451
|
Won H, Lee J, Shin D, Park J, Nam J, Kim H, Kong G. Loss of Mel‐18 enhances breast cancer stem cell activity and tumorigenicity through activating Notch signaling mediated by the Wnt/TCF pathway. FASEB J 2012; 26:5002-13. [DOI: 10.1096/fj.12-209247] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hee‐Young Won
- Department of PathologyCollege of MedicineHanyang UniversitySeoulRepublic of Korea
| | - Jeong‐Yeon Lee
- Institute for Bioengineering and Biopharmaceutical ResearchHanyang UniversitySeoulRepublic of Korea
| | - Dong‐Hui Shin
- Department of PathologyCollege of MedicineHanyang UniversitySeoulRepublic of Korea
| | - Ji‐Hye Park
- Department of PathologyCollege of MedicineHanyang UniversitySeoulRepublic of Korea
| | - Jeong‐Seok Nam
- Laboratory of Tumor SuppressorLee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and ScienceIncheonRepublic of Korea
| | - Hyoung‐Chin Kim
- Biomedical Mouse Resource CenterKorea Research Institute of Bioscience and BiotechnologyCheongjuRepublic of Korea
| | - Gu Kong
- Department of PathologyCollege of MedicineHanyang UniversitySeoulRepublic of Korea
- Institute for Bioengineering and Biopharmaceutical ResearchHanyang UniversitySeoulRepublic of Korea
| |
Collapse
|
452
|
Stem cells in breast tumours: Are they ready for the clinic? Eur J Cancer 2012; 48:2104-16. [DOI: 10.1016/j.ejca.2012.03.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/12/2012] [Accepted: 03/25/2012] [Indexed: 12/29/2022]
|
453
|
Pollak MN. Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov 2012; 2:778-90. [PMID: 22926251 DOI: 10.1158/2159-8290.cd-12-0263] [Citation(s) in RCA: 401] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Laboratory research and pharmacoepidemiology are providing converging evidence that the widely used antidiabetic drug metformin has antineoplastic activity, but there are caveats. Although population studies suggest that metformin exposure is associated with reduced cancer risk and/or improved prognosis, these data are mostly retrospective and nonrandomized. Laboratory models show antineoplastic activity, but metformin concentrations used in many experiments exceed those achieved with conventional doses used for diabetes treatment. Ongoing translational research should be useful in guiding design of clinical trials, not only to evaluate metformin at conventional antidiabetic doses, where reduction of elevated insulin levels may contribute to antineoplastic activity for certain subsets of patients, but also to explore more aggressive dosing of biguanides, which may lead to reprogramming of energy metabolism in a manner that could provide important opportunities for synthetic lethality through rational drug combinations or in the context of genetic lesions associated with hypersensitivity to energetic stress. SIGNIFICANCE There are tantalizing clues that justify the investigation of antineoplastic activities of biguanides. The complexity of their biologic effects requires further translational research to guide clinical trial design.
Collapse
Affiliation(s)
- Michael N Pollak
- Department of Oncology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
454
|
Payne KK, Manjili MH. Adaptive immune responses associated with breast cancer relapse. Arch Immunol Ther Exp (Warsz) 2012; 60:345-50. [PMID: 22911133 DOI: 10.1007/s00005-012-0185-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/28/2012] [Indexed: 12/21/2022]
Abstract
The generation, survival, and differentiation of breast cancer stem cells (BCSC) in immunocompetent hosts remain elusive. Some investigators have shown that BCSC can be induced from epithelial tumor cells by the pathologic epithelial to mesenchymal transition (EMT). Emerging evidence suggests that the induction of EMT among epithelial tumor cells originates from signals produced by the non-tumor cells that constitute the tumor microenvironment, including the immune effectors that infiltrate the tumors. Thus, this suggests that the immune system not only has anti-tumor function, but also paradoxically immunoedits tumors, facilitating tumor escape and progression. Indeed, many studies in human breast cancers show both positive and negative associations between the infiltration of various immune effectors (e.g., CD4 and CD8 T cells) and the propensity to relapse with metastatic disease. These observations suggest that distinct types of immune effector cells may induce or inhibit tumor relapse. This review focuses on recent advances in identifying components of the immune system that may directly induce tumor escape and relapse. We propose that levels of interferon (IFN)-γ production or levels of the expression of IFN-γ receptor α on tumor cells may determine whether tumor inhibitory or relapse-promoting effect of IFN-γ may prevail.
Collapse
Affiliation(s)
- Kyle K Payne
- Department of Microbiology and Immunology, Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Box 980035, Richmond, VA 23298, USA
| | | |
Collapse
|
455
|
An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state. Proc Natl Acad Sci U S A 2012; 109:14470-5. [PMID: 22908280 DOI: 10.1073/pnas.1212811109] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer stem-like cells (CSCs) are a highly tumorigenic cell type present as a minority population in developmentally diverse tumors and cell lines. Using a genetic screen in an inducible model of CSC formation in a breast cell line, we identify microRNAs (miRNAs) that inhibit CSC growth and are down-regulated in CSCs. Aside from the previously identified miR-200 family, these include the miR-15/16 (miR-16, miR-15b) and miR-103/107 (miR-103, miR-107) families as well as miR-145, miR-335, and miR-128b. Interestingly, these miRNAs affect common target genes that encode the Bmi1 and Suz12 components of the polycomb repressor complexes as well as the DNA-binding transcription factors Zeb1, Zeb2, and Klf4. Conversely, expression of the CSC-modulating miRNAs is inhibited by Zeb1 and Zeb2. There is an inverse relationship between the levels of CSC-regulating miRNAs and their respective targets in samples from triple-negative breast cancer patients, providing evidence for the relevance of these interactions in human cancer. In addition, combinatorial overexpression of these miRNAs progressively attenuates the growth of CSCs derived from triple-negative breast cancers. These observations suggest that CSC formation and function are reinforced by an integrated regulatory circuit of miRNAs, transcription factors, and chromatin-modifying activities that can act as a bistable switch to drive cells into either the CSC or the nonstem state within the population of cancer cells.
Collapse
|
456
|
Jinushi M, Baghdadi M, Chiba S, Yoshiyama H. Regulation of cancer stem cell activities by tumor-associated macrophages. Am J Cancer Res 2012; 2:529-539. [PMID: 22957305 PMCID: PMC3433107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/05/2012] [Indexed: 06/01/2023] Open
Abstract
Recent studies revealed that tumor-associated macrophages play a decisive role in the regulation of tumor progression by manipulating tumor oncogenesis, angiogenesis and immune functions within tumor microenvironments. However, the role of cancer stem cells in the tumorigenic activities of tumor-associated macrophages during the course of transformation and treatment remains largely unknown. Recent studies have clarified the functional aspects of tumor-associated macrophages in the regulation of the tumorigenic activities and anticancer drug responsiveness of cancer stem cells through complex networks formed by distinct sets of cytokines, chemokines and growth factors. In this article we discuss recent advances and future perspectives regarding the molecular interplay between cancer stem cells and tumor-associated macrophages and provide future perspective about the therapeutic implication against treatment-resistant variants of cancer.
Collapse
Affiliation(s)
- Masahisa Jinushi
- Research Center for Infection-associated cancer, Institute for Genetic Medicine, Hokkaido University Sapporo, Japan
| | | | | | | |
Collapse
|
457
|
Cruz MH, Sidén A, Calaf GM, Delwar ZM, Yakisich JS. The stemness phenotype model. ISRN ONCOLOGY 2012; 2012:392647. [PMID: 22928120 PMCID: PMC3423925 DOI: 10.5402/2012/392647] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/23/2012] [Indexed: 12/15/2022]
Abstract
The identification of a fraction of cancer stem cells (CSCs) associated with resistance to chemotherapy in most solid tumors leads to the dogma that eliminating this fraction will cure cancer. Experimental data has challenged this simplistic and optimistic model. Opposite to the classical cancer stem cell model, we introduced the stemness phenotype model (SPM), which proposed that all glioma cells possess stem cell properties and that the stemness is modulated by the microenvironment. A key prediction of the SPM is that to cure gliomas all gliomas cells (CSCs and non-CSCs) should be eliminated at once. Other theories closely resembling the SPM and its predictions have recently been proposed, suggesting that the SPM may be a useful model for other type of tumors. Here, we review data from other tumors that strongly support the concepts of the SPM applied to gliomas. We include data related to: (1) the presence of a rare but constant fraction of CSCs in established cancer cell lines, (2) the clonal origin of cancer, (3) the symmetrical division, (4) the ability of “non-CSCs” to generate “CSCs,” and (5) the effect of the microenvironment on cancer stemness. The aforenamed issues that decisively supported the SPM proposed for gliomas can also be applied to breast, lung, prostate cancer, and melanoma and perhaps other tumors in general. If the glioma SPM is correct and can be extrapolated to other types of cancer, it will have profound implications in the development of novel modalities for cancer treatment.
