451
|
Jenkins KA, Fossat MJ, Zhang S, Rai DK, Klein S, Gillilan R, White Z, Gerlich G, McCallum SA, Winter R, Gruner SM, Barrick D, Royer CA. The consequences of cavity creation on the folding landscape of a repeat protein depend upon context. Proc Natl Acad Sci U S A 2018; 115:E8153-E8161. [PMID: 30104366 PMCID: PMC6126725 DOI: 10.1073/pnas.1807379115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effect of introducing internal cavities on protein native structure and global stability has been well documented, but the consequences of these packing defects on folding free-energy landscapes have received less attention. We investigated the effects of cavity creation on the folding landscape of the leucine-rich repeat protein pp32 by high-pressure (HP) and urea-dependent NMR and high-pressure small-angle X-ray scattering (HPSAXS). Despite a modest global energetic perturbation, cavity creation in the N-terminal capping motif (N-cap) resulted in very strong deviation from two-state unfolding behavior. In contrast, introduction of a cavity in the most stable, C-terminal half of pp32 led to highly concerted unfolding, presumably because the decrease in stability by the mutations attenuated the N- to C-terminal stability gradient present in WT pp32. Interestingly, enlarging the central cavity of the protein led to the population under pressure of a distinct intermediate in which the N-cap and repeats 1-4 were nearly completely unfolded, while the fifth repeat and the C-terminal capping motif remained fully folded. Thus, despite modest effects on global stability, introducing internal cavities can have starkly distinct repercussions on the conformational landscape of a protein, depending on their structural and energetic context.
Collapse
Affiliation(s)
- Kelly A Jenkins
- Graduate Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Martin J Fossat
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Siwen Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Durgesh K Rai
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853
| | - Sean Klein
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Richard Gillilan
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853
| | - Zackary White
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Grayson Gerlich
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Scott A McCallum
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Roland Winter
- Department of Physical Chemistry, Technical University of Dortmund, 44227 Dortmund, Germany
| | - Sol M Gruner
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853
- Department of Physics, Cornell University, Ithaca, NY 14853
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853
| | - Doug Barrick
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Catherine A Royer
- Graduate Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, NY 12180;
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
452
|
Thekkekara LV, Chen X, Gu M. Two-photon-induced stretchable graphene supercapacitors. Sci Rep 2018; 8:11722. [PMID: 30082902 PMCID: PMC6079041 DOI: 10.1038/s41598-018-30194-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/23/2018] [Indexed: 11/09/2022] Open
Abstract
Direct laser writing with an ultrashort laser beam pulses has emerged as a cost-effective single step technology for realizing high spatial resolution features of three-dimensional structures in confined footprints with potential for large area fabrication. Here we present the two-photon direct laser writing technology to develop high-performance stretchable biomimetic three-dimensional micro-supercapacitors with the fractal electrode distance down to 1 µm. With multilayered graphene oxide films, we show the charge transfer capability enhanced by order of 102 while the energy storage density exceeds the results in current lithium-ion batteries. The stretchability and the volumetric capacitance are increased to 150% and 86 mF/cm3 (0.181 mF/cm2), respectively. This additive nanofabrication method is highly desirable for the development of self-sustainable stretchable energy storage integrated with wearable technologies. The flexible and stretchable energy storage with a high energy density opens the new opportunity for on-chip sensing, imaging, and monitoring.
Collapse
Affiliation(s)
- Litty V Thekkekara
- Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Xi Chen
- Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Min Gu
- Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia.
| |
Collapse
|
453
|
Mao Y, Bleuel M, Lyu Y, Zhang X, Henderson D, Wang H, Briber RM. Phase Separation and Stack Alignment in Aqueous Cellulose Nanocrystal Suspension under Weak Magnetic Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8042-8051. [PMID: 29957957 DOI: 10.1021/acs.langmuir.8b01452] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Isotropic-nematic (I-N) transitions in cellulose nanocrystal (CNC) suspension and self-assembled structures in the isotropic and nematic phases were investigated using scattering and microscopy methods. A CNC suspension with a mass fraction of 7.4% spontaneously phase separated into an isotropic phase of 6.9% in the top layer and a nematic phase of 7.9% in the bottom layer. In both the phases, the CNC particles formed stacks with an interparticle distance being of ≈37 nm. One-dimensional small-angle neutron scattering (SANS) profiles due to both phases could be fitted using a stacking model considering finite particle sizes. SANS and atomic force microscopy studies indicate that the nematic phase in the bottom layer contains more populations of larger particles. A weak magnetic field of ≈0.5 T was able to induce a preferred orientation of CNC stacks in the nematic phase, with the stack normals being aligned with the field (perpendicular to the long axis of CNC particles). The Hermans orientation parameter, ⟨ P2⟩, was ≈0.5 for the nematic phase; it remained unchanged during the relaxation process of ≈10 h. The fraction of oriented CNC populations decreased during the relaxation; dramatic decrease occurred in the first 3 h. The top layer remained isotropic in the weak field. Polarized microscopy studies revealed that the nematic phase was chiral. Adjacent particles in a stack form a twisting angle of ≈0.6 °, resulting in a helix pitch distance of ≈22 μm.
