451
|
Shin JH, Yang JW, Le Pecheur M, London J, Hoeger H, Lubec G. Altered expression of hypothetical proteins in hippocampus of transgenic mice overexpressing human Cu/Zn-superoxide dismutase 1. Proteome Sci 2004; 2:2. [PMID: 15193154 PMCID: PMC446209 DOI: 10.1186/1477-5956-2-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 06/11/2004] [Indexed: 11/25/2022] Open
Abstract
Background Cu/Zn-superoxide dismutase 1 (SOD1), encoded on chromosome 21, is a key enzyme in the metabolism of reactive oxygen species (ROS) and pathogenetically relevant for several disease states including Down syndrome (DS; trisomy 21). Systematically studying protein expression in human brain and animal models of DS we decided to carry out "protein hunting" for hypothetical proteins, i.e. proteins that have been predicted based upon nucleic sequences only, in a transgenic mouse model overexpressing human SOD1. Results We applied a proteomics approach using two-dimensional electrophoresis (2-DE) with in-gel digestion of spots followed by mass spectrometric (matrix-assisted laser desorption/ionization-time of flight) identification and quantification of hypothetical proteins using specific software. Hippocampi of wild type, hemizygous and homozygous SOD1 transgenic mice (SOD1-TGs) were analysed. We identified fourteen hypothetical proteins in mouse hippocampus. Of these, expression levels of 2610008O03Rik protein (Q9D0K2) and 4632432E04Rik protein (Q9D358) were significantly decreased (P < 0.05 and 0.001) and hypothetical protein (Q99KP6) was significantly increased (P < 0.05) in hippocampus of SOD1-TGs as compared with non-transgenic mice. Conclusions The biological meaning of aberrant expression of these proteins may be impairment of metabolism, signaling and transcription machinery in SOD1-TGs brain that in turn may help to explain deterioration of these systems in DS brain.
Collapse
Affiliation(s)
- Joo-Ho Shin
- Department of Pediatrics, University of Vienna, Vienna, Austria
| | - Jae-Won Yang
- Department of Pediatrics, University of Vienna, Vienna, Austria
| | - Marie Le Pecheur
- Biochemisty Department, Universite Paris 7 Denis - Diderot, Paris, France
| | - Jacqueline London
- Biochemisty Department, Universite Paris 7 Denis - Diderot, Paris, France
| | - Harald Hoeger
- Institute for Animal Breeding, University of Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, University of Vienna, Vienna, Austria
| |
Collapse
|
452
|
Madrona AY, Wilson DK. The structure of Ski8p, a protein regulating mRNA degradation: Implications for WD protein structure. Protein Sci 2004; 13:1557-65. [PMID: 15152089 PMCID: PMC2279974 DOI: 10.1110/ps.04704704] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 03/19/2004] [Accepted: 03/22/2004] [Indexed: 10/26/2022]
Abstract
Ski8p is a 44-kD protein that primarily functions in the regulation of exosome-mediated, 3'--> 5' degradation of damaged mRNA. It does so by forming a complex with two partner proteins, Ski2p and Ski3p, which complete a complex that is capable of recruiting and activating the exosome/Ski7p complex that functions in RNA degradation. Ski8p also functions in meiotic recombination in complex with Spo11 in yeast. It is one of the many hundreds of primarily eukaryotic proteins containing tandem copies of WD repeats (also known as WD40 or beta-transducin repeats), which are short ~40 amino acid motifs, often terminating in a Trp-Asp dipeptide. Genomic analyses have demonstrated that WD repeats are found in 1%-2% of proteins in a typical eukaryote, but are extremely rare in prokaryotes. Almost all structurally characterized WD-repeat proteins are composed of seven such repeats and fold into seven-bladed beta propellers. Ski8p was thought to contain five WD repeats on the basis of primary sequence analysis implying a five-bladed propeller. The 1.9 A crystal structure unexpectedly exhibits a seven-bladed propeller fold with seven structurally authentic WD repeats. Structure-based sequence alignments show additional sequence diversity in the two undetected repeats. This demonstrates that many WD repeats have not yet been identified in sequences and also raises the possibility that the seven-bladed propeller may be the predominant fold for this family of proteins.
Collapse
Affiliation(s)
- A Yarrow Madrona
- Section of Molecular and Cellular Biology, 1 Shields Ave., University of California, Davis, CA 95616, USA
| | | |
Collapse
|
453
|
Herrmann R, Heck M, Henklein P, Henklein P, Kleuss C, Hofmann KP, Ernst OP. Sequence of Interactions in Receptor-G Protein Coupling. J Biol Chem 2004; 279:24283-90. [PMID: 15007073 DOI: 10.1074/jbc.m311166200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanine nucleotide exchange in heterotrimeric G proteins catalyzed by G protein-coupled receptors (GPCRs) is a key event in many physiological processes. The crystal structures of the GPCR rhodopsin and two G proteins as well as binding sites on both catalytically interacting proteins are known, but the temporal sequence of events leading to nucleotide exchange remains to be elucidated. We employed time-resolved near infrared light scattering to study the order in which the Galpha and Ggamma C-terminal binding sites on the holo-G protein interact with the active state of the GPCR rhodopsin (R*) in native membranes. We investigated these key binding sites within mass-tagged peptides and G proteins and found that their binding to R* is mutually exclusive. The interaction of the holo-G protein with R* requires at least one of the lipid modifications of the G protein (i.e. myristoylation of the Galpha N terminus and/or farnesylation of the Ggamma C terminus). A holo-G protein with a high affinity Galpha C terminus shows a specific change of the reaction rate in the GDP release and GTP uptake steps of catalysis. We interpret the data by a sequential fit model where (i) the initial encounter between R* and the G protein occurs with the Gbetagamma subunit, and (ii) the Galpha C-terminal tail then interacts with R* to release bound GDP, thereby decreasing the affinity of R* for the Gbetagamma subunit. The mechanism limits the time in which both C-terminal binding sites of the G protein interact simultaneously with R* to a short lived transitory state.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Catalysis
- Cattle
- Cloning, Molecular
- Crystallography, X-Ray
- DNA, Complementary/metabolism
- Dimerization
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Proteins/metabolism
- Insecta
- Kinetics
- Light
- Lipids/chemistry
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Peptides/chemistry
- Protein Binding
- Protein Conformation
- Protein Prenylation
- Protein Structure, Tertiary
- Receptors, G-Protein-Coupled/metabolism
- Retinal Rod Photoreceptor Cells
- Rhodopsin/chemistry
- Scattering, Radiation
- Time Factors
- Transducin/chemistry
Collapse
Affiliation(s)
- Rolf Herrmann
- Institut für Medizinische Physik und Biophysik (Campus Mitte), Charité-Universitätsmedizin Berlin, Schumannstrasse 20-21, 10098 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
454
|
Topp JD, Gray NW, Gerard RD, Horazdovsky BF. Alsin Is a Rab5 and Rac1 Guanine Nucleotide Exchange Factor. J Biol Chem 2004; 279:24612-23. [PMID: 15033976 DOI: 10.1074/jbc.m313504200] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ALS2 is the gene mutated in a recessive juvenile form of amyotrophic lateral sclerosis (ALS2). ALS2 encodes a large protein termed alsin, which contains a number of predicted cell signaling and protein trafficking sequence motifs. To gain insight into the overall function of alsin and to begin to evaluate its role in motor neuron maintenance, we examined the subcellular localization of alsin and the biochemical activities associated with its individual subdomains. We found that the Vps9p domain of alsin has Rab5 guanine nucleotide exchange activity. In addition, alsin interacted specifically with and acted as a guanine nucleotide exchange factor for Rac1. Immunofluorescence and fractionation experiments in both fibroblasts and neurons revealed that alsin is a cytosolic protein, with a significant portion associated with small, punctate membrane structures. Many of these membrane structures also contained Rab5 or Rac1. Upon overexpression of full-length alsin, the overexpressed material was largely cytosolic, indicating that the association with membrane structures could be saturated. We also found that alsin was present in membrane ruffles and lamellipodia. These data suggest that alsin is involved in membrane transport events, potentially linking endocytic processes and actin cytoskeleton remodeling.
Collapse
Affiliation(s)
- Justin D Topp
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
455
|
Bromley EV, Taylor MC, Wilkinson SR, Kelly JM. The amino terminal domain of a novel WD repeat protein from Trypanosoma cruzi contains a non-canonical mitochondrial targeting signal. Int J Parasitol 2004; 34:63-71. [PMID: 14711591 DOI: 10.1016/j.ijpara.2003.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
WD (tryptophan/aspartic acid) repeat proteins perform a wide variety of functions in eukaryotic cells. They are characterised by the presence of a number of conserved repeat motifs that contribute to the beta-propeller structures which are the common feature of this large group of proteins. We report here the properties of the first characterised member of this family in the American trypanosome, Trypanosoma cruzi (TcBPP1). In the CL Brener clone the protein is 482 amino acids long and is predicted to contain four WD repeat motifs, flanked by amino and carboxyl terminal extensions. TcBPP1 is a single copy gene present on a 1.0/1.6 Mb pair of homologous chromosomes in a locus that is syntenic with the corresponding regions of Trypanosoma brucei and Leishmania major chromosomes. Consistent with the proposed hybrid nature of the CL Brener clone, the proteins encoded by the two different alleles share only 97% identity at the amino acid level. To determine subcellular location, we examined transfected parasites for the distribution of green fluorescent protein (GFP) fused with different regions of TcBPP1. These studies demonstrated that a 115 amino acid peptide derived from the amino terminal domain of TcBPP1 is able to target GFP to the mitochondrion. Interestingly this region lacks a typical amino terminal presequence suggesting that mitochondrial import is mediated by an alternative targeting signal.