Collapse
Affiliation(s)
- M H Cruz
- Department of Clinical Neuroscience R54, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
458
|
Notas G, Kampa M, Pelekanou V, Castanas E. Interplay of estrogen receptors and GPR30 for the regulation of early membrane initiated transcriptional effects: A pharmacological approach. Steroids 2012; 77:943-50. [PMID: 22138208 DOI: 10.1016/j.steroids.2011.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 11/05/2011] [Accepted: 11/09/2011] [Indexed: 01/08/2023]
Abstract
Estrogens exert their effect through ERα and ERβ intracellular transcription factors and rapid, usually membrane-initiated receptors, influencing cytosolic signaling and transcription. The nature of extranuclear estrogen elements has not been elucidated so far; classical or alternatively transcribed ER isoforms (ERα36, ERα46) anchored to the plasma membrane and GPR30 (GPER1) have been reported to exert early estrogen actions. Here, we used E2-BSA, an impermeable estradiol analog for a transcriptome analysis in four GREP1 positive breast cancer cell lines with different estrogen receptor profiles (T47D, MCF-7, MDA-MB-231 and SKBR3) in order to evaluate GPER1 transcriptional effects. Early effects of E2-BSA were assayed after 3h of incubation, in the absence/presence of ICI182,780 (ER-inhibitor) or G15 (GREP1-specific inhibitor). E2-BSA specifically modified 277-549 transcripts in the different cell lines. Two different clusters of transcripts could be identified: (1) the majority of transcripts were inhibited by both ICI182,780 and G15, suggesting an interaction of E2-BSA with a common ER-related element, or a direct ER-GPER1 interaction; (2) a small number of G15-only modified transcripts, in two cell lines (T47D and SKBR3 cells), indicative of specific GPER1-related effects. The latter transcripts were significantly related to pathways including FOXA2/FOXA3 transcription factor networks, RNA-Polymerases Transcription Regulation and lipid metabolism, while ICI/G15 inhibited transcripts affected pathways related to apoptosis, erythropoietin signaling, metabolic effects through the citric acid cycle, IL-4 and IL-5 mediated events and homologous DNA recombination. Finally, we review the current literature of GPER1 actions, in view of our results of ER-dependent and independent GPER1-modified pathways.
Collapse
Affiliation(s)
- George Notas
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Greece.
| | | | | | | |
Collapse
|
459
|
Ernst M, Putoczki TL. Stat3: Linking inflammation to (gastrointestinal) tumourigenesis. Clin Exp Pharmacol Physiol 2012; 39:711-8. [DOI: 10.1111/j.1440-1681.2011.05659.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Matthias Ernst
- Ludwig Institute for Cancer Research; Melbourne Parkville Branch; Melbourne; Victoria; Australia
| | - Tracy L Putoczki
- Ludwig Institute for Cancer Research; Melbourne Parkville Branch; Melbourne; Victoria; Australia
| |
Collapse
|
460
|
Pearce TR, Shroff K, Kokkoli E. Peptide targeted lipid nanoparticles for anticancer drug delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3803-22, 3710. [PMID: 22674563 DOI: 10.1002/adma.201200832] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Indexed: 05/21/2023]
Abstract
Encapsulating anticancer drugs in nanoparticles has proven to be an effective mechanism to alter the pharmacokinetic and pharmacodynamic profiles of the drugs, leading to clinically useful cancer therapeutics like Doxil and DaunoXome. Underdeveloped tumor vasculature and lymphatics allow these first-generation nanoparticles to passively accumulate within the tumor, but work to create the next-generation nanoparticles that actively participate in the tumor targeting process is underway. Lipid nanoparticles functionalized with targeting peptides are among the most often studied. The goal of this article is to review the recently published literature of targeted nanoparticles to highlight successful designs that improved in vivo tumor therapy, and to discuss the current challenges of designing these nanoparticles for effective in vivo performance.
Collapse
Affiliation(s)
- Timothy R Pearce
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
461
|
Non-small cell lung cancer stem/progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit plasticity. Cell Death Dis 2012; 3:e352. [PMID: 22825470 PMCID: PMC3406592 DOI: 10.1038/cddis.2012.93] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) represent a population of cancer cells that possess unique self-renewal and differentiation characteristics required for tumorigenesis and are resistant to chemotherapy-induced apoptosis. Lung CSCs can be enriched by several markers including drug-resistant side population (SP), CD133pos and ALDHhigh. Using human non-small cell lung adenocarcinoma cell lines and patient-derived primary tumor cells, we demonstrate that SP cells represent a subpopulation distinct from other cancer stem/progenitor cell (CS/PC) populations marked by CD133pos or ALDHhigh. The non-CS/PCs and CS/PCs of each subpopulation are interconvertible. Epithelial-mesenchymal transition (EMT) promotes the formation of CD133pos and ALDHhigh CS/PC subpopulations while suppressing the SP CS/PC subpopulation. Rac1 GTPase activity is significantly increased in cells that have undergone EMT, and targeting Rac1 is effective in inhibiting the dynamic conversion of non-CS/PCs to CS/PCs, as well as the CS/PC activity. These results imply that various subpopulations of CS/PCs and non-CS/PCs may achieve a stochastic equilibrium in a defined microenvironment, and eliminating multiple subpopulations of CS/PCs and effectively blocking non-CS/PC to CS/PC transition, by an approach such as targeting Rac1, can be a more effective therapy.
Collapse
|
462
|
Korkaya H, Kim GI, Davis A, Malik F, Henry NL, Ithimakin S, Quraishi AA, Tawakkol N, D'Angelo R, Paulson AK, Chung S, Luther T, Paholak HJ, Liu S, Hassan KA, Zen Q, Clouthier SG, Wicha MS. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell 2012; 47:570-84. [PMID: 22819326 DOI: 10.1016/j.molcel.2012.06.014] [Citation(s) in RCA: 439] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 03/05/2012] [Accepted: 06/14/2012] [Indexed: 01/16/2023]
Abstract
Although inactivation of the PTEN gene has been implicated in the development of resistance to the HER2 targeting antibody trastuzumab, the mechanisms mediating this resistance remain elusive. We generated trastuzumab resistant cells by knocking down PTEN expression in HER2 overexpressing breast cancer cell lines and demonstrate that development of trastuzumab resistance in these cells is mediated by activation of an IL6 inflammatory feedback loop leading to expansion of the cancer stem cell (CSC) population. Long term trastuzumab treatment generates highly enriched CSCs which display an EMT phenotype secreting over 100-fold more IL6 than parental cells. An IL6 receptor antibody interrupted this inflammatory feedback loop reducing the cancer stem cell population resulting in decreased tumor growth and metastasis in mouse xenographs. These studies demonstrate that trastuzumab resistance may be mediated by an IL6 inflammatory loop and suggest that blocking this loop may provide alternative strategy to overcome trastuzumab resistance.
Collapse
Affiliation(s)
- Hasan Korkaya
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5942, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
463
|
Abstract
Cancer progression is a dynamic process of clonal adaptation to changing microenvironments. From the single founder cell until the clinical detection of tumours, there are consecutive clonal expansions and a constant acquisition of genetic and epigenetic alterations, events that contribute to the generation of intra-tumor heterogeneity. In breast cancer intra-tumor heterogeneity can arise from the differentiation of stem-like cells along with the clonal selection during tumor progression, and represents a major challenge for the design of effective therapies. To infer breast cancer progression and its response to particular treatments it is important to understand the origins of the inter- and intra-tumor heterogeneity and the forces that control tumor evolution. Insights about the evolution of breast cancer heterogeneity would contribute to the design of most effective therapeutic strategies to target the tumors at single clon level. This review is intended to give a general overview about the origins of breast cancer heterogeneity and its impact in the clinical management of the disease.
