451
|
Hämälistö S, Jäättelä M. Lysosomes in cancer-living on the edge (of the cell). Curr Opin Cell Biol 2016; 39:69-76. [PMID: 26921697 DOI: 10.1016/j.ceb.2016.02.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/25/2022]
Abstract
The lysosomes have definitely polished their status inside the cell. Being discovered as the last resort of discarded cellular biomass, the steady rising of this versatile signaling organelle is currently ongoing. This review discusses the recent data on the unconventional functions of lysosomes, focusing mainly on the less studied lysosomes residing in the cellular periphery. We emphasize our discussion on the emerging paths the lysosomes have taken in promoting cancer progression to metastatic disease. Finally, we address how the altered cancerous lysosomes in metastatic cancers may be specifically targeted and what are the pending questions awaiting for elucidation.
Collapse
Affiliation(s)
- Saara Hämälistö
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark.
| |
Collapse
|
452
|
Hegde S, Kesterson RA, Srivastava OP. CRYβA3/A1-Crystallin Knockout Develops Nuclear Cataract and Causes Impaired Lysosomal Cargo Clearance and Calpain Activation. PLoS One 2016; 11:e0149027. [PMID: 26863613 PMCID: PMC4749210 DOI: 10.1371/journal.pone.0149027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/26/2016] [Indexed: 11/18/2022] Open
Abstract
βA3/A1-crystallin is an abundant structural protein of the lens that is very critical for lens function. Many different genetic mutations have been shown to associate with different types of cataracts in humans and in animal models. βA3/A1-crystallin has four Greek key-motifs that organize into two crystallin domains. It shown to bind calcium with moderate affinity and has putative calcium-binding site. Other than in the lens, βA3/A1 is also expressed in retinal astrocytes, retinal pigment epithelial (RPE) cells, and retinal ganglion cells. The function of βA3/A1-crystallin in the retinal cell types is well studied; however, a clear understanding of the function of this protein in the lens has not yet been established. In the current study, we generated the βA3/A1-crystallin knockout (KO) mouse and explored the function of βA3/A1-crystallin in lens development. Our results showed that βA3-KO mice develop congenital nuclear cataract and exhibit persistent fetal vasculature condition. At the cellular level KO lenses show defective lysosomal clearance and accumulation of nuclei, mitochondria, and autophagic cargo in the outer cortical region of the lens. In addition, the calcium level and the expression and activity of calpain-3 were increased in KO lenses. Taken together, these results suggest the lack of βA3-crystallin function in lenses, alters calcium homeostasis which in turn causes lysosomal defects and calpain activation. These defects are responsible for the development of nuclear cataract in KO lenses.
Collapse
Affiliation(s)
- Shylaja Hegde
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Robert A. Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Om P. Srivastava
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
453
|
Jung J, Uesugi N, Jeong NY, Park BS, Konishi H, Kiyama H. Increase of transcription factor EB (TFEB) and lysosomes in rat DRG neurons and their transportation to the central nerve terminal in dorsal horn after nerve injury. Neuroscience 2016; 313:10-22. [PMID: 26601776 DOI: 10.1016/j.neuroscience.2015.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022]
Abstract
In the spinal dorsal horn (DH), nerve injury activates microglia and induces neuropathic pain. Several studies clarified an involvement of adenosine triphosphate (ATP) in the microglial activation. However, the origin of ATP together with the release mechanism is unclear. Recent in vitro study revealed that an ATP marker, quinacrine, in lysosomes was released from neurite terminal of dorsal root ganglion (DRG) neurons to extracellular space via lysosomal exocytosis. Here, we demonstrate a possibility that the lysosomal ingredient including ATP released from DRG neurons by lysosomal-exocytosis is an additional source of the glial activation in DH after nerve injury. After rat L5 spinal nerve ligation (SNL), mRNA for transcription factor EB (TFEB), a transcription factor controlling lysosomal activation and exocytosis, was induced in the DRG. Simultaneously both lysosomal protein, LAMP1- and vesicular nuclear transporter (VNUT)-positive vesicles were increased in L5 DRG neurons and ipsilateral DH. The quinacrine staining in DH was increased and co-localized with LAMP1 immunoreactivity after nerve injury. In DH, LAMP1-positive vesicles were also co-localized with a peripheral nerve marker, Isolectin B4 (IB4) lectin. Injection of the adenovirus encoding mCherry-LAMP1 into DRG showed that mCherry-positive lysosomes are transported to the central nerve terminal in DH. These findings suggest that activation of lysosome synthesis including ATP packaging in DRG, the central transportation of the lysosome, and subsequent its exocytosis from the central nerve terminal of DRG neurons in response to nerve injury could be a partial mechanism for activation of microglia in DH. This lysosome-mediated microglia activation mechanism may provide another clue to control nociception and pain.
Collapse
Affiliation(s)
- J Jung
- Department of Anatomy and Neurobiology, School of Medicine, Kyung Hee University, Heogi-Dong 1, Dongdaemun-Gu, Seoul 130-701, Republic of Korea; Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (JST), Saitama, Japan
| | - N Uesugi
- Department of Functional Anatomy & Neuroscience, Nagoya University, Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya 466-8550, Japan; Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (JST), Saitama, Japan
| | - N Y Jeong
- Department of Anatomy and Cell Biology and Mitochondria, Hub Regulation Center, Dong-A University College of Medicine, 3-1 Dongdaesin-dong, Seo-gu, Busan 602-714, Republic of Korea
| | - B S Park
- Department of Anatomy and Neurobiology, School of Medicine, Kyung Hee University, Heogi-Dong 1, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | - H Konishi
- Department of Functional Anatomy & Neuroscience, Nagoya University, Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya 466-8550, Japan; Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (JST), Saitama, Japan
| | - H Kiyama
- Department of Functional Anatomy & Neuroscience, Nagoya University, Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya 466-8550, Japan; Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (JST), Saitama, Japan.
| |
Collapse
|
454
|
Martina JA, Diab HI, Brady OA, Puertollano R. TFEB and TFE3 are novel components of the integrated stress response. EMBO J 2016; 35:479-95. [PMID: 26813791 DOI: 10.15252/embj.201593428] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/10/2015] [Indexed: 12/29/2022] Open
Abstract
To reestablish homeostasis and mitigate stress, cells must activate a series of adaptive intracellular signaling pathways. The participation of the transcription factors TFEB and TFE3 in cellular adaptation to starvation is well established. Here, we show that TFEB and TFE3 also play an important role in the cellular response to ER stress. Treatment with ER stressors causes translocation of TFEB and TFE3 to the nucleus in a process that is dependent on PERK and calcineurin but not on mTORC1. Activated TFEB and TFE3 enhance cellular response to stress by inducing direct transcriptional upregulation of ATF4 and other UPR genes. Under conditions of prolonged ER stress, TFEB and TFE3 contribute to cell death, thus revealing an unexpected role for these proteins in controlling cell fate. This work evidences a broader role of TFEB and TFE3 in the cellular response to stress than previously anticipated and reveals an integrated cooperation between different cellular stress pathways.
Collapse
Affiliation(s)
- José A Martina
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heba I Diab
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Owen A Brady
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
455
|
Yakovlev A, Lyzhin A, Aleksandrova O, Khaspekov L, Gulyaeva N. Trophic factors deprivation induces long-term protection of neurons against excitotoxic damage. ACTA ACUST UNITED AC 2016; 62:656-663. [DOI: 10.18097/pbmc20166206656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One of the strategies to induce tolerance of neurons to toxic injury is preconditioning. Preconditioning is caused by a weak damage of cells, which become more resistant to subsequent, more severe damage. We found that preconditioning by deprivation of trophic factors, or deprivation of trophic factor and glucose effectively protects neurons against subsequent toxic effects of glutamate. Deprivation of trophic factors plays a decisive role in the development of resistance, regardless of whether it has been combined with glucose deprivation or not. Neuronal protection is achieved when the deprivation lasts from 30 min to two hours and is kept for a period of from one to five days. Preconditioning is accompanied neuronal secretion of cathepsin B occurs. We suggest that this phenomenon is associated with a more general process of exocytosis of lysosomes triggered by deprivation of trophic factors.