Collapse
Affiliation(s)
- Yimin Mao
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg , Maryland 20899 , United States
| | - Markus Bleuel
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg , Maryland 20899 , United States
| | - Yadong Lyu
- Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg , Maryland 20899 , United States
| | - Xin Zhang
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Doug Henderson
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Howard Wang
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Robert M Briber
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
454
|
Konarev PV, Svergun DI. Direct shape determination of intermediates in evolving macromolecular solutions from small-angle scattering data. IUCRJ 2018; 5:402-409. [PMID: 30002841 PMCID: PMC6038953 DOI: 10.1107/s2052252518005900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Many important biological processes like amyloid formation, viral assembly etc. can be monitored in vitro. Small-angle X-ray scattering (SAXS) is one of the most effective techniques to structurally characterize these processes in solution. For monodisperse systems and some oligomeric mixtures, low-resolution shapes can be determined ab initio from the SAXS data, but for evolving systems, such analysis is hampered by the presence of multiple species and no direct reconstruction procedures are available. The authors consider a frequently occurring case where the scattering from the initial and final states of the process are known but there exists a major (unknown) intermediate component. A method is presented to directly reconstruct the low-resolution shape of this transient component together with its volume fractions from multiple scattering patterns recorded from an evolving system. The method is implemented in the computer program DAMMIX freely available to academic users and its effectiveness is illustrated in several synthetic and experimental examples.
Collapse
Affiliation(s)
- Petr V. Konarev
- Laboratory of Reflectometry and Small-angle Scattering, A. V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, Leninsky pr. 59, Moscow 119333, Russian Federation
- National Research Centre ‘Kurchatov Institute’, Akademika Kurchatova pl. 1, Moscow 123182, Russian Federation
| | - Dmitri I. Svergun
- Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, Hamburg 22607, Germany
| |
Collapse
|
455
|
Yuenyao A, Petchyam N, Kamonsutthipaijit N, Chaiyen P, Pakotiprapha D. Crystal structure of the flavin reductase of Acinetobacter baumannii p-hydroxyphenylacetate 3-hydroxylase (HPAH) and identification of amino acid residues underlying its regulation by aromatic ligands. Arch Biochem Biophys 2018; 653:24-38. [PMID: 29940152 DOI: 10.1016/j.abb.2018.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022]
Abstract
The first step in the degradation of p-hydroxyphenylacetic acid (HPA) is catalyzed by the two-component enzyme p-hydroxyphenylacetate 3-hydroxylase (HPAH). The two components of Acinetobacter baumannii HPAH are known as C1 and C2, respectively. C1 is a flavin reductase that uses NADH to generate reduced flavin mononucleotide (FMNH-), which is used by C2 in the hydroxylation of HPA. Interestingly, although HPA is not directly involved in the reaction catalyzed by C1, the presence of HPA dramatically increases the FMN reduction rate. Amino acid sequence analysis revealed that C1 contains two domains: an N-terminal flavin reductase domain, and a C-terminal MarR domain. Although MarR proteins typically function as transcription regulators, the MarR domain of C1 was found to play an auto-inhibitory role. Here, we report a crystal structure of C1 and small-angle X-ray scattering (SAXS) studies that revealed that C1 undergoes a substantial conformational change in the presence of HPA, concomitant with the increase in the rate of flavin reduction. Amino acid residues that are important for HPA binding and regulation of C1 activity were identified by site-directed mutagenesis. Amino acid sequence similarity analysis revealed several as yet uncharacterized flavin reductases with N- or C-terminal fusions.