Collapse
Affiliation(s)
- Elizabeth V Bromley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | | | | |
Collapse
|
456
|
Deyholos MK, Cavaness GF, Hall B, King E, Punwani J, Van Norman J, Sieburth LE. VARICOSE, a WD-domain protein, is required for leaf blade development. Development 2004; 130:6577-88. [PMID: 14660546 DOI: 10.1242/dev.00909] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To gain insight into the processes controlling leaf development, we characterized an Arabidopsis mutant, varicose (vcs), with leaf and shoot apical meristem defects. The vcs phenotype is temperature dependent; low temperature growth largely suppressed defects, whereas high growth temperatures resulted in severe leaf and meristem defects. VCS encodes a putative WD-domain containing protein, suggesting a function involving protein-protein interactions. Temperature shift experiments indicated that VCS is required throughout leaf development, but normal secondary vein patterning required low temperature early in leaf development. The low-temperature vcs phenotype is enhanced in axr1-3 vcs double mutants and in vcs mutants grown in the presence of polar auxin transport inhibitors, however, vcs has apparently normal auxin responses. Taken together, these observations suggest a role for VCS in leaf blade formation.
Collapse
Affiliation(s)
- Michael K Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
457
|
Dai J, Liu J, Deng Y, Smith TM, Lu M. Structure and protein design of a human platelet function inhibitor. Cell 2004; 116:649-59. [PMID: 15006348 DOI: 10.1016/s0092-8674(04)00172-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 01/08/2004] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
Hematophagous arthropods secrete a salivary apyrase that inhibits platelet activation by catabolizing ADP released from damaged tissues and blood cells. We report the X-ray crystal structures of a human enzyme of the soluble apyrase family in its apo state and bound to a substrate analog. The structures reveal a nucleotide binding domain comprising a five-blade beta propeller, binding determinants of the substrate and the active site, and an unusual calcium binding site with a potential regulatory function. Using a comparative structural biology approach, we were able to redesign the human apyrase so as to enhance its ADPase activity by more than 100-fold. The engineered enzyme is a potent inhibitor of platelet aggregation and may serve as the basis for the development of a new class of antithrombotic agents.
Collapse
Affiliation(s)
- Jiayin Dai
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
458
|
Campbell K, Popov V, Soong L. Identification and molecular characterization of a gene encoding a protective Leishmania amazonensis Trp-Asp (WD) protein. Infect Immun 2004; 72:2194-202. [PMID: 15039343 PMCID: PMC375213 DOI: 10.1128/iai.72.4.2194-2202.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 12/01/2003] [Accepted: 12/31/2003] [Indexed: 11/20/2022] Open
Abstract
Several Leishmania proteins have been identified and characterized in pursuit of understanding pathogenesis and protection in cutaneous leishmaniasis. In the present study, we utilized sera from infected BALB/c mice to screen a Leishmania amazonensis amastigote cDNA expression library and obtained the full-length gene that encodes a novel Trp-Asp (WD) protein designated LAWD (for Leishmania antigenic WD protein). The WD family of proteins mediates protein-protein interactions and coordinates the formation of protein complexes. The single-copy LAWD gene is transcribed as a approximately 3.1-kb mRNA in both promastigotes and amastigotes, with homologues being detected in several other Leishmania species. Immunoelectron microscopy revealed a predominant localization of the LAWD protein in the flagellar pocket. Analyses of sera from human patients with cutaneous and mucocutaneous leishmaniasis indicated that these individuals mounted significant humoral responses against LAWD. Given that recombinant LAWD protein elicited the production of high levels of gamma interferon, but no detectable levels of interleukin-10 (IL-10), in CD4(+) cells of L. amazonensis-infected mice, we further examined whether LAWD could elicit protective immunity. DNA vaccination with the LAWD and IL-12 genes significantly delayed lesion development, which correlated with a dramatic reduction in parasite burdens. Thus, we have successfully identified a promising vaccine candidate and antigenic vehicle to aid in the dissection of the complicated pathogenic immune response of L. amazonensis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/administration & dosage
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Aspartic Acid
- CD4-Positive T-Lymphocytes/immunology
- Cricetinae
- Female
- Humans
- Immunization
- Leishmania/genetics
- Leishmania/immunology
- Leishmania/metabolism
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/parasitology
- Mesocricetus
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Protozoan Proteins/administration & dosage
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/immunology
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/immunology
- Sequence Analysis, DNA
- Tryptophan
Collapse
Affiliation(s)
- Kimberly Campbell
- Department of Microbiology and Immunology, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | | | |
Collapse
|
459
|
Daganzo SM, Erzberger JP, Lam WM, Skordalakes E, Zhang R, Franco AA, Brill SJ, Adams PD, Berger JM, Kaufman PD. Structure and function of the conserved core of histone deposition protein Asf1. Curr Biol 2004; 13:2148-58. [PMID: 14680630 DOI: 10.1016/j.cub.2003.11.027] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Asf1 is a ubiquitous eukaryotic histone binding and deposition protein that mediates nucleosome formation in vitro and is required for genome stability in vivo. Studies in a variety of organisms have defined Asf1's role as a histone chaperone during DNA replication through specific interactions with histones H3/H4 and the histone deposition factor CAF-I. In addition to its role in replication, conserved interactions with proteins involved in chromatin silencing, transcription, chromatin remodeling, and DNA repair have also established Asf1 as an important component of a number of chromatin assembly and modulation complexes. RESULTS We demonstrate that the highly conserved N-terminal domain of S. cerevisiae Asf1 (Asf1N) is the core region that mediates all tested functions of the full-length protein. The crystal structure of this core domain, determined to 1.5 A resolution, reveals a compact immunoglobulin-like beta sandwich fold topped by three helical linkers. The surface of Asf1 displays a conserved hydrophobic groove flanked on one side by an area of strong electronegative surface potential. These regions represent potential binding sites for histones and other interacting proteins. The structural model also allowed us to interpret mutagenesis studies of the human Asf1a/HIRA interaction and to functionally define the region of Asf1 responsible for Hir1-dependent telomeric silencing in budding yeast. CONCLUSIONS The evolutionarily conserved, N-terminal 155 amino acids of histone deposition protein Asf1 are functional in vitro and in vivo. This core region of Asf1 adopts a compact immunoglobulin-fold structure with distinct surface characteristics, including a Hir protein binding region required for gene silencing.
Collapse
Affiliation(s)
- Sally M Daganzo
- Lawrence Berkeley National Laboratory, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
460
|
Roginskaya M, Connelly SM, Kim KS, Patel D, Dumont ME. Effects of mutations in the N terminal region of the yeast G protein α-subunit Gpa1p on signaling by pheromone receptors. Mol Genet Genomics 2004; 271:237-48. [PMID: 14767760 DOI: 10.1007/s00438-004-0975-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 12/07/2003] [Indexed: 11/26/2022]
Abstract
The sites and modes of interaction between G protein-coupled receptors and their cognate heterotrimeric G proteins remain poorly defined. The C-terminus of the Galpha subunit is the best established site of contact of G proteins with receptors, but structural analyses and crosslinking studies suggest the possibility of interactions at the N-terminus of Galpha as well. We screened for mutations in the N-terminal region of the Galpha subunit encoded by the yeast GPA1 gene that specifically affect the ability of the G protein to be activated by the yeast alpha-mating factor receptor. The screen led to identification of substitutions of glutamine or proline for Leu18 of Gpa1p that reduce the response to the pheromones alpha-factor and a-factor without affecting cellular levels of the subunit or its ability to interact with beta and gamma subunits. The mutations do not appear to affect the intrinsic ability of the G protein to be converted to the activated state. The low yield of different mutations with this phenotype indicates either that the N-terminal segment of the yeast Galpha subunit does not undergo extensive interactions with the alpha-factor receptor, or that this region can not be altered without detrimental effects upon the formation of G protein trimers.
Collapse
Affiliation(s)
- M Roginskaya
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, PO Box 712, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
461
|
Abstract
A large body of experimental evidence exists that links heterotrimeric guanosine triphosphate-binding protein (G protein) structure to function. The determination of the crystal structures of G proteins in various activational states and, more recently, in complexes with effectors and other signaling partners highlights the varied mechanisms involved in G protein regulation. Signaling complexes, such as the recently solved complex of Gbetagamma and G protein receptor kinase 2 (GRK2), provide new insights into the mechanisms underlying the regulation of these highly conserved signaling molecules. In this Review, we discuss the latest findings and their implications for G protein-signaling paradigms.
Collapse
Affiliation(s)
- Anita M Preininger
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | | |
Collapse
|
462
|
Skurat AV, Dietrich AD. Phosphorylation of Ser640 in muscle glycogen synthase by DYRK family protein kinases. J Biol Chem 2004; 279:2490-8. [PMID: 14593110 DOI: 10.1074/jbc.m301769200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycogen synthase, a key enzyme in the regulation of glycogen synthesis by insulin, is controlled by multisite phosphorylation. Glycogen synthase kinase-3 (GSK-3) phosphorylates four serine residues in the COOH terminus of glycogen synthase. Phosphorylation of one of these residues, Ser(640) (site 3a), causes strong inactivation of glycogen synthase. In previous work, we demonstrated in cell models that site 3a can be phosphorylated by an as yet unidentified protein kinase (3a-kinase) distinct from GSK-3. In the present study, we purified the 3a-kinase from rabbit skeletal muscle and identified one constituent polypeptide as HAN11, a WD40 domain protein with unknown function. Another polypeptide was identified as DYRK1A, a member of the dual-specificity tyrosine phosphorylated and regulated protein kinase (DYRK) family. Two isoforms of DYRK, DYRK1A and DYRK1B, co-immunoprecipitate with HAN11 when coexpressed in COS cells indicating that the proteins interact in mammalian cells. Co-expression of DYRK1A, DYRK1B, or DYRK2 with a series of glycogen synthase mutants with Ser/Ala substitutions at the phosphorylation sites in COS cells revealed that protein kinases cause phosphorylation of site 3a in glycogen synthase. To confirm that DYRKs directly phosphorylate glycogen synthase, recombinant DYRK1A, DYRK2, and glycogen synthase were produced in bacterial cells. In the presence of Mg-ATP, both DYRKs inactivated glycogen synthase by more than 10-fold. The inactivation correlated with phosphorylation of site 3a in glycogen synthase. These results indicate that protein kinase(s) from the DYRK family may be involved in a new mechanism for the regulation of glycogen synthesis.