Collapse
|
464
|
Yoo BH, Axlund SD, Kabos P, Reid BG, Schaack J, Sartorius CA, LaBarbera DV. A high-content assay to identify small-molecule modulators of a cancer stem cell population in luminal breast cancer. ACTA ACUST UNITED AC 2012; 17:1211-20. [PMID: 22751729 DOI: 10.1177/1087057112452138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Breast cancers expressing hormone receptors for estrogen (ER) and progesterone (PR) represent ~70% of all cases and are treated with both ER-targeted and chemotherapies, with near 40% becoming resistant. We have previously described that in some ER(+) tumors, the resistant cells express cytokeratin 5 (CK5), a putative marker of breast stem and progenitor cells. CK5(+) cells have lost expression of ER and PR, express the tumor-initiating cell surface marker CD44, and are relatively quiescent. In addition, progestins, which increase breast cancer incidence, expand the CK5(+) subpopulation in ER(+)PR(+) breast cancer cell lines. We have developed models to induce and quantitate CK5(+)ER(-)PR(-) cells, using CK5 promoter-driven luciferase (Fluc) or green fluorescent protein (GFP) reporters stably transduced into T47D breast cancer cells (CK5Pro-GFP or CK5Pro-Luc). We validated the CK5Pro-GFP-T47D model for high-content screening in 96-well microplates and performed a pilot screen using a focused library of 280 compounds from the National Institutes of Health clinical collection. Four hits were obtained that significantly abrogated the progestin-induced CK5(+) cell population, three of which were members of the retinoid family. Hence, this approach will be useful in discovering small molecules that could potentially be developed as combination therapies, preventing the acquisition of a drug-resistant subpopulation.
Collapse
Affiliation(s)
- Byong Hoon Yoo
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy, The University of Colorado, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
465
|
Axlund SD, Sartorius CA. Progesterone regulation of stem and progenitor cells in normal and malignant breast. Mol Cell Endocrinol 2012; 357:71-9. [PMID: 21945473 PMCID: PMC3288619 DOI: 10.1016/j.mce.2011.09.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 08/26/2011] [Accepted: 09/11/2011] [Indexed: 12/17/2022]
Abstract
Progesterone plays an important, if not controversial, role in mammary epithelial cell proliferation and differentiation. Evidence supports that progesterone promotes rodent mammary carcinogenesis under some conditions, progesterone receptors (PR) are necessary for murine mammary gland tumorigenesis, and exogenous progestin use in post-menopausal women increases breast cancer risk. Thus, the progesterone/PR signaling axis can promote mammary tumorigenesis, albeit in a context-dependent manner. A mechanistic basis for the tumor promoting actions of progesterone has thus far remained unknown. Recent studies, however, have identified a novel role for progesterone in controlling the number and function of stem and progenitor cell populations in the normal human and mouse mammary glands, and in human breast cancers. These discoveries promise to reshape our perception of progesterone function in the mammary gland, and have spawned new hypotheses for how progestins may increase the risk of breast cancer. Here we review studies on progesterone regulation of mammary stem cells in normal and malignant tissue, and their implications for breast cancer risk, tumorigenesis, and tumor behavior.
Collapse
Affiliation(s)
| | - Carol A. Sartorius
- Corresponding author at: University of Colorado Anschutz Medical Center, 12801 E 17th Ave. MS8104, Aurora, CO 80045, United States. Tel: +1 303-724-3937; Fax: +1 303-724-3712. (C.A. Sartorius)
| |
Collapse
|
466
|
Xia J, Chen C, Chen Z, Miele L, Sarkar FH, Wang Z. Targeting pancreatic cancer stem cells for cancer therapy. Biochim Biophys Acta Rev Cancer 2012; 1826:385-99. [PMID: 22728049 DOI: 10.1016/j.bbcan.2012.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/14/2012] [Accepted: 06/13/2012] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer (PC) is the fourth most frequent cause of cancer death in the United States. Emerging evidence suggests that pancreatic cancer stem cells (CSCs) play a crucial role in the development and progression of PC. Recently, there is increasing evidence showing that chemopreventive agents commonly known as nutraceuticals could target and eliminate CSCs that have been proposed as the root of the tumor progression, which could be partly due to attenuating cell signaling pathways involved in CSCs. Therefore, targeting pancreatic CSCs by nutraceuticals for the prevention of tumor progression and treatment of PC may lead to the development of novel strategy for achieving better treatment outcome of PC patients. In this review article, we will summarize the most recent advances in the pancreatic CSC field, with particular emphasis on nutraceuticals that target CSCs, for fighting this deadly disease.
Collapse
Affiliation(s)
- Jun Xia
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui, People's Republic of China
| | | | | | | | | | | |
Collapse
|
467
|
Dynamic equilibrium between cancer stem cells and non-stem cancer cells in human SW620 and MCF-7 cancer cell populations. Br J Cancer 2012; 106:1512-9. [PMID: 22472879 PMCID: PMC3341854 DOI: 10.1038/bjc.2012.126] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Cancer stem cells (CSCs) paradigm suggests that CSCs might have important clinical implications in cancer therapy. Previously, we reported that accumulation efficiency of CSCs is different post low- and high-LET irradiation in 48 h. Methods: Cancer stem cells and non-stem cancer cells (NSCCs) were sorted and functionally identified through a variety of assays such as antigen profiles and sphere formation. Inter-conversion between CSCs and NSCCs were in situ visualised. Cancer stem cells proportions were assayed over multiple generations under normal and irradiation surroundings. Supplement and inhibition of TGF-β1, as well as immunofluorescence assay of E-cadherin and Vimentin, were performed. Results: Surface antigen markers of CSCs and NSCCs exist in an intrinsic homoeostasis state with spontaneous and in situ visualisable inter-conversions, irrespective of prior radiations. Supplement with TGF-β1 accelerates the equilibrium, whereas inhibition of TGF-β signalling disturbs the equilibrium and significantly decreases CSC proportion. Epithelial mesenchymal transition (EMT) might be activated during the process. Conclusion: Our results indicate that the intrinsic inter-conversion and dynamic equilibrium between CSCs and NSCCs exist under normal and irradiation surroundings, and TGF-β might have important roles in the equilibrium through activating EMT.
