451
|
Cheng Z, Yu X, Li S, Wu Q. Genome-wide transcriptome analysis and identification of benzothiadiazole-induced genes and pathways potentially associated with defense response in banana. BMC Genomics 2018; 19:454. [PMID: 29898655 PMCID: PMC6001172 DOI: 10.1186/s12864-018-4830-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/25/2018] [Indexed: 01/04/2023] Open
Abstract
Background Bananas (Musa spp.) are the most important fruit crops worldwide due to their high nutrition value. Fusarium wilt of banana, caused by fungal pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (Foc 4), is considered as the most destructive disease in the world and results in extensive damage leading to productivity loss. The widespread use of plant resistance inducers (PRIs), such as benzothiadiazole (BTH), is a novel strategy to stimulate defense responses in banana plants to protect against pathogens infection. The recent focus on the crop defense against fungal infections has led to a renewed interest on understanding the molecular mechanisms of specific PRIs-mediated resistance. This transcriptome study aimed to identify genes that are associated with BTH-induced resistance. Patterns of gene expression in the leaves and roots of BTH-sprayed banana plants were studied using RNA-Seq. Results In this study, 18 RNA-Seq libraries from BTH-sprayed and untreated leaves and roots of the Cavendish plants, the most widely grown banana cultivar, were used for studying the transcriptional basis of BTH-related resistance. Comparative analyses have revealed that 6689 and 3624 differentially expressed genes were identified in leaves and roots, respectively, as compared to the control. Approximately 80% of these genes were differentially expressed in a tissue-specific manner. Further analysis showed that signaling perception and transduction, transcription factors, disease resistant proteins, plant hormones and cell wall organization-related genes were stimulated by BTH treatment, especially in roots. Interestingly, the ethylene and auxin biosynthesis and response genes were found to be up-regulated in leaves and roots, respectively, suggesting a choice among BTH-responsive phytohormone regulation. Conclusions Our data suggests a role for BTH in enhancing banana plant defense responses to Foc 4 infection, and demonstrates that BTH selectively affect biological processes associated with plant defenses. The genes identified in the study could be further studied and exploited to develop Foc 4-resistant banana varieties. Electronic supplementary material The online version of this article (10.1186/s12864-018-4830-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, China
| | - Xiang Yu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuxia Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Qiong Wu
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, China.
| |
Collapse
|
452
|
Silva MS, Arraes FBM, Campos MDA, Grossi-de-Sa M, Fernandez D, Cândido EDS, Cardoso MH, Franco OL, Grossi-de-Sa MF. Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:72-84. [PMID: 29576088 DOI: 10.1016/j.plantsci.2018.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 05/21/2023]
Abstract
This review emphasizes the biotechnological potential of molecules implicated in the different layers of plant immunity, including, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered susceptibility (ETS), and effector-triggered immunity (ETI) that can be applied in the development of disease-resistant genetically modified (GM) plants. These biomolecules are produced by pathogens (viruses, bacteria, fungi, oomycetes) or plants during their mutual interactions. Biomolecules involved in the first layers of plant immunity, PTI and ETS, include inhibitors of pathogen cell-wall-degrading enzymes (CWDEs), plant pattern recognition receptors (PRRs) and susceptibility (S) proteins, while the ETI-related biomolecules include plant resistance (R) proteins. The biomolecules involved in plant defense PTI/ETI responses described herein also include antimicrobial peptides (AMPs), pathogenesis-related (PR) proteins and ribosome-inhibiting proteins (RIPs), as well as enzymes involved in plant defensive secondary metabolite biosynthesis (phytoanticipins and phytoalexins). Moreover, the regulation of immunity by RNA interference (RNAi) in GM disease-resistant plants is also considered. Therefore, the present review does not cover all the classes of biomolecules involved in plant innate immunity that may be applied in the development of disease-resistant GM crops but instead highlights the most common strategies in the literature, as well as their advantages and disadvantages.