Collapse
Affiliation(s)
- A.A. Yakovlev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia; Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - A.A. Lyzhin
- Brain Research Center at Research Center of Neurology, Moscow, Russia
| | - O.P. Aleksandrova
- Brain Research Center at Research Center of Neurology, Moscow, Russia
| | - L.G. Khaspekov
- Brain Research Center at Research Center of Neurology, Moscow, Russia
| | - N.V. Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia; Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| |
Collapse
|
456
|
Lysosomes as mediators of drug resistance in cancer. Drug Resist Updat 2016; 24:23-33. [DOI: 10.1016/j.drup.2015.11.004] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/04/2015] [Accepted: 11/19/2015] [Indexed: 11/23/2022]
|
457
|
Hashimoto Y, Kondo C, Katunuma N. An Active 32-kDa Cathepsin L Is Secreted Directly from HT 1080 Fibrosarcoma Cells and Not via Lysosomal Exocytosis. PLoS One 2015; 10:e0145067. [PMID: 26674348 PMCID: PMC4684495 DOI: 10.1371/journal.pone.0145067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/29/2015] [Indexed: 01/01/2023] Open
Abstract
Cathepsin L [EC 3.4.22.15] is secreted via lysosomal exocytosis by several types of cancer cells, including prostate and breast cancer cells. We previously reported that human cultured fibrosarcoma (HT 1080) cells secrete cathepsin L into the medium; this secreted cathepsin is 10-times more active than intracellular cathepsin. This increased activity was attributed to the presence of a 32-kDa cathepsin L in the medium. The aim of this study was to examine how this active 32-kDa cathepsin L is secreted into the medium. To this end, we compared the secreted active 32-kDa cathepsin L with lysosomal cathepsin L by using a novel gelatin zymography technique that employs leupeptin. We also examined the glycosylation and phosphorylation status of the proteins by using the enzymes endoglycosidase H [EC 3.2.1.96] and alkaline phosphatase [EC 3.1.3.1]. Strong active bands corresponding to the 32-kDa and 34-kDa cathepsin L forms were detected in the medium and lysosomes, respectively. The cell extract exhibited strong active bands for both forms. Moreover, both forms were adsorbed onto a concanavalin A-agarose column. The core protein domain of both forms had the same molecular mass of 30 kDa. The 32-kDa cathepsin L was phosphorylated, while the 34-kDa lysosomal form was dephosphorylated, perhaps because of the lysosomal marker enzyme, acid phosphatase. These results suggest that the active 32-kDa form does not enter the lysosomes. In conclusion, our results indicate that the active 32-kDa cathepsin L is secreted directly from the HT 1080 cells and not via lysosomal exocytosis.
Collapse
Affiliation(s)
- Yoko Hashimoto
- Department of Biochemistry, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
- * E-mail:
| | - Chihiro Kondo
- Department of Biochemistry, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Nobuhiko Katunuma
- Institute for Health Sciences, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|
458
|
Popp L, Segatori L. Differential autophagic responses to nano-sized materials. Curr Opin Biotechnol 2015; 36:129-36. [DOI: 10.1016/j.copbio.2015.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/07/2015] [Accepted: 08/14/2015] [Indexed: 12/17/2022]
|
459
|
Höglinger D, Haberkant P, Aguilera-Romero A, Riezman H, Porter FD, Platt FM, Galione A, Schultz C. Intracellular sphingosine releases calcium from lysosomes. eLife 2015; 4:e10616. [PMID: 26613410 PMCID: PMC4744193 DOI: 10.7554/elife.10616] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/27/2015] [Indexed: 12/15/2022] Open
Abstract
To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC.
Collapse
Affiliation(s)
- Doris Höglinger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Per Haberkant
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Howard Riezman
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Forbes D Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Carsten Schultz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
460
|
Fedele AO. Sanfilippo syndrome: causes, consequences, and treatments. APPLICATION OF CLINICAL GENETICS 2015; 8:269-81. [PMID: 26648750 PMCID: PMC4664539 DOI: 10.2147/tacg.s57672] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sanfilippo syndrome, or mucopolysaccharidosis (MPS) type III, refers to one of five autosomal recessive, neurodegenerative lysosomal storage disorders (MPS IIIA to MPS IIIE) whose symptoms are caused by the deficiency of enzymes involved exclusively in heparan sulfate degradation. The primary characteristic of MPS III is the degeneration of the central nervous system, resulting in mental retardation and hyperactivity, typically commencing during childhood. The significance of the order of events leading from heparan sulfate accumulation through to downstream changes in the levels of biomolecules within the cell and ultimately the (predominantly neuropathological) clinical symptoms is not well understood. The genes whose deficiencies cause the MPS III subtypes have been identified, and their gene products, as well as a selection of disease-causing mutations, have been characterized to varying degrees with respect to both frequency and direct biochemical consequences. A number of genetic and biochemical diagnostic methods have been developed and adopted by diagnostic laboratories. However, there is no effective therapy available for any form of MPS III, with treatment currently limited to clinical management of neurological symptoms. The availability of animal models for all forms of MPS III, whether spontaneous or generated via gene targeting, has contributed to improved understanding of the MPS III subtypes, and has provided and will deliver invaluable tools to appraise emerging therapies. Indeed, clinical trials to evaluate intrathecally-delivered enzyme replacement therapy in MPS IIIA patients, and gene therapy for MPS IIIA and MPS IIIB patients are planned or underway.
Collapse
Affiliation(s)
- Anthony O Fedele
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
461
|
Abstract
Lysosomes are acidic compartments filled with more than 60 different types of hydrolases. They mediate the degradation of extracellular particles from endocytosis and of intracellular components from autophagy. The digested products are transported out of the lysosome via specific catabolite exporters or via vesicular membrane trafficking. Lysosomes also contain more than 50 membrane proteins and are equipped with the machinery to sense nutrient availability, which determines the distribution, number, size, and activity of lysosomes to control the specificity of cargo flux and timing (the initiation and termination) of degradation. Defects in degradation, export, or trafficking result in lysosomal dysfunction and lysosomal storage diseases (LSDs). Lysosomal channels and transporters mediate ion flux across perimeter membranes to regulate lysosomal ion homeostasis, membrane potential, catabolite export, membrane trafficking, and nutrient sensing. Dysregulation of lysosomal channels underlies the pathogenesis of many LSDs and possibly that of metabolic and common neurodegenerative diseases.
Collapse
Affiliation(s)
- Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109;
| | | |
Collapse
|
462
|
Yakovlev AA, Gulyaeva NV. Possible role of proteases in preconditioning of brain cells to pathological conditions. BIOCHEMISTRY (MOSCOW) 2015; 80:163-71. [PMID: 25756531 DOI: 10.1134/s0006297915020030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Preconditioning (PC) is one of the most effective strategies to reduce the severity of cell damage, in particular of nervous tissue cells. Although PC mechanisms are studied insufficiently, it is clear that proteases are involved in them, but their role has yet been not studied in detail. In this work, some mechanisms of a potential recruiting of proteases in PC are considered. Our attention is mainly focused on the protease families of caspases and cathepsins and on protease receptors. We present evidence that just these proteins are involved in the PC of brain cells. A hypothesis is proposed that secreted cathepsin B is involved in the realization of PC through activation of PAR2 receptor.
Collapse
Affiliation(s)
- A A Yakovlev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| | | |
Collapse
|
463
|
Sun L, Hua Y, Vergarajauregui S, Diab HI, Puertollano R. Novel Role of TRPML2 in the Regulation of the Innate Immune Response. THE JOURNAL OF IMMUNOLOGY 2015; 195:4922-32. [PMID: 26432893 DOI: 10.4049/jimmunol.1500163] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 09/10/2015] [Indexed: 11/19/2022]
Abstract
TRPMLs (or mucolipins) constitute a family of endosomal cation channels with homology to the transient receptor potential superfamily. In mammals, the TRPML family includes three members: TRPML1-3. Although TRPML1 and TRPML3 have been well characterized, the cellular function of TRPML2 has remained elusive. To address TRPML2 function in a physiologically relevant cell type, we first analyzed TRPML2 expression in different mouse tissues and organs and found that it was predominantly expressed in lymphoid organs and kidney. Quantitative RT-PCR revealed tight regulation of TRPML2 at the transcriptional level. Although TRPML2 expression was negligible in resting macrophages, TRPML2 mRNA and protein levels dramatically increased in response to TLR activation both in vitro and in vivo. Conversely, TRPML1 and TRPML3 levels did not change upon TLR activation. Immunofluorescence analysis demonstrated that endogenous TRPML2 primarily localized to recycling endosomes both in culture and primary cells, in contrast with TRPML1 and TRPML3, which distribute to the late and early endosomal pathway, respectively. To better understand the in vivo function of TRPML2, we generated a TRPML2-knockout mouse. We found that the production of several chemokines, in particular CCL2, was severely reduced in TRPML2-knockout mice. Furthermore, TRPML2-knockout mice displayed impaired recruitment of peripheral macrophages in response to i.p. injections of LPS or live bacteria, suggesting a potential defect in the immune response. Overall, our study reveals interesting differences in the regulation and distribution of the members of the TRPML family and identifies a novel role for TRPML2 in the innate immune response.
