to the complexities and specificities of their cellular functions. Dysregulation of members of at least two of these families (the Ras and the Rho families) is involved in the events that lead to the uncontrolled proliferation and invasiveness of human tumors. In recent years, the cloning and characterization of downstream effectors for Ras and Rho proteins have given crucial clues to the specific pathways that lead to aberrant cellular growth and ultimately to tumorigenesis. A direct link between the functions of some of these effectors with the appearance of transformed cells and their ability to proliferate and invade surrounding tissues has been made. Accordingly, drugs that specifically alter their functions display antineoplasic properties, and some of these drugs are already under clinical trials. In this review, we survey the progress made in understanding the underlying molecular connections between carcinogenesis and the specific cellular functions elicited by some of these effectors. We also discuss new drugs with antineoplastic or antimetastatic activity that are targeted to specific effectors for Ras or Rho proteins.
Collapse
Affiliation(s)
- S Aznar
- Instituto de Investigaciones Biomédicas, CSIC, Madrid, Spain
| | | |
Collapse
|
457
|
Richnau N, Aspenström P. Rich, a rho GTPase-activating protein domain-containing protein involved in signaling by Cdc42 and Rac1. J Biol Chem 2001; 276:35060-70. [PMID: 11431473 DOI: 10.1074/jbc.m103540200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A previously unidentified Rho GTPase-activating protein (GAP) domain-containing protein was found in a yeast two-hybrid screen for cDNAs encoding proteins binding to the Src homology 3 domain of Cdc42-interacting protein 4 (CIP4). The protein was named RICH-1 (RhoGAP interacting with CIP4 homologues), and, in addition to the RhoGAP domain, it contained an N-terminal domain with endophilin homology and a C-terminal proline-rich domain. Transient transfections of RICH-1 indicated that it bound to CIP4 in vivo, as shown by co-immunoprecipitation experiments, as well as co-localization assays. In vitro assays demonstrated that the RhoGAP domain of RICH-1 catalyzed GTP hydrolysis on Cdc42 and Rac1, but not on RhoA. Ectopic expression of the RhoGAP domain as well as the full-length protein interfered with platelet-derived growth factor BB-induced membrane ruffling, but not with serum-induced stress fiber formation, further emphasizing the notion that, in vivo, RICH-1 is a GAP for Cdc42 and Rac1.
Collapse
Affiliation(s)
- N Richnau
- Ludwig Institute for Cancer Research, Biomedical Center, Box 595, S-751 24 Uppsala, Sweden
| | | |
Collapse
|
458
|
Abstract
The Epstein-Barr virus (EBV), one of eight known human herpesviruses, causes a wide spectrum of diseases under certain conditions. In particular, in the setting of immunodeficiency, which includes primary or secondary/acquired immunodeficiencies, they have been increasingly reported. The major clinical phenotype is the EBV genome-positive lymphoproliferative disorder, which ranges from benign lymphoproliferation to malignant lymphoma with cytogenetic alterations. Severe or fatal infectious mononucleosis may develop in some patients with immunodeficiencies such as X-linked lymphoproliferative disease.
Collapse
Affiliation(s)
- M Okano
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan.
| |
Collapse
|
459
|
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency characterized by thrombocytopenia with small platelets, eczema, recurrent infections, autoimmune disorders, IgA nephropathy, and an increased incidence of hematopoietic malignancies. The identification of the responsible gene, WASP (Wiskott-Aldrich Syndrome Protein), revealed clinical heterogeneity of the syndrome, and showed that X-linked thrombocytopenia without, or with only mild immunodeficiency and eczema, is also caused by mutations of WASP. The study of WASP and its mutations demonstrates how a single gene defect can cause multiple and complex clinical symptoms.
Collapse
Affiliation(s)
- S Nonoyama
- Department of Pediatrics, School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | | |
Collapse
|
460
|
Suetsugu S, Miki H, Takenawa T. Identification of another actin-related protein (Arp) 2/3 complex binding site in neural Wiskott-Aldrich syndrome protein (N-WASP) that complements actin polymerization induced by the Arp2/3 complex activating (VCA) domain of N-WASP. J Biol Chem 2001; 276:33175-80. [PMID: 11432863 DOI: 10.1074/jbc.m102866200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neural Wiskott-Aldrich syndrome protein (N-WASP) is an essential regulator of actin cytoskeleton formation via its association with the actin-related protein (Arp) 2/3 complex. It is believed that the C-terminal Arp2/3 complex-activating domain (verprolin homology, cofilin homology, and acidic (VCA) or C-terminal region of WASP family proteins domain) of N-WASP is usually kept masked (autoinhibition) but is opened upon cooperative binding of upstream regulators such as Cdc42 and phosphatidylinositol 4,5-bisphosphate (PIP2). However, the mechanisms of autoinhibition and association with Arp2/3 complex are still unclear. We focused on the acidic region of N-WASP because it is thought to interact with Arp2/3 complex and may be involved in autoinhibition. Partial deletion of acidic residues from the VCA portion alone greatly reduced actin polymerization activity, demonstrating that the acidic region contributes to Arp2/3 complex-mediated actin polymerization. Surprisingly, the same partial deletion of the acidic region in full-length N-WASP led to constitutive activity comparable with the activity seen with the VCA portion. Therefore, the acidic region in full-length N-WASP plays an indispensable role in the formation of the autoinhibited structure. This mutant contains WASP-homology (WH) 1 domain with weak affinity to the Arp2/3 complex, leading to activity in the absence of part of the acidic region. Furthermore, the actin comet formed by the DeltaWH1 mutant of N-WASP was much smaller than that of wild-type N-WASP. Partial deletion of acidic residues did not affect actin comet size, indicating the importance of the WH1 domain in actin structure formation. Collectively, the acidic region of N-WASP plays an essential role in Arp2/3 complex activation as well as in the formation of the autoinhibited structure, whereas the WH1 domain complements the activation of the Arp2/3 complex achieved through the VCA portion.