Collapse
Affiliation(s)
- Alexander V Skurat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | |
Collapse
|
463
|
Hazari A, Lowes V, Chan JHP, Wong CSS, Ho MKC, Wong YH. Replacement of the α5 helix of Gα16 with Gαs-specific sequences enhances promiscuity of Gα16 toward Gs-coupled receptors. Cell Signal 2004; 16:51-62. [PMID: 14607275 DOI: 10.1016/s0898-6568(03)00097-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
G(16) can couple indiscriminately to a large number of G protein-coupled receptors (GPCRs), making it a prime candidate as a universal adaptor for GPCRs. In order to increase the promiscuity of Galpha(16), three chimeras incorporating increasing lengths of G(s)-specific residues (25, 44 or 81 residues) into the C-terminus of Galpha(16) were constructed and named 16s25, 16s44 and 16s81, respectively. The chimeras were examined for their ability to mediate receptor-induced stimulation of phospholipase C (PLC) and Ca(2+) mobilization. 16s25 was more effective than 16s44 and 16s81 at coupling to G(s)-linked receptors. 16s25 coupled productively to 10 different G(s)-coupled receptors examined and, for 50% of these receptors, 16s25-mediated PLC activities were higher than those mediated via Galpha(16). Similar results were observed for agonist-induced Ca(2+) mobilizations. These results show that incorporating the alpha5 helix of Galpha(s) into Galpha(16) can increase the promiscuity of 16s25 towards G(s)-coupled receptors.
Collapse
MESH Headings
- Animals
- Base Sequence/genetics
- COS Cells
- Calcium/metabolism
- Calcium Signaling/physiology
- GTP-Binding Protein alpha Subunits/genetics
- GTP-Binding Protein alpha Subunits/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11
- GTP-Binding Protein alpha Subunits, Gs/genetics
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Heterotrimeric GTP-Binding Proteins/genetics
- Heterotrimeric GTP-Binding Proteins/metabolism
- Protein Structure, Secondary/genetics
- Protein Structure, Tertiary/genetics
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/genetics
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Anjali Hazari
- Department of Biochemistry, the Biotechnology Research Institute, and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
464
|
Eugster A, Frigerio G, Dale M, Duden R. The alpha- and beta'-COP WD40 domains mediate cargo-selective interactions with distinct di-lysine motifs. Mol Biol Cell 2003; 15:1011-23. [PMID: 14699056 PMCID: PMC363058 DOI: 10.1091/mbc.e03-10-0724] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Coatomer is required for the retrieval of proteins from an early Golgi compartment back to the endoplasmic reticulum. The WD40 domain of alpha-COP is required for the recruitment of KKTN-tagged proteins into coatomer-coated vesicles. However, lack of the domain has only minor effects on growth in yeast. Here, we show that the WD40 domain of beta'-COP is required for the recycling of the KTKLL-tagged Golgi protein Emp47p. The protein is degraded more rapidly in cells with a point mutation in the WD40 domain of beta'-COP (sec27-95) or in cells lacking the domain altogether, whereas a point mutation in the Clathrin Heavy Chain Repeat (sec27-1) does not affect the turnover of Emp47p. Lack of the WD40 domain of beta'-COP has only minor effects on growth of yeast cells; however, absence of both WD40 domains of alpha- and beta'-COP is lethal. Two hybrid studies together with our analysis of the maturation of KKTN-tagged invertase and the turnover of Emp47p in alpha- and beta'-COP mutants suggest that the two WD40 domains of alpha- and beta'-COP bind distinct but overlapping sets of di-lysine signals and hence both contribute to recycling of proteins with di-lysine signals.
Collapse
Affiliation(s)
- Anne Eugster
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | | | | | | |
Collapse
|
465
|
Bünemann M, Frank M, Lohse MJ. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc Natl Acad Sci U S A 2003; 100:16077-82. [PMID: 14673086 PMCID: PMC307695 DOI: 10.1073/pnas.2536719100] [Citation(s) in RCA: 336] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptors transduce diverse extracellular signals, such as neurotransmitters, hormones, chemokines, and sensory stimuli, into intracellular responses through activation of heterotrimeric G proteins. G proteins play critical roles in determining specificity and kinetics of subsequent biological responses by modulation of effector proteins. We have developed a fluorescence resonance energy transfer (FRET)-based assay to directly measure mammalian G protein activation in intact cells and found that Gi proteins activate within 1-2 s, which is considerably slower than activation kinetics of the receptors themselves. More importantly, FRET measurements demonstrated that Galphai- and Gbetagamma-subunits do not dissociate during activation, as has been previously postulated. Based on FRET measurements between Galphai-yellow fluorescent protein and Gbetagamma-subunits that were fused to cyan fluorescent protein at various positions, we conclude that, instead, G protein subunits undergo a molecular rearrangement during activation. The detection of a persistent heterotrimeric composition during G protein activation will impact the understanding of how G proteins achieve subtype-selective coupling to effectors. This finding will be of particular interest for unraveling Gbetagamma-induced signaling pathways.
Collapse
Affiliation(s)
- Moritz Bünemann
- Department of Pharmacology and Toxicology, University of Würzburg, Versbacherstrasse 9, 97078 Würzburg, Germany.
| | | | | |
Collapse
|
466
|
Slessareva JE, Ma H, Depree KM, Flood LA, Bae H, Cabrera-Vera TM, Hamm HE, Graber SG. Closely related G-protein-coupled receptors use multiple and distinct domains on G-protein alpha-subunits for selective coupling. J Biol Chem 2003; 278:50530-6. [PMID: 14525988 DOI: 10.1074/jbc.m304417200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular basis of selectivity in G-protein receptor coupling has been explored by comparing the abilities of G-protein heterotrimers containing chimeric Galpha subunits, comprised of various regions of Gi1alpha, Gtalpha, and Gqalpha, to stabilize the high affinity agonist binding state of serotonin, adenosine, and muscarinic receptors. The data indicate that multiple and distinct determinants of selectivity exist for individual receptors. While the A1 adenosine receptor does not distinguish between Gi1alpha and Gtalpha sequences, the 5-HT1A and 5-HT1B serotonin and M2 muscarinic receptors can couple with Gi1 but not Gt. It is possible to distinguish domains that eliminate coupling and are defined as "critical," from those that impair coupling and are defined as "important." Domains within the N terminus, alpha4-helix, and alpha4-helix-alpha4/beta6-loop of Gi1alpha are involved in 5-HT and M2 receptor interactions. Chimeric Gi1alpha/Gqalpha subunits verify the critical role of the Galpha C terminus in receptor coupling, however, the individual receptors differ in the C-terminal amino acids required for coupling. Furthermore, the EC50 for interactions with Gi1 differ among the individual receptors. These results suggest that coupling selectivity ultimately involves subtle and cooperative interactions among various domains on both the G-protein and the associated receptor as well as the G-protein concentration.
Collapse
Affiliation(s)
- Janna E Slessareva
- Department of Biochemistry and Molecular Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
467
|
van Nocker S, Ludwig P. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics 2003; 4:50. [PMID: 14672542 PMCID: PMC317288 DOI: 10.1186/1471-2164-4-50] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 12/12/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The WD motif (also known as the Trp-Asp or WD40 motif) is found in a multitude of eukaryotic proteins involved in a variety of cellular processes. Where studied, repeated WD motifs act as a site for protein-protein interaction, and proteins containing WD repeats (WDRs) are known to serve as platforms for the assembly of protein complexes or mediators of transient interplay among other proteins. In the model plant Arabidopsis thaliana, members of this superfamily are increasingly being recognized as key regulators of plant-specific developmental events. RESULTS We analyzed the predicted complement of WDR proteins from Arabidopsis, and compared this to those from budding yeast, fruit fly and human to illustrate both conservation and divergence in structure and function. This analysis identified 237 potential Arabidopsis proteins containing four or more recognizable copies of the motif. These were classified into 143 distinct families, 49 of which contained more than one Arabidopsis member. Approximately 113 of these families or individual proteins showed clear homology with WDR proteins from the other eukaryotes analyzed. Where conservation was found, it often extended across all of these organisms, suggesting that many of these proteins are linked to basic cellular mechanisms. The functional characterization of conserved WDR proteins in Arabidopsis reveals that these proteins help adapt basic mechanisms for plant-specific processes. CONCLUSIONS Our results show that most Arabidopsis WDR proteins are strongly conserved across eukaryotes, including those that have been found to play key roles in plant-specific processes, with diversity in function conferred at least in part by divergence in upstream signaling pathways, downstream regulatory targets and /or structure outside of the WDR regions.