Collapse
Affiliation(s)
- Lu Sun
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yinan Hua
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Silvia Vergarajauregui
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Heba I Diab
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
464
|
Nilsson MI, MacNeil LG, Kitaoka Y, Suri R, Young SP, Kaczor JJ, Nates NJ, Ansari MU, Wong T, Ahktar M, Brandt L, Hettinga BP, Tarnopolsky MA. Combined aerobic exercise and enzyme replacement therapy rejuvenates the mitochondrial-lysosomal axis and alleviates autophagic blockage in Pompe disease. Free Radic Biol Med 2015; 87:98-112. [PMID: 26001726 DOI: 10.1016/j.freeradbiomed.2015.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/04/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022]
Abstract
A unifying feature in the pathogenesis of aging, neurodegenerative disease, and lysosomal storage disorders is the progressive deposition of macromolecular debris impervious to enzyme catalysis by cellular waste disposal mechanisms (e.g., lipofuscin). Aerobic exercise training (AET) has pleiotropic effects and stimulates mitochondrial biogenesis, antioxidant defense systems, and autophagic flux in multiple organs and tissues. Our aim was to explore the therapeutic potential of AET as an ancillary therapy to mitigate autophagic buildup and oxidative damage and rejuvenate the mitochondrial-lysosomal axis in Pompe disease (GSD II/PD). Fourteen weeks of combined recombinant acid α-glucosidase (rhGAA) and AET polytherapy attenuated mitochondrial swelling, fortified antioxidant defense systems, reduced oxidative damage, and augmented glycogen clearance and removal of autophagic debris/lipofuscin in fast-twitch skeletal muscle of GAA-KO mice. Ancillary AET potently augmented the pool of PI4KA transcripts and exerted a mild restorative effect on Syt VII and VAMP-5/myobrevin, collectively suggesting improved endosomal transport and Ca(2+)- mediated lysosomal exocytosis. Compared with traditional rhGAA monotherapy, AET and rhGAA polytherapy effectively mitigated buildup of protein carbonyls, autophagic debris/lipofuscin, and P62/SQSTM1, while enhancing MnSOD expression, nuclear translocation of Nrf-2, muscle mass, and motor function in GAA-KO mice. Combined AET and rhGAA therapy reactivates cellular clearance pathways, mitigates mitochondrial senescence, and strengthens antioxidant defense systems in GSD II/PD. Aerobic exercise training (or pharmacologic targeting of contractile-activity-induced pathways) may have therapeutic potential for mitochondrial-lysosomal axis rejuvenation in lysosomal storage disorders and related conditions (e.g., aging and neurodegenerative disease).
Collapse
Affiliation(s)
- M I Nilsson
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - L G MacNeil
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Y Kitaoka
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - R Suri
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - S P Young
- Department of Pediatrics, Division of Medical Genetics/Duke University Medical Center, Durham, NC, USA
| | - J J Kaczor
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdansk, Poland
| | - N J Nates
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - M U Ansari
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - T Wong
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - M Ahktar
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - L Brandt
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - B P Hettinga
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - M A Tarnopolsky
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
465
|
Abstract
Lysosomal storage diseases are a group of rare, inborn, metabolic errors characterized by deficiencies in normal lysosomal function and by intralysosomal accumulation of undegraded substrates. The past 25 years have been characterized by remarkable progress in the treatment of these diseases and by the development of multiple therapeutic approaches. These approaches include strategies aimed at increasing the residual activity of a missing enzyme (enzyme replacement therapy, hematopoietic stem cell transplantation, pharmacological chaperone therapy and gene therapy) and approaches based on reducing the flux of substrates to lysosomes. As knowledge has improved about the pathophysiology of lysosomal storage diseases, novel targets for therapy have been identified, and innovative treatment approaches are being developed.
Collapse
|
466
|
Ploper D, De Robertis EM. The MITF family of transcription factors: Role in endolysosomal biogenesis, Wnt signaling, and oncogenesis. Pharmacol Res 2015; 99:36-43. [DOI: 10.1016/j.phrs.2015.04.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 04/18/2015] [Accepted: 04/18/2015] [Indexed: 12/19/2022]
|
467
|
Nezich CL, Wang C, Fogel AI, Youle RJ. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol 2015; 210:435-50. [PMID: 26240184 PMCID: PMC4523611 DOI: 10.1083/jcb.201501002] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 06/25/2015] [Indexed: 12/14/2022] Open
Abstract
The kinase PINK1 and ubiquitin ligase Parkin can regulate the selective elimination of damaged mitochondria through autophagy (mitophagy). Because of the demand on lysosomal function by mitophagy, we investigated a role for the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, in this process. We show that during mitophagy TFEB translocates to the nucleus and displays transcriptional activity in a PINK1- and Parkin-dependent manner. MITF and TFE3, homologues of TFEB belonging to the same microphthalmia/transcription factor E (MiT/TFE) family, are similarly regulated during mitophagy. Unlike TFEB translocation after starvation-induced mammalian target of rapamycin complex 1 inhibition, Parkin-mediated TFEB relocalization required Atg9A and Atg5 activity. However, constitutively active Rag guanosine triphosphatases prevented TFEB translocation during mitophagy, suggesting cross talk between these two MiT/TFE activation pathways. Analysis of clustered regularly interspaced short palindromic repeats-generated TFEB/MITF/TFE3/TFEC single, double, and triple knockout cell lines revealed that these proteins partly facilitate Parkin-mediated mitochondrial clearance. These results illuminate a pathway leading to MiT/TFE transcription factor activation, distinct from starvation-induced autophagy, which occurs during mitophagy.
Collapse
Affiliation(s)
- Catherine L Nezich
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Chunxin Wang
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Adam I Fogel
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
468
|
Lim JA, Kakhlon O, Li L, Myerowitz R, Raben N. Pompe disease: Shared and unshared features of lysosomal storage disorders. Rare Dis 2015; 3:e1068978. [PMID: 26619007 PMCID: PMC4620984 DOI: 10.1080/21675511.2015.1068978] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 01/29/2023] Open
Abstract
Pompe disease, an inherited deficiency of lysosomal acid α-glucosidase (GAA), is a severe metabolic myopathy with a wide range of clinical manifestations. It is the first recognized lysosomal storage disorder and the first neuromuscular disorder for which a therapy (enzyme replacement) has been approved. As GAA is the only enzyme that hydrolyses glycogen to glucose in the acidic environment of the lysosome, its deficiency leads to glycogen accumulation within and concomitant enlargement of this organelle. Since the introduction of the therapy, the overall understanding of the disease has progressed significantly, but the pathophysiology of muscle damage is still not fully understood. The emerging complex picture of the pathological cascade involves disturbance of calcium homeostasis, mitochondrial abnormalities, dysfunctional autophagy, accumulation of toxic undegradable materials, and accelerated production of lipofuscin deposits that are unrelated to aging. The relationship of Pompe disease to other lysosomal storage disorders and potential therapeutic interventions for Pompe disease are discussed.
Collapse
Affiliation(s)
- Jeong-A Lim
- Laboratory of Muscle Stem Cells and Gene Regulation; National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health ; Bethesda, MD USA
| | - Or Kakhlon
- Department of Neurology; Hadassah-Hebrew University Medical Center ; Ein Kerem, Jerusalem, Israel
| | - Lishu Li
- Laboratory of Muscle Stem Cells and Gene Regulation; National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health ; Bethesda, MD USA
| | - Rachel Myerowitz
- Laboratory of Muscle Stem Cells and Gene Regulation; National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health ; Bethesda, MD USA ; St. Mary's College of Maryland ; St. Mary's City, MD USA
| | - Nina Raben
- Laboratory of Muscle Stem Cells and Gene Regulation; National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health ; Bethesda, MD USA
| |
Collapse
|
469
|
Chandra G, Bagh MB, Peng S, Saha A, Sarkar C, Moralle M, Zhang Z, Mukherjee AB. Cln1 gene disruption in mice reveals a common pathogenic link between two of the most lethal childhood neurodegenerative lysosomal storage disorders. Hum Mol Genet 2015; 24:5416-32. [PMID: 26160911 DOI: 10.1093/hmg/ddv266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/06/2015] [Indexed: 11/13/2022] Open
Abstract
Neurodegeneration is a devastating manifestation in the majority of >50 lysosomal storage disorders (LSDs). Neuronal ceroid lipofuscinoses (NCLs) are the most common childhood neurodegenerative LSDs. Mutations in 13 different genes (called CLNs) underlie various types of NCLs, of which the infantile NCL (INCL) and congenital NCL (CNCL) are the most lethal. Although inactivating mutations in the CLN1 gene encoding palmitoyl-protein thioesterase-1 (PPT1) cause INCL, those in the CLN10 gene encoding cathepsin D (CD) underlie CNCL. PPT1 is a lysosomal thioesterase that cleaves the thioester linkage in S-acylated proteins required for their degradation by lysosomal hydrolases like CD. Thus, PPT1 deficiency causes lysosomal accumulation of these lipidated proteins (major constituents of ceroid) leading to INCL. We sought to determine whether there is a common pathogenic link between INCL and CNCL. Using biochemical, histological and confocal microscopic analyses of brain tissues and cells from Cln1(-/-) mice that mimic INCL, we uncovered that Cln10/CD is overexpressed. Although synthesized in the endoplasmic reticulum, the CD-precursor protein (pro-CD) is transported through endosome to the lysosome where it is proteolytically processed to enzymatically active-CD. We found that despite Cln10 overexpression, the maturation of pro-CD to enzymatically active-CD in lysosome was disrupted. This defect impaired lysosomal degradative function causing accumulation of undegraded cargo in lysosome leading to INCL. Notably, treatment of intact Cln1(-/-) mice as well as cultured brain cells derived from these animals with a thioesterase-mimetic small molecule, N-tert-butyl-hydroxylamine, ameliorated the CD-processing defect. Our findings are significant in that they define a pathway in which Cln1 mutations disrupt the maturation of a major degradative enzyme in lysosome contributing to neuropathology in INCL and suggest that lysosomal CD deficiency is a common pathogenic link between INCL and CNCL.