Collapse
|
468
|
De Vito C, Riggi N, Cornaz S, Suvà ML, Baumer K, Provero P, Stamenkovic I. A TARBP2-dependent miRNA expression profile underlies cancer stem cell properties and provides candidate therapeutic reagents in Ewing sarcoma. Cancer Cell 2012; 21:807-21. [PMID: 22698405 DOI: 10.1016/j.ccr.2012.04.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/12/2012] [Accepted: 04/09/2012] [Indexed: 12/21/2022]
Abstract
We have recently demonstrated that human pediatric mesenchymal stem cells can be reprogrammed toward a Ewing sarcoma family tumor (ESFT) cancer stem cell (CSC) phenotype by mechanisms that implicate microRNAs (miRNAs). Here, we show that the miRNA profile of ESFT CSCs is shared by embryonic stem cells and CSCs from divergent tumor types. We also provide evidence that the miRNA profile of ESFT CSCs is the result of reversible disruption of TARBP2-dependent miRNA maturation. Restoration of TARBP2 activity and systemic delivery of synthetic forms of either of two of its targets, miRNA-143 or miRNA-145, inhibited ESFT CSC clonogenicity and tumor growth in vivo. Our observations suggest that CSC self-renewal and tumor maintenance may depend on deregulation of TARBP2-dependent miRNA expression.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cells, Cultured
- Child
- Child, Preschool
- Embryonic Stem Cells/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Male
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- MicroRNAs/genetics
- Mutation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/pathology
- Sarcoma, Ewing/therapy
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Claudio De Vito
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
469
|
Xu Y, Tokar EJ, Sun Y, Waalkes MP. Arsenic-transformed malignant prostate epithelia can convert noncontiguous normal stem cells into an oncogenic phenotype. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:865-71. [PMID: 22472196 PMCID: PMC3385457 DOI: 10.1289/ehp.1204987] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/27/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are likely critical to carcinogenesis, and, like normal stem cells (NSCs), are affected by microenvironmental factors. Malignant cells release extracellular factors, modifying tumor behavior. Inorganic arsenic, a human carcinogen, is associated with an overproduction of CSCs in various model systems of carcinogenesis. OBJECTIVE We aimed to determine if NSCs are influenced by nearby arsenic-transformed malignant epithelial cells (MECs) as a possible factor in arsenic-associated CSC overabundance. METHODS Transwell noncontact co-culture allowed the study of the effects of non-contiguous, arsenic-transformed prostate MECs on the isogenic human prostate NSC line, WPE-stem. Cancer phenotype was assessed by evaluating secreted matrix metalloproteinases (MMPs), invasiveness, colony formation, and spheroid formation. Gene expression was assessed at the protein (Western blot) or mRNA (real-time reverse transcription-polymerase chain reaction) levels. RESULTS Noncontact co-culture of MECs and NSCs rapidly (≤ 3 weeks) caused hypersecretion of MMPs and marked suppression of the tumor suppressor gene PTEN in NSCs. NSCs co-cultured with MECs also showed increased invasiveness and clonogenicity and formed more free-floating spheroids and highly branched ductal-like structures in Matrigel, all typical for CSCs. MEC co-culture caused dysregulated self-renewal and differentiation-related gene expression patterns and epithelial-to-mesenchymal transition in NSCs consistent with an acquired cancer phenotype. Interleukin-6 (IL-6), a cytokine involved in tumor microenvironment control, was hypersecreted by MECs, and IL-6 exposure of NSCs resulted in the duplication of several responses in NSCs of conversion to CSCs via MEC co-culture (e.g., MMP hypersecretion, decreased PTEN). CONCLUSIONS Arsenic-transformed MECs recruit nearby NSCs into a cancer phenotype, thereby potentially increasing CSC number. This may be a factor in arsenic-induced CSC overabundance seen in multiple model systems.
Collapse
Affiliation(s)
- Yuanyuan Xu
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | | | | | | |
Collapse
|
470
|
Epigenetic impact of dietary polyphenols in cancer chemoprevention: Lifelong remodeling of our epigenomes. Pharmacol Res 2012; 65:565-76. [DOI: 10.1016/j.phrs.2012.03.007] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/10/2012] [Accepted: 03/13/2012] [Indexed: 02/07/2023]
|
471
|
Abstract
The current resurgence of interest in the cancer stem cell (CSC) hypothesis as possibly providing a unifying theory of cancer biology is fueled by the growing body of work on normal adult tissue stem cells and the promise that CSC may hold the key to one of the central problems of clinical oncology: tumor recurrence. Many studies suggest that the microenvironment plays a role, perhaps a seminal one, in cancer development and progression. In addition, the possibility that the stem cell-like component of tumors is capable of rapid and reversible changes of phenotype raises questions concerning studies with these populations and the application of what we learn to the clinical situation. These types of questions are extremely difficult to study using in vivo models or freshly isolated cells. Established cell lines grown in defined conditions provide important model systems for these studies. There are three types of in vitro models for CSCs: (a) selected subpopulations of existing tumor lines (derived from serum-containing medium; (b) creation of lines from tumor or normal cells by genetic manipulation; or (c) direct in vitro selection of CSC from tumors or sorted tumor cells using defined serum-free conditions. We review the problems associated with creating and maintaining in vitro cultures of CSCs and the progress to date on the establishment of these important models.
Collapse
|
472
|
Abstract
Why are many metastases differentiated? Invading and disseminating carcinoma cells can undergo an epithelial-mesenchymal transition (EMT), which is associated with a gain of stem cell-like behaviour. Therefore, EMT has been linked to the cancer stem cell concept. However, it is a matter of debate how subsequent mesenchymal-epithelial transition (MET) fits into the metastatic process and whether a MET is essential. In this Opinion article, I propose two principle types of metastatic progression: phenotypic plasticity involving transient EMT-MET processes and intrinsic genetic alterations keeping cells in an EMT and stemness state. This simplified classification integrates clinically relevant aspects of dormancy, metastatic tropism and therapy resistance, and implies perspectives on treatment strategies against metastasis.
Collapse
Affiliation(s)
- Thomas Brabletz
- Department of General and Visceral Surgery and Comprehensive Cancer Center, University of Freiburg Medical Center, Hugstetter Str. 55, 79106 Freiburg, Germany.
| |
Collapse
|
473
|
Wouters J, Stas M, Govaere O, Van den Eynde K, Vankelecom H, van den Oord JJ. Gene expression changes in melanoma metastases in response to high-dose chemotherapy during isolated limb perfusion. Pigment Cell Melanoma Res 2012; 25:454-65. [PMID: 22486811 DOI: 10.1111/j.1755-148x.2012.01004.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite recent advances in melanoma therapy, disseminated melanoma still lacks effective treatment, and recurrence of the tumor frequently occurs, even after high-dose chemotherapy. The mechanisms responsible for this chemoresistance or for the formation of new relapses remain poorly understood. Using a human 'model', in which the isolated limb is perfused with high doses of the chemotherapeutic melphalan (ILP), we identified a five-gene set (ATF3, CYR61, IER5, IL6, and PTGS2) of stress-induced genes that was consistently upregulated after ILP in all in-transit metastatic melanoma samples as well as in three melphalan-treated melanoma cell lines. Early post-ILP relapses retained these elevated expressions, whereas the expression of these genes returned to their original levels in late post-ILP recurrences. In addition, we identified upregulation of these genes in the A375 cell line's side population (SP) and melanospheres, established methods to enrich for candidate cancer stem cells (CSCs), which are considered chemoresistant and tumorigenic, and thus proposed to be responsible for tumor relapse. Our data identify an immediate and short-term upregulation of early stress-responsive genes that are potentially linked to chemoresistance and CSCs.
Collapse
Affiliation(s)
- Jasper Wouters
- Translational Cell & Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
474
|
Pre-clinical studies of Notch signaling inhibitor RO4929097 in inflammatory breast cancer cells. Breast Cancer Res Treat 2012; 134:495-510. [PMID: 22547109 DOI: 10.1007/s10549-012-2075-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 04/17/2012] [Indexed: 02/06/2023]
Abstract
Basal breast cancer, common among patients presenting with inflammatory breast cancer (IBC), has been shown to be resistant to radiation and enriched in cancer stem cells. The Notch pathway plays an important role in self-renewal of breast cancer stem cells and contributes to inflammatory signaling which promotes the breast cancer stem cell phenotype. Herein, we inhibited Notch signaling using a gamma secretase inhibitor, RO4929097, in an in vitro model that enriches for cancer initiating cells (3D clonogenic assay) and conventional 2D clonogenic assay to compare the effect on radiosensitization of the SUM149 and SUM190 IBC cell lines. RO4929097 downregulated the Notch target genes Hes1, Hey1, and HeyL, and showed a significant reduction in anchorage independent growth in SUM190 and SUM149. However, the putative self-renewal assay mammosphere formation efficiency was increased with the drug. To assess radiosensitization of putative cancer stem cells, cells were exposed to increasing doses of radiation with or without 1 μM RO4929097 in their standard (2D) and self-renewal enriching (3D) culture conditions. In the conventional 2D clonogenic assay, RO4929097 significantly sensitized SUM190 cells to ionizing radiation and has a modest radiosensitization effect in SUM149 cells. In the 3D clonogenic assays, however, a radioprotective effect was seen in both SUM149 and SUM190 cells at higher doses. Both cell lines express IL-6 and IL-8 cytokines known to mediate the efficacy of Notch inhibition and to promote self-renewal of stem cells. We further showed that RO429097 inhibits normal T-cell synthesis of some inflammatory cytokines, including TNF-α, a potential mediator of IL-6 and IL-8 production in the microenvironment. These data suggest that additional targeting agents may be required to selectively target IBC stem cells through Notch inhibition, and that evaluation of microenvironmental influences may shed further light on the potential effects of this inhibitor.