Collapse
Affiliation(s)
- Marilia Santos Silva
- Embrapa Recursos Genéticos e Biotecnologia (Embrapa Cenargen), Brasília, DF, Brazil.
| | - Fabrício Barbosa Monteiro Arraes
- Embrapa Recursos Genéticos e Biotecnologia (Embrapa Cenargen), Brasília, DF, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Post-Graduation Program in Molecular and Cellular Biology, Porto Alegre, RS, Brazil.
| | | | | | | | - Elizabete de Souza Cândido
- Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil
| | - Marlon Henrique Cardoso
- Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil; Universidade de Brasília (UnB), Brasilia, DF, Brazil
| | - Octávio Luiz Franco
- Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil; Universidade de Brasília (UnB), Brasilia, DF, Brazil
| | - Maria Fátima Grossi-de-Sa
- Embrapa Recursos Genéticos e Biotecnologia (Embrapa Cenargen), Brasília, DF, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Post-Graduation Program in Molecular and Cellular Biology, Porto Alegre, RS, Brazil; Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade de Brasília (UnB), Brasilia, DF, Brazil.
| |
Collapse
|
453
|
Liang X, Zhou JM. Receptor-Like Cytoplasmic Kinases: Central Players in Plant Receptor Kinase-Mediated Signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:267-299. [PMID: 29719165 DOI: 10.1146/annurev-arplant-042817-040540] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Receptor kinases (RKs) are of paramount importance in transmembrane signaling that governs plant reproduction, growth, development, and adaptation to diverse environmental conditions. Receptor-like cytoplasmic kinases (RLCKs), which lack extracellular ligand-binding domains, have emerged as a major class of signaling proteins that regulate plant cellular activities in response to biotic/abiotic stresses and endogenous extracellular signaling molecules. By associating with immune RKs, RLCKs regulate multiple downstream signaling nodes to orchestrate a complex array of defense responses against microbial pathogens. RLCKs also associate with RKs that perceive brassinosteroids and signaling peptides to coordinate growth, pollen tube guidance, embryonic and stomatal patterning, floral organ abscission, and abiotic stress responses. The activity and stability of RLCKs are dynamically regulated not only by RKs but also by other RLCK-associated proteins. Analyses of RLCK-associated components and substrates have suggested phosphorylation relays as a major mechanism underlying RK-mediated signaling.
Collapse
Affiliation(s)
- Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China;
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China;
| |
Collapse
|
454
|
Yan H, Zhao Y, Shi H, Li J, Wang Y, Tang D. BRASSINOSTEROID-SIGNALING KINASE1 Phosphorylates MAPKKK5 to Regulate Immunity in Arabidopsis. PLANT PHYSIOLOGY 2018; 176:2991-3002. [PMID: 29440595 PMCID: PMC5884618 DOI: 10.1104/pp.17.01757] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/29/2018] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) immune receptor FLAGELLIN SENSING2 (FLS2) rapidly forms a complex to activate pathogen-associated molecular pattern-triggered immunity (PTI) upon perception of the bacterial protein flagellin. The receptor-like cytoplasmic kinase BRASSINOSTEROID-SIGNALINGKINASE1 (BSK1) interacts with FLS2 and is critical for the activation of PTI. However, it is unknown how BSK1 transduces signals to activate downstream immune responses. We identified MEK Kinase5 (MAPKKK5) as a potential substrate of BSK1 by whole-genome phosphorylation analysis. In addition, we demonstrated that BSK1 interacts with and phosphorylates MAPKKK5. In the bsk1-1 mutant, the Ser-289 residue of MAPKKK5 was not phosphorylated as it was in the wild type. Similar to the bsk1 mutant, the mapkkk5 mutant displayed enhanced susceptibility to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae pv tomato DC3000, and to the fungal powdery mildew pathogen Golovinomyces cichoracearum Phosphorylation of the Ser-289 residue is not involved in MAPKKK5-triggered cell death but is critical for MAPKKK5-mediated resistance to both bacterial and fungal pathogens. Furthermore, MAPKKK5 interacts with multiple MAPK kinases, including MKK1, MKK2, MKK4, MKK5, and MKK6. Overall, these results indicate that BSK1 regulates plant immunity by phosphorylating MAPKKK5 and suggest a direct regulatory mode of signaling from the immune complex to the MAPK cascade.