Collapse
Affiliation(s)
- Goutam Chandra
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Maria B Bagh
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Shiyong Peng
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Arjun Saha
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Chinmoy Sarkar
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Matthew Moralle
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Zhongjian Zhang
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Anil B Mukherjee
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| |
Collapse
|
470
|
Abstract
Exposure of cells to micromolar Cu activates recombinant transcription factor EB (TFEB), leading to expression of the lysosomal network genes. Whereas TFEB overexpression has a cytoprotective effect under moderate Cu exposure, it enhances oxidative stress and mitochondrial damage caused by high levels of Cu. Transition metal toxicity is an important factor in the pathogenesis of numerous human disorders, including neurodegenerative diseases. Lysosomes have emerged as important factors in transition metal toxicity because they handle transition metals via endocytosis, autophagy, absorption from the cytoplasm and exocytosis. Transcription factor EB (TFEB) regulates lysosomal biogenesis and the expression of lysosomal proteins in response to lysosomal and/or metabolic stresses. Since transition metals cause lysosomal dysfunction, we proposed that TFEB may be activated to drive gene expression in response to transition metal exposure and that such activation may influence transition metal toxicity. We found that transition metals copper (Cu) and iron (Fe) activate recombinant TFEB and stimulate the expression of TFEB-dependent genes in TFEB-overexpressing cells. In cells that show robust lysosomal exocytosis, TFEB was cytoprotective at moderate levels of Cu exposure, decreasing oxidative stress as reported by the expression of heme oxygenase-1 (HMOX1) gene. However, at high levels of Cu exposure, particularly in cells with low levels of lysosomal exocytosis, activation of overexpressed TFEB was toxic, increasing oxidative stress and mitochondrial damage. Based on these data, we conclude that TFEB-driven gene network is a component of the cellular response to transition metals. These data suggest limitations and disadvantages of TFEB overexpression as a therapeutic approach.
Collapse
|
471
|
The transcription factor TFEB acts as a molecular switch that regulates exogenous antigen-presentation pathways. Nat Immunol 2015; 16:729-36. [PMID: 26030023 DOI: 10.1038/ni.3196] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) can initiate immune responses by presenting exogenous antigens to T cells via both major histocompatibility complex (MHC) class I pathways and MHC class II pathways. Lysosomal activity has an important role in modulating the balance between these two pathways. The transcription factor TFEB regulates lysosomal function by inducing lysosomal activation. Here we report that TFEB expression inhibited the presentation of exogenous antigen by MHC class I while enhancing presentation via MHC class II. TFEB promoted phagosomal acidification and protein degradation. Furthermore, we found that the activation of TFEB was regulated during DC maturation and that phagosomal acidification was impaired in DCs in which the gene encoding TFEB was silenced. Our data indicate that TFEB is a key participant in the differential regulation of the presentation of exogenous antigens by DCs.
Collapse
|
472
|
Buratta S, Urbanelli L, Ferrara G, Sagini K, Goracci L, Emiliani C. A role for the autophagy regulator Transcription Factor EB in amiodarone-induced phospholipidosis. Biochem Pharmacol 2015; 95:201-9. [DOI: 10.1016/j.bcp.2015.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/31/2015] [Indexed: 12/17/2022]
|
473
|
Polito VA, Li H, Martini-Stoica H, Wang B, Yang L, Xu Y, Swartzlander DB, Palmieri M, di Ronza A, Lee VMY, Sardiello M, Ballabio A, Zheng H. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol Med 2015; 6:1142-60. [PMID: 25069841 PMCID: PMC4197862 DOI: 10.15252/emmm.201303671] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Accumulating evidence implicates impairment of the autophagy-lysosome pathway in Alzheimer's disease (AD). Recently discovered, transcription factor EB (TFEB) is a molecule shown to play central roles in cellular degradative processes. Here we investigate the role of TFEB in AD mouse models. In this study, we demonstrate that TFEB effectively reduces neurofibrillary tangle pathology and rescues behavioral and synaptic deficits and neurodegeneration in the rTg4510 mouse model of tauopathy with no detectable adverse effects when expressed in wild-type mice. TFEB specifically targets hyperphosphorylated and misfolded Tau species present in both soluble and aggregated fractions while leaving normal Tau intact. We provide in vitro evidence that this effect requires lysosomal activity and we identify phosphatase and tensin homolog (PTEN) as a direct target of TFEB that is required for TFEB-dependent aberrant Tau clearance. The specificity and efficacy of TFEB in mediating the clearance of toxic Tau species makes it an attractive therapeutic target for treating diseases of tauopathy including AD.
Collapse
Affiliation(s)
- Vinicia A Polito
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Hongmei Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Heidi Martini-Stoica
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA Interdepartmental Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Baiping Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Li Yang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Yin Xu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | | | - Michela Palmieri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA Dan and Jan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Alberto di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA Dan and Jan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Virginia M-Y Lee
- Department of Pathology and Lab Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA Dan and Jan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Andrea Ballabio
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA Dan and Jan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA Department of Translational Medical Sciences, Section of Pediatrics, Telethon Institute of Genetics and Medicine Federico II University, Naples, Italy
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
474
|
Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 2015; 16:345-57. [DOI: 10.1038/nrn3961] [Citation(s) in RCA: 567] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
475
|
Ferguson SM. Beyond indigestion: emerging roles for lysosome-based signaling in human disease. Curr Opin Cell Biol 2015; 35:59-68. [PMID: 25950843 DOI: 10.1016/j.ceb.2015.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 01/01/2023]
Abstract
Lysosomes are becoming increasingly recognized as a hub that integrates diverse signals in order to control multiple aspects of cell physiology. This is illustrated by the discovery of a growing number of lysosome-localized proteins that respond to changes in growth factor and nutrient availability to regulate mTORC1 signaling as well as the identification of MiT/TFE transcription factors (MITF, TFEB and TFE3) as proteins that shuttle between lysosomes and the nucleus to elicit a transcriptional response to ongoing changes in lysosome status. These findings have been paralleled by advances in human genetics that connect mutations in genes involved in lysosomal signaling to a broad range of human illnesses ranging from cancer to neurological disease. This review summarizes these new discoveries at the interface between lysosome cell biology and human disease.
Collapse
Affiliation(s)
- Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, United States; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, United States.
| |
Collapse
|
476
|
Cao Q, Zhong XZ, Zou Y, Zhang Z, Toro L, Dong XP. BK Channels Alleviate Lysosomal Storage Diseases by Providing Positive Feedback Regulation of Lysosomal Ca2+ Release. Dev Cell 2015; 33:427-41. [PMID: 25982675 DOI: 10.1016/j.devcel.2015.04.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 03/25/2015] [Accepted: 04/10/2015] [Indexed: 11/25/2022]
Abstract
Promoting lysosomal trafficking represents a promising therapeutic approach for lysosome storage diseases. Efficient Ca(2+) mobilization from lysosomes is important for lysosomal trafficking. Ca(2+) release from lysosomes could generate a negative potential in the lumen to disturb subsequent Ca(2+) release in the absence of counter ion flux. Here we report that lysosomes express big-conductance Ca(2+)-activated potassium (BK) channels that form physical and functional coupling with the lysosomal Ca(2+) release channel, TRPML1. Ca(2+) release via TRPML1 causes BK activation, which in turn facilitates further lysosomal Ca(2+) release and membrane trafficking. Importantly, BK overexpression rescues the impaired TRPML1-mediated Ca(2+) release and abnormal lysosomal storage in cells from Niemann-Pick C1 patients. Therefore, we have identified a lysosomal K(+) channel that provides a positive feedback mechanism to facilitate TRPML1-mediated Ca(2+) release and membrane trafficking. Our findings suggest that upregulating BK may be a potential therapeutic strategy for certain lysosomal storage diseases and common neurodegenerative disorders.