Collapse
Affiliation(s)
- Anan Yuenyao
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nopphon Petchyam
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
456
|
Cellular conditions of weakly chelated magnesium ions strongly promote RNA stability and catalysis. Nat Commun 2018; 9:2149. [PMID: 29858572 PMCID: PMC5984629 DOI: 10.1038/s41467-018-04415-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/23/2018] [Indexed: 01/06/2023] Open
Abstract
Most RNA folding studies have been performed under non-physiological conditions of high concentrations (≥10 mM) of Mg2+free, while actual cellular concentrations of Mg2+free are only ~1 mM in a background of greater than 50 mM Mg2+total. To uncover cellular behavior of RNA, we devised cytoplasm mimic systems that include biological concentrations of amino acids, which weakly chelate Mg2+. Amino acid-chelated Mg2+ (aaCM) of ~15 mM dramatically increases RNA folding and prevents RNA degradation. Furthermore, aaCM enhance self-cleavage of several different ribozymes, up to 100,000-fold at Mg2+free of just 0.5 mM, indirectly through RNA compaction. Other metabolites that weakly chelate magnesium offer similar beneficial effects, which implies chelated magnesium may enhance RNA function in the cell in the same way. Overall, these results indicate that the states of Mg2+ should not be limited to free and bound only, as weakly bound Mg2+ strongly promotes RNA function under cellular conditions.
Collapse
|
457
|
Sharma N, Chakravarthy S, Longley MJ, Copeland WC, Prakash A. The C-terminal tail of the NEIL1 DNA glycosylase interacts with the human mitochondrial single-stranded DNA binding protein. DNA Repair (Amst) 2018; 65:11-19. [PMID: 29522991 PMCID: PMC5911420 DOI: 10.1016/j.dnarep.2018.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022]
Abstract
The 16.5 kb mitochondrial genome is subjected to damage from reactive oxygen species (ROS) generated in the cell during normal cellular metabolism and external sources such as ionizing radiation and ultraviolet light. ROS cause harmful damage to DNA bases that could result in mutagenesis and various diseases, if not properly repaired. The base excision repair (BER) pathway is the primary pathway involved in maintaining the integrity of mtDNA. Several enzymes that partake in BER within the nucleus have also been identified in the mitochondria. The nei-like (NEIL) DNA glycosylases initiate BER by excising oxidized pyrimidine bases and others such as the ring-opened formamidopyrimidine and the hydantoin lesions. During BER, the NEIL enzymes interact with proteins that are involved with DNA replication and transcription. In the current manuscript, we detected NEIL1 in purified mitochondrial extracts from human cells and showed that NEIL1 interacts with the human mitochondrial single-stranded DNA binding protein (mtSSB) via its C-terminal tail using protein painting, far-western analysis, and gel-filtration chromatography. Finally, we scrutinized the NEIL1-mtSSB interaction in the presence and absence of a partial-duplex DNA substrate using a combination of multi-angle light scattering (MALS) and small-angle X-ray scattering (SAXS). The data indicate that NEIL1 and homotetrameric mtSSB form a larger ternary complex in presence of DNA, however, the tetrameric form of mtSSB gets disrupted by NEIL1 in the absence of DNA as revealed by the formation of a smaller NEIL1-mtSSBmonomer complex.
Collapse
Affiliation(s)
- Nidhi Sharma
- University of South Alabama, Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, United States
| | - Srinivas Chakravarthy
- Illinois Institute of Technology, Advanced Photon Source, Bldg. 435B/Sector 18, 9700 S. Cass Avenue, Argonne, IL 60439-4860, United States
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States
| | - Aishwarya Prakash
- University of South Alabama, Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, United States.
| |
Collapse
|
458
|
Hajizadeh NR, Franke D, Svergun DI. Integrated beamline control and data acquisition for small-angle X-ray scattering at the P12 BioSAXS beamline at PETRAIII storage ring DESY. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:906-914. [PMID: 29714204 PMCID: PMC5929361 DOI: 10.1107/s1600577518005398] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/06/2018] [Indexed: 05/09/2023]
Abstract
The versatility of small-angle X-ray scattering (SAXS) as a structural biology method is apparent by its compatibility with many experimental set-ups. Most advanced SAXS studies are conducted at dedicated synchrotron beamlines yielding high beam brilliance, throughput and temporal resolution. However, utilizing the full potential of the method while preserving a high degree of automation provides a challenge to any SAXS beamline. This challenge is especially pertinent at the P12 BioSAXS beamline of the EMBL at the PETRAIII Synchrotron DESY (Hamburg, Germany), optimized and dedicated to scattering of macromolecular solutions. Over 200 unique set-ups are possible at this beamline offering various functionalities, including different temporal and spatial resolutions. Presented here is a beamline control and data-acquisition software, BECQUEREL, designed to maximize flexibility and automation in the operation of P12. In the frame of a single intuitive interface the control system allows for convenient operation with all hardware set-ups available at P12 including a robotic sample changer, in-line size-exclusion chromatography, stop-flow devices, microfluidic spinning disk and various in-air settings. Additional functionalities are available to assist the data-collection procedure for novice users, and also routine operation of the support staff.