Collapse
|
475
|
Libertini SJ, Chen H, al-Bataina B, Koilvaram T, George M, Gao AC, Mudryj M. The interleukin 6 receptor is a direct transcriptional target of E2F3 in prostate tumor derived cells. Prostate 2012; 72:649-60. [PMID: 21837779 DOI: 10.1002/pros.21468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 07/05/2011] [Indexed: 01/09/2023]
Abstract
BACKGROUND The E2F/RB pathway is frequently disrupted in multiple human cancers. E2F3 levels are elevated in prostate tumors and E2F3 overexpression independently predicts clinical outcome. The goals of this study were to identify direct transcriptional targets of E2F3 in prostate tumor derived cells. METHODS Expression array studies identified the interleukin 6 receptor (IL-6R) as an E2F3 target. E2F3-dependent expression of IL-6R was analyzed by real time PCR and Western immunoblot analysis in several cell lines. Chromatin immunoprecipitation (ChIP) and IL-6R-luciferase reporter plasmid studies were used to characterize the IL-6R promoter. RESULTS Expression array studies identified genes that were regulated by E2F3 in prostate tumor derived cell lines. The network most significantly associated with E2F3-regulated transcripts was cytokine signaling and the IL-6R was a component of several of the most prominent E2F3-regulated pathways. The transcriptional regulation of IL-6R by E2F3 knockdown was validated in several prostate tumor-derived cell lines at the RNA level and protein level. The IL-6R regulatory region containing ChIP-identified E2F3 binding sites was cloned into a reporter and co-transfected with an E2F3a expression plasmid. The luciferase assay showed that E2F3a transactivated the IL-6R promoter in a dose dependent manner. The functional consequence of IL-6R decrease was a reduction in the levels of ERK1/2 phosphorylation, indicating that IL-6R initiated signaling was altered. CONCLUSION These studies connect the E2F and IL-6 signaling cascade, thus providing the mechanistic link between two major regulatory networks that are perturbed during prostate tumorigenesis.
Collapse
Affiliation(s)
- Stephen J Libertini
- Veterans Affairs-Northern California Health Care System, Mather, California, USA
| | | | | | | | | | | | | |
Collapse
|
476
|
Smalley M, Piggott L, Clarkson R. Breast cancer stem cells: obstacles to therapy. Cancer Lett 2012; 338:57-62. [PMID: 22554712 DOI: 10.1016/j.canlet.2012.04.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 12/31/2022]
Abstract
Only a fraction of the cells in a breast tumour are able to seed new tumour growth. These so-called breast cancer stem cells (bCSCs) are characterised by a number of discrete functional properties, some of which impact on therapeutic strategies aimed at eliminating these cells from tumours. Here we discuss how recent experimental evidence indicates that phenotypic plasticity is a central feature of tumour cell heterogeneity and drug resistance, traits that must be overcome in order to efficiently target bCSCs as a therapy for breast cancer. We propose that a better understanding of this fundamental property of breast cancer stem cells, over and above their identification in tumours, is a priority for improvement of patient survival.
Collapse
Affiliation(s)
- Matthew Smalley
- European Cancer Stem Cell Research Institute, University of Cardiff, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | | | | |
Collapse
|
477
|
The bed and the bugs: interactions between the tumor microenvironment and cancer stem cells. Semin Cancer Biol 2012; 22:462-70. [PMID: 22548722 DOI: 10.1016/j.semcancer.2012.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/16/2012] [Indexed: 12/26/2022]
Abstract
Tumors have been increasingly recognized as organs with a complexity that approaches, and may even exceed, that of healthy tissues. When viewed from this perspective, the biology of a tumor can be understood only by studying tumor cell heterogeneity and the microenvironment that is constructed during the course of tumorigenesis and malignant progression. Recent work has revealed the existence of cancer stem cells, the "bugs", with the capacity for self-renewal and tumor propagation. In addition, it is now recognized that the tumor microenvironment, the "bed", plays a critical role in supporting cancer stem cells and also may promote neoplasia and malignant progression. The interdependence of the cell-intrinsic features of cancer, including the cancer stem cell "bugs" and the tumor microenvironment "bed", is only beginning to be understood. In this review, we highlight the rapidly evolving concepts about the interactions between tumor stem cells and their microenvironment, the insights gained from studying their normal tissue counterparts, and the questions and controversies surrounding this area of research, with an emphasis on breast and lung cancer. Finally, we address evidence supporting the notion that eliminating the bed as well as the bugs should lead to more effective and personalized cancer treatments that improve patient outcome.
Collapse
|
478
|
Tumor heterogeneity and its implication for drug delivery. J Control Release 2012; 164:187-91. [PMID: 22537887 DOI: 10.1016/j.jconrel.2012.04.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/29/2012] [Accepted: 04/07/2012] [Indexed: 11/22/2022]
Abstract
Evidence continues to accumulate that patient tumors contain heterogeneous cell populations, each of which may contribute differently in extent and mechanism to the progression of malignancy. However, the field of tumor drug delivery research, while continually presenting new and innovative approaches, in many ways continues to operate on the premise that essentially all tumor cells are identical. In some in vivo models, xenograft tumors using cell lines may actually be comparatively homogeneous, and thus result in overly encouraging results when a particular drug or delivery system is reported to successfully treat tumors in mice. It is well known, however, that many drugs that show success in preclinical studies will fail in clinical trials. Tumor heterogeneity is possibly one of the most significant factors that most treatment methods fail to address sufficiently. While a particular drug may exhibit initial success, the eventual relapse of tumor growth is due in many cases to subpopulations of cells that are either not affected by the drug mechanism, possess or acquire a greater drug resistance, or have a localized condition in their microenvironment that enables them to evade or withstand the drug. These various subpopulations may include cancer stem cells, mutated clonal variants, and tumor-associated stromal cells, as well as cells experiencing a spatially different condition such as hypoxia within a diffusion-limited tumor region. This review briefly discusses some of the many aspects of tumor heterogeneity and their potential implications for future drug design and delivery methods.
Collapse
|
479
|
Das UN. Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer, and metastasis. Cancer Metastasis Rev 2012; 30:311-24. [PMID: 22005953 DOI: 10.1007/s10555-011-9316-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Stem cells are pluripotent and expected to be of benefit in the management of coronary heart disease, stroke, diabetes mellitus, cancer, and Alzheimer's disease in which pro-inflammatory cytokines are increased. Identifying endogenous bioactive molecules that have a regulatory role in stem cell survival, proliferation, and differentiation may aid in the use of stem cells in various diseases including cancer. Essential fatty acids form precursors to both pro- and anti-inflammatory molecules have been shown to regulate gene expression, enzyme activity, modulate inflammation and immune response, gluconeogenesis via direct and indirect pathways, function directly as agonists of a number of G protein-coupled receptors, activate phosphatidylinositol 3-kinase/Akt and p44/42 mitogen-activated protein kinases, and stimulate cell proliferation via Ca(2+), phospholipase C/protein kinase, events that are also necessary for stem cell survival, proliferation, and differentiation. Hence, it is likely that bioactive lipids play a significant role in various diseases by modulating the proliferation and differentiation of embryonic stem cells in addition to their capacity to suppress inflammation. Ephrin Bs and reelin, adhesion molecules, and microRNAs regulate neuronal migration and cancer cell metastasis. Polyunsaturated fatty acids and their products seem to modulate the expression of ephrin Bs and reelin and several adhesion molecules and microRNAs suggesting that bioactive lipids participate in neuronal regeneration and stem cell proliferation, migration, and cancer cell metastasis. Thus, there appears to be a close interaction among essential fatty acids, their bioactive products, and inflammation and cancer growth and its metastasis.
Collapse
Affiliation(s)
- Undurti N Das
- School of Biotechnology, Jawaharlal Nehru Technological University, Kakinada 533 003, India.
| |
Collapse
|
480
|
Velasco-Velázquez MA, Homsi N, De La Fuente M, Pestell RG. Breast cancer stem cells. Int J Biochem Cell Biol 2012; 44:573-577. [PMID: 22249027 PMCID: PMC3294043 DOI: 10.1016/j.biocel.2011.12.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/15/2011] [Accepted: 12/27/2011] [Indexed: 12/30/2022]
Abstract
Breast cancer stem cells (BCSCs) constitute a subpopulation of tumor cells that express stem cell-associated markers and have a high capacity for tumor generation in vivo. Identification of BCSCs from tumor samples or breast cancer cell lines has been based mainly on CD44(+)/CD24(-/low) or ALDH(+) phenotypes. BCSCs isolation has allowed the analysis of the molecular mechanisms involved in their origin, self-renewal, differentiation into tumor cells, resistance to radiation therapy and chemotherapy, and invasiveness and metastatic ability. Molecular genetic analysis using knockout animals and inducible transgenics has identified NF-κB, c-Jun, p21(CIP1), and Forkhead-like-protein Dach1 involvement in BCSC expansion and fate. Clinical analyses of BCSCs in breast tumors have found a correlation between the proportion of BCSCs and poor prognosis. Therefore, new therapies that specifically target BCSCs are an urgent need. We summarize recent evidence that partially explain the biological characteristics of BCSCs.