Collapse
Affiliation(s)
- Qi Cao
- Department of Physiology and Biophysics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Xi Zoë Zhong
- Department of Physiology and Biophysics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Yuanjie Zou
- Department of Physiology and Biophysics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Zhu Zhang
- Division of Molecular Medicine, Department of Anesthesiology and Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7115, USA
| | - Ligia Toro
- Division of Molecular Medicine, Department of Anesthesiology and Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7115, USA
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
477
|
Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, Montefusco S, Scotto-Rosato A, Prezioso C, Forrester A, Settembre C, Wang W, Gao Q, Xu H, Sandri M, Rizzuto R, De Matteis MA, Ballabio A. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 2015; 17:288-99. [PMID: 25720963 PMCID: PMC4801004 DOI: 10.1038/ncb3114] [Citation(s) in RCA: 1049] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/16/2015] [Indexed: 12/17/2022]
Abstract
The view of the lysosome as the terminal end of cellular catabolic pathways has been challenged by recent studies showing a central role of this organelle in the control of cell function. Here we show that a lysosomal Ca2+ signaling mechanism controls the activities of the phosphatase calcineurin and of its substrate TFEB, a master transcriptional regulator of lysosomal biogenesis and autophagy. Lysosomal Ca2+ release via mucolipin 1 (MCOLN1) activates calcineurin, which binds and de-phosphorylates TFEB, thus promoting its nuclear translocation. Genetic and pharmacological inhibition of calcineurin suppressed TFEB activity during starvation and physical exercise, while calcineurin overexpression and constitutive activation had the opposite effect. Induction of autophagy and lysosomal biogenesis via TFEB required MCOLN1-mediated calcineurin activation, linking lysosomal calcium signaling to both calcineurin regulation and autophagy induction. Thus, the lysosome reveals itself as a hub for the signaling pathways that regulate cellular homeostasis.
Collapse
|
478
|
Ghosh A, Jana M, Modi K, Gonzalez FJ, Sims KB, Berry-Kravis E, Pahan K. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders. J Biol Chem 2015; 290:10309-24. [PMID: 25750174 PMCID: PMC4400343 DOI: 10.1074/jbc.m114.610659] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/04/2015] [Indexed: 11/06/2022] Open
Abstract
Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role.
Collapse
Affiliation(s)
| | | | - Khushbu Modi
- From the Departments of Neurological Sciences and
| | - Frank J Gonzalez
- the Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Katherine B Sims
- the Department of Neurology, Harvard Medical School, Boston, Massachusetts 02114, and
| | - Elizabeth Berry-Kravis
- Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, Illinois 60612
| | - Kalipada Pahan
- From the Departments of Neurological Sciences and the Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| |
Collapse
|
479
|
Lopes da Fonseca T, Villar-Piqué A, Outeiro TF. The Interplay between Alpha-Synuclein Clearance and Spreading. Biomolecules 2015; 5:435-71. [PMID: 25874605 PMCID: PMC4496680 DOI: 10.3390/biom5020435] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/23/2022] Open
Abstract
Parkinson's Disease (PD) is a complex neurodegenerative disorder classically characterized by movement impairment. Pathologically, the most striking features of PD are the loss of dopaminergic neurons and the presence of intraneuronal protein inclusions primarily composed of alpha-synuclein (α-syn) that are known as Lewy bodies and Lewy neurites in surviving neurons. Though the mechanisms underlying the progression of PD pathology are unclear, accumulating evidence suggests a prion-like spreading of α-syn pathology. The intracellular homeostasis of α-syn requires the proper degradation of the protein by three mechanisms: chaperone-mediated autophagy, macroautophagy and ubiquitin-proteasome. Impairment of these pathways might drive the system towards an alternative clearance mechanism that could involve its release from the cell. This increased release to the extracellular space could be the basis for α-syn propagation to different brain areas and, ultimately, for the spreading of pathology and disease progression. Here, we review the interplay between α-syn degradation pathways and its intercellular spreading. The understanding of this interplay is indispensable for obtaining a better knowledge of the molecular basis of PD and, consequently, for the design of novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Tomás Lopes da Fonseca
- Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen 37073, Germany.
- Instituto de Fisiologia, Faculty of Medicine, University of Lisbon, Lisboa 1649-028, Portugal.
| | - Anna Villar-Piqué
- Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen 37073, Germany.
| | - Tiago Fleming Outeiro
- Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen 37073, Germany.
- Instituto de Fisiologia, Faculty of Medicine, University of Lisbon, Lisboa 1649-028, Portugal.
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa 1150, Portugal.
| |
Collapse
|
480
|
Modulation of expression of genes involved in glycosaminoglycan metabolism and lysosome biogenesis by flavonoids. Sci Rep 2015; 5:9378. [PMID: 25797591 DOI: 10.1038/srep09378] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/02/2015] [Indexed: 11/09/2022] Open
Abstract
Flavonoids were found previously to modulate efficiency of synthesis of glycosaminoglycans (GAGs), compounds which are accumulated in cells of patients suffering from mucopolysaccharidoses (MPSs). The aim of this work was to determine effects of different flavonoids (genistein, kaempferol, daidzein) used alone or in combinations, on expression of genes coding for proteins involved in GAG metabolism. Analyses with DNA microarray, followed by real-time qRT-PCR revealed that genistein, kaempferol and combination of these two compounds induced dose- and time-dependent remarkable alterations in transcript profiles of GAG metabolism genes in cultures of wild-type human dermal fibroblasts (HDFa). Interestingly, effects of the mixture of genistein and kaempferol were stronger than those revealed by any of these compounds used alone. Similarly, the most effective reduction in levels of GAG production, in both HDFa and MPS II cells, was observed in the presence of genistein, keampferol and combination of these compounds. Forty five genes were chosen for further verification not only in HDFa, but also in MPS II fibroblasts by using real-time qRT-PCR. Despite effects on GAG metabolism-related genes, we found that genistein, kaempferol and mixture of these compounds significantly stimulated expression of TFEB. Additionally, a decrease in MTOR transcript level was observed at these conditions.
Collapse
|
481
|
Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. Proc Natl Acad Sci U S A 2015; 112:E1373-81. [PMID: 25733853 DOI: 10.1073/pnas.1419669112] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upon nutrient starvation, autophagy digests unwanted cellular components to generate catabolites that are required for housekeeping biosynthesis processes. A complete execution of autophagy demands an enhancement in lysosome function and biogenesis to match the increase in autophagosome formation. Here, we report that mucolipin-1 (also known as TRPML1 or ML1), a Ca(2+) channel in the lysosome that regulates many aspects of lysosomal trafficking, plays a central role in this quality-control process. By using Ca(2+) imaging and whole-lysosome patch clamping, lysosomal Ca(2+) release and ML1 currents were detected within hours of nutrient starvation and were potently up-regulated. In contrast, lysosomal Na(+)-selective currents were not up-regulated. Inhibition of mammalian target of rapamycin (mTOR) or activation of transcription factor EB (TFEB) mimicked a starvation effect in fed cells. The starvation effect also included an increase in lysosomal proteostasis and enhanced clearance of lysosomal storage, including cholesterol accumulation in Niemann-Pick disease type C (NPC) cells. However, this effect was not observed when ML1 was pharmacologically inhibited or genetically deleted. Furthermore, overexpression of ML1 mimicked the starvation effect. Hence, lysosomal adaptation to environmental cues such as nutrient levels requires mTOR/TFEB-dependent, lysosome-to-nucleus regulation of lysosomal ML1 channels and Ca(2+) signaling.
Collapse
|
482
|
Abstract
For over a century, researchers have observed similar neurodegenerative hallmarks in brains of people affected by rare early-onset lysosomal storage diseases and late-onset neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Increasing evidence suggests these apparently disparate diseases share a common underlying feature, namely, a dysfunctional clearance of cellular cargo through the secretory-endosomal-autophagic-lysosomal-exocytic (SEALE) network. By providing examples of rare and common neurodegenerative diseases known to have pathologically altered cargo flux through the SEALE network, we explore the unifying hypothesis that impaired catabolism or exocytosis of SEALE cargo, places a burden of stress on neurons that initiates pathogenesis. We also describe how a growing understanding of genetic, epigenetic and age-related modifications of the SEALE network, has inspired a number of novel disease-modifying therapeutic approaches aimed at alleviating SEALE storage and providing therapeutic benefit to people affected by these devastating diseases across the age spectrum.