Collapse
Affiliation(s)
- Haojie Yan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaofei Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Shi
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Crop by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | - Yingchun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
455
|
Peng Y, van Wersch R, Zhang Y. Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:403-409. [PMID: 29135338 DOI: 10.1094/mpmi-06-17-0145-cr] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants use diverse immune receptors to sense pathogen attacks. Recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors localized on the plasma membrane leads to PAMP-triggered immunity (PTI). Detection of pathogen effectors by intracellular or plasma membrane-localized immune receptors results in effector-triggered immunity (ETI). Despite the large variations in the magnitude and duration of immune responses triggered by different PAMPs or pathogen effectors during PTI and ETI, plasma membrane-localized immune receptors activate similar downstream molecular events such as mitogen-activated protein kinase activation, oxidative burst, ion influx, and increased biosynthesis of plant defense hormones, indicating that defense signals initiated at the plasma membrane converge at later points. On the other hand, activation of ETI by immune receptors localized to the nucleus appears to be more directly associated with transcriptional regulation of defense gene expression. Here, we review recent progress in signal transductions downstream of different groups of plant immune receptors, highlighting the converging and diverging molecular events.
Collapse
Affiliation(s)
- Yujun Peng
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rowan van Wersch
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
456
|
Liang X, Ma M, Zhou Z, Wang J, Yang X, Rao S, Bi G, Li L, Zhang X, Chai J, Chen S, Zhou JM. Ligand-triggered de-repression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases. Cell Res 2018; 28:529-543. [PMID: 29545645 PMCID: PMC5951851 DOI: 10.1038/s41422-018-0027-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/11/2018] [Accepted: 02/22/2018] [Indexed: 02/01/2023] Open
Abstract
Arabidopsis heterotrimeric G proteins regulate diverse processes by coupling to single-transmembrane receptors. One such receptor is the FLS2 receptor kinase, which perceives bacterial flagellin epitope flg22 to activate immunity through a class of cytoplasmic kinases called BIK1/PBLs. Unlike animal and fungal heterotrimeric G proteins that are activated by a ligand-induced guanine nucleotide exchange activity of seven-transmembrane G protein-coupled receptors (GPCRs), plant heterotrimeric G proteins are self-activating. How plant receptors regulate heterotrimeric G proteins in response to external ligands remains unknown. Here we show that RGS1, a GTPase accelerating protein, maintains Arabidopsis G proteins in an inactive state in complex with FLS2. Activation of FLS2 by flg22 induces a BIK1/PBL-mediated phosphorylation of RGS1 at Ser428 and Ser431 and that promotes RGS1 dissociation from the FLS2-G protein complex. This relieves G proteins from the RGS1-mediated repression and enables positive regulation of immune signaling. We additionally show that RGS1 is similarly regulated by multiple immune receptors. Our results uncover ligand-induced de-repression as a mechanism for G protein signaling in plants that is distinct from previously reported mechanism underlying the activation of heterotrimeric G proteins in other systems.
Collapse
Affiliation(s)
- Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Miaomiao Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhaoyang Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jinlong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xinru Yang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Shaofei Rao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jijie Chai
- Center for Plant Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
457
|
Abstract
Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.
Collapse
|
458
|
Wang Y, Xu Y, Sun Y, Wang H, Qi J, Wan B, Ye W, Lin Y, Shao Y, Dong S, Tyler BM, Wang Y. Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nat Commun 2018; 9:594. [PMID: 29426870 PMCID: PMC5807360 DOI: 10.1038/s41467-018-03010-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 01/12/2018] [Indexed: 12/30/2022] Open
Abstract
Activation of innate immunity by membrane-localized receptors is conserved across eukaryotes. Plant genomes contain hundreds of such receptor-like genes and those encoding proteins with an extracellular leucine-rich repeat (LRR) domain represent the largest family. Here, we develop a high-throughput approach to study LRR receptor-like genes on a genome-wide scale. In total, 257 tobacco rattle virus-based constructs are generated to target 386 of the 403 identified LRR receptor-like genes in Nicotiana benthamiana for silencing. Using this toolkit, we identify the LRR receptor-like protein Response to XEG1 (RXEG1) that specifically recognizes the glycoside hydrolase 12 protein XEG1. RXEG1 associates with XEG1 via the LRR domain in the apoplast and forms a complex with the LRR receptor-like kinases BAK1 and SOBIR1 to transduce the XEG1-induced defense signal. Thus, this genome-wide silencing assay is demonstrated to be an efficient toolkit to pinpoint new immune receptors, which will contribute to developing durable disease resistance.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Yuanpeng Xu
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Yujing Sun
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Huibin Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Jiaming Qi
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Bowen Wan
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Yachun Lin
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Yuanyuan Shao
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China.