Collapse
Affiliation(s)
- Marco A Velasco-Velázquez
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
481
|
Abstract
The origins of tumor-propagating neoplastic stem-like cells [cancer stem cells (CSC)] and their relationship to the bulk population of tumor cells that lack stem-like tumor-propagating features (i.e., transit-amplifying cancer progenitor cells) remain unclear. Recent findings from multiple laboratories show that cancer progenitor cells have the capacity to dedifferentiate and acquire a stem-like phenotype in response to either genetic manipulation or environmental cues. These findings suggest that CSCs and relatively differentiated progenitors coexist in dynamic equilibrium and are subject to bidirectional conversion. In this review, we discuss emerging concepts regarding the stem-like phenotype, its acquisition by cancer progenitor cells, and the molecular mechanisms involved. Understanding the dynamic equilibrium between CSCs and cancer progenitor cells is critical for the development of therapeutic strategies to deplete tumors of their tumor-propagating and treatment-resistant cell subpopulations.
Collapse
Affiliation(s)
- Yunqing Li
- Hugo W Moser Research Institute at Kennedy Krieger, and Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
482
|
Lander AD, Kimble J, Clevers H, Fuchs E, Montarras D, Buckingham M, Calof AL, Trumpp A, Oskarsson T. What does the concept of the stem cell niche really mean today? BMC Biol 2012; 10:19. [PMID: 22405133 PMCID: PMC3298504 DOI: 10.1186/1741-7007-10-19] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/09/2012] [Indexed: 12/12/2022] Open
|
483
|
Yu C, Yao Z, Jiang Y, Keller ET. Prostate cancer stem cell biology. MINERVA UROL NEFROL 2012; 64:19-33. [PMID: 22402315 PMCID: PMC3332041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The cancer stem cell (CSC) model provides insights into pathophysiology of cancers and their therapeutic response. The CSC model has been both controversial, yet provides a foundation to explore cancer biology. In this review, we provide an overview of CSC concepts, biology and potential therapeutic avenues. We then focus on prostate CSC including 1) their purported origin as either basal-derived or luminal-derived cells; 2) markers used for prostate CSC identification; 3) alterations of signaling pathways in prostate CSCs; 4) involvement of prostate CSCs in metastasis of PCa; and 5) microRNA-mediated regulation of prostate CSCs. Although definitive evidence for the identification and characterization of prostate CSCs still remains unclear, future directions pursuing therapeutic targets of CSCs may provide novel insights for the treatment of PCa.
Collapse
Affiliation(s)
- Chunyan Yu
- Department of Urology and Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, P.R. China
| | - Zhi Yao
- Department of Urology and Pathology, University of Michigan, Ann Arbor, Michigan
| | - Yuan Jiang
- Department of Urology and Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, P.R. China
| | - Evan. T. Keller
- Department of Urology and Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
484
|
Guttilla IK, Adams BD, White BA. ERα, microRNAs, and the epithelial-mesenchymal transition in breast cancer. Trends Endocrinol Metab 2012; 23:73-82. [PMID: 22257677 DOI: 10.1016/j.tem.2011.12.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 12/21/2022]
Abstract
The most common form of breast cancer, luminal A, is estrogen receptor α (ERα)-positive and epithelial, but nevertheless can metastasize. The process of epithelial-mesenchymal transition (EMT) is probably the first step in the metastasis of epithelial cancers. We discuss the characteristics of EMT, including factors that induce EMT, and the relationship of EMT to cancer stem cells (CSCs). Estrogen/ERα signaling maintains an epithelial phenotype and suppresses EMT. An overview of microRNAs in breast cancer is presented, including how microRNA biogenesis is altered in cancer and regulated by ERα. We also discuss the role of the miR-200 family in opposing EMT. Finally, we discuss specific microRNAs that target ERα and regulate EMT in breast cancer, and the role of these microRNAs in breast cancer progression.
Collapse
Affiliation(s)
- Irene K Guttilla
- Saint Joseph College, Department of Biology, 1678 Asylum Avenue, West Hartford, CT 06117, USA
| | | | | |
Collapse
|
485
|
Abstract
Heterogeneity is an omnipresent feature of mammalian cells in vitro and in vivo. It has been recently realized that even mouse and human embryonic stem cells under the best culture conditions are heterogeneous containing pluripotent as well as partially committed cells. Somatic stem cells in adult organs are also heterogeneous, containing many subpopulations of self-renewing cells with distinct regenerative capacity. The differentiated progeny of adult stem cells also retain significant developmental plasticity that can be induced by a wide variety of experimental approaches. Like normal stem cells, recent data suggest that cancer stem cells (CSCs) similarly display significant phenotypic and functional heterogeneity, and that the CSC progeny can manifest diverse plasticity. Here, I discuss CSC heterogeneity and plasticity in the context of tumor development and progression, and by comparing with normal stem cell development. Appreciation of cancer cell plasticity entails a revision to the earlier concept that only the tumorigenic subset in the tumor needs to be targeted. By understanding the interrelationship between CSCs and their differentiated progeny, we can hope to develop better therapeutic regimens that can prevent the emergence of tumor cell variants that are able to found a new tumor and distant metastases.
Collapse
|
486
|
Abstract
The cancer stem cell (CSC) concept derives from the fact that cancers are dysregulated tissue clones whose continued propagation is vested in a biologically distinct subset of cells that are typically rare. This idea is not new, but has recently gained prominence because of advances in defining normal tissue hierarchies, a greater appreciation of the multistep nature of oncogenesis and improved methods to propagate primary human cancers in immunodeficient mice. As a result we have obtained new insights into why the CSC concept is not universally applicable, as well as a new basis for understanding the complex evolution, phenotypic heterogeneity and therapeutic challenges of many human cancers.
Collapse
Affiliation(s)
- Long V Nguyen
- Terry Fox Laboratory, British Columbia Cancer Agency and the University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Canada
| | | | | | | |
Collapse
|
487
|
Abstract
Sequences of molecular events that initiate and advance the progression of human colorectal cancer (CRC) are becoming clearer. Accepting that these events, once they are in place, accumulate over time, rapid disease progression might be expected. Yet CRC usually develops slowly over decades. Emerging insights suggest that the tumor cell microenvironment encompassing fibroblasts and endothelial and immune cells dictate when, whether, and how malignancies progress. Signaling pathways that affect the microenvironment and the inflammatory response seem to play a central role in CRC. Indeed, some of these pathways directly regulate the stem/progenitor cell niche at the base of the crypt; it now appears that the survival and growth of neoplastic cells often relies upon their subverted engagement of these pathways. Spurned on by the use of gene manipulation technologies in the mouse, dissecting and recapitulating these complex molecular interactions between the tumor and its microenvironment in the gastrointestinal (GI) tract is a reality. In parallel, our ability to isolate and grow GI stem cells in vitro enables us, for the first time, to complement reductionist in vitro findings with complex in vivo observations. Surprisingly, data suggest that the large number of signaling pathways underpinning the reciprocal interaction between the neoplastic epithelium and its microenvironment converge on a small number of common transcription factors. Here, we review the separate and interactive roles of NFκB, Stat3, and Myb, transcription factors commonly overexpressed or excessively activated in CRC. They confer molecular links between inflammation, stroma, the stem cell niche, and neoplastic cell growth.