Collapse
Affiliation(s)
- S Suetsugu
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 1088639, Japan
| | | | | |
Collapse
|
461
|
Affiliation(s)
- S Tsukada
- Department of Molecular Medicine, Osaka University Medical School, Yamadaoka, Suita City, Osaka 565-0871, Japan
| | | | | |
Collapse
|
462
|
Mansfield E, Chae JJ, Komarow HD, Brotz TM, Frucht DM, Aksentijevich I, Kastner DL. The familial Mediterranean fever protein, pyrin, associates with microtubules and colocalizes with actin filaments. Blood 2001; 98:851-9. [PMID: 11468188 DOI: 10.1182/blood.v98.3.851] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Familial Mediterranean fever (FMF) is a recessive disorder characterized by episodes of fever and intense inflammation. FMF attacks are unique in their sensitivity to the microtubule inhibitor colchicine, contrasted with their refractoriness to the anti-inflammatory effects of glucocorticoids. The FMF gene, MEFV, was recently identified by positional cloning; it is expressed at high levels in granulocytes and monocytes. The present study investigated the subcellular localization of the normal gene product, pyrin. These experiments did not support previously proposed nuclear or Golgi localizations. Instead fluorescence microscopy demonstrated colocalization of full-length GFP- and epitope-tagged pyrin with microtubules; this was markedly accentuated in paclitaxel-treated cells. Moreover, immunoblot analysis of precipitates of stabilized microtubules with recombinant pyrin demonstrated a direct interaction in vitro. Pyrin expression did not affect the stability of microtubules. Deletion constructs showed that the unique N-terminal domain of pyrin is necessary and sufficient for colocalization, whereas disease-associated mutations in the C-terminal B30.2 (rfp) domain did not disrupt this interaction. By phalloidin staining, a colocalization of pyrin with actin was also observed in perinuclear filaments and in peripheral lamellar ruffles. The proposal is made that pyrin regulates inflammatory responses at the level of leukocyte cytoskeletal organization and that the unique therapeutic effect of colchicine in FMF may be dependent on this interaction. (Blood. 2001;98:851-859)
Collapse
Affiliation(s)
- E Mansfield
- Genetics Section, Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases/NIH, Bethesda, MD 20892-1820, USA.
| | | | | | | | | | | | | |
Collapse
|
463
|
Cannon JL, Labno CM, Bosco G, Seth A, McGavin MH, Siminovitch KA, Rosen MK, Burkhardt JK. Wasp recruitment to the T cell:APC contact site occurs independently of Cdc42 activation. Immunity 2001; 15:249-59. [PMID: 11520460 DOI: 10.1016/s1074-7613(01)00178-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cdc42 and WASP are critical regulators of actin polymerization whose function during T cell signaling is poorly understood. Using a novel reagent that specifically detects Cdc42-GTP in fixed cells, we found that activated Cdc42 localizes to the T cell:APC contact site in an antigen-dependent manner. TCR signaling alone was sufficient to induce localization of Cdc42-GTP, and functional Lck and Zap-70 kinases were required. WASP also localized to the T cell:APC contact site in an antigen-dependent manner. Surprisingly, WASP localization was independent of the Cdc42 binding domain but required the proline-rich domain. Our results indicate that localized WASP activation requires the integration of multiple signals: WASP is recruited via interaction with SH3 domain-containing proteins and is activated by Cdc42-GTP concentrated at the same site.
Collapse
Affiliation(s)
- J L Cannon
- Department of Pathology, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
464
|
Wada T, Schurman SH, Otsu M, Garabedian EK, Ochs HD, Nelson DL, Candotti F. Somatic mosaicism in Wiskott--Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proc Natl Acad Sci U S A 2001; 98:8697-702. [PMID: 11447283 PMCID: PMC37498 DOI: 10.1073/pnas.151260498] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2001] [Accepted: 05/24/2001] [Indexed: 01/01/2023] Open
Abstract
Somatic mosaicism caused by in vivo reversion of inherited mutations has been described in several human genetic disorders. Back mutations resulting in restoration of wild-type sequences and second-site mutations leading to compensatory changes have been shown in mosaic individuals. In most cases, however, the precise genetic mechanisms underlying the reversion events have remained unclear, except for the few instances where crossing over or gene conversion have been demonstrated. Here, we report a patient affected with Wiskott--Aldrich syndrome (WAS) caused by a 6-bp insertion (ACGAGG) in the WAS protein gene, which abrogates protein expression. Somatic mosaicism was documented in this patient whose majority of T lymphocytes expressed nearly normal levels of WAS protein. These lymphocytes were found to lack the deleterious mutation and showed a selective growth advantage in vivo. Analysis of the sequence surrounding the mutation site showed that the 6-bp insertion followed a tandem repeat of the same six nucleotides. These findings strongly suggest that DNA polymerase slippage was the cause of the original germ-line insertion mutation in this family and that the same mechanism was responsible for its deletion in one of the propositus T cell progenitors, thus leading to reversion mosaicism.
Collapse
Affiliation(s)
- T Wada
- Disorders of Immunity Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
465
|
Hoffmeister KM, Falet H, Toker A, Barkalow KL, Stossel TP, Hartwig JH. Mechanisms of cold-induced platelet actin assembly. J Biol Chem 2001; 276:24751-9. [PMID: 11328807 DOI: 10.1074/jbc.m011642200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Various agonists but also chilling cause blood platelets to increase cytosolic calcium, polymerize actin, and change shape. We report that cold increases barbed end nucleation sites in octyl glucoside-permeabilized platelets by 3-fold, enabling analysis of the intermediates of this response. Although chilling does not change polyphosphoinositide (ppI) levels, a ppI-binding peptide completely inhibits cold-induced nucleation. The C terminus of N-WASp, which inhibits the Arp2/3 complex, blocks nucleation by 40%; GDPbetaS, N17Rac and N17Cdc42 have no effects. Some gelsolin translocates to the detergent-insoluble cytoskeleton after cooling. Chilled platelets from gelsolin-deficient mice have approximately 50% fewer new actin nuclei compared with platelets from wild-type mice. EGTA completely inhibits gelsolin translocation into the cytoskeleton, and the small amount of gelsolin initially there becomes soluble. Chilling releases adducin from the detergent-resistant cytoskeleton. We conclude that platelet actin filament assembly induced by cooling involves ppI-mediated actin filament barbed end uncapping and de novo nucleation independently of surface receptors or downstream signaling intermediates besides calcium. The actin-related changes occur in platelets at temperatures below 37 degrees C, suggesting that the platelet may be more activable at temperatures at the body surface than at core temperature, thereby favoring superficial hemostasis over internal thrombosis.
Collapse
Affiliation(s)
- K M Hoffmeister
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
466
|
Jung G, Remmert K, Wu X, Volosky JM, III JAH. The Dictyostelium CARMIL protein links capping protein and the Arp2/3 complex to type I myosins through their SH3 domains. J Cell Biol 2001; 153:1479-97. [PMID: 11425877 PMCID: PMC2150732 DOI: 10.1083/jcb.153.7.1479] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2001] [Accepted: 05/11/2001] [Indexed: 11/22/2022] Open
Abstract
Fusion proteins containing the Src homology (SH)3 domains of Dictyostelium myosin IB (myoB) and IC (myoC) bind a 116-kD protein (p116), plus nine other proteins identified as the seven member Arp2/3 complex, and the alpha and beta subunits of capping protein. Immunoprecipitation reactions indicate that myoB and myoC form a complex with p116, Arp2/3, and capping protein in vivo, that the myosins bind to p116 through their SH3 domains, and that capping protein and the Arp2/3 complex in turn bind to p116. Cloning of p116 reveals a protein dominated by leucine-rich repeats and proline-rich sequences, and indicates that it is a homologue of Acan 125. Studies using p116 fusion proteins confirm the location of the myosin I SH3 domain binding site, implicate NH(2)-terminal sequences in binding capping protein, and show that a region containing a short sequence found in several G-actin binding proteins, as well as an acidic stretch, can activate Arp2/3-dependent actin nucleation. p116 localizes along with the Arp2/3 complex, myoB, and myoC in dynamic actin-rich cellular extensions, including the leading edge of cells undergoing chemotactic migration, and dorsal, cup-like, macropinocytic extensions. Cells lacking p116 exhibit a striking defect in the formation of these macropinocytic structures, a concomitant reduction in the rate of fluid phase pinocytosis, a significant decrease in the efficiency of chemotactic aggregation, and a decrease in cellular F-actin content. These results identify a complex that links key players in the nucleation and termination of actin filament assembly with a ubiquitous barbed end-directed motor, indicate that the protein responsible for the formation of this complex is physiologically important, and suggest that previously reported myosin I mutant phenotypes in Dictyostelium may be due, at least in part, to defects in the assembly state of actin. We propose that p116 and Acan 125, along with homologues identified in Caenorhabditis elegans, Drosophila, mouse, and man, be named CARMIL proteins, for capping protein, Arp2/3, and myosin I linker.