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China.
| |
Collapse
|
459
|
Suzuki M, Watanabe T, Yoshida I, Kaku H, Shibuya N. Autophosphorylation site Y428 is essential for the in vivo activation of CERK1. PLANT SIGNALING & BEHAVIOR 2018; 13:e1435228. [PMID: 29388878 PMCID: PMC5846561 DOI: 10.1080/15592324.2018.1435228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 05/06/2023]
Abstract
Autophosphorylation of PRR is a critical event for the activation of immune signaling in plant. However, the detailed function of these phosphorylation sites is still not well understood. We analyzed the function of an autophosphorylation site of Arabidopsis CERK1, Y428, in immune signaling. Biochemical characterization of CERK1 mutants transiently expressed in N. benthamiana indicated that Y428 plays a crucial role for the in vivo activation of CERK1, differently from the previous observation by the in vitro kinase assay with its cytoplasmic domain. Similar discrepancy between in vitro and in vivo kinase assay was also reported for the corresponding phosphorylation site of EFR, suggesting that these conserved tyrosine residues play important roles for the activation of both RD and non-RD RLKs.
Collapse
Affiliation(s)
- Maruya Suzuki
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, Japan
| | - Takumi Watanabe
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, Japan
| | - Issei Yoshida
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, Japan
| | - Hanae Kaku
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, Japan
| |
Collapse
|
460
|
Wang J, Grubb LE, Wang J, Liang X, Li L, Gao C, Ma M, Feng F, Li M, Li L, Zhang X, Yu F, Xie Q, Chen S, Zipfel C, Monaghan J, Zhou JM. A Regulatory Module Controlling Homeostasis of a Plant Immune Kinase. Mol Cell 2018; 69:493-504.e6. [DOI: 10.1016/j.molcel.2017.12.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/19/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
|
461
|
Hu Q, Min L, Yang X, Jin S, Zhang L, Li Y, Ma Y, Qi X, Li D, Liu H, Lindsey K, Zhu L, Zhang X. Laccase GhLac1 Modulates Broad-Spectrum Biotic Stress Tolerance via Manipulating Phenylpropanoid Pathway and Jasmonic Acid Synthesis. PLANT PHYSIOLOGY 2018; 176:1808-1823. [PMID: 29229698 PMCID: PMC5813555 DOI: 10.1104/pp.17.01628] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/08/2017] [Indexed: 05/19/2023]
Abstract
Plants are constantly challenged by a multitude of pathogens and pests, which causes massive yield and quality losses annually. A promising approach to reduce such losses is to enhance the immune system of plants through genetic engineering. Previous work has shown that laccases (p-diphenol:dioxygen oxidoreductase, EC 1.10.3.2) function as lignin polymerization enzymes. Here we demonstrate that transgenic manipulation of the expression of the laccase gene GhLac1 in cotton (Gossypium hirsutum) can confer an enhanced defense response to both pathogens and pests. Overexpression of GhLac1 leads to increased lignification, associated with increased tolerance to the fungal pathogen Verticillium dahliae and to the insect pests cotton bollworm (Helicoverpa armigera) and cotton aphid (Aphis gosypii). Suppression of GhLac1 expression leads to a redirection of metabolic flux in the phenylpropanoid pathway, causing the accumulation of JA and secondary metabolites that confer resistance to V. dahliae and cotton bollworm; it also leads to increased susceptibility to cotton aphid. Plant laccases therefore provide a new molecular tool to engineer pest and pathogen resistance in crops.
Collapse
Affiliation(s)
- Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Ling Min
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Lin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Yaoyao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Xuewei Qi
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Longfu Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| |
Collapse
|
462
|
Bacete L, Mélida H, Miedes E, Molina A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:614-636. [PMID: 29266460 DOI: 10.1111/tpj.13807] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.
Collapse
Affiliation(s)
- Laura Bacete
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| |
Collapse
|
463
|
Saijo Y, Loo EPI, Yasuda S. Pattern recognition receptors and signaling in plant-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:592-613. [PMID: 29266555 DOI: 10.1111/tpj.13808] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/09/2017] [Accepted: 12/14/2017] [Indexed: 05/20/2023]
Abstract
Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe- and host damage-associated molecular patterns leads to the first layer of inducible defenses, termed pattern-triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane-associated receptor-like kinases or receptor-like proteins, reflecting the prevalence of apoplastic colonization of plant-infecting microbes. An increasing inventory of elicitor-active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR-mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes.