Collapse
Affiliation(s)
- Matthias Ernst
- Ludwig Institute for Cancer Research, Melbourne, Victoria, Australia
| | | |
Collapse
|
488
|
Hwang-Verslues WW, Lee WH, Lee EYHP. Biomarkers to Target Heterogeneous Breast Cancer Stem Cells. ACTA ACUST UNITED AC 2012; Suppl 8:6. [PMID: 24977105 PMCID: PMC4072313 DOI: 10.4172/2155-9929.s8-006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most common cancer and the second leading cause of death in U.S. women. Due to early detection and advanced treatment, the breast cancer death rate has been declining since 1990. However, disease recurrence is still the major obstacle in moving from therapy to truly curative treatments. Recent evidence has indicated that breast cancer recurrence is often caused by a subpopulation of breast cancer cells. This subset of cancer cells, usually referred to as breast cancer stem cells (BCSCs), exhibits stem cell phenotypes. They can self-renew and asymmetrically divide to more differentiated cancer cells. These cells are also highly resistant to conventional therapeutic reagents. Therefore, identifying and characterizing these BCSC subpopulations within the larger population of breast cancer cells is essential for developing new strategies to treat breast cancer and prevent recurrence. In this review article, we discuss the current proposed model for the origin of tumor heterogeneity, summarize the recent findings of cell surface and cytoplasmic markers for BCSC identification, review the regulatory mechanisms by which BCSCs maintain or non-cancer stem cells acquire BCSC characteristics, describe the proposed strategies to eliminate BCSCs, and highlight the current limitations and challenges to translate basic BCSC research to clinical application including establishment of clinical biomarkers and therapeutic treatments specifically targeting BCSCs.
Collapse
Affiliation(s)
- Wendy W Hwang-Verslues
- Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 115, Taiwan
| | - Wen-Hwa Lee
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Eva Y-H P Lee
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
489
|
Tumor promotion via injury- and death-induced inflammation. Immunity 2011; 35:467-77. [PMID: 22035839 DOI: 10.1016/j.immuni.2011.09.006] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/03/2011] [Accepted: 09/06/2011] [Indexed: 12/20/2022]
Abstract
Inhibition of programmed cell death is considered to be a major aspect of tumorigenesis. Indeed, several key oncogenic transcription factors, such as NF-κB and STAT3, exert their tumor-promoting activity at least in part through upregulation of survival genes. However, many cancers develop in response to chronic tissue injury, in which the resulting cell death increases the tumorigenic potential of the neighboring cells. In this review, we discuss a resolution to this paradox based on cell death-mediated induction of tumor promoting inflammatory cytokines, which enhance cell survival and trigger compensatory proliferation in response to tissue injury.
Collapse
|
490
|
Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers. Mol Cell 2011; 43:798-810. [PMID: 21884980 DOI: 10.1016/j.molcel.2011.08.011] [Citation(s) in RCA: 331] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/13/2011] [Accepted: 08/15/2011] [Indexed: 01/22/2023]
Abstract
Both EZH2 and NF-κB contribute to aggressive breast cancer, yet whether the two oncogenic factors have functional crosstalk in breast cancer is unknown. Here, we uncover an unexpected role of EZH2 in conferring the constitutive activation of NF-κB target gene expression in ER-negative basal-like breast cancer cells. This function of EZH2 is independent of its histone methyltransferase activity but requires the physical interaction with RelA/RelB to promote the expression of NF-κB targets. Intriguingly, EZH2 acts oppositely in ER-positive luminal-like breast cancer cells and represses NF-κB target gene expression by interacting with ER and directing repressive histone methylation on their promoters. Thus, EZH2 functions as a double-facet molecule in breast cancers, either as a transcriptional activator or repressor of NF-κB targets, depending on the cellular context. These findings reveal an additional mechanism by which EZH2 promotes breast cancer progression and underscore the need for developing context-specific strategy for therapeutic targeting of EZH2 in breast cancers.
Collapse
|
491
|
Germano G, Mantovani A, Allavena P. Targeting of the innate immunity/inflammation as complementary anti-tumor therapies. Ann Med 2011; 43:581-93. [PMID: 21756064 DOI: 10.3109/07853890.2011.595732] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Different types of cancer take advantage of inflammatory components to improve their life-span in the organs. A sustenance of growth factors and cytokines (e.g. interleukin (IL)-1, tumor necrosis factor, IL-6, vascular endothelial growth factor) supports malignant cell progression and contributes to suppress the body immune defense. Strategies to modulate the host micro-environment offer new approaches for anti-cancer therapies. For these reasons new molecules with anti-tumor and anti-inflammatory features (e.g. trabectedin) are looked at with new eyes in the light of the crucial link between inflammation and cancer.
Collapse
Affiliation(s)
- Giovanni Germano
- Department of Immunology and Inflammation, IRCCS Humanitas Clinical Institute, Rozzano, Milan, Italy
| | | | | |
Collapse
|
492
|
Bednar F, Simeone DM. Pancreatic cancer stem cell biology and its therapeutic implications. J Gastroenterol 2011; 46:1345-52. [PMID: 22048257 DOI: 10.1007/s00535-011-0494-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 10/08/2011] [Indexed: 02/04/2023]
Abstract
Pancreatic cancer remains one of the most difficult malignancies to treat. Significant developments in our understanding of pancreatic cancer biology have occurred over the past decade. One of the key advances has been the formulation of the cancer stem cell model of tumor growth and subsequent experimental proof of pancreatic cancer stem cell existence. Cancer stem cells contribute to pancreatic tumor growth and progression and are at least partially responsible for the relative resistance of the tumor to systemic chemotherapy and radiation. Significant questions remain about how the mutational profile of the tumor, the tumor microenvironment, and normal pancreatic developmental pathways contribute to pancreatic cancer stem cell biology. Answers to these questions will likely yield new therapeutic approaches for this deadly disease.
Collapse
Affiliation(s)
- Filip Bednar
- Department of Surgery, Box 5343, University of Michigan Medical Center, 1500 E. Medical Center Dr., Ann Arbor, MI 48109, USA
| | | |
Collapse
|
493
|
Bonafè M, Storci G, Franceschi C. Inflamm-aging of the stem cell niche: breast cancer as a paradigmatic example: breakdown of the multi-shell cytokine network fuels cancer in aged people. Bioessays 2011; 34:40-9. [PMID: 22086861 DOI: 10.1002/bies.201100104] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflamm-aging is a relatively new terminology used to describe the age-related increase in the systemic pro-inflammatory status of humans. Here, we represent inflamm-aging as a breakdown in the multi-shell cytokine network, in which stem cells and stromal fibroblasts (referred to as the stem cell niche) become pro-inflammatory cytokine over-expressing cells due to the accumulation of DNA damage. Inflamm-aging self-propagates owing to the capability of pro-inflammatory cytokines to ignite the DNA-damage response in other cells surrounding DNA-damaged cells. Macrophages, the major cellular player in inflamm-aging, amplify the phenomenon, by broadcasting pro-inflammatory signals at both local and systemic levels. On the basis of this, we propose that inflamm-aging is a major contributor to the increase in cancer incidence and progression in aged people. Breast cancer will be presented as a paradigmatic example for this relationship.
Collapse
|
494
|
Balic A, Dorado J, Alonso-Gómez M, Heeschen C. Stem cells as the root of pancreatic ductal adenocarcinoma. Exp Cell Res 2011; 318:691-704. [PMID: 22119145 DOI: 10.1016/j.yexcr.2011.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/05/2011] [Accepted: 11/08/2011] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests that stem cells play a crucial role not only in the generation and maintenance of different tissues, but also in the development and progression of malignancies. For the many solid cancers, it has now been shown that they harbor a distinct subpopulation of cancer cells that bear stem cell features and therefore, these cells are termed cancer stem cells (CSC) or tumor-propagating cells. CSC are exclusively tumorigenic and essential drivers for tumor progression and metastasis. Moreover, it has been shown that pancreatic ductal adenocarcinoma does not only contain one homogeneous population of CSC rather than diverse subpopulations that may have evolved during tumor progression. One of these populations is called migrating CSC and can be characterized by CXCR4 co-expression. Only these cells are capable of evading the primary tumor and traveling to distant sites such as the liver as the preferred site of metastatic spread. Clinically even more important, however, is the observation that CSC are highly resistant to chemo- and radiotherapy resulting in their relative enrichment during treatment and rapid relapse of disease. Many laboratories are now working on the further in-depth characterization of these cells, which may eventually allow for the identification of their Achilles heal and lead to novel treatment modalities for fighting this deadly disease.