Collapse
Affiliation(s)
- Barry Boland
- Department of Pharmacology and Therapeutics, School of Medicine, University College Cork, Cork, Ireland.
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom.
| |
Collapse
|
483
|
Autophagy in neuronal cells: general principles and physiological and pathological functions. Acta Neuropathol 2015; 129:337-62. [PMID: 25367385 DOI: 10.1007/s00401-014-1361-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 12/12/2022]
Abstract
Autophagy delivers cytoplasmic components and organelles to lysosomes for degradation. This pathway serves to degrade nonfunctional or unnecessary organelles and aggregate-prone and oxidized proteins to produce substrates for energy production and biosynthesis. Macroautophagy delivers large aggregates and whole organelles to lysosomes by first enveloping them into autophagosomes that then fuse with lysosomes. Chaperone-mediated autophagy (CMA) degrades proteins containing the KFERQ-like motif in their amino acid sequence, by transporting them from the cytosol across the lysosomal membrane into the lysosomal lumen. Autophagy is especially important for the survival and homeostasis of postmitotic cells like neurons, because these cells are not able to dilute accumulating detrimental substances and damaged organelles by cell division. Our current knowledge on the autophagic pathways and molecular mechanisms and regulation of autophagy will be summarized in this review. We will describe the physiological functions of macroautophagy and CMA in neuronal cells. Finally, we will summarize the current evidence showing that dysfunction of macroautophagy and/or CMA contributes to neuronal diseases. We will give an overview of our current knowledge on the role of autophagy in aging neurons, and focus on the role of autophagy in four types of neurodegenerative diseases, i.e., amyotrophic lateral sclerosis and frontotemporal dementia, prion diseases, lysosomal storage diseases, and Parkinson's disease.
Collapse
|
484
|
Bruyère J, Roy E, Ausseil J, Lemonnier T, Teyre G, Bohl D, Etienne-Manneville S, Lortat-Jacob H, Heard JM, Vitry S. Heparan Sulfate Saccharides Modify Focal Adhesions: Implication in Mucopolysaccharidosis Neuropathophysiology. J Mol Biol 2015; 427:775-791. [DOI: 10.1016/j.jmb.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
|
485
|
Abstract
The general view of the lysosome as the terminal end of cellular catabolic pathways, has started to change due to the recent discoveries of a lysosomal nutrient sensing machinery and of a lysosome-to-nucleus signaling mechanism that modulate lysosomal function by way of the master transcriptional regulator TFEB. Lysosomal biogenesis and autophagy are coordinated by TFEB, whose function is regulated by phosphorylation. TFEB interacts with and is phosphorylated by mTORC1 at the lysosomal surface. Thus, conditions resulting in inhibition of mTOR, such as starvation and lysosomal stress, promote TFEB nuclear translocation. Preliminary evidences showing that the TFEB activation are able to ameliorate the phenotype of lysosomal storage disorders and more common neurodegenerative diseases have opened an extraordinary possibility for the development of innovative therapies. Research in TFEB and lysosomal function has continued to advance and attract interest due to increased understanding of the mechanisms behind lysosomal function. In this paper, we present a set of procedures that facilitate examination of TFEB function and its related processes.
Collapse
Affiliation(s)
- Carmine Settembre
- Dulbecco Telethon Institute, Pozzuoli, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Medical Genetics, Department of Medical and Translational Science Unit, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| |
Collapse
|
486
|
Magini A, Polchi A, Tozzi A, Tancini B, Tantucci M, Urbanelli L, Borsello T, Calabresi P, Emiliani C. Abnormal cortical lysosomal β-hexosaminidase and β-galactosidase activity at post-synaptic sites during Alzheimer's disease progression. Int J Biochem Cell Biol 2015; 58:62-70. [DOI: 10.1016/j.biocel.2014.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/16/2014] [Accepted: 11/03/2014] [Indexed: 12/17/2022]
|
487
|
Distinct lysosome phenotypes influence inflammatory function in peritoneal and bone marrow-derived macrophages. Int J Inflam 2014; 2014:154936. [PMID: 25587484 PMCID: PMC4284938 DOI: 10.1155/2014/154936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/09/2014] [Indexed: 01/30/2023] Open
Abstract
Lysosomes play a critical role in the degradation of both extracellular and intracellular material. These dynamic organelles also contribute to nutrient sensing and cell signaling pathways. Macrophages represent a heterogeneous group of phagocytic cells that contribute to tissue homeostasis and inflammation. Recently, there has been a renewed interest in understanding the role of macrophage autophagy and lysosome function in health and disease. Thioglycollate-elicited peritoneal and bone marrow-derived macrophages are commonly used ex vivo systems to study primary macrophage function. In this study, we reveal dramatic baseline differences in the lysosome morphology and function between these macrophage populations and provide evidence that these differences can be functionally relevant. Our results provide important insights into the diversity of lysosomes in primary macrophages and illustrate the importance of accounting for this in data interpretation.
Collapse
|
488
|
The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 2014; 58:48-56. [PMID: 25465891 DOI: 10.1016/j.ceca.2014.10.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/24/2022]
Abstract
Members of the Transient Receptor Potential-Mucolipin (TRPML) constitute a family of evolutionarily conserved cation channels that function predominantly in endolysosomal vesicles. Whereas loss-of-function mutations in human TRPML1 were first identified as being causative for the lysosomal storage disease, Mucolipidosis type IV, most mammals also express two other TRPML isoforms called TRPML2 and TRPML3. All three mammalian TRPMLs as well as TRPML related genes in other species including Caenorhabditis elegans and Drosophila exhibit overlapping functional and biophysical properties. The functions of TRPML proteins include roles in vesicular trafficking and biogenesis, maintenance of neuronal development, function, and viability, and regulation of intracellular and organellar ionic homeostasis. Biophysically, TRPML channels are non-selective cation channels exhibiting variable permeability to a host of cations including Na(+), Ca(2+), Fe(2+), and Zn(2+), and are activated by a phosphoinositide species, PI(3,5)P2, that is mostly found in endolysosomal membranes. Here, we review the functional and biophysical properties of these enigmatic cation channels, which represent the most ancient and archetypical TRP channels.
Collapse
|
489
|
Song W, Soo Lee S, Savini M, Popp L, Colvin VL, Segatori L. Ceria nanoparticles stabilized by organic surface coatings activate the lysosome-autophagy system and enhance autophagic clearance. ACS NANO 2014; 8:10328-10342. [PMID: 25315655 DOI: 10.1021/nn505073u] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cerium oxide nanoparticles (nanoceria) are widely used in a variety of industrial applications including UV filters and catalysts. The expanding commercial scale production and use of ceria nanoparticles have inevitably increased the risk of release of nanoceria into the environment as well as the risk of human exposure. The use of nanoceria in biomedical applications is also being currently investigated because of its recently characterized antioxidative properties. In this study, we investigated the impact of ceria nanoparticles on the lysosome-autophagy system, the main catabolic pathway that is activated in mammalian cells upon internalization of exogenous material. We tested a battery of ceria nanoparticles functionalized with different types of biocompatible coatings (N-acetylglucosamine, polyethylene glycol and polyvinylpyrrolidone) expected to have minimal effect on lysosomal integrity and function. We found that ceria nanoparticles promote activation of the transcription factor EB, a master regulator of lysosomal function and autophagy, and induce upregulation of genes of the lysosome-autophagy system. We further show that the array of differently functionalized ceria nanoparticles tested in this study enhance autophagic clearance of proteolipid aggregates that accumulate as a result of inefficient function of the lysosome-autophagy system. This study provides a mechanistic understanding of the interaction of ceria nanoparticles with the lysosome-autophagy system and demonstrates that ceria nanoparticles are activators of autophagy and promote clearance of autophagic cargo. These results provide insights for the use of nanoceria in biomedical applications, including drug delivery. These findings will also inform the design of engineered nanoparticles with safe and precisely controlled impact on the environment and the design of nanotherapeutics for the treatment of diseases with defective autophagic function and accumulation of lysosomal storage material.