Collapse
Affiliation(s)
- Steven van Nocker
- Cell and Molecular Biology Program and Department of Horticulture, 390 Plant and Soil Sciences Building, Michigan State University, East Lansing, MI, 48824, USA
| | - Philip Ludwig
- Cell and Molecular Biology Program and MSU-DOE Plant Research Laboratory, 2240 Biomedical Physical Sciences Building, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
468
|
Dietrich A, Scheer A, Illenberger D, Kloog Y, Henis YI, Gierschik P. Studies on G-protein alpha.betagamma heterotrimer formation reveal a putative S-prenyl-binding site in the alpha subunit. Biochem J 2003; 376:449-56. [PMID: 12952523 PMCID: PMC1223783 DOI: 10.1042/bj20030578] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Revised: 08/14/2003] [Accepted: 09/03/2003] [Indexed: 11/17/2022]
Abstract
The alpha and betagamma subunits of heterotrimeric G-proteins contain specific lipid modifications, which are required for their biological function. However, the relevance of these modifications to the interactions within the heterotrimeric G-protein is not fully understood. In order to explore the role of the S-prenyl moiety of the isoprenylated betagamma dimer of retinal transducin, betagamma(t), in the formation of the heterotrimeric complex with the corresponding N-acylated alpha subunit, alpha(t), we employed purified fully processed subunits, which are soluble in aqueous solutions without detergents. Pertussis-toxin-mediated [(32)P]ADP-ribosylation of alpha(t) is strongly stimulated (approximately 10-fold) in the presence of betagamma(t) and can thus serve as a measure for heterotrimer formation. Using this assay, preincubation of alpha(t) with S-prenyl analogues containing farnesyl or geranylgeranyl moieties was found to inhibit heterotrimer formation in a dose-dependent manner. The inhibition was competitive and reversible, as indicated by its reversal upon increase of the betagamma(t) dimer concentration or by removal of the S-prenyl analogue using gel filtration. The competitive nature of the inhibition is supported by the marked attenuation of the inhibition when the S-prenyl analogue was added to alpha(t) together with or after betagamma(t). The inhibition does not involve interaction with the alpha(t) acyl group, since an S-prenyl analogue inhibited the [(32)P]ADP-ribosylation of an unlipidated alpha(t) mutant. These data suggest the existence of a hitherto unrecognized S-prenyl-binding site in alpha(t), which is critical for its interaction with prenylated betagamma(t).
Collapse
Affiliation(s)
- Alexander Dietrich
- Department of Pharmacology and Toxicology, University of Ulm, 89069 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
469
|
Bastiani CA, Gharib S, Simon MI, Sternberg PW. Caenorhabditis elegans Gαq Regulates Egg-Laying Behavior via a PLCβ-Independent and Serotonin-Dependent Signaling Pathway and Likely Functions Both in the Nervous System and in Muscle. Genetics 2003; 165:1805-22. [PMID: 14704167 PMCID: PMC1462877 DOI: 10.1093/genetics/165.4.1805] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
egl-30 encodes the single C. elegans ortholog of vertebrate Gαq family members. We analyzed the expression pattern of EGL-30 and found that it is broadly expressed, with highest expression in the nervous system and in pharyngeal muscle. We isolated dominant, gain-of-function alleles of egl-30 as intragenic revertants of an egl-30 reduction-of-function mutation. Using these gain-of-function mutants and existing reduction-of-function mutants, we examined the site and mode of action of EGL-30. On the basis of pharmacological analysis, it has been determined that egl-30 functions both in the nervous system and in the vulval muscles for egg-laying behavior. Genetic epistasis over mutations that eliminate detectable levels of serotonin reveals that egl-30 requires serotonin to regulate egg laying. Furthermore, pharmacological response assays strongly suggest that EGL-30 may directly couple to a serotonin receptor to mediate egg laying. We also examined genetic interactions with mutations in the gene that encodes the single C. elegans homolog of PLCβ and mutations in genes that encode signaling molecules downstream of PLCβ. We conclude that PLCβ functions in parallel with egl-30 with respect to egg laying or is not the major effector of EGL-30. In contrast, PLCβ-mediated signaling is likely downstream of EGL-30 with respect to pharyngeal-pumping behavior. Our data indicate that there are multiple signaling pathways downstream of EGL-30 and that different pathways could predominate with respect to the regulation of different behaviors.
Collapse
Affiliation(s)
- Carol A Bastiani
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
470
|
Zhao Q, Kawano T, Nakata H, Nakajima Y, Nakajima S, Kozasa T. Interaction of G protein beta subunit with inward rectifier K(+) channel Kir3. Mol Pharmacol 2003; 64:1085-91. [PMID: 14573757 DOI: 10.1124/mol.64.5.1085] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein betagamma subunits bind and activate G protein-coupled inward rectifier K+ (GIRK) channels. This protein-protein interaction is crucial for slow hyperpolarizations of cardiac myocytes and neurons. The crystal structure of Gbeta shows a seven-bladed propeller with four beta strands in each blade. The Gbeta/Galpha interacting surface contains sites for activating GIRK channels. Furthermore, our recent investigation using chimeras between Gbeta1 and yeast beta (STE4) suggested that the outer strands of blades 1 and 2 of Gbeta1 could be an interaction area between Gbeta1 and GIRK. In this study, we made point mutations on suspected residues on these outer strands and investigated their ability to activate GIRK1/GIRK2 channels. Mutations at Thr-86, Thr-87, and Gly-131, all located on the loops between beta-strands, substantially reduced GIRK channel activation, suggesting that these residues are Gbeta/GIRK interaction sites. These mutations did not affect the expression of Gbeta1 or its ability to stimulate PLCbeta2. These residues are surface-accessible and located outside Gbeta/Galpha interaction sites. These results suggest that the residues on the outer surface of blades 1 and 2 are involved in the interaction of Gbetagamma with GIRK channels. Our study suggests a mechanism by which different effectors use different blades to achieve divergence of signaling. We also observed that substitution of alanine for Trp-332 of Gbeta1 impaired the functional interaction of Gbeta1 with GIRK, in agreement with the data on native neuronal GIRK channels. Trp-332 plays a critical role in the interaction of Gbeta1 with Galpha as well as all effectors so far tested.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
471
|
Love CA, Harlos K, Mavaddat N, Davis SJ, Stuart DI, Jones EY, Esnouf RM. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nat Struct Mol Biol 2003; 10:843-8. [PMID: 12958590 DOI: 10.1038/nsb977] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 08/04/2003] [Indexed: 12/29/2022]
Abstract
Semaphorins, proteins characterized by an extracellular sema domain, regulate axon guidance, immune function and angiogenesis. The crystal structure of SEMA4D (residues 1-657) shows the sema topology to be a seven-bladed beta-propeller, revealing an unexpected homology with integrins. The sema beta-propeller contains a distinctive 77-residue insertion between beta-strands C and D of blade 5. Blade 7 is followed by a domain common to plexins, semaphorins and integrins (PSI domain), which forms a compact cysteine knot abutting the side of the propeller, and an Ig-like domain. The top face of the beta-propeller presents prominent loops characteristic of semaphorins. In addition to limited contact between the Ig-like domains, the homodimer is stabilized through extensive interactions between the top faces in a sector of the beta-propeller used for heterodimerization in integrins. This face of the propeller also mediates ligand binding in integrins, and functional data for semaphorin-receptor interactions map to the equivalent surface.
Collapse
Affiliation(s)
- Christopher A Love
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | | | | | | | | | | | |
Collapse
|
472
|
Voegtli WC, Madrona AY, Wilson DK. The structure of Aip1p, a WD repeat protein that regulates Cofilin-mediated actin depolymerization. J Biol Chem 2003; 278:34373-9. [PMID: 12807914 DOI: 10.1074/jbc.m302773200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin-interacting protein 1 (Aip1p) is a 67-kDa WD repeat protein known to regulate the depolymerization of actin filaments by cofilin and is conserved in organisms ranging from yeast to mammals. The crystal structure of Aip1p from Saccharomyces cerevisiae was determined to a 2.3-A resolution and a final crystallographic R-factor of 0.204. The structure reveals that the overall fold is formed by two connected seven-bladed beta-propellers and has important implications for the structure of Aip1 from other organisms and WD repeat-containing proteins in general. These results were unexpected because a maximum of 10 WD repeats had been reported in the literature for this protein using sequence data. The surfaces of the beta-propellers formed by the D-A and B-C loops are positioned adjacent to one another, giving Aip1p a shape that resembles an open "clamshell." The mapping of conserved residues to the structure of Aip1p reveals dense patches of conserved residues on the surface of one beta-propeller and at the interface of the two beta-propellers. These two patches of conserved residues suggest a potential binding site for F-actin on Aip1p and that the orientation of the beta-propellers with respect to one another plays a role in binding an actin-cofilin complex. In addition, the conserved interface between the domains is mediated by a number of interactions that appear to impart rigidity between the two domains of Aip1p and may make a large substrate-induced conformational change difficult.
Collapse
Affiliation(s)
- Walter C Voegtli
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
473
|
Xiong JP, Stehle T, Goodman SL, Arnaout MA. New insights into the structural basis of integrin activation. Blood 2003; 102:1155-9. [PMID: 12714499 DOI: 10.1182/blood-2003-01-0334] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrins are cell adhesion receptors that communicate biochemical and mechanical signals in a bidirectional manner across the plasma membrane and thus influence most cellular functions. Intracellular signals switch integrins into a ligand-competent state as a result of elicited conformational changes in the integrin ectodomain. Binding of extracellular ligands induces, in turn, structural changes that convey distinct signals to the cell interior. The structural basis of this bidirectional signaling has been the focus of intensive study for the past 3 decades. In this perspective, we develop a new hypothesis for integrin activation based on recent crystallographic, electron microscopic, and biochemical studies.