Collapse
Affiliation(s)
- Anamaria Balic
- Clinical Research Programme, Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | |
Collapse
|
495
|
Chu JE, Allan AL. The Role of Cancer Stem Cells in the Organ Tropism of Breast Cancer Metastasis: A Mechanistic Balance between the "Seed" and the "Soil"? Int J Breast Cancer 2011; 2012:209748. [PMID: 22295241 PMCID: PMC3262605 DOI: 10.1155/2012/209748] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/19/2011] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a prevalent disease worldwide, and the majority of deaths occur due to metastatic disease. Clinical studies have identified a specific pattern for the metastatic spread of breast cancer, termed organ tropism; where preferential secondary sites include lymph node, bone, brain, lung, and liver. A rare subpopulation of tumor cells, the cancer stem cells (CSCs), has been hypothesized to be responsible for metastatic disease and therapy resistance. Current treatments are highly ineffective against metastatic breast cancer, likely due to the innate therapy resistance of CSCs and the complex interactions that occur between cancer cells and their metastatic microenvironments. A better understanding of these interactions is essential for the development of novel therapeutic targets for metastatic disease. This paper summarizes the characteristics of breast CSCs and their potential metastatic microenvironments. Furthermore, it raises the question of the existence of a CSC niche and highlights areas for future investigation.
Collapse
Affiliation(s)
- Jenny E. Chu
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 3K7
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada N6A 4L6
| | - Alison L. Allan
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 3K7
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada N6A 4L6
- Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 4L6
- Lawson Health Research Institute, Cancer Research Laboratories, London, ON, Canada N6A 4V2
| |
Collapse
|
496
|
Breast cancer epithelial-to-mesenchymal transition: examining the functional consequences of plasticity. Breast Cancer Res 2011; 13:226. [PMID: 22078097 PMCID: PMC3326549 DOI: 10.1186/bcr3037] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a critical developmental process that has recently come to the forefront of cancer biology. In breast carcinomas, acquisition of a mesenchymal-like phenotype that is reminiscent of an EMT, termed oncogenic EMT, is associated with pro-metastatic properties, including increased motility, invasion, anoikis resistance, immunosuppression and cancer stem cell characteristics. This oncogenic EMT is a consequence of cellular plasticity, which allows for interconversion between epithelial and mesenchymal-like states, and is thought to enable tumor cells not only to escape from the primary tumor, but also to colonize a secondary site. Indeed, the plasticity of cancer cells may explain the range of pro-metastatic traits conferred by oncogenic EMT, such as the recently described link between EMT and cancer stem cells and/or therapeutic resistance. Continued research into this relationship will be critical in developing drugs that block mechanisms of breast cancer progression, ultimately improving patient outcomes.
Collapse
|
497
|
Sansregret L, Nepveu A. Gene signatures of genomic instability as prognostic tools for breast cancer. Future Oncol 2011; 7:591-4. [PMID: 21568672 DOI: 10.2217/fon.11.34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
498
|
Dewi DL, Ishii H, Kano Y, Nishikawa S, Haraguchi N, Sakai D, Satoh T, Doki Y, Mori M. Cancer stem cell theory in gastrointestinal malignancies: recent progress and upcoming challenges. J Gastroenterol 2011; 46:1145-57. [PMID: 21858638 DOI: 10.1007/s00535-011-0442-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/10/2011] [Indexed: 02/04/2023]
Abstract
A growing body of evidence supports the notion that malignant tumors are heterogeneous and contain diverse subpopulations of cells with unique characteristics including the ability to initiate a tumor and metastasize. This phenomenon might be explained by the so-called cancer stem cell (CSC) theory. Recent technological developments have allowed a deeper understanding and characterization of CSCs. Even though the application of this theory to hematopoietic malignancies and solid tumors holds promise for new ways to treat cancer, it also brings some skepticism. Efficacious therapeutic approaches targeting the CSC population should be explored to overcome therapeutic failure and improve patient outcomes. This review will focus on the intrinsic and extrinsic regulation of CSCs, as well as the development of therapeutic approaches against CSCs, predominantly focusing on gastrointestinal malignancies.
Collapse
Affiliation(s)
- Dyah Laksmi Dewi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
499
|
Rudnick JA, Arendt LM, Klebba I, Hinds JW, Iyer V, Gupta PB, Naber SP, Kuperwasser C. Functional heterogeneity of breast fibroblasts is defined by a prostaglandin secretory phenotype that promotes expansion of cancer-stem like cells. PLoS One 2011; 6:e24605. [PMID: 21957456 PMCID: PMC3177828 DOI: 10.1371/journal.pone.0024605] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/14/2011] [Indexed: 12/31/2022] Open
Abstract
Fibroblasts are important in orchestrating various functions necessary for maintaining normal tissue homeostasis as well as promoting malignant tumor growth. Significant evidence indicates that fibroblasts are functionally heterogeneous with respect to their ability to promote tumor growth, but markers that can be used to distinguish growth promoting from growth suppressing fibroblasts remain ill-defined. Here we show that human breast fibroblasts are functionally heterogeneous with respect to tumor-promoting activity regardless of whether they were isolated from normal or cancerous breast tissues. Rather than significant differences in fibroblast marker expression, we show that fibroblasts secreting abundant levels of prostaglandin (PGE2), when isolated from either reduction mammoplasty or carcinoma tissues, were both capable of enhancing tumor growth in vivo and could increase the number of cancer stem-like cells. PGE2 further enhanced the tumor promoting properties of fibroblasts by increasing secretion of IL-6, which was necessary, but not sufficient, for expansion of breast cancer stem-like cells. These findings identify a population of fibroblasts which both produce and respond to PGE2, and that are functionally distinct from other fibroblasts. Identifying markers of these cells could allow for the targeted ablation of tumor-promoting and inflammatory fibroblasts in human breast cancers.
Collapse
Affiliation(s)
- Jenny A. Rudnick
- Graduate Program in Cell, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Lisa M. Arendt
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Ina Klebba
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - John W. Hinds
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Vandana Iyer
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Piyush B. Gupta
- Whitehead Institute for Biomedical Research, Broad Institute, Department of Biology, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States of America
| | - Stephen P. Naber
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Charlotte Kuperwasser
- Graduate Program in Cell, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
500
|
Epigallocatechin gallate inhibits sphere formation of neuroblastoma BE(2)-C cells. Environ Health Prev Med 2011; 17:246-51. [PMID: 21909813 DOI: 10.1007/s12199-011-0239-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/16/2011] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES A growing number of epidemiological studies have demonstrated that the consumption of green tea inhibits the growth of a variety of cancers. Epigallocatechin gallate (EGCG), the most abundant catechin in green tea, has been shown to have an anti-cancer effect against many cancers. Most cancers are believed to be initiated from and maintained by a small population of tumor-initiating cells (TICs) that are responsible for chemotherapeutic resistance and tumor relapse. In neuroblastoma, an aggressive pediatric tumor that often relapses and has a poor prognosis, TICs were recently identified as spheres grown in a serum-free non-adherent culture used for neural crest stem cell growth. Although EGCG has been reported to induce growth arrest and apoptosis in neuroblastoma cells, its effect on neuroblastoma TICs remains to be defined. METHODS Gene expression was analyzed by real-time reverse transcription polymerase chain reaction (RT-PCR). The effects of EGCG on cell proliferation, apoptosis, and sphere formation were determined by cell counting, propidium iodide staining, and sphere (>100 μm in diameter) counting, respectively. RESULTS Neuroblastoma BE(2)-C cells showed increased expression of stem cell markers (nanog homeobox [NANOG] and octamer-binding transcription factor 4 [OCT4]), as well as decreased expression of neuronal differentiation markers (Cu(2+)-transporting ATPase alpha polypeptide [ATP7A] and dickkopf homolog 2 [DKK2]) in spheres grown in serum-free non-adherent culture, compared to parental cells grown in conventional culture. Although EGCG induced growth arrest and apoptosis in the parental cells in a dose-dependent manner, it was not effective against spheres. However, EGCG potently inhibited sphere formation in the BE(2)-C cells. CONCLUSIONS The present results suggest that EGCG may inhibit the development of TICs in BE(2)-C cells.
Collapse
|