Collapse
Affiliation(s)
- Nelly R. Hajizadeh
- Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Daniel Franke
- Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
- Correspondence e-mail: ,
| | - Dmitri I. Svergun
- Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
- Correspondence e-mail: ,
| |
Collapse
|
459
|
Recent developments in small-angle X-ray scattering and hybrid method approaches for biomacromolecular solutions. Emerg Top Life Sci 2018; 2:69-79. [PMID: 33525782 DOI: 10.1042/etls20170138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 01/05/2023]
Abstract
Small-angle X-ray scattering (SAXS) has become a streamline method to characterize biological macromolecules, from small peptides to supramolecular complexes, in near-native solutions. Modern SAXS requires limited amounts of purified material, without the need for labelling, crystallization, or freezing. Dedicated beamlines at modern synchrotron sources yield high-quality data within or below several milliseconds of exposure time and are highly automated, allowing for rapid structural screening under different solutions and ambient conditions but also for time-resolved studies of biological processes. The advanced data analysis methods allow one to meaningfully interpret the scattering data from monodisperse systems, from transient complexes as well as flexible and heterogeneous systems in terms of structural models. Especially powerful are hybrid approaches utilizing SAXS with high-resolution structural techniques, but also with biochemical, biophysical, and computational methods. Here, we review the recent developments in the experimental SAXS practice and in analysis methods with a specific focus on the joint use of SAXS with complementary methods.
Collapse
|
460
|
Recent advances in the UltraScan SOlution MOdeller (US-SOMO) hydrodynamic and small-angle scattering data analysis and simulation suite. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:855-864. [PMID: 29594411 DOI: 10.1007/s00249-018-1296-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 01/10/2023]
Abstract
The UltraScan SOlution MOdeller (US-SOMO) is a comprehensive, public domain, open-source suite of computer programs centred on hydrodynamic modelling and small-angle scattering (SAS) data analysis and simulation. We describe here the advances that have been implemented since its last official release (#3087, 2017), which are available from release #3141 for Windows, Linux and Mac operating systems. A major effort has been the transition from the legacy Qt3 cross platform software development and user interface library to the modern Qt5 release. Apart from improved graphical support, this has allowed the direct implementation of the newest, almost two-orders of magnitude faster version of the ZENO hydrodynamic computation algorithm for all operating systems. Coupled with the SoMo-generated bead models with overlaps, ZENO provides the most accurate translational friction computations from atomic-level structures available (Rocco and Byron Eur Biophys J 44:417-431, 2015a), with computational times comparable with or faster than those of other methods. In addition, it has allowed us to introduce the direct representation of each atom in a structure as a (hydrated) bead, opening interesting new modelling possibilities. In the small-angle scattering (SAS) part of the suite, an indirect Fourier transform Bayesian algorithm has been implemented for the computation of the pairwise distance distribution function from SAS data. Finally, the SAS HPLC module, recently upgraded with improved baseline correction and Gaussian decomposition of not baseline-resolved peaks and with advanced statistical evaluation tools (Brookes et al. J Appl Cryst 49:1827-1841, 2016), now allows automatic top-peak frame selection and averaging.