Collapse
Affiliation(s)
- Goeh Jung
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Kirsten Remmert
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Xufeng Wu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Joanne M. Volosky
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - John A. Hammer III
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
467
|
Silvin C, Belisle B, Abo A. A role for Wiskott-Aldrich syndrome protein in T-cell receptor-mediated transcriptional activation independent of actin polymerization. J Biol Chem 2001; 276:21450-7. [PMID: 11283014 DOI: 10.1074/jbc.m010729200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wiskott-Aldrich syndrome protein (WASP) plays a key role in cytoskeletal rearrangement and transcriptional activation in T-cells. Recent evidence links WASP and related proteins to actin polymerization by the Arp2/3 complex. To study whether the role of WASP in actin polymerization is coupled to T-cell receptor (TCR)-mediated transcriptional activation, we made a series of WASP deletion mutants and tested them for actin co-localization, actin polymerization, and transcriptional activation of NFAT. A WASP mutant with a deletion in the C-terminal region (WASPDeltaC) that is defective in actin polymerization potentiated NFAT transcription following TCR activation by anti-CD3 and anti-CD3/CD28 antibodies, but not by phorbol 12-myristate 13-acetate/ionomycin. Furthermore, cotransfection of a dominant-active mutant (WASP-WH2-C) for Arp2/3 polymerization did not inhibit NFAT activation. Finally, by analyzing a series of WASP double-domain deletion mutants, we determined that the WASP homology-1 domain is responsible for NFAT transcriptional activation. Our results suggest that WASP activates transcription following TCR stimulation in a manner that is independent of its role in Arp2/3-directed actin polymerization.
Collapse
Affiliation(s)
- C Silvin
- Onyx Pharmaceuticals, Richmond, California 94806, USA
| | | | | |
Collapse
|
468
|
Abstract
Primary immunodeficiency diseases represent a vast array of inherited disorders of the immune system. Major advances in the understanding of genetic basis and molecular mechanisms have occurred within the past 10 years, as a result of the tools of modern genetics. About three quarters of 100 primary immunodeficiency diseases can now be reliably diagnosed with molecular probes. In many cases, gene identification has enabled significant insight into the physiopathology of the related conditions. Therapeutic progress based on protein engineering and possibly gene therapy will also ensue.
Collapse
Affiliation(s)
- A Fischer
- INSERM U429, Hôpital Necker, 149 Rue de Sévres, 75015, Paris, France.
| |
Collapse
|
469
|
Takenawa T, Miki H. WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J Cell Sci 2001; 114:1801-9. [PMID: 11329366 DOI: 10.1242/jcs.114.10.1801] [Citation(s) in RCA: 447] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reorganization of cortical actin filaments plays critical roles in cell movement and pattern formation. Recently, the WASP and WAVE family proteins WASP and N-WASP, and WAVE1, WAVE2 and WAVE3 have been shown to regulate cortical actin filament reorganization in response to extracellular stimuli. These proteins each have a verprolin-homology (V) domain, cofilin-homology (C) domain and an acidic (A) region at the C-terminus, through which they activate the Arp2/3 complex, leading to rapid actin polymerization. N-WASP is usually present as an inactive form in which the VCA region is masked. Cooperative binding of Cdc42 and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) exposes the VCA region, activating N-WASP. In addition to this activation mechanism, WISH also activates N-WASP independently of Cdc42 and PtdIns(4,5)P(2), by binding to the proline-rich region of N-WASP. N-WASP activation induces formation of filopodia in vivo. In contrast, the ubiquitously expressed form of WAVE2 is activated downstream of Rac, leading to formation of lamellipodia. In this case, IRSp53 transmits a signal from Rac to WAVE2 through formation of a ternary Rac-IRSp53-WAVE2 complex. Thus, N-WASP, which is activated downstream of Cdc42 or independently by WISH, induces formation of filopodia and WAVE2, which is activated via IRSp53 downstream of Rac, induces formation of lamellipodia.
Collapse
Affiliation(s)
- T Takenawa
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| | | |
Collapse
|
470
|
Oda A, Ochs HD, Lasky LA, Spencer S, Ozaki K, Fujihara M, Handa M, Ikebuchi K, Ikeda H. CrkL is an adapter for Wiskott-Aldrich syndrome protein and Syk. Blood 2001; 97:2633-9. [PMID: 11313252 DOI: 10.1182/blood.v97.9.2633] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia are caused by mutations of the WAS protein (WASP) gene. WASP may be involved in the regulation of podosome, an actin-rich dynamic cell adhesion structure formed by various types of cells. The molecular links between WASP and podosomes or other cell adhesion structures are unknown. Platelets express an SH2-SH3 adapter molecule, CrkL, that can directly associate with paxillin, which is localized in podosomes. The hypothesis that CrkL binds to WASP was, therefore, tested. Results from coprecipitation experiments using anti-CrkL and GST-fusion proteins suggest that CrkL binds to WASP through its SH3 domain and that the binding was not affected by WASP tyrosine phosphorylation. The binding of GST-fusion SH3 domain of PSTPIP1 in vitro was also not affected by WASP tyrosine phosphorylation, suggesting that the binding of the SH3 domains to WASP is not inhibited by tyrosine phosphorylation of WASP. Anti-CrkL also coprecipitates a 72-kd protein, which was identified as syk tyrosine kinase, critical for collagen induced-platelet activation. CrkL immunoprecipitates contain kinase-active syk, as evidenced by an in vitro kinase assay. Coprecipitation experiments using GST-fusion CrkL proteins suggest that both SH2 and SH3 domains of CrkL are involved in the binding of CrkL to syk. WASP, CrkL, syk, and paxillin-like Hic-5 incorporated to platelet cytoskeleton after platelet aggregation. Thus, CrkL is a novel molecular adapter for WASP and syk and may potentially transfer these molecules to the cytoskeleton through association with cytoskeletal proteins such as Hic-5.