Collapse
Affiliation(s)
- Jian-Ping Xiong
- Renal Unit, Leukocyte Biology and Inflammation Program, Structural Biology Program, Massachusetts General Hospital, and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
474
|
|
475
|
Mirshahi T, Jin T, Logothetis DE. G beta gamma and KACh: old story, new insights. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:PE32. [PMID: 12902568 DOI: 10.1126/stke.2003.194.pe32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Dissociation of the heterotrimeric GTP-binding protein (G protein) betagamma subunits from the alpha subunit is a prerequisite step in the ability of these proteins to signal to downstream effectors. There is evidence that ions such as Na+ and Cl- can facilitate this dissociation. Interestingly, for KACh, the first known effector for Gbetagamma, intracellular Na+ can also activate the channel independently of Gbetagamma. Both Gbetagamma and Na+ strengthen channel interactions with the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2), an event thought to be essential in opening the channel. PIP2 interacts with channel regions that form a binding pocket proximal to the transmembrane domains and is likely to exert a tangential, pulling force to mechanically open a gate at the cytoplasmic face of the channel pore. The tangential force generated by channel-PIP2 interactions is the likely force behind gating in all inwardly rectifying K+ channels. The gate opens when the lower part of the pore-lining transmembrane alpha helix pivots around a glycine residue in the middle of the helix. This mechanism of channel gating is conserved among K+ channels from bacteria to mammals and may represent a common mechanism for K+ channel gating.
Collapse
Affiliation(s)
- Tooraj Mirshahi
- Department of Physiology and Biophysics, Mt. Sinai School of Medicine, New York University, New York, NY 10029, USA
| | | | | |
Collapse
|
476
|
Reidt U, Wahl MC, Fasshauer D, Horowitz DS, Lührmann R, Ficner R. Crystal structure of a complex between human spliceosomal cyclophilin H and a U4/U6 snRNP-60K peptide. J Mol Biol 2003; 331:45-56. [PMID: 12875835 DOI: 10.1016/s0022-2836(03)00684-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The spliceosomal cyclophilin H is a specific component of the human U4/U6 small nuclear ribonucleoprotein particle, interacting with homologous sequences in the proteins U4/U6-60K and hPrp18 during pre-mRNA splicing. We determined the crystal structure of the complex comprising cyclophilin H and the cognate domain of U4/U6-60K. The 31 amino acid fragment of U4/U6-60K is bound to a region remote from the cyclophilin active site. Residues Ile118-Phe121 of U4/U6-60K expand the central beta-sheet of cyclophilin H and the side-chain of Phe121 inserts into a hydrophobic cavity. Concomitantly, in the crystal the cyclophilin H active site is occupied by the N terminus of a neighboring cyclophilin H molecule in a substrate-like manner, indicating the capacity of joint binding to a substrate and to U4/U6-60K. Free and complexed cyclophilin H have virtually identical conformations suggesting that the U4/U6-60K binding site is pre-shaped and the peptidyl-prolyl-cis/trans isomerase activity is unaffected by complex formation. The complex defines a novel protein-protein interaction mode for a cyclophilin, allowing cyclophilin H to mediate interactions between different proteins inside the spliceosome or to initiate from its binding platforms isomerization or chaperoning activities.
Collapse
Affiliation(s)
- Ulrich Reidt
- Abteilung für Zelluläre Biochemie, Max-Planck-Institut für Biophysikalische Chemie, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
477
|
Siebenaller JF. Pressure effects on the GTPase activity of brain membrane G proteins of deep-living marine fishes. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:697-705. [PMID: 12892762 DOI: 10.1016/s1096-4959(03)00165-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In marine fishes, heterotrimeric guanyl nucleotide binding proteins (G proteins), which couple cell surface membrane receptors to their effector elements, are sensitive to hydrostatic pressure. The intrinsic high affinity GTPase activity of the alpha subunits of G proteins in three signaling systems coupled to adenylyl cyclase, the A(1) adenosine receptor, the muscarinic cholinergic receptor and the beta-adrenergic receptor, was tested at pressures up to 340 atm. Brain membrane preparations from four members of the deep-sea teleost fish family Macrouridae were studied. Coryphaenoides armatus, C. filifer, C. rupestris and Macrourus berglax have depth distributions which together span 100-5810 m. Increased pressure inhibited basal GTPase activity only in M. berglax, which of the four species has the shallowest center of abundance. Increased hydrostatic pressure did not alter the response of GTPase activity to the beta-adrenergic receptor agonist isoproterenol. Increased pressure decreased the stimulation of GTPase activity by the A(1) adenosine receptor agonist cyclopentyladenosine (CPA) in C. armatus and M. berglax, and by the muscarinic cholinergic receptor agonist carbamyl choline in C. armatus, C. filifer and M. berglax. Decreased agonist-stimulation of the GTPase activity at elevated pressure may result from pressure-induced changes in conformational states or inhibition of agonist binding. The binding of the non-hydrolyzable GTP analog guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in response to CPA was determined at 5 degrees C and atmospheric pressure. Six macrourid species and a morid were studied. The halftime (t(1/2)) values for GTP[S] binding, ranging from 20.8 to 40.9 min, are similar to values previously reported for two other cold-adapted fishes.
Collapse
Affiliation(s)
- Joseph F Siebenaller
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
478
|
Wong CSS, Ho MKC, Wong YH. The beta6/alpha5 regions of Galphai2 and GalphaoA increase the promiscuity of Galpha16 but are insufficient for pertussis toxin-catalyzed ADP-ribosylation. Eur J Pharmacol 2003; 473:105-15. [PMID: 12892827 DOI: 10.1016/s0014-2999(03)01975-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Replacement of beta6/alpha5 region at the C-terminus on Galpha16 with Galphaz-specific residues has been shown to broaden the promiscuity of Galpha16. Here, we substituted the last 44 residues of Galpha16 with the corresponding region from either Galphai2 or GalphaoA (16i44 and 16o44). 16i44 and 16o44 chimeras were more effective than Galpha16 at coupling to Gi-linked delta-opioid, mu-opioid, and Xenopus melatonin MT1c receptors when coexpressed in green monkey fibroblast (COS-7) cells. 16i44, but not 16o44, also enhanced the formyl peptide-induced stimulation of phospholipase C activity. Both chimeras were resistant to pertussis toxin-catalyzed [32P]ADP-ribosylation, despite the fact that pertussis toxin partially inhibited the chimera-mediated stimulation of phospholipase Cbeta. The use of Galphat1 as a Gbetagamma scavenger revealed that the pertussis toxin-sensitivity can be attributed to endogenous Gbetagamma subunits released from G(i/o). Although incorporation of a Galphai-like beta6/alpha5 region into the C-terminus of Galpha16 increases its promiscuity, this region is not sufficient to support recognition by pertussis toxin.
Collapse
MESH Headings
- Adenosine Diphosphate Ribose/metabolism
- Amino Acid Sequence
- Animals
- COS Cells
- Chlorocebus aethiops
- GTP-Binding Protein alpha Subunit, Gi2
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11
- Heterotrimeric GTP-Binding Proteins/genetics
- Heterotrimeric GTP-Binding Proteins/metabolism
- Humans
- Inositol Phosphates/metabolism
- Isoenzymes/metabolism
- Mice
- Molecular Sequence Data
- Pertussis Toxin/pharmacology
- Phospholipase C beta
- Protein Subunits
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Rats
- Receptors, Melatonin/metabolism
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Transfection
- Type C Phospholipases/metabolism
- Xenopus
Collapse
Affiliation(s)
- Cecilia S S Wong
- Department of Biochemistry, Molecular Neuroscience Center, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
479
|
Gettemans J, Meerschaert K, Vandekerckhove J, De Corte V. A kelch beta propeller featuring as a G beta structural mimic: reinventing the wheel? SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:PE27. [PMID: 12865498 DOI: 10.1126/stke.2003.191.pe27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
New genetic and protein interaction data suggest that G protein alpha subunits may have partners with primary sequences that are quite divergent. How this is achieved may be through the adoption of similar structures, the beta propeller, by both proteins containing WD-40 repeats and kelch domains. Gettemans et al. describe results in yeast that suggest that kelch-domain proteins may serve as previously unrecognized beta subunits in the heterotrimeric G protein complex.
Collapse
Affiliation(s)
- Jan Gettemans
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Flanders Interuniversity Institute for Biotechnology, Ghent University, Rommelaere Institute, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
480
|
Gettemans J, Meerschaert K, Vandekerckhove J, De Corte V. A Kelch Propeller Featuring as a G Structural Mimic: Reinventing the Wheel? Sci Signal 2003. [DOI: 10.1126/scisignal.1912003pe27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
481
|
Cerveny KL, Jensen RE. The WD-repeats of Net2p interact with Dnm1p and Fis1p to regulate division of mitochondria. Mol Biol Cell 2003; 14:4126-39. [PMID: 14517324 PMCID: PMC207005 DOI: 10.1091/mbc.e03-02-0092] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Net2, Fis1, and Dnm1 proteins are required for the division of mitochondria in the yeast Saccharomyces cerevisiae. Net2p has an amino-terminal region that contains predicted coiled-coil motifs and a carboxyl-terminal domain composed of WD-40 repeats. We found that the amino-terminal part of Net2p interacts with Fis1p, whereas the carboxyl-terminal region interacts with both Dnm1p and Fis1p. Overproduction of either domain of Net2p in yeast cells poisons mitochondrial fission, and the dominant-negative effect caused by the WD-repeats of Net2p is suppressed by increased levels of Dnm1p. Point mutations in the WD-region of Net2p or in the GTPase region of Dnm1p disrupt the normal Net2p-Dnm1p interaction, causing Net2p to lose its normal punctate distribution. Our results suggest that Dnm1p interacts with the WD-repeats of Net2p and in a GTP-dependent manner recruits Net2p to sites of mitochondrial division. Furthermore, our results indicate that Net2p is required for proper assembly of the mitochondrial fission components to regulate organelle division.
Collapse
Affiliation(s)
- Kara L Cerveny
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
482
|
Abstract
Integrins are cell adhesion receptors that couple extracellular divalent cation-dependent recognition events with intracellular mechanical and biochemical responses and vice versa, thus affecting every function of nucleated cells. The structural basis of this bidirectional signaling and its dependency on cations has been the focus of intensive study over the past three decades. Significant progress made recently in elucidating the three-dimensional structure of the extracellular and cytoplasmic segments of integrins is giving valuable new insights into the tertiary and quaternary changes that underlie activation, ligand recognition and signaling by these receptors.