Collapse
Affiliation(s)
- Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Eliza Po-Iian Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Shigetaka Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
464
|
He Y, Zhou J, Shan L, Meng X. Plant cell surface receptor-mediated signaling - a common theme amid diversity. J Cell Sci 2018; 131:131/2/jcs209353. [PMID: 29378836 DOI: 10.1242/jcs.209353] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sessile plants employ a diverse array of plasma membrane-bound receptors to perceive endogenous and exogenous signals for regulation of plant growth, development and immunity. These cell surface receptors include receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that harbor different extracellular domains for perception of distinct ligands. Several RLK and RLP signaling pathways converge at the somatic embryogenesis receptor kinases (SERKs), which function as shared co-receptors. A repertoire of receptor-like cytoplasmic kinases (RLCKs) associate with the receptor complexes to relay intracellular signaling. Downstream of the receptor complexes, mitogen-activated protein kinase (MAPK) cascades are among the key signaling modules at which the signals converge, and these cascades regulate diverse cellular and physiological responses through phosphorylation of different downstream substrates. In this Review, we summarize the emerging common theme that underlies cell surface receptor-mediated signaling pathways in Arabidopsisthaliana: the dynamic association of RLKs and RLPs with specific co-receptors and RLCKs for signal transduction. We further discuss how signaling specificities are maintained through modules at which signals converge, with a focus on SERK-mediated receptor signaling.
Collapse
Affiliation(s)
- Yunxia He
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jinggeng Zhou
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Xiangzong Meng
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
465
|
Wu J, van der Burgh AM, Bi G, Zhang L, Alfano JR, Martin GB, Joosten MHAJ. The Bacterial Effector AvrPto Targets the Regulatory Coreceptor SOBIR1 and Suppresses Defense Signaling Mediated by the Receptor-Like Protein Cf-4. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:75-85. [PMID: 28876174 DOI: 10.1094/mpmi-08-17-0203-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Receptor-like proteins (RLPs) and receptor-like kinases (RLKs) are cell-surface receptors that are essential for detecting invading pathogens and subsequent activation of plant defense responses. RLPs lack a cytoplasmic kinase domain to trigger downstream signaling leading to host resistance. The RLK SOBIR1 constitutively interacts with the tomato RLP Cf-4, thereby providing Cf-4 with a kinase domain. SOBIR1 is required for Cf-4-mediated resistance to strains of the fungal tomato pathogen Cladosporium fulvum that secrete the effector Avr4. Upon perception of this effector by the Cf-4/SOBIR1 complex, the central regulatory RLK SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3a (SERK3a) is recruited to the complex and defense signaling is triggered. SOBIR1 is also required for RLP-mediated resistance to bacterial, fungal ,and oomycete pathogens, and we hypothesized that SOBIR1 is targeted by effectors of such pathogens to suppress host defense responses. In this study, we show that Pseudomonas syringae pv. tomato DC3000 effector AvrPto interacts with Arabidopsis SOBIR1 and its orthologs of tomato and Nicotiana benthamiana, independent of SOBIR1 kinase activity. Interestingly, AvrPto suppresses Arabidopsis SOBIR1-induced cell death in N. benthamiana. Furthermore, AvrPto compromises Avr4-triggered cell death in Cf-4-transgenic N. benthamiana, without affecting Cf-4/SOBIR1/SERK3a complex formation. Our study shows that the RLP coreceptor SOBIR1 is targeted by a bacterial effector, which results in compromised defense responses.