Collapse
Affiliation(s)
- Wensi Song
- Departments of †Chemical and Biomolecular Engineering, ‡Chemistry, §Biochemistry and Cell Biology, and ⊥Bioengineering, Rice University , Houston, Texas 77005, United States
| | | | | | | | | | | |
Collapse
|
490
|
Gautier EL, Yvan-Charvet L. Understanding macrophage diversity at the ontogenic and transcriptomic levels. Immunol Rev 2014; 262:85-95. [DOI: 10.1111/imr.12231] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Emmanuel L. Gautier
- Institut National de la Sante et de la Recherche Médicale UMR_S 1166; Paris France
- Pierre & Marie Curie University Paris 6; Paris France
- ICAN Institute of CArdiometabolism & Nutrition; Paris France
| | - Laurent Yvan-Charvet
- Institut National de la Sante et de la Recherche Médicale U1065; Centre Méditerranéen de Médecine Moléculaire (C3M); Nice France
- Atip-Avenir; Nice France
| |
Collapse
|
491
|
Fürthauer M, Smythe E. Systems dynamics in endocytosis. Traffic 2014; 15:338-46. [PMID: 24405722 DOI: 10.1111/tra.12147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 12/22/2013] [Accepted: 01/09/2014] [Indexed: 11/28/2022]
Abstract
The endocytic system acts at the crossroads of different cellular activities to play a central role in the regulation of cell signaling and membrane dynamics. An European Molecular Biology Organization (EMBO) conference held in October 2013 in Villars-sur-Ollon gathered researchers from all over the world to present their latest findings on the endolysosomal system and identify major challenges for the future. The conference covered the entire spectrum of research in this rapidly evolving field ranging from the cellular mechanics of endocytosis to the role of proteins and lipids in the biogenesis and function of endolysosomal organelles and the analysis of higher order system properties in multicellular contexts. In particular, the meeting highlighted current efforts to complement the insights that can be gained by biochemical and cell biological approaches with the use of quantitative biophysics, systems biology and animal model systems to achieve an integrated view of the properties of the endomembrane system and its role in cellular information processing.
Collapse
Affiliation(s)
- Maximilian Fürthauer
- Institut de Biologie Valrose, CNRS UMR7277, INSERM 1091, University of Nice Sophia-Antipolis, Nice, France
| | | |
Collapse
|
492
|
Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. J Neurosci 2014; 34:9607-20. [PMID: 25031402 DOI: 10.1523/jneurosci.3788-13.2014] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In sporadic Alzheimer's disease (AD), impaired Aβ removal contributes to elevated extracellular Aβ levels that drive amyloid plaque pathogenesis. Extracellular proteolysis, export across the blood-brain barrier, and cellular uptake facilitate physiologic Aβ clearance. Astrocytes can take up and degrade Aβ, but it remains unclear whether this function is insufficient in AD or can be enhanced to accelerate Aβ removal. Additionally, age-related dysfunction of lysosomes, the major degradative organelles wherein Aβ localizes after uptake, has been implicated in amyloid plaque pathogenesis. We tested the hypothesis that enhancing lysosomal function in astrocytes with transcription factor EB (TFEB), a master regulator of lysosome biogenesis, would promote Aβ uptake and catabolism and attenuate plaque pathogenesis. Exogenous TFEB localized to the nucleus with transcriptional induction of lysosomal biogenesis and function in vitro. This resulted in significantly accelerated uptake of exogenously applied Aβ42, with increased localization to and degradation within lysosomes in C17.2 cells and primary astrocytes, indicating that TFEB is sufficient to coordinately enhance uptake, trafficking, and degradation of Aβ. Stereotactic injection of adeno-associated viral particles carrying TFEB driven by a glial fibrillary acidic protein promoter was used to achieve astrocyte-specific expression in the hippocampus of APP/PS1 transgenic mice. Exogenous TFEB localized to astrocyte nuclei and enhanced lysosome function, resulting in reduced Aβ levels and shortened half-life in the brain interstitial fluid and reduced amyloid plaque load in the hippocampus compared with control virus-injected mice. Therefore, activation of TFEB in astrocytes is an effective strategy to restore adequate Aβ removal and counter amyloid plaque pathogenesis in AD.
Collapse
|
493
|
Abstract
Lysosomes were once considered the end point of endocytosis, simply used for macromolecule degradation. They are now recognized to be dynamic organelles, able to fuse with a variety of targets and to be re-formed after fusion events. They are also now known to be the site of nutrient sensing and signaling to the cell nucleus. In addition, lysosomes are secretory organelles, with specialized machinery for regulated secretion of proteins in some cell types. The biogenesis of lysosomes and lysosome-related organelles is discussed, taking into account their dynamic nature and multiple roles.
Collapse
|
494
|
Permeation, regulation and control of expression of TRP channels by trace metal ions. Pflugers Arch 2014; 467:1143-64. [PMID: 25106481 PMCID: PMC4435931 DOI: 10.1007/s00424-014-1590-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/10/2014] [Accepted: 07/13/2014] [Indexed: 01/26/2023]
Abstract
Transient receptor potential (TRP) channels form a diverse family of cation channels comprising 28 members in mammals. Although some TRP proteins can only be found on intracellular membranes, most of the TRP protein isoforms reach the plasma membrane where they form ion channels and control a wide number of biological processes. There, their involvement in the transport of cations such as calcium and sodium has been well documented. However, a growing number of studies have started to expand our understanding of these proteins by showing that they also transport other biologically relevant metal ions like zinc, magnesium, manganese and cobalt. In addition to this newly recognized property, the activity and expression of TRP channels can be regulated by metal ions like magnesium, gadolinium, lanthanum or cisplatin. The aim of this review is to highlight the complex relationship between metal ions and TRP channels.
Collapse
|
495
|
Emanuel R, Sergin I, Bhattacharya S, Turner J, Epelman S, Settembre C, Diwan A, Ballabio A, Razani B. Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arterioscler Thromb Vasc Biol 2014; 34:1942-1952. [PMID: 25060788 DOI: 10.1161/atvbaha.114.303342] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Recent reports of a proatherogenic phenotype in mice with macrophage-specific autophagy deficiency have renewed interest in the role of the autophagy-lysosomal system in atherosclerosis. Lysosomes have the unique ability to process both exogenous material, including lipids and autophagy-derived cargo such as dysfunctional proteins/organelles. We aimed to understand the effects of an atherogenic lipid environment on macrophage lysosomes and to evaluate novel ways to modulate this system. APPROACH AND RESULTS Using a variety of complementary techniques, we show that oxidized low-density lipoproteins and cholesterol crystals, commonly encountered lipid species in atherosclerosis, lead to profound lysosomal dysfunction in cultured macrophages. Disruptions in lysosomal pH, proteolytic capacity, membrane integrity, and morphology are readily seen. Using flow cytometry, we find that macrophages isolated from atherosclerotic plaques also display features of lysosome dysfunction. We then investigated whether enhancing lysosomal function can be beneficial. Transcription factor EB (TFEB) is the only known transcription factor that is a master regulator of lysosomal biogenesis although its role in macrophages has not been studied. Lysosomal stress induced by chloroquine or atherogenic lipids leads to TFEB nuclear translocation and activation of lysosomal and autophagy genes. TFEB overexpression in macrophages further augments this prodegradative response and rescues several deleterious effects seen with atherogenic lipid loading as evidenced by blunted lysosomal dysfunction, reduced secretion of the proinflammatory cytokine interleukin-1β, enhanced cholesterol efflux, and decreased polyubiquitinated protein aggregation. CONCLUSIONS Taken together, these data demonstrate that lysosomal function is markedly impaired in atherosclerosis and suggest that induction of a lysosomal biogenesis program in macrophages has antiatherogenic effects.
Collapse
Affiliation(s)
- Roy Emanuel
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (R.E., I.S., S.B., S.E., A.D., B.R.) and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (J.T., B.R.); John Cochran VA Medical Center, St. Louis, MO (A.D.); Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy (C.S., A.B.); and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (C.S., A.B.)
| | - Ismail Sergin
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (R.E., I.S., S.B., S.E., A.D., B.R.) and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (J.T., B.R.); John Cochran VA Medical Center, St. Louis, MO (A.D.); Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy (C.S., A.B.); and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (C.S., A.B.)
| | - Somashubhra Bhattacharya
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (R.E., I.S., S.B., S.E., A.D., B.R.) and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (J.T., B.R.); John Cochran VA Medical Center, St. Louis, MO (A.D.); Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy (C.S., A.B.); and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (C.S., A.B.)
| | - Jaleisa Turner
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (R.E., I.S., S.B., S.E., A.D., B.R.) and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (J.T., B.R.); John Cochran VA Medical Center, St. Louis, MO (A.D.); Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy (C.S., A.B.); and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (C.S., A.B.)
| | - Slava Epelman
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (R.E., I.S., S.B., S.E., A.D., B.R.) and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (J.T., B.R.); John Cochran VA Medical Center, St. Louis, MO (A.D.); Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy (C.S., A.B.); and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (C.S., A.B.)
| | - Carmine Settembre
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (R.E., I.S., S.B., S.E., A.D., B.R.) and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (J.T., B.R.); John Cochran VA Medical Center, St. Louis, MO (A.D.); Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy (C.S., A.B.); and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (C.S., A.B.)
| | - Abhinav Diwan
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (R.E., I.S., S.B., S.E., A.D., B.R.) and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (J.T., B.R.); John Cochran VA Medical Center, St. Louis, MO (A.D.); Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy (C.S., A.B.); and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (C.S., A.B.)