Collapse
Affiliation(s)
- J-P Xiong
- Renal Unit, Leukocyte Biology & Inflammation Program, Structural Biology Program, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
483
|
Gloss A, Rivero F, Khaire N, Müller R, Loomis WF, Schleicher M, Noegel AA. Villidin, a novel WD-repeat and villin-related protein from Dictyostelium, is associated with membranes and the cytoskeleton. Mol Biol Cell 2003; 14:2716-27. [PMID: 12857859 PMCID: PMC165671 DOI: 10.1091/mbc.e02-12-0827] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Villidin is a novel multidomain protein (190 kDa) from Dictyostelium amoebae containing WD repeats at its N-terminus, three PH domains in the middle of the molecule, and five gelsolin-like segments at the C-terminus, followed by a villin-like headpiece. Villidin mRNA and protein are present in low amounts during growth and early aggregation, but increase during development and reach their highest levels at the tipped mound stage. The protein is present in the cytosol as well as in the cytoskeletal and membrane fractions. GFP-tagged full-length villidin exhibits a similar distribution as native villidin, including a distinct colocalization with Golgi structures. Interestingly, GFP fusions with the gelsolin/villin-like region are uniformly dispersed in the cytoplasm, whereas GFP fusions of the N-terminal WD repeats codistribute with F-actin and are associated with the Triton-insoluble cytoskeleton. Strains lacking villidin because of targeted deletion of its gene grow normally and can develop into fruiting bodies. However, cell motility is reduced during aggregation and phototaxis is impaired in the mutant strains. We conclude that villidin harbors a major F-actin binding site in the N-terminal domain and not in the villin-like region as expected; association of villidin with vesicular membranes suggests that the protein functions as a linker between membranes and the actin cytoskeleton.
Collapse
Affiliation(s)
- Annika Gloss
- Institut für Zellbiologie der Ludwig-Maximilians-Universität München, 80336 München, Germany
| | | | | | | | | | | | | |
Collapse
|
484
|
Abstract
First discovered in the green alga, Chlamydomonas, intraflagellar transport (IFT) is the bidirectional movement of protein particles along the length of eukaryotic cilia and flagella. Composed of approximately 16 different proteins, IFT particles are moved out to the distal tip of the organelle by kinesin-II and are brought back to the cell body by cytoplasmic dynein 1b. Mutant analysis of the IFT motor and particle proteins using diverse organisms has revealed a conserved and essential role for IFT in the assembly and maintenance of cilia and flagella. IFT is thought to mediate this assembly through the delivery of axonemal precursors out to the distal tip of the growing organelle. Consistent with this model, the IFT particle proteins are rich in protein-protein binding motifs, suggesting that the particles may act as scaffolds for the binding of multiple cargoes. With most of the IFT proteins now identified at the level of the gene, this review will briefly examine both the structure and function of the IFT machinery of Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Douglas G Cole
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, Idaho, 83844-3052, USA.
| |
Collapse
|
485
|
Simonds WF. G Protein-Regulated Signaling Dysfunction in Human Disease. J Investig Med 2003. [DOI: 10.1177/108155890305100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland
| |
Collapse
|
486
|
Hirt RP, Lal K, Pinxteren J, Warwicker J, Healy B, Coombs GH, Field MC, Embley TM. Biochemical and genetic evidence for a family of heterotrimeric G-proteins in Trichomonas vaginalis. Mol Biochem Parasitol 2003; 129:179-89. [PMID: 12850262 DOI: 10.1016/s0166-6851(03)00122-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have cloned a single copy gene from the human parasite Trichomonas vaginalis that encodes a putative protein of 402 amino acids with approximately 35% sequence identity to known alpha subunits of heterotrimeric G-proteins. It contains the characteristic GTP binding domains G-1 to G-5 with the key residues conserved. The new sequence has an unusual N-terminal extension of approximately 70 residues that cannot be aligned to reference G-proteins and which is characterised by proline-rich repeats. To investigate the expression and cellular localisation of the protein we produced specific antisera against a recombinant fusion protein. The antisera recognised a protein of an apparent molecular mass of 51 kDa in protein extracts from T. vaginalis and immunofluorescent microscopy established that the protein is localised to discrete endomembranes. Using a protocol designed to purify mammalian heterotrimeric G-proteins incorporating a GTPgammaS binding assay, we isolated two proteins from Trichomonas that are recognised by an heterologous GA/1 antisera raised to a peptide of the conserved G-1 domain of G-protein alpha subunits. These two proteins have an apparent molecular mass of 61 and 48 kDa, respectively, larger and smaller than the translation product of the cloned gene. Consistent with these results, the GA/1 antisera did not cross-react with the fusion protein produced from the gene we have cloned. These data suggest T. vaginalis possesses more than one heterotrimeric G-protein alpha subunit. Based on the sequence features of the cloned gene and the biochemical properties of the purified proteins, we suggest that these alpha subunits are likely to be part of classic heterotrimeric G-protein complexes.
Collapse
Affiliation(s)
- R P Hirt
- Department of Zoology, The Natural History Museum, Cromwell Rd, London SW7 5BD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
487
|
Chinault SL, Blumer KJ. The C-terminal tail preceding the CAAX box of a yeast G protein gamma subunit is dispensable for receptor-mediated G protein activation in vivo. J Biol Chem 2003; 278:20638-44. [PMID: 12665529 DOI: 10.1074/jbc.m212701200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma subunits of heterotrimeric G proteins are required for receptor-G protein coupling. The C-terminal domains of Ggamma subunits can contact receptors and influence the efficiency of receptor-G protein coupling in vitro. However, it is unknown whether receptor interaction with the C terminus of Ggamma is required for signaling in vivo. To address this question, we cloned Ggamma homologs with diverged C-terminal sequences from five species of budding yeast. Each Ggamma homolog functionally replaced the Ggamma subunit of the yeast Saccharomyces cerevisiae (STE18 gene product). Mutagenesis of S. cerevisiae Ste18 likewise indicated that specific C-terminal sequence motifs are not required for signaling. Strikingly, an internal in-frame deletion removing sequences preceding the C-terminal CAAX box of Ste18 did not impair signaling by either of its cognate G protein-coupled pheromone receptors. Therefore, receptor interaction with the C-terminal domain of yeast Ggamma is not required for receptor-mediated G protein activation in vivo. Because the mechanism of G protein activation by receptors is conserved from yeast to humans, mammalian receptors may not require interaction with the tail of Ggamma for G protein activation in vivo. However, receptor-Ggamma interaction may modulate the efficiency of receptor-G protein coupling or promote activation of Gbetagamma effectors that co-cluster with receptors.
Collapse
Affiliation(s)
- Sharon L Chinault
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
488
|
Agler HL, Evans J, Colecraft HM, Yue DT. Custom distinctions in the interaction of G-protein beta subunits with N-type (CaV2.2) versus P/Q-type (CaV2.1) calcium channels. J Gen Physiol 2003; 121:495-510. [PMID: 12771191 PMCID: PMC2217353 DOI: 10.1085/jgp.200208770] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Inhibition of N- (Cav2.2) and P/Q-type (Cav2.1) calcium channels by G-proteins contribute importantly to presynaptic inhibition as well as to the effects of opiates and cannabinoids. Accordingly, elucidating the molecular mechanisms underlying G-protein inhibition of voltage-gated calcium channels has been a major research focus. So far, inhibition is thought to result from the interaction of multiple proposed sites with the Gbetagamma complex (Gbetagamma). Far less is known about the important interaction sites on Gbetagamma itself. Here, we developed a novel electrophysiological paradigm, "compound-state willing-reluctant analysis," to describe Gbetagamma interaction with N- and P/Q-type channels, and to provide a sensitive and efficient screen for changes in modulatory behavior over a broad range of potentials. The analysis confirmed that the apparent (un)binding kinetics of Gbetagamma with N-type are twofold slower than with P/Q-type at the voltage extremes, and emphasized that the kinetic discrepancy increases up to ten-fold in the mid-voltage range. To further investigate apparent differences in modulatory behavior, we screened both channels for the effects of single point alanine mutations within four regions of Gbeta1, at residues known to interact with Galpha. These residues might thereby be expected to interact with channel effectors. Of eight mutations studied, six affected G-protein modulation of both N- and P/Q-type channels to varying degrees, and one had no appreciable effect on either channel. The remaining mutation was remarkable for selective attenuation of effects on P/Q-, but not N-type channels. Surprisingly, this mutation decreased the (un)binding rates without affecting its overall affinity. The latter mutation suggests that the binding surface on Gbetagamma for N- and P/Q-type channels are different. Also, the manner in which this last mutation affected P/Q-type channels suggests that some residues may be important for "steering" or guiding the protein into the binding pocket, whereas others are important for simply binding to the channel.
Collapse
Affiliation(s)
- Heather L Agler
- Ca2+ Signals Laboratory, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
489
|
Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, Pavletich NP. Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 2003; 11:1445-56. [PMID: 12820959 DOI: 10.1016/s1097-2765(03)00234-x] [Citation(s) in RCA: 518] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The SCF ubiquitin ligases catalyze protein ubiquitination in diverse cellular processes. SCFs bind substrates through the interchangeable F box protein subunit, with the >70 human F box proteins allowing the recognition of a wide range of substrates. The F box protein beta-TrCP1 recognizes the doubly phosphorylated DpSGphiXpS destruction motif, present in beta-catenin and IkappaB, and directs the SCF(beta-TrCP1) to ubiquitinate these proteins at specific lysines. The 3.0 A structure of a beta-TrCP1-Skp1-beta-catenin complex reveals the basis of substrate recognition by the beta-TrCP1 WD40 domain. The structure, together with the previous SCF(Skp2) structure, leads to the model of SCF catalyzing ubiquitination by increasing the effective concentration of the substrate lysine at the E2 active site. The model's prediction that the lysine-destruction motif spacing is a determinant of ubiquitination efficiency is confirmed by measuring ubiquitination rates of mutant beta-catenin peptides, solidifying the model and also providing a mechanistic basis for lysine selection.