Collapse
Affiliation(s)
- Jinbin Wu
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Aranka M van der Burgh
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Guozhi Bi
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Lisha Zhang
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - James R Alfano
- 2 Center for Plant Science Innovation and
- 3 Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588, U.S.A
| | - Gregory B Martin
- 4 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
- 5 Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Matthieu H A J Joosten
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
466
|
Li TG, Zhang DD, Zhou L, Kong ZQ, Hussaini AS, Wang D, Li JJ, Short DPG, Dhar N, Klosterman SJ, Wang BL, Yin CM, Subbarao KV, Chen JY, Dai XF. Genome-Wide Identification and Functional Analyses of the CRK Gene Family in Cotton Reveals GbCRK18 Confers Verticillium Wilt Resistance in Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2018; 9:1266. [PMID: 30254650 PMCID: PMC6141769 DOI: 10.3389/fpls.2018.01266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/10/2018] [Indexed: 05/07/2023]
Abstract
Cysteine-rich receptor-like kinases (CRKs) are a large subfamily of plant receptor-like kinases that play a critical role in disease resistance in plants. However, knowledge about the CRK gene family in cotton and its function against Verticillium wilt (VW), a destructive disease caused by Verticillium dahliae that significantly reduces cotton yields is lacking. In this study, we identified a total of 30 typical CRKs in a Gossypium barbadense genome (GbCRKs). Eleven of these (>30%) are located on the A06 and D06 chromosomes, and 18 consisted of 9 paralogous pairs encoded in the A and D subgenomes. Phylogenetic analysis showed that the GbCRKs could be classified into four broad groups, the expansion of which has probably been driven by tandem duplication. Gene expression profiling of the GbCRKs in resistant and susceptible cotton cultivars revealed that a phylogenetic cluster of nine of the GbCRK genes were up-regulated in response to V. dahliae infection. Virus-induced gene silencing of each of these nine GbCRKs independently revealed that the silencing of GbCRK18 was sufficient to compromise VW resistance in G. barbadense. GbCRK18 expression could be induced by V. dahliae infection or jasmonic acid, and displayed plasma membrane localization. Therefore, our expression analyses indicated that the CRK gene family is differentially regulated in response to Verticillium infection, while gene silencing experiments revealed that GbCRK18 in particular confers VW resistance in G. barbadense.
Collapse
Affiliation(s)
- Ting-Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Adamu S. Hussaini
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Jiao Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dylan P. G. Short
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- U.S. Agricultural Research Station, Salinas, CA, United States
| | - Nikhilesh Dhar
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- U.S. Agricultural Research Station, Salinas, CA, United States
| | - Steven J. Klosterman
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA, United States
| | - Bao-Li Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun-Mei Yin
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- U.S. Agricultural Research Station, Salinas, CA, United States
- *Correspondence: Krishna V. Subbarao, Jie-Yin Chen, Xiao-Feng Dai,
| | - Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Krishna V. Subbarao, Jie-Yin Chen, Xiao-Feng Dai,
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Krishna V. Subbarao, Jie-Yin Chen, Xiao-Feng Dai,
| |
Collapse
|
467
|
Pizarro L, Leibman-Markus M, Schuster S, Bar M, Meltz T, Avni A. Tomato Prenylated RAB Acceptor Protein 1 Modulates Trafficking and Degradation of the Pattern Recognition Receptor LeEIX2, Affecting the Innate Immune Response. FRONTIERS IN PLANT SCIENCE 2018; 9:257. [PMID: 29545816 PMCID: PMC5838007 DOI: 10.3389/fpls.2018.00257] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/12/2018] [Indexed: 05/18/2023]
Abstract
Plants recognize microbial/pathogen associated molecular patterns (MAMP/PAMP) through pattern recognition receptors (PRRs) triggering an immune response against pathogen progression. MAMP/PAMP triggered immune response requires PRR endocytosis and trafficking for proper deployment. LeEIX2 is a well-known Solanum lycopersicum RLP-PRR, able to recognize and respond to the fungal MAMP/PAMP ethylene-inducing xylanase (EIX), and its function is highly dependent on intracellular trafficking. Identifying protein machinery components regulating LeEIX2 intracellular trafficking is crucial to our understanding of LeEIX2 mediated immune responses. In this work, we identified a novel trafficking protein, SlPRA1A, a predicted regulator of RAB, as an interactor of LeEIX2. Overexpression of SlPRA1A strongly decreases LeEIX2 endosomal localization, as well as LeEIX2 protein levels. Accordingly, the innate immune responses to EIX are markedly reduced by SlPRA1A overexpression, presumably due to a decreased LeEIX2 availability. Studies into the role of SlPRA1A in LeEIX2 trafficking revealed that LeEIX2 localization in multivesicular bodies/late endosomes is augmented by SlPRA1A. Furthermore, inhibiting vacuolar function prevents the LeEIX2 protein level reduction mediated by SlPRA1A, suggesting that SlPRA1A may redirect LeEIX2 trafficking to the vacuole for degradation. Interestingly, SlPRA1A overexpression reduces the amount of several RLP-PRRs, but does not affect the protein level of receptor-like kinase PRRs, suggesting a specific role of SlPRA1A in RLP-PRR trafficking and degradation.