Collapse
Affiliation(s)
- A Oda
- Hokkaido Red Cross Blood Center, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
471
|
Martinez-Quiles N, Rohatgi R, Antón IM, Medina M, Saville SP, Miki H, Yamaguchi H, Takenawa T, Hartwig JH, Geha RS, Ramesh N. WIP regulates N-WASP-mediated actin polymerization and filopodium formation. Nat Cell Biol 2001; 3:484-91. [PMID: 11331876 DOI: 10.1038/35074551] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Induction of filopodia is dependent on activation of the small GTPase Cdc42 and on neural Wiskott-Aldrich-syndrome protein (N-WASP). Here we show that WASP-interacting protein (WIP) interacts directly with N-WASP and actin. WIP retards N-WASP/Cdc42-activated actin polymerization mediated by the Arp2/3 complex, and stabilizes actin filaments. Microinjection of WIP into NIH 3T3 fibroblasts induces filopodia; this is inhibited by microinjection of anti-N-WASP antibody. Microinjection of anti-WIP antibody inhibits induction of filopodia by bradykinin, by an active Cdc42 mutant (Cdc42(V12)) and by N-WASP. Our results indicate that WIP and N-WASP may act as a functional unit in filopodium formation, which is consistent with their role in actin-tail formation in cells infected with vaccinia virus or Shigella.
Collapse
Affiliation(s)
- N Martinez-Quiles
- Department of Pediatrics, Division of Immunology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
472
|
Fillat C, Español T, Oset M, Ferrando M, Estivill X, Volpini V. Identification of WASP mutations in 14 Spanish families with Wiskott-Aldrich syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 100:116-21. [PMID: 11298372 DOI: 10.1002/ajmg.1228] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency caused by mutations in the WASP gene. The disease is known to be associated with extensive clinical variability, and mutation studies indicate that genotypes are also highly variant among WAS patients. In this study, we performed mutation analysis of the WASP gene in 14 unrelated Spanish families by single strand conformation analysis (SSCA) and sequencing, resulting in the identification of a novel mutation and nine known mutations. No mutation was identified in one family. The ten different mutations include point mutations resulting in amino acid substitutions, stop codons, and small deletions and insertions causing frameshifts. Missense mutations were preferentially located in the amino-terminal part of the protein, exons 2 and 4, whereas stop and frameshift mutations were located in the carboxyl-terminal region, exons 10 and 11. However, in two families, two missense mutations in exon 11 were identified. Our study demonstrates that WASP genotypes have some concordance with the patients' phenotypes, although mutation 1019delC, identified in a family with several affected members, resulted in high intrafamilial clinical variability.
Collapse
Affiliation(s)
- C Fillat
- Centre de Genètica Mèdica i Molecular, Institut de Recerca Oncològica (IRO), L'Hospitalet de Llobregat, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
473
|
Ariga T, Kondoh T, Yamaguchi K, Yamada M, Sasaki S, Nelson DL, Ikeda H, Kobayashi K, Moriuchi H, Sakiyama Y. Spontaneous in vivo reversion of an inherited mutation in the Wiskott-Aldrich syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5245-9. [PMID: 11290809 DOI: 10.4049/jimmunol.166.8.5245] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency disease, arising from mutations of the WAS-protein (WASP) gene. Previously, we have reported that mononuclear cells from WAS patients showed lack/reduced of the intracellular WASP (WASP(dim)) by flow cytometric analysis, and analysis of WASP by flow cytometry (FCM-WASP) was useful for WAS diagnosis. In this study, we report a WAS patient who showed the unique pattern of FCM-WASP. The patient had the small population of normal expression of WASP (WASP(bright)) mononuclear cells together with the major WASP(dim) population. The WASP(bright) cells were detected in T cells, not in B cells or in monocytes. Surprisingly, the molecular studies of the WASP(bright) cells revealed that the inherited mutation of WASP gene was reversed to normal. His mother was proved as a WAS carrier, and HLA studies and microsatellite polymorphic studies proved that the WASP(bright) cells were derived from the patient himself. Therefore, we concluded that the WASP(bright) cells were resulted from spontaneous in vivo reversion of the inherited mutation. Furthermore, the scanning electron microscopic studies indicated that WASP-positive cells from the patient restored the dense microvillus surface projections that were hardly observed in the WASP(dim) cells. This case might have significant implications regarding the prospects of the future gene therapy for WAS patients.
Collapse
Affiliation(s)
- T Ariga
- Department of Human Gene Therapy and Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
474
|
Suetsugu S, Miki H, Yamaguchi H, Takenawa T. Requirement of the basic region of N-WASP/WAVE2 for actin-based motility. Biochem Biophys Res Commun 2001; 282:739-44. [PMID: 11401525 DOI: 10.1006/bbrc.2001.4619] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
WASP family proteins activate nucleation by the Arp2/3 complex, inducing rapid actin polymerization in vitro. Although the C-terminal portion of WASP family proteins (VCA) activates nucleation by the Arp2/3 complex in pure systems, we find that this fragment lacks activity in cell extracts. Thus, polystyrene beads coated with VCA did not move in brain cytosol, while beads coated with N-WASP or WAVE2 did move. The basic clusters between the WH1 domain and the CRIB domain of N-WASP were critical for movement since beads coated with N-WASP or WAVE2 constructs missing the basic clusters (Delta basic) also did not move. Furthermore, VCA and N-WASP/WAVE2 Delta basic constructs were much less able than wild-type N-WASP and WAVE2 to induce actin polymerization in cytosol. All of the proteins, with or without the basic domain, were potent activators of nucleation by purified Arp2/3 complex.
Collapse
Affiliation(s)
- S Suetsugu
- Department of Biochemistry, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
475
|
Abstract
The SH3 domain is perhaps the best-characterized member of the growing family of protein-interaction modules. By binding with moderate affinity and selectivity to proline-rich ligands, these domains play critical roles in a wide variety of biological processes ranging from regulation of enzymes by intramolecular interactions, increasing the local concentration or altering the subcellular localization of components of signaling pathways, and mediating the assembly of large multiprotein complexes. SH3 domains and their binding sites have cropped up in many hundreds of proteins in species from yeast to man, which suggests that they provide the cell with an especially handy and adaptable means of bringing proteins together. The wealth of genetic, biochemical and structural information available provides an intimate and detailed portrait of the domain, serving as a framework for understanding other modular protein-interaction domains. Processes regulated by SH3 domains also raise important questions about the nature of specificity and the overall logic governing networks of protein interactions.