Collapse
Affiliation(s)
- Geng Wu
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
490
|
Goubaeva F, Ghosh M, Malik S, Yang J, Hinkle PM, Griendling KK, Neubig RR, Smrcka AV. Stimulation of cellular signaling and G protein subunit dissociation by G protein betagamma subunit-binding peptides. J Biol Chem 2003; 278:19634-41. [PMID: 12649269 DOI: 10.1074/jbc.m300052200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously developed peptides that bind to G protein betagamma subunits and selectively block interactions between betagamma subunits and a subset of effectors in vitro (Scott, J. K., Huang, S. F., Gangadhar, B. P., Samoriski, G. M., Clapp, P., Gross, R. A., Taussig, R., and Smrcka, A. V. (2001) EMBO J. 20, 767-776). Here, we created cell-permeating versions of some of these peptides by N-terminal modification with either myristate or the cell permeation sequence from human immunodeficiency virus TAT protein. The myristoylated betagamma-binding peptide (mSIRK) applied to primary rat arterial smooth muscle cells caused rapid activation of extracellular signal-regulated kinase 1/2 in the absence of an agonist. This activation did not occur if the peptide lacked a myristate at the N terminus, if the peptide had a single point mutation to eliminate betagamma subunit binding, or if the cells stably expressed the C terminus of betaARK1. A human immunodeficiency virus TAT-modified peptide (TAT-SIRK) and a myristoylated version of a second peptide (mSCAR) that binds to the same site on betagamma subunits as mSIRK, also caused extracellular signal-regulated kinase activation. mSIRK also stimulated Jun N-terminal kinase phosphorylation, p38 mitogen-activated protein kinase phosphorylation, and phospholipase C activity and caused Ca2+ release from internal stores. When tested with purified G protein subunits in vitro, SIRK promoted alpha subunit dissociation from betagamma subunits without stimulating nucleotide exchange. These data suggest a novel mechanism by which selective betagamma-binding peptides can release G protein betagamma subunits from heterotrimers to stimulate G protein pathways in cells.
Collapse
Affiliation(s)
- Farida Goubaeva
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
491
|
Lodowski DT, Pitcher JA, Capel WD, Lefkowitz RJ, Tesmer JJG. Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gbetagamma. Science 2003; 300:1256-62. [PMID: 12764189 DOI: 10.1126/science.1082348] [Citation(s) in RCA: 312] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The phosphorylation of heptahelical receptors by heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor kinases (GRKs) is a universal regulatory mechanism that leads to desensitization of G protein signaling and to the activation of alternative signaling pathways. We determined the crystallographic structure of bovine GRK2 in complex with G protein beta1gamma2 subunits. Our results show how the three domains of GRK2-the RGS (regulator of G protein signaling) homology, protein kinase, and pleckstrin homology domains-integrate their respective activities and recruit the enzyme to the cell membrane in an orientation that not only facilitates receptor phosphorylation, but also allows for the simultaneous inhibition of signaling by Galpha and Gbetagamma subunits.
Collapse
Affiliation(s)
- David T Lodowski
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
492
|
Takida S, Wedegaertner PB. Heterotrimer formation, together with isoprenylation, is required for plasma membrane targeting of Gbetagamma. J Biol Chem 2003; 278:17284-90. [PMID: 12609996 DOI: 10.1074/jbc.m213239200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nascent beta and gamma subunits of heterotrimeric G proteins need to be targeted to the cytoplasmic face of the plasma membrane (PM) in order to transmit signals. We show that beta(1)gamma(2) is poorly targeted to the PM and predominantly localized to endoplasmic reticulum (ER) membranes when expressed in HEK293 cells, but co-expression of a G protein alpha subunit allows strong PM localization of the beta(1)gamma(2). Furthermore, C-terminal isoprenylation of the gamma subunit is necessary but not sufficient for PM localization of beta(1)gamma(2). Isoprenylation of gamma(2) and localization of beta(1)gamma(2) to the ER occurs independently of alpha expression. Efficient PM localization of beta(1)gamma(2) in the absence of co-expressed alpha is observed when a site for palmitoylation, a putative second membrane targeting signal, is introduced into gamma(2). When a mutant of alpha(s) is targeted to mitochondria, beta(1)gamma(2) follows, consistent with an important role for alpha in promoting subcellular localization of betagamma. Furthermore, we directly demonstrate the requirement for alpha by showing that disruption of heterotrimer formation by the introduction of alpha binding mutations into beta(1) impedes PM targeting of beta(1)gamma(2). The results indicate that two membrane targeting signals, lipid modification and alpha binding, make concerted contributions to PM localization of betagamma.
Collapse
Affiliation(s)
- Satoshi Takida
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
493
|
Zhou JY, Toth PT, Miller RJ. Direct interactions between the heterotrimeric G protein subunit G beta 5 and the G protein gamma subunit-like domain-containing regulator of G protein signaling 11: gain of function of cyan fluorescent protein-tagged G gamma 3. J Pharmacol Exp Ther 2003; 305:460-6. [PMID: 12606627 DOI: 10.1124/jpet.102.048637] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used fluorescence resonance energy transfer imaging of enhanced cyan fluorescent protein (CFP)-tagged and enhanced yellow fluorescent protein (YFP)-tagged protein pairs to examine the hypothesis that G protein gamma subunit-like (GGL) domain-containing regulators of G protein signaling (RGS) can directly bind to the Gbeta5 subunit of heterotrimeric G proteins in vivo. We observed that Gbeta5 could interact with Ggamma2 and Ggamma13, after their expression in human embryonic kidney 293 cells. Interestingly, although untagged Ggamma3 did not interact with Gbeta5, CFP-tagged Ggamma3 strongly interacted with YFP-tagged Gbeta5 in FRET studies. Moreover, CFP-Ggamma3 supported Ca(2+) channel inhibition when paired with Gbeta5 or YFP-Gbeta5, indicating a "gain of function" for CFP-Ggamma3. Gbeta5 could also interact with RGS11 and its N-terminal, but not its C-terminal domain. On the other hand, RGS11 did not interact with Gbeta1. These studies demonstrate that the GGL domain-containing N terminus of RGS 11 can directly interact with Gbeta5 in vivo and supports the hypothesis that this interaction may contribute to the specificity of Gbeta5 interactions with cellular effector molecules.
Collapse
Affiliation(s)
- Janice Y Zhou
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | |
Collapse
|
494
|
Rosskopf D, Koch K, Habich C, Geerdes J, Ludwig A, Wilhelms S, Jakobs KH, Siffert W. Interaction of Gbeta3s, a splice variant of the G-protein Gbeta3, with Ggamma- and Galpha-proteins. Cell Signal 2003; 15:479-88. [PMID: 12639711 DOI: 10.1016/s0898-6568(02)00140-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The T-allele of a polymorphism (C825T) in the gene of the G-protein beta3-subunit is associated with a complex phenotype (hypertension, obesity, altered drug responses) and the occurrence of a splice variant termed Gbeta3s which lacks one of the seven WD-domains that compose Gbeta-proteins. Here, we analysed Gbetagamma dimer formation and Galpha activation by Gbeta3s, key functional characteristics of Gbeta-proteins. Cleavage protection assays frequently used to analyse Gbeta1gamma and Gbeta2gamma dimer formation failed for Gbeta3 and Gbeta3s, while in coprecipitation assays, dimerization of Gbeta3 and Gbeta3s with Ggamma5, Ggamma8(c) and Ggamma12 could be demonstrated. Upon expression of Gbeta3s in COS-7 and Sf9 insect cells, binding of GTPgammaS to Galpha-proteins induced by mastoparan-7 and the M(2) muscarinic acetylcholine receptor was facilitated in comparison with cells overexpressing wildtype Gbeta3, as indicated by twofold reduced agonist EC(50) values. Together, these results indicate that Gbeta3s is a biologically active Gbeta-protein that may mediate the enhanced signal transduction observed in cells with the 825T-allele.
Collapse
Affiliation(s)
- Dieter Rosskopf
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, D-45122 Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
495
|
Häder T, Müller S, Aguilera M, Eulenberg KG, Steuernagel A, Ciossek T, Kühnlein RP, Lemaire L, Fritsch R, Dohrmann C, Vetter IR, Jäckle H, Doane WW, Brönner G. Control of triglyceride storage by a WD40/TPR-domain protein. EMBO Rep 2003; 4:511-6. [PMID: 12717455 PMCID: PMC1319192 DOI: 10.1038/sj.embor.embor837] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Revised: 03/17/2003] [Accepted: 03/31/2003] [Indexed: 11/10/2022] Open
Abstract
Obesity is a metabolic disorder related to improper control of energy uptake and expenditure, which results in excessive accumulation of body fat. Initial insights into the genetic pathways that regulate energy metabolism have been provided by a discrete number of obesity-related genes that have been identified in mammals. Here, we report the identification of the adipose (adp) gene, the mutation of which causes obesity in Drosophila. Loss of adp activity promotes increased fat storage, which extends the lifespan of mutant flies under starvation conditions. By contrast, adp gain-of-function causes a specific reduction of the fat body in Drosophila. adp encodes an evolutionarily conserved WD40/tetratricopeptide-repeat-domain protein that is likely to represent an intermediate in a novel signalling pathway.