Collapse
Affiliation(s)
- Lorena Pizarro
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | | | - Silvia Schuster
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Tal Meltz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Adi Avni,
| |
Collapse
|
468
|
Gust AA, Pruitt R, Nürnberger T. Sensing Danger: Key to Activating Plant Immunity. TRENDS IN PLANT SCIENCE 2017; 22:779-791. [PMID: 28779900 DOI: 10.1016/j.tplants.2017.07.005] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
In both plants and animals, defense against pathogens relies on a complex surveillance system for signs of danger. Danger signals may originate from the infectious agent or from the host itself. Immunogenic plant host factors can be roughly divided into two categories: molecules which are passively released upon cell damage ('classical' damage-associated molecular patterns, DAMPs), and peptides which are processed and/or secreted upon infection to modulate the immune response (phytocytokines). We highlight the ongoing challenge to understand how plants sense various danger signals and integrate this information to produce an appropriate immune response to diverse challenges.
Collapse
Affiliation(s)
- Andrea A Gust
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany.
| | - Rory Pruitt
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
469
|
Rasool B, McGowan J, Pastok D, Marcus SE, Morris JA, Verrall SR, Hedley PE, Hancock RD, Foyer CH. Redox Control of Aphid Resistance through Altered Cell Wall Composition and Nutritional Quality. PLANT PHYSIOLOGY 2017; 175:259-271. [PMID: 28743764 PMCID: PMC5580759 DOI: 10.1104/pp.17.00625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/21/2017] [Indexed: 05/05/2023]
Abstract
The mechanisms underpinning plant perception of phloem-feeding insects, particularly aphids, remain poorly characterized. Therefore, the role of apoplastic redox state in controlling aphid infestation was explored using transgenic tobacco (Nicotiana tabacum) plants that have either high (PAO) or low (TAO) ascorbate oxidase (AO) activities relative to the wild type. Only a small number of leaf transcripts and metabolites were changed in response to genotype, and cell wall composition was largely unaffected. Aphid fecundity was decreased significantly in TAO plants compared with other lines. Leaf sugar levels were increased and maximum extractable AO activities were decreased in response to aphids in all genotypes. Transcripts encoding the Respiratory Burst Oxidase Homolog F, signaling components involved in ethylene and other hormone-mediated pathways, photosynthetic electron transport components, sugar, amino acid, and cell wall metabolism, were increased significantly in the TAO plants in response to aphid perception relative to other lines. The levels of galactosylated xyloglucan were decreased significantly in response to aphid feeding in all the lines, the effect being the least in the TAO plants. Similarly, all lines exhibited increases in tightly bound (1→4)-β-galactan. Taken together, these findings identify AO-dependent mechanisms that limit aphid infestation.
Collapse
Affiliation(s)
- Brwa Rasool
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jack McGowan
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Daria Pastok
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sue E Marcus
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jenny A Morris
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Susan R Verrall
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Peter E Hedley
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Robert D Hancock
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
470
|
El Kasmi F, Chung EH, Anderson RG, Li J, Wan L, Eitas TK, Gao Z, Dangl JL. Signaling from the plasma-membrane localized plant immune receptor RPM1 requires self-association of the full-length protein. Proc Natl Acad Sci U S A 2017; 114:E7385-E7394. [PMID: 28808003 PMCID: PMC5584451 DOI: 10.1073/pnas.1708288114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plants evolved intracellular immune receptors that belong to the NOD-like receptor (NLR) family to recognize the presence of pathogen-derived effector proteins. NLRs possess an N-terminal Toll-like/IL-1 receptor (TIR) or a non-TIR domain [some of which contain coiled coils (CCs)], a central nucleotide-binding (NB-ARC) domain, and a C-terminal leucine-rich repeat (LRR). Activation of NLR proteins results in a rapid and high-amplitude immune response, eventually leading to host cell death at the infection site, the so-called hypersensitive response. Despite their important contribution to immunity, the exact mechanisms of NLR activation and signaling remain unknown and are likely heterogenous. We undertook a detailed structure-function analysis of the plasma membrane (PM)-localized CC NLR Resistance to Pseudomonas syringae pv. maculicola 1 (RPM1) using both stable transgenic Arabidopsis and transient expression in Nicotiana benthamiana We report that immune signaling is induced only by activated full-length PM-localized RPM1. Our interaction analyses demonstrate the importance of a functional P-loop for in planta interaction of RPM1 with the small host protein RPM1-interacting protein 4 (RIN4), for constitutive preactivation and postactivation self-association of RPM1 and for proper PM localization. Our results reveal an additive effect of hydrophobic conserved residues in the CC domain for RPM1 function and RPM1 self-association and their necessity for RPM1-RIN4 interaction. Thus, our findings considerably extend our understanding of the mechanisms regulating NLR activation at, and signaling from, the PM.