Collapse
Affiliation(s)
- B J Mayer
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA.
| |
Collapse
|
476
|
Munn AL. Molecular requirements for the internalisation step of endocytosis: insights from yeast. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1535:236-57. [PMID: 11278164 DOI: 10.1016/s0925-4439(01)00028-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecular genetic studies of endocytosis using the unicellular eukaryote Saccharomyces cerevisiae (budding yeast) have led to the identification of many cellular components, both proteins and lipids, required for this process. While initially, many of these requirements (e.g. for actin, various actin-associated proteins, the ubiquitin conjugation system, and for ergosterol and sphingolipids) appeared to differ from known requirements for endocytosis in higher eukaryotes (e.g. clathrin, AP-2, dynamin), it now seems that endocytosis in higher and lower eukaryotes share many requirements. Often, what were initially identified as actin cytoskeleton-associated proteins in S. cerevisiae, are now revealing themselves as clathrin-coated pit- and vesicle-associated proteins in higher eukaryotes. So rather than delineating two endocytic pathways, one actin-based and one clathrin-based, the combined studies on higher and lower eukaryotes are revealing interesting interplay in both systems between the actin cytoskeleton, clathrin coats, and lipids in the formation of endocytic vesicles at the plasma membrane. Recent results from the yeast system show that the Arp2/3p complex, Wiskott-Aldrich syndrome protein (WASP), and WASP-interacting protein (WIP), proteins involved in the nucleation step of actin filament assembly, play a major role in the formation of endocytic vesicles. This discovery suggests models whereby endocytic vesicles may be actively pushed from the plasma membrane and into the cell by newly forming and rapidly extending actin filaments.
Collapse
Affiliation(s)
- A L Munn
- Laboratory of Yeast Cell Biology, Institute of Molecular Agrobiology, 1 Research Link, National University of Singapore, 117604, Singapore.
| |
Collapse
|
477
|
Vihinen M, Arredondo-Vega FX, Casanova JL, Etzioni A, Giliani S, Hammarström L, Hershfield MS, Heyworth PG, Hsu AP, Lähdesmäki A, Lappalainen I, Notarangelo LD, Puck JM, Reith W, Roos D, Schumacher RF, Schwarz K, Vezzoni P, Villa A, Väliaho J, Smith CI. Primary immunodeficiency mutation databases. ADVANCES IN GENETICS 2001; 43:103-88. [PMID: 11037300 DOI: 10.1016/s0065-2660(01)43005-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies are intrinsic defects of immune systems. Mutations in a large number of cellular functions can lead to impaired immune responses. More than 80 primary immunodeficiencies are known to date. During the last years genes for several of these disorders have been identified. Here, mutation information for 23 genes affected in 14 immunodefects is presented. The proteins produced are employed in widely diverse functions, such as signal transduction, cell surface receptors, nucleotide metabolism, gene diversification, transcription factors, and phagocytosis. Altogether, the genetic defect of 2,140 families has been determined. Diseases with X-chromosomal origin constitute about 70% of all the cases, presumably due to full penetrance and because the single affected allele causes the phenotype. All types of mutations have been identified; missense mutations are the most common mutation type, and truncation is the most common effect on the protein level. Mutational hotspots in many disorders appear in CPG dinucleotides. The mutation data for the majority of diseases are distributed on the Internet with a special database management system, MUTbase. Despite large numbers of mutations, it has not been possible to make genotype-phenotype correlations for many of the diseases.
Collapse
Affiliation(s)
- M Vihinen
- Institute of Medical Technology, University of Tampere, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
478
|
Bunnell SC, Kapoor V, Trible RP, Zhang W, Samelson LE. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 2001; 14:315-29. [PMID: 11290340 DOI: 10.1016/s1074-7613(01)00112-1] [Citation(s) in RCA: 338] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
T cell activation induces functional changes in cell shape and cytoskeletal architecture. To facilitate the collection of dynamic, high-resolution images of activated T cells, we plated T cells on coverslips coated with antibodies to the T cell receptor (TCR). Using these images, we were able to quantitate the morphological responses of individual cells over time. Here, we show that TCR engagement triggers the formation and expansion of contacts bounded by continuously remodeled actin-rich rings. These processes are associated with the extension of lamellipodia and require actin polymerization, tyrosine kinase activation, cytoplasmic calcium increases, and LAT, an important hematopoietic adaptor. In addition, the maintenance of the resulting contact requires sustained calcium influxes, an intact microtubule cytoskeleton, and functional LAT.
Collapse
Affiliation(s)
- S C Bunnell
- Laboratory of Cellular and Molecular Biology, Division of Basic Sciences, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
479
|
Affiliation(s)
- T H Millard
- School of Biosciences, Division of Molecular Cell Biology, University of Birmingham, UK B15 2TT
| | | |
Collapse
|
480
|
Affiliation(s)
- A Bauch
- Department of Pathology and Developmental Biology, Howard Hughes Medical Institute, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
481
|
|
482
|
Ben-Yaacov S, Le Borgne R, Abramson I, Schweisguth F, Schejter ED. Wasp, the Drosophila Wiskott-Aldrich syndrome gene homologue, is required for cell fate decisions mediated by Notch signaling. J Cell Biol 2001; 152:1-13. [PMID: 11149916 PMCID: PMC2193661 DOI: 10.1083/jcb.152.1.1-b] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Wiskott-Aldrich syndrome proteins, encoded by the Wiskott-Aldrich syndrome gene family, bridge signal transduction pathways and the microfilament-based cytoskeleton. Mutations in the Drosophila homologue, Wasp (Wsp), reveal an essential requirement for this gene in implementation of cell fate decisions during adult and embryonic sensory organ development. Phenotypic analysis of Wsp mutant animals demonstrates a bias towards neuronal differentiation, at the expense of other cell types, resulting from improper execution of the program of asymmetric cell divisions which underlie sensory organ development. Generation of two similar daughter cells after division of the sensory organ precursor cell constitutes a prominent defect in the Wsp sensory organ lineage. The asymmetric segregation of key elements such as Numb is unaffected during this division, despite the misassignment of cell fates. The requirement for Wsp extends to additional cell fate decisions in lineages of the embryonic central nervous system and mesoderm. The nature of the Wsp mutant phenotypes, coupled with genetic interaction studies, identifies an essential role for Wsp in lineage decisions mediated by the Notch signaling pathway.
Collapse
Affiliation(s)
- Sari Ben-Yaacov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Roland Le Borgne
- Ecole Normale Supérieure, Centre National de la Recherche Scientifique, UMR 8544, 75230 Paris Cedex 05, France
| | - Irit Abramson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Francois Schweisguth
- Ecole Normale Supérieure, Centre National de la Recherche Scientifique, UMR 8544, 75230 Paris Cedex 05, France
| | - Eyal D. Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
483
|
Abstract
Many functional glycoproteins are expressed on the lymphocyte cell surface. Some of them carry O-linked oligosaccharides (O-glycans), which are conjugated through serine or threonine residues. During various biological processes, including T-cell activation, a tetrasaccharide on the T-cell surface is dramatically converted to a branched hexasaccharide, called core2 O-glycan. The same structural change in O-glycans is also found on the lymphocytes from patients with immunodeficiency conditions such as Wiskott-Aldrich syndrome and AIDS. Several studies revealing the roles of core2 O-glycans in immune responses show that this is a biologically significant change. In particular, core2 O-glycans expressed on the cell surface reduce cell-cell interactions, thereby regulating immune responses. Furthermore, core2 O-glycan is a key backbone structure in forming selectin ligands. Thus, O-linked oligosaccharides, in particular those containing core2 branches, play vital roles in immune responses and may play dual roles in certain situations. This review will summarize the results obtained from various studies investigating the roles of O-glycans in immunological processes. BioEssays 23:46-53, 2001.