| | - Andrea Ballabio
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (R.E., I.S., S.B., S.E., A.D., B.R.) and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (J.T., B.R.); John Cochran VA Medical Center, St. Louis, MO (A.D.); Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy (C.S., A.B.); and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (C.S., A.B.)
| | - Babak Razani
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (R.E., I.S., S.B., S.E., A.D., B.R.) and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (J.T., B.R.); John Cochran VA Medical Center, St. Louis, MO (A.D.); Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy (C.S., A.B.); and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (C.S., A.B.)
| |
Collapse
|
496
|
Lim JA, Li L, Raben N. Pompe disease: from pathophysiology to therapy and back again. Front Aging Neurosci 2014; 6:177. [PMID: 25183957 PMCID: PMC4135233 DOI: 10.3389/fnagi.2014.00177] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/04/2014] [Indexed: 11/13/2022] Open
Abstract
Pompe disease is a lysosomal storage disorder in which acid alpha-glucosidase (GAA) is deficient or absent. Deficiency of this lysosomal enzyme results in progressive expansion of glycogen-filled lysosomes in multiple tissues, with cardiac and skeletal muscle being the most severely affected. The clinical spectrum ranges from fatal hypertrophic cardiomyopathy and skeletal muscle myopathy in infants to relatively attenuated forms, which manifest as a progressive myopathy without cardiac involvement. The currently available enzyme replacement therapy (ERT) proved to be successful in reversing cardiac but not skeletal muscle abnormalities. Although the overall understanding of the disease has progressed, the pathophysiology of muscle damage remains poorly understood. Lysosomal enlargement/rupture has long been considered a mechanism of relentless muscle damage in Pompe disease. In past years, it became clear that this simple view of the pathology is inadequate; the pathological cascade involves dysfunctional autophagy, a major lysosome-dependent intracellular degradative pathway. The autophagic process in Pompe skeletal muscle is affected at the termination stage—impaired autophagosomal-lysosomal fusion. Yet another abnormality in the diseased muscle is the accelerated production of large, unrelated to ageing, lipofuscin deposits—a marker of cellular oxidative damage and a sign of mitochondrial dysfunction. The massive autophagic buildup and lipofuscin inclusions appear to cause a greater effect on muscle architecture than the enlarged lysosomes outside the autophagic regions. Furthermore, the dysfunctional autophagy affects the trafficking of the replacement enzyme and interferes with its delivery to the lysosomes. Several new therapeutic approaches have been tested in Pompe mouse models: substrate reduction therapy, lysosomal exocytosis following the overexpression of transcription factor EB and a closely related but distinct factor E3, and genetic manipulation of autophagy.
Collapse
Affiliation(s)
- Jeong-A Lim
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health Bethesda, MD, USA
| | - Lishu Li
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health Bethesda, MD, USA
| | - Nina Raben
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
497
|
Settembre C, Ballabio A. Lysosome: regulator of lipid degradation pathways. Trends Cell Biol 2014; 24:743-50. [PMID: 25061009 PMCID: PMC4247383 DOI: 10.1016/j.tcb.2014.06.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023]
Abstract
Lipophagy is a transcriptionally regulated process. The lysosome as a sensor of lipophagy induction. Nuclear receptors link lipophagy to lipid catabolism.
Autophagy is a catabolic pathway that has a fundamental role in the adaptation to fasting and primarily relies on the activity of the endolysosomal system, to which the autophagosome targets substrates for degradation. Recent studies have revealed that the lysosomal–autophagic pathway plays an important part in the early steps of lipid degradation. In this review, we discuss the transcriptional mechanisms underlying co-regulation between lysosome, autophagy, and other steps of lipid catabolism, including the activity of nutrient-sensitive transcription factors (TFs) and of members of the nuclear receptor family. In addition, we discuss how the lysosome acts as a metabolic sensor and orchestrates the transcriptional response to fasting.
Collapse
Affiliation(s)
- Carmine Settembre
- Dulbecco Telethon Institute, Via Pietro Castellino 111, 80131, Naples, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Via Pietro Castellino 111, 80131, Naples, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Medical Genetics, Department of Translational and Medical Science, Federico II University, Via Pansini 5, 80131 Naples, Italy.
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Via Pietro Castellino 111, 80131, Naples, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Medical Genetics, Department of Translational and Medical Science, Federico II University, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
498
|
Segatori L. Impairment of homeostasis in lysosomal storage disorders. IUBMB Life 2014; 66:472-7. [PMID: 25044960 DOI: 10.1002/iub.1288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/23/2014] [Indexed: 12/27/2022]
Abstract
Lysosomal storage disorders (LSDs) are inherited metabolic diseases caused by deficiencies in lysosomal proteins, which result in accumulation of undegraded metabolites and disruption of lysosomal proteostasis. Despite significant progress in the molecular genetics and biochemistry underlying the cellular pathogenesis of LSDs, the mechanisms that link accumulation of storage material to development and progression of these diseases are still unclear. At the crossroad of degradative pathways, lysosomes play a fundamental role in the maintenance of cellular homeostasis. Through a series of examples, this review illustrates how defects in lysosomal biogenesis and function impact a number of cellular pathways that are involved in the pathogenic cascade.
Collapse
Affiliation(s)
- Laura Segatori
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
499
|
Platt FM. Sphingolipid lysosomal storage disorders. Nature 2014; 510:68-75. [PMID: 24899306 DOI: 10.1038/nature13476] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/14/2014] [Indexed: 12/18/2022]
Abstract
Lysosomal storage diseases are inborn errors of metabolism, the hallmark of which is the accumulation, or storage, of macromolecules in the late endocytic system. They are monogenic disorders that occur at a collective frequency of 1 in 5,000 live births and are caused by inherited defects in genes that mainly encode lysosomal proteins, most commonly lysosomal enzymes. A subgroup of these diseases involves the lysosomal storage of glycosphingolipids. Through our understanding of the genetics, biochemistry and, more recently, cellular aspects of sphingolipid storage disorders, we have gained insights into fundamental aspects of cell biology that would otherwise have remained opaque. In addition, study of these disorders has led to significant progress in the development of therapies, several of which are now in routine clinical use. Emerging mechanistic links with more common diseases suggest we need to rethink our current concept of disease boundaries.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
500
|
Polishchuk EV, Concilli M, Iacobacci S, Chesi G, Pastore N, Piccolo P, Paladino S, Baldantoni D, van IJzendoorn SCD, Chan J, Chang CJ, Amoresano A, Pane F, Pucci P, Tarallo A, Parenti G, Brunetti-Pierri N, Settembre C, Ballabio A, Polishchuk RS. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev Cell 2014; 29:686-700. [PMID: 24909901 PMCID: PMC4070386 DOI: 10.1016/j.devcel.2014.04.033] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/15/2014] [Accepted: 04/29/2014] [Indexed: 12/24/2022]
Abstract
Copper is an essential yet toxic metal and its overload causes Wilson disease, a disorder due to mutations in copper transporter ATP7B. To remove excess copper into the bile, ATP7B traffics toward canalicular area of hepatocytes. However, the trafficking mechanisms of ATP7B remain elusive. Here, we show that, in response to elevated copper, ATP7B moves from the Golgi to lysosomes and imports metal into their lumen. ATP7B enables lysosomes to undergo exocytosis through the interaction with p62 subunit of dynactin that allows lysosome translocation toward the canalicular pole of hepatocytes. Activation of lysosomal exocytosis stimulates copper clearance from the hepatocytes and rescues the most frequent Wilson-disease-causing ATP7B mutant to the appropriate functional site. Our findings indicate that lysosomes serve as an important intermediate in ATP7B trafficking, whereas lysosomal exocytosis operates as an integral process in copper excretion and hence can be targeted for therapeutic approaches to combat Wilson disease.
Collapse
Affiliation(s)
- Elena V Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Mafalda Concilli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Simona Iacobacci
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Giancarlo Chesi
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Nunzia Pastore
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples 80125, Italy
| | | | - Sven C D van IJzendoorn
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen 9713, the Netherlands
| | - Jefferson Chan
- Department of Chemistry and Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher J Chang
- Department of Chemistry and Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy
| | - Piero Pucci
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy
| | - Antonietta Tarallo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Giancarlo Parenti
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy; Medical Genetics, Department of Translational and Medical Sciences, Federico II University, Naples 80125, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy; Medical Genetics, Department of Translational and Medical Sciences, Federico II University, Naples 80125, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Medical Genetics, Department of Translational and Medical Sciences, Federico II University, Naples 80125, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dulbecco Telethon Institute, TIGEM, Naples 80131, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Medical Genetics, Department of Translational and Medical Sciences, Federico II University, Naples 80125, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy.
| |
Collapse
|