Collapse
Affiliation(s)
- Thomas Häder
- DeveloGen AG, Rudolf-Wissellstrasse 28, 37079 Göttingen, Germany
| | - Sandra Müller
- DeveloGen AG, Rudolf-Wissellstrasse 28, 37079 Göttingen, Germany
| | - Miguel Aguilera
- DeveloGen AG, Rudolf-Wissellstrasse 28, 37079 Göttingen, Germany
| | | | - Arnd Steuernagel
- DeveloGen AG, Rudolf-Wissellstrasse 28, 37079 Göttingen, Germany
| | - Thomas Ciossek
- DeveloGen AG, Rudolf-Wissellstrasse 28, 37079 Göttingen, Germany
| | - Ronald P. Kühnlein
- Max-Planck-Institut für Biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, Am Fassberg, 37077 Göttingen, Germany
| | - Lydia Lemaire
- DeveloGen AG, Rudolf-Wissellstrasse 28, 37079 Göttingen, Germany
| | - Rüdiger Fritsch
- DeveloGen AG, Rudolf-Wissellstrasse 28, 37079 Göttingen, Germany
| | - Cord Dohrmann
- DeveloGen AG, Rudolf-Wissellstrasse 28, 37079 Göttingen, Germany
| | - Ingrid R. Vetter
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahnstrasse 11, 44227 Dortmund, Germany
| | - Herbert Jäckle
- Max-Planck-Institut für Biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, Am Fassberg, 37077 Göttingen, Germany
| | - Winifred W. Doane
- Department of Biology, PO Box 871501, Arizona State University, Tempe, Arizona 85287-1501, USA
| | - Günter Brönner
- DeveloGen AG, Rudolf-Wissellstrasse 28, 37079 Göttingen, Germany
- Tel: + 49 551 50558556; Fax: +49 551 50558588;
| |
Collapse
|
496
|
Hamilton MH, Cook LA, McRackan TR, Schey KL, Hildebrandt JD. Gamma 2 subunit of G protein heterotrimer is an N-end rule ubiquitylation substrate. Proc Natl Acad Sci U S A 2003; 100:5081-6. [PMID: 12700354 PMCID: PMC154301 DOI: 10.1073/pnas.0831228100] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins transduce signals from activated transmembrane G protein-coupled receptors to appropriate downstream effectors within cells. Signaling specificity is achieved in part by the specific alpha, beta, and gamma subunits that compose a given heterotrimer. Additional structural and functional diversity in these subunits is generated at the level of posttranslational modification, offering alternate regulatory mechanisms for G protein signaling. Presented here is the identification of a variant of the gamma(2) subunit of G protein heterotrimer purified from bovine brain and the demonstration that this RDTASIA gamma(2) variant, containing unique amino acid sequence at its N terminus, is a substrate for ubiquitylation and degradation via the N-end rule pathway. Although N-end-dependent degradation has been shown to have important functions in peptide import, chromosome segregation, angiogenesis, and cardiovascular development, the identification of cellular substrates in mammalian systems has remained elusive. The isolation of RDTASIA gamma(2) from a native tissue represents identification of a mammalian N-end rule substrate from a physiological source, and elucidates a mechanism for the targeting of G protein gamma subunits for ubiquitylation and degradation.
Collapse
Affiliation(s)
- Maria H Hamilton
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
497
|
Ruiz-Velasco V, Ikeda SR. A splice variant of the G protein beta 3-subunit implicated in disease states does not modulate ion channels. Physiol Genomics 2003; 13:85-95. [PMID: 12595577 DOI: 10.1152/physiolgenomics.00057.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A single-nucleotide polymorphism (C825T) in the GNB3 gene produces an alternative splice variant of the heterotrimeric G protein beta3 subunit (Gbeta3). Translation of the alternatively spliced mRNA results in a protein product, Gbeta3-s, in which 41 amino acids are deleted from Gbeta3. Interestingly, previous studies indicate that the C825T allele occurs with a high frequency in patients with certain vascular disorders. However, little information is available regarding the functional role Gbeta3-s might play in ion channel modulation. To examine this aspect, Gbeta3 or Gbeta3-s, along with either Ggamma2 or Ggamma5, were expressed in rat sympathetic neurons by nuclear microinjection of vector encoding the desired protein. In contrast to Gbeta3, expression of Gbeta3-s did not modulate N-type Ca(2+) or G protein-gated inwardly rectifying K(+) channels. In addition, Gbeta3-s did not appear to complex with a pertussis toxin-insensitive mutant of Galpha(i2) or couple to natively expressed alpha(2)-adrenergic receptors. Finally, fluorescence resonance energy transfer (FRET) measurements indicated that enhanced yellow fluorescent protein (EYFP)-labeled Gbeta3-s does not form a Gbetagamma heterodimer when coexpressed with enhanced cyan fluorescent protein (ECFP)-labeled Ggamma2. Therefore, when expressed in sympathetic neurons, Gbeta3-s appears to lack biological activity--hence pathological conditions in patients carrying the homozygous C825T allele may result from a functional knockout of Gbeta3.
Collapse
Affiliation(s)
- Victor Ruiz-Velasco
- Laboratory of Molecular Physiology, Guthrie Research Institute, Sayre, Pennsylvania 18840, USA.
| | | |
Collapse
|
498
|
Rojkova AM, Woodard GE, Huang TC, Combs CA, Zhang JH, Simonds WF. Ggamma subunit-selective G protein beta 5 mutant defines regulators of G protein signaling protein binding requirement for nuclear localization. J Biol Chem 2003; 278:12507-12. [PMID: 12551930 DOI: 10.1074/jbc.m207302200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signal transducing function of Gbeta(5) in brain is unknown. When studied in vitro Gbeta(5) is the only heterotrimeric Gbeta subunit known to interact with both Ggamma subunits and regulators of G protein signaling (RGS) proteins. When tested with Ggamma, Gbeta(5) interacts with other classical components of heterotrimeric G protein signaling pathways such as Galpha and phospholipase C-beta. We recently demonstrated nuclear expression of Gbeta(5) in neurons and brain (Zhang, J. H., Barr, V. A., Mo, Y., Rojkova, A. M., Liu, S., and Simonds, W. F. (2001) J. Biol. Chem. 276, 10284-10289). To gain further insight into the mechanism of Gbeta(5) nuclear localization, we generated a Gbeta(5) mutant deficient in its ability to interact with RGS7 while retaining its ability to bind Ggamma, and we compared its properties to the wild-type Gbeta(5). In HEK-293 cells co-transfection of RGS7 but not Ggamma(2) supported expression in the nuclear fraction of transfected wild-type Gbeta(5). In contrast the Ggamma-preferring Gbeta(5) mutant was not expressed in the HEK-293 cell nuclear fraction with either co-transfectant. The Ggamma-selective Gbeta(5) mutant was also excluded from the cell nucleus of transfected PC12 cells analyzed by laser confocal microscopy. These results define a requirement for RGS protein binding for Gbeta(5) nuclear expression.
Collapse
Affiliation(s)
- Alexandra M Rojkova
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
499
|
Seo HS, Jeong JY, Nahm MY, Kim SW, Lee SY, Bahk JD. The effect of pH and various cations on the GTP hydrolysis of rice heterotrimeric G-protein alpha subunit expressed in Escherichia coli. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:196-200. [PMID: 12689519 DOI: 10.5483/bmbrep.2003.36.2.196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, we reported the biochemical properties of RGA1 that is expressed in Escherichia coli (Seo et al., 1997). The activities of RGA1 that hydrolyzes and binds guanine nucleotide were dependent on the MgCl(2) concentration. The steady state rate constant (k(cat) ) for GTP hydrolysis of RGA1 at 2 mM MgCl(2) was 0.0075 +/- 0.0001 min(-1). Here, we examined the effects of pH and cations on the GTPase activity. The optimum pH at 2 mM MgCl(2) was approximately 6.0; whereas, the pH at 2 mM NH(4)Cl was approximately 4.0. The result from the cation dependence on the GTPase (guanosine 5'-triphosphatase) activity of RGA1 under the same condition showed that the GTP hydrolysis rate (k(cat)= 0.0353 min(-1)) under the condition of 2 mM NH(4)Cl at pH 4.0 was the highest. It corresponded to about 3.24-fold of the k(cat) value of 0.0109 min(-1) in the presence of 2 mM MgCl(2) at pH 6.0.
Collapse
Affiliation(s)
- Hak Soo Seo
- Division of Applied Life Sciences, Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | |
Collapse
|
500
|
Singh BN, Suresh A, UmaPrasad G, Subramanian S, Sultana M, Goel S, Kumar S, Singh L. A highly conserved human gene encoding a novel member of WD-repeat family of proteins (WDR13). Genomics 2003; 81:315-28. [PMID: 12659815 DOI: 10.1016/s0888-7543(02)00036-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have identified and characterized a novel member of the WD-repeat motif gene family, WDR13, which contains 9 exons and 8 introns. The gene has been mapped to the genomic locus Xp11.23 by fluorescent in situ hybridization and in silico mapping. Sequence analysis has revealed a continuous open reading frame (ORF) encoding for 485 amino acids with six WD motifs. The expression of this gene has been detected in all the tissues analyzed with significantly varied expression levels among the tissues studied. Analysis of EST clones from various tissues, showing significant homology to WDR13, has identified two spliced variants. The transcription start point has been mapped. Promoter analysis has identified high activity in the 5' UTR, which interestingly showed a testis-specific activity in the transgenic animals studied. The subcellular localization of the WDR13 protein in the nucleus suggests that it may also have a regulatory role in nuclear function along with protein-protein interaction like other members of the WD family of proteins.
Collapse
Affiliation(s)
- Bhupendra N Singh
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | | | | | | | | | |
Collapse
|