Collapse
Affiliation(s)
- S Tsuboi
- The Glycobiology Program, Cancer Research Center, The Burnham Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
484
|
Kahn K, Sharp H, Hunter D, Kerzner B, Jessurun J, Blaese M. Primary sclerosing cholangitis in Wiskott-Aldrich syndrome. J Pediatr Gastroenterol Nutr 2001; 32:95-9. [PMID: 11176335 DOI: 10.1097/00005176-200101000-00025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- K Kahn
- Department of Pediatric Gastroenterology and Nutrition, University of Minnesota, Minneapolis 55455, USA.
| | | | | | | | | | | |
Collapse
|
485
|
Ho LL, Ayling J, Prosser I, Kronenberg H, Iland H, Joshua D. Missense C168T in the Wiskott--Aldrich Syndrome protein gene is a common mutation in X-linked thrombocytopenia. Br J Haematol 2001; 112:76-80. [PMID: 11167787 DOI: 10.1046/j.1365-2141.2001.02465.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe a large Syrian--Lebanese family who clinically manifest X-linked thrombocytopenia (XLT). To date, five family members have undergone splenectomy with rapid and sustained normalization of their platelet numbers. Genomic analysis demonstrated that affected men in this cohort had the missense C168T (Thr45Met) mutation in exon 2 of the Wiskott-Aldrich Syndrome protein (WASp) gene. Exon 2 is the commonest site for mutations associated with XLT and mild forms of WAS, and the C168T missense mutation is the most frequent. Detection of this mutation by restriction enzyme digestion provides an efficient screening test for prompt identification and for assessment of female carrier status.
Collapse
Affiliation(s)
- L L Ho
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
486
|
Rojnuckarin P, Kaushansky K. Actin reorganization and proplatelet formation in murine megakaryocytes: the role of protein kinase calpha. Blood 2001; 97:154-61. [PMID: 11133755 DOI: 10.1182/blood.v97.1.154] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With the recent cloning and characterization of thrombopoietin, appreciation of the molecular events surrounding megakaryocyte (MK) development is growing. However, the final stages of platelet formation are less well understood. Platelet production occurs after the formation of MK proplatelet processes. In a study to explore the molecular mechanisms underlying this process, mature MKs isolated from suspension murine bone marrow cell cultures were induced to form proplatelets by exposure to plasma, and the role of various cell-signaling pathways was assessed. The results showed that (1) bis-indolylmaleimide I, which blocks protein kinase C (PKC) activation; (2) down-modulation of conventional or novel classes of PKC by phorbol myristate acetate; and (3) ribozymes specific for PKCalpha each inhibited proplatelet formation. Inhibition of several MAP kinases, PI3 kinase, or protein kinase A failed to affect MK proplatelet formation. To gain further insights into the function of PKCalpha in proplatelet formation, its subcellular localization was investigated. In cultures containing active proplatelet formation, cytoplasmic polymerized actin was highly aggregated, its subcellular distribution was reorganized, and PKCalpha colocalized with the cellular actin aggregates. A number of MK manipulations, including blockade of integrin signaling with a disintegrin or inhibition of actin polymerization with cytochalasin D, interrupted actin reorganization, PKC relocalization, and proplatelet formation. These findings suggest an important role for PKCalpha in proplatelet development and suggest that it acts by altering actin dynamics in proplatelet-forming MKs. Identification of the upstream and downstream pathways involved in proplatelet formation should provide greater insights into thrombopoiesis, potentially allowing pharmacologic manipulation of the process.
Collapse
Affiliation(s)
- P Rojnuckarin
- Division of Hematology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
487
|
Antiadhesive function of 130-kd glycoform of CD43 expressed in CD4 T-lymphocyte clones and transfectant cell lines. Blood 2000. [DOI: 10.1182/blood.v96.13.4267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractConflicting findings regarding proadhesion and antiadhesion in cell-to-cell interactions were previously reported for CD43. We examined possible differences in the role of the 130-kd glycoform and the 115-kd glycoform of CD43 in cellular adhesion in vitro. We generated a monoclonal antibody (MFT3) that discriminates between helper and nonhelper murine T-cell clones. Characterization of MFT3 with use of biochemical analysis and complementary DNA (cDNA) transfection experiments showed that it is specific for the 130-kd glycoform of CD43. T-cell clones that expressed the 130-kd CD43 glycoform showed decreased homocytic aggregation and decreased adhesion to spleen cells, B-lymphoma cell lines, and fibroblastic cell lines compared with T-cell clones negative for the 130-kd glycoform. Expression of core 2 β-1, 6-N-acetylglucosaminyltransferase (C2GnT) cDNA together with CD43 cDNA resulted in expression of both the 130-kd CD43 glycoform and the 115-kd CD43 glycoform in fibroblastic cell lines. Using these cell lines, we showed that the 130-kd glycoform but not the 115-kd glycoform of CD43 has an antiadhesive function in cellular interactions. Our findings suggest that the antiadhesive function of CD43 is primarily carried out by the 130-kd glycoform.
Collapse
|
488
|
Antiadhesive function of 130-kd glycoform of CD43 expressed in CD4 T-lymphocyte clones and transfectant cell lines. Blood 2000. [DOI: 10.1182/blood.v96.13.4267.h8004267_4267_4275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conflicting findings regarding proadhesion and antiadhesion in cell-to-cell interactions were previously reported for CD43. We examined possible differences in the role of the 130-kd glycoform and the 115-kd glycoform of CD43 in cellular adhesion in vitro. We generated a monoclonal antibody (MFT3) that discriminates between helper and nonhelper murine T-cell clones. Characterization of MFT3 with use of biochemical analysis and complementary DNA (cDNA) transfection experiments showed that it is specific for the 130-kd glycoform of CD43. T-cell clones that expressed the 130-kd CD43 glycoform showed decreased homocytic aggregation and decreased adhesion to spleen cells, B-lymphoma cell lines, and fibroblastic cell lines compared with T-cell clones negative for the 130-kd glycoform. Expression of core 2 β-1, 6-N-acetylglucosaminyltransferase (C2GnT) cDNA together with CD43 cDNA resulted in expression of both the 130-kd CD43 glycoform and the 115-kd CD43 glycoform in fibroblastic cell lines. Using these cell lines, we showed that the 130-kd glycoform but not the 115-kd glycoform of CD43 has an antiadhesive function in cellular interactions. Our findings suggest that the antiadhesive function of CD43 is primarily carried out by the 130-kd glycoform.