Collapse
Affiliation(s)
- Farid El Kasmi
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Eui-Hwan Chung
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Ryan G Anderson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Jinyue Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei Province, P. R. China 430072
| | - Li Wan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Timothy K Eitas
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Zhiyong Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei Province, P. R. China 430072;
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280;
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
471
|
Qi J, Wang J, Gong Z, Zhou JM. Apoplastic ROS signaling in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:92-100. [PMID: 28511115 DOI: 10.1016/j.pbi.2017.04.022] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are widely produced in different cellular compartments under both biotic and abiotic stress conditions. ROS play a central role in plant signaling and regulate diverse cellular processes. Recent advances are shedding new light on sophisticated mechanisms controlling ROS biogenesis and signaling in plant immunity. In this review, we summarize our current understanding of the regulation of apoplastic ROS production in response to microbial molecular patterns and draw comparison with abscisic acid (ABA)-induced apoplastic ROS. We also discuss how ROS act as signal molecules to regulate cellular activities using stomatal movement as an example.
Collapse
Affiliation(s)
- Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinlong Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
472
|
Eckardt NA. The Plant Cell Reviews Plant Immunity: Receptor-Like Kinases, ROS-RLK Crosstalk, Quantitative Resistance, and the Growth/Defense Trade-Off. THE PLANT CELL 2017; 29:601-602. [PMID: 28396552 PMCID: PMC5435444 DOI: 10.1105/tpc.17.00289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
473
|
Oehlenschlæger CB, Gersby LBA, Ahsan N, Pedersen JT, Kristensen A, Solakova TV, Thelen JJ, Fuglsang AT. Activation of the LRR Receptor-Like Kinase PSY1R Requires Transphosphorylation of Residues in the Activation Loop. FRONTIERS IN PLANT SCIENCE 2017; 8:2005. [PMID: 29230231 PMCID: PMC5712095 DOI: 10.3389/fpls.2017.02005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/10/2017] [Indexed: 05/07/2023]
Abstract
PSY1R is a leucine-rich repeat (LRR) receptor-like kinase (RLK) previously shown to act as receptor for the plant peptide hormone PSY1 (peptide containing sulfated tyrosine 1) and to regulate cell expansion. PSY1R phosphorylates and thereby regulates the activity of plasma membrane-localized H+-ATPases. While this mechanism has been studied in detail, little is known about how PSY1R itself is activated. Here we studied the activation mechanism of PSY1R. We show that full-length PSY1R interacts with members of the SERK co-receptor family in planta. We identified seven in vitro autophosphorylation sites on serine and threonine residues within the kinase domain of PSY1R using mass spectrometry. We furthermore show that PSY1R autophosphorylation occurs in trans and that the initial transphosphorylation takes place within the activation loop at residues Ser951, Thr959, and Thr963. While Thr959 and Thr963 are conserved among other related plant LRR RLKs, Ser951 is unique to PSY1R. Based on homology modeling we propose that phosphorylation of Ser951 stabilize the inactive conformation of PSY1R.
Collapse
Affiliation(s)
- Christian B. Oehlenschlæger
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lotte B. A. Gersby
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nagib Ahsan
- Christopher S. Bond Life Sciences Center, Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Jesper T. Pedersen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Kristensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Tsvetelina V. Solakova
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jay J. Thelen
- Christopher S. Bond Life Sciences Center, Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Anja T. Fuglsang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Anja T. Fuglsang,
| |
Collapse
|
474
|
Čerekovic N, Poltronieri P. Plant signaling pathways activating defence response and interfering mechanisms by pathogen effectors, protein decoys and bodyguards. AIMS MOLECULAR SCIENCE 2017; 4:370-388. [DOI: 10.3934/molsci.2017.3.370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
|