Collapse
|
489
|
Abstract
T-cell immune defects include most inherited immunodeficiencies diagnosed in childhood. Most cellular immunodeficiencies have associated humoral defects with variable clinical and laboratory features. The underlying gene defects are now known for most inherited T-cell immune defects, and mutation analysis is quickly becoming an integral part of evaluation and diagnosis. Detailed discussion of disease genotype-phenotype correlation with families is critical to medical management and long-term prognosis.
Collapse
Affiliation(s)
- M E Elder
- Division of Pediatric Immunology/Allergy/Rheumatology, Department of Pediatrics, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
490
|
Yamaguchi H, Miki H, Suetsugu S, Ma L, Kirschner MW, Takenawa T. Two tandem verprolin homology domains are necessary for a strong activation of Arp2/3 complex-induced actin polymerization and induction of microspike formation by N-WASP. Proc Natl Acad Sci U S A 2000; 97:12631-6. [PMID: 11058146 PMCID: PMC18815 DOI: 10.1073/pnas.190351397] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2000] [Indexed: 11/18/2022] Open
Abstract
All WASP family proteins share a common C terminus that consists of the verprolin homology domain (V), cofilin homology domain (C), and acidic region (A), through which they activate Arp2/3 complex-induced actin polymerization. In this study, we characterized the Arp2/3 complex-mediated actin polymerization activity of VCA fragments of all of the WASP family proteins: WASP, N-WASP, WAVE1, WAVE2, and WAVE3. All of the VCA fragments stimulated the nucleating activity of Arp2/3 complex. Among them, N-WASP VCA, which possesses two tandem V motifs, had a more potent activity than other VCA proteins. The chimeric protein experiments revealed that the V motif was more important to the activation potency than the CA region; two V motifs were required for full activity of N-WASP. COS7 cells overexpressing N-WASP form microspikes in response to epidermal growth factor. However, when a chimeric protein in which the VCA region of N-WASP is replaced with WAVE1 VCA was overexpressed, microspike formation was suppressed. Interestingly, when the N-WASP VCA region was replaced with WAVE1 VCA, having two V motifs, this chimeric protein could induce microspike formation. These results indicate that strong activation of Arp2/3 complex by N-WASP is mainly caused by its two tandem V motifs, which are essential for actin microspike formation.
Collapse
Affiliation(s)
- H Yamaguchi
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
491
|
Affiliation(s)
- R H Buckley
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
492
|
Sechi AS, Wehland J. The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P(2) influences cytoskeletal protein activity at the plasma membrane. J Cell Sci 2000; 113 Pt 21:3685-95. [PMID: 11034897 DOI: 10.1242/jcs.113.21.3685] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The co-ordination of rearrangements of the actin cytoskeleton depends on its tight connection to the plasma membrane. Phosphatidylinositol 4,5-bisphosphate is thought to transmit signals originating at the plasma membrane to the underlying actin cytoskeleton. This lipid binds to, and influences the activity of, several actin-associated proteins in vitro that regulate the architecture of the actin cytoskeleton. Signalling intermediates in this process include focal adhesion molecules such as vinculin and members of two families of proteins, ERM and WASP. These proteins interact with phosphatidylinositol 4,5-bisphosphate and appear to be regulated by interplay between small GTPases and phosphatidylinositol 4,5-bisphosphate metabolism, and thus link the plasma membrane with cytoskeletal remodelling.
Collapse
Affiliation(s)
- A S Sechi
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung, Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| | | |
Collapse
|
493
|
Abstract
As sequencing of the human genome nears completion, the genes that cause many human diseases are being identified and functionally described. This has revealed that many human diseases are due to defects of intracellular trafficking. This 'Toolbox' catalogs and briefly describes these diseases.
Collapse
Affiliation(s)
- M Aridor
- Department of Cell Biology and Physiology, University of Pittsburgh, School of Medicine, 3500 Terrace St, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
494
|
Fryns JP, Borghgraef M, Brown TW, Chelly J, Fisch GS, Hamel B, Hanauer A, Lacombe D, Luo L, MacPherson JN, Mandel JL, Moraine C, Mulley J, Nelson D, Oostra B, Partington M, Ramakers GJ, Ropers HH, Rousseau F, Schwartz C, Steinbach P, Stoll C, Tranebjaerg L, Turner G, Van Bokhoven H, Vianna-Morgante A. 9th international workshop on fragile X syndrome and X-linked mental retardation. AMERICAN JOURNAL OF MEDICAL GENETICS 2000; 94:345-60. [PMID: 11050616 DOI: 10.1002/1096-8628(20001023)94:5<345::aid-ajmg1>3.0.co;2-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- J P Fryns
- Clinical Genetics Unit/Center for Human Genetics, University Hospital of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
495
|
Hagemann TL, Mares D, Kwan S. Gene regulation of Wiskott-Aldrich syndrome protein and the human homolog of the Drosophila Su(var)3-9: WASP and SUV39H1, two adjacent genes at Xp11.23. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1493:368-72. [PMID: 11018264 DOI: 10.1016/s0167-4781(00)00199-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The region Xp11.23 is a gene-rich, light giemsa-staining segment on the short arm of the X chromosome. In this study, we have characterized the transcriptional regulatory elements in this interval for two adjacent genes: SUV39H1, a regulator of chromatin organization, and the Wiskott-Aldrich syndrome protein (WASP). The WASP gene exhibits two alternate promoters, both of which demonstrate transcription factor binding elements specific to blood cell lineages. Reporter gene expression analyses indicate that both WASP promoters show high levels of expression in different hematopoietic cell lines. The human homolog of the Drosophila Su(var)3-9 gene was identified by sequence analysis of the region downstream from WASP. SUV39H1 is ubiquitously expressed, and the promoter sequence consists mostly of general transcription factors. The presence of putative binding sites for GAGA and Adf1 transcription factors may indicate a cross regulatory mechanism with other chromatin regulators.
Collapse
Affiliation(s)
- T L Hagemann
- The Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | | | | |
Collapse
|
496
|
Orrico A, Galli L, Falciani M, Bracci M, Cavaliere ML, Rinaldi MM, Musacchio A, Sorrentino V. A mutation in the pleckstrin homology (PH) domain of the FGD1 gene in an Italian family with faciogenital dysplasia (Aarskog-Scott syndrome). FEBS Lett 2000; 478:216-20. [PMID: 10930571 DOI: 10.1016/s0014-5793(00)01857-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aarskog-Scott Syndrome (AAS) is an X-linked disorder characterised by short stature and multiple facial, limb and genital abnormalities. A gene, FGD1, altered in a patient with AAS phenotype, has been identified and found to encode a protein with homology to Rho/Rac guanine nucleotide exchange factors (Rho/Rac GEF). However, since this original report on identification of a mutated FGD1 gene in an AAS patient, no additional mutations in the FGD1 gene have been described. We analysed 13 independent patients with clinical diagnosis of AAS. One patient presented a mutation that results in a nucleotide change in exon 10 of the FGD1 gene (G2559>A) substituting a Gln for Arg in position 610. The mutation was found to segregate with the AAS phenotype in affected males and carrier females in the family of this patient. Interestingly, Arg-610 is located within one of the two pleckstrin homology (PH) domains of the FGD1 gene and it corresponds to a highly conserved residue which has been involved in InsP binding in PH domains of other proteins. The same residue is often mutated in the Bruton's tyrosine kinase (Btk) gene in patients with an X-linked agammaglobulinemia. The Arg610Gln mutation represents the first case of a mutation in the PH domain of the FGD1 gene and additional evidence that mutations in PH domains can be associated to human diseases.
Collapse
Affiliation(s)
- A Orrico
- U.O. Genetica Medica, Policlinico 'Le Scotte', Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
497
|
Abstract
Rho GTPases are molecular switches that regulate many essential cellular processes, including actin dynamics, gene transcription, cell-cycle progression and cell adhesion. About 30 potential effector proteins have been identified that interact with members of the Rho family, but it is still unclear which of these are responsible for the diverse biological effects of Rho GTPases. This review will discuss how Rho GTPases physically interact with, and regulate the activity of, multiple effector proteins and how specific effector proteins contribute to cellular responses. To date most progress has been made in the cytoskeleton field, and several biochemical links have now been established between GTPases and the assembly of filamentous actin. The main focus of this review will be Rho, Rac and Cdc42, the three best characterized mammalian Rho GTPases, though the genetic analysis of Rho GTPases in lower eukaryotes is making increasingly important contributions to this field.
Collapse
|
498
|
Carlier MF, Nioche P, Broutin-L'Hermite I, Boujemaa R, Le Clainche C, Egile C, Garbay C, Ducruix A, Sansonetti P, Pantaloni D. GRB2 links signaling to actin assembly by enhancing interaction of neural Wiskott-Aldrich syndrome protein (N-WASp) with actin-related protein (ARP2/3) complex. J Biol Chem 2000; 275:21946-52. [PMID: 10781580 DOI: 10.1074/jbc.m000687200] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins of the Wiskott-Aldrich Syndrome protein (WASp) family connect signaling pathways to the actin polymerization-driven cell motility. The ubiquitous homolog of WASp, N-WASp, is a multidomain protein that interacts with the Arp2/3 complex and G-actin via its C-terminal WA domain to stimulate actin polymerization. The activity of N-WASp is enhanced by the binding of effectors like Cdc42-guanosine 5'-3-O-(thio)triphosphate, phosphatidylinositol bisphosphate, or the Shigella IcsA protein. Here we show that the SH3-SH2-SH3 adaptor Grb2 is another activator of N-WASp that stimulates actin polymerization by increasing the amount of N-WASp. Arp2/3 complex. The concentration dependence of N-WASp activity, sedimentation velocity and cross-linking experiments together suggest that N-WASp is subject to self-association, and Grb2 enhances N-WASp activity by binding preferentially to its active monomeric form. Use of peptide inhibitors, mutated Grb2, and isolated SH3 domains demonstrate that the effect of Grb2 is mediated by the interaction of its C-terminal SH3 domain with the proline-rich region of N-WASp. Cdc42 and Grb2 bind simultaneously to N-WASp and enhance actin polymerization synergistically. Grb2 shortens the delay preceding the onset of Escherichia coli (IcsA) actin-based reconstituted movement. These results suggest that Grb2 may activate Arp2/3 complex-mediated actin polymerization downstream from the receptor tyrosine kinase signaling pathway.
Collapse
Affiliation(s)
- M F Carlier
- Dynamique du Cytosquelette, Cristallographie et RMN Biologiques, Laboratoire d'Enzymologie et Biochimie Structurale, CNRS 91198 Gif-sur-Yvette, Paris, France. Pasteur,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
499
|
Yamada M, Ariga T, Kawamura N, Yamaguchi K, Ohtsu M, Nelson DL, Kondoh T, Kobayashi I, Okano M, Kobayashi K, Sakiyama Y. Determination of carrier status for the Wiskott-Aldrich syndrome by flow cytometric analysis of Wiskott-Aldrich syndrome protein expression in peripheral blood mononuclear cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1119-22. [PMID: 10878391 DOI: 10.4049/jimmunol.165.2.1119] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is caused by defects in the WAS protein (WASP) gene on the X chromosome. Previous study disclosed that flow cytometric analysis of intracellular WASP expression (FCM-WASP analysis) in lymphocytes was useful for the diagnosis of WAS patients. Lymphocytes from all WAS patients showed WASPdim instead of WASPbright. Here we report that FCM-WASP analysis in monocytes could be a useful tool for the WAS carrier diagnosis. Monocytes from all nine WAS carriers showed varied population of WASPdim together with WASPbright. None of control individuals possessed the WASPdim population. In contrast, lymphocytes from all the carriers except two lacked the WASPdim population. The difference of the WASPdim population in monocytes and lymphocytes observed in WAS carriers suggests that WASP plays a more critical role in the development of lymphocytes than in that of monocytes. The present studies suggest that a skewed X-chromosomal inactivation pattern observed in WAS carrier peripheral blood cells is not fixed at the hemopoietic stem cell level but progresses after the lineage commitment.
Collapse
Affiliation(s)
- M Yamada
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
500
|
Linder S, Higgs H, Hüfner K, Schwarz K, Pannicke U, Aepfelbacher M. The polarization defect of Wiskott-Aldrich syndrome macrophages is linked to dislocalization of the Arp2/3 complex. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:221-5. [PMID: 10861055 DOI: 10.4049/jimmunol.165.1.221] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder originally characterized by the clinical triad eczema, thrombocytopenia, and severe immunodeficieny, with recurrent bacterial and viral infections, indicating a profound immune cell defect. Such altered immune cells include monocytes, macrophages, and dendritic cells, which were reported to display disturbed cell polarization or chemotaxis. WAS is caused by mutations in the WAS protein (WASp), which is thought to organize the actin cytoskeleton through the Arp2/3 complex. Here we show that the Arp2/3 complex is an integral part of podosomes, actin-rich adhesion structures of macrophages, and that WAS macrophages fail to organize the Arp2/3 complex into podosomes. We also demonstrate that microinjection of a C-terminal acidic stretch of WASp into normal macrophages displaces Arp2/3 from podosomes and, in combination with chemoattractant stimulation of cells, induces a phenotype resembling the polarization-defective phenotype of stimulated WAS macrophages. These findings point to an important role of the Arp2/3 complex in polarization and migration of immune cells.
Collapse
Affiliation(s)
- S Linder
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten and Max von Pettenkofer-Institut für Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | | | | | | | | | | |
Collapse
|