Collapse
|
461
|
An N-Terminal Retention Module Anchors the Giant Adhesin LapA of Pseudomonas fluorescens at the Cell Surface: a Novel Subfamily of Type I Secretion Systems. J Bacteriol 2018; 200:JB.00734-17. [PMID: 29437852 DOI: 10.1128/jb.00734-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/31/2018] [Indexed: 11/20/2022] Open
Abstract
LapA of Pseudomonas fluorescens Pf0-1 belongs to a diverse family of cell surface-associated bacterial adhesins that are secreted via the type I secretion system (T1SS). We previously reported that the periplasmic protease LapG cleaves the N terminus of LapA at a canonical dialanine motif to release the adhesin from the cell surface under conditions unfavorable to biofilm formation, thus decreasing biofilm formation. Here, we characterize LapA as the first type I secreted substrate that does not follow the "one-step" rule of T1SS. Rather, a novel N-terminal element, called the retention module (RM), localizes LapA at the cell surface as a secretion intermediate. Our genetic, biochemical, and molecular modeling analyses support a model wherein LapA is tethered to the cell surface through its T1SS outer membrane TolC-like pore, LapE, until LapG cleaves LapA in the periplasm. We further demonstrate that this unusual retention strategy is likely conserved among LapA-like proteins, and it reveals a new subclass of T1SS ABC transporters involved in transporting this group of surface-associated LapA-like adhesins. These studies demonstrate a novel cell surface retention strategy used throughout the Proteobacteria and highlight a previously unappreciated flexibility of function for T1SS.IMPORTANCE Bacteria have evolved multiple secretion strategies to interact with their environment. For many bacteria, the secretion of cell surface-associated adhesins is key for initiating contact with a preferred substratum to facilitate biofilm formation. Our work demonstrates that P. fluorescens uses a previously unrecognized secretion strategy to retain the giant adhesin LapA at its cell surface. Further, we identify likely LapA-like adhesins in various pathogenic and commensal proteobacteria and provide phylogenetic evidence that these adhesins are secreted by a new subclass of T1SS ABC transporters.
Collapse
|
462
|
Wibmer L, Lages S, Unruh T, Guldi DM. Excitons and Trions in One-Photon- and Two-Photon-Excited MoS 2 : A Study in Dispersions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706702. [PMID: 29411441 DOI: 10.1002/adma.201706702] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/19/2017] [Indexed: 06/08/2023]
Abstract
Herein, various dispersions of MoS2 obtained by means of liquid phase exfoliation are spectroscopically, (spectro-) electrochemically, and microscopically characterized. At the core of these studies are transient absorption assays. Importantly, small-angle X-ray scattering measurements are employed to corroborate the exfoliated character of the MoS2 flakes in dispersion, on the one hand, and to correlate the results with TEM, AFM, and Raman characterization in the solid state, on the other. It is, then, demonstrated that transient absorption spectroscopy responds sensitively not only to changes in the sample preparation but also to instrumental and environmental parameters. It is documented that the spectroscopic features and their underlying lifetimes are tuneable on the femto-, pico-, and nanosecond scales by changing, for example, the centrifugation speed, the pump fluence, or the temperature. In other words, transient absorption spectroscopy provides an in situ method to quantitatively characterize liquid dispersions of MoS2 without facing the problems of reaggregated samples due to their drying for microscopic assays. The most far reaching results stem from resonantly and nonresonantly changing the pump fluence to characterize either single- or multiple-excited-state species such as excitons, trions, and bi-/multiexcitons and to follow their formation and deactivation pattern.
Collapse
Affiliation(s)
- Leonie Wibmer
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Sebastian Lages
- Department of Physics, Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058, Erlangen, Germany
| | - Tobias Unruh
- Department of Physics, Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058, Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
463
|
Noninvasive Structural Analysis of Intermediate Species During Fibrillation: An Application of Small-Angle X-Ray Scattering. Methods Mol Biol 2018; 1779:209-239. [PMID: 29886536 DOI: 10.1007/978-1-4939-7816-8_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Structural investigation of intermediately formed oligomers and pre-fibrillar species is of tremendous importance in order to elucidate the structural principles of fibrillation, and because intermediate species have been suggested as the pathogenic agents in several amyloid diseases. Structural investigations are however greatly complicated by the dynamic changes between structural states of very different sizes and life-times. Small angle X-ray scattering (SAXS) is an ideal method to handle this challenge. The method provides information about the fibrillation process (number of species present and their volume fractions) and low-resolution 3-dimensional structural models of individual species, notably also of the intermediately formed, in-process species from undisturbed fibrillation equilibria. Here, we provide a detailed description of the methods used for the measurement and analysis of SAXS data from fibrillating samples, exemplified using data from our own research.
Collapse
|
464
|
Goffin E, Drapier T, Larsen AP, Geubelle P, Ptak CP, Laulumaa S, Rovinskaja K, Gilissen J, Tullio PD, Olsen L, Frydenvang K, Pirotte B, Hanson J, Oswald RE, Kastrup JS, Francotte P. 7-Phenoxy-Substituted 3,4-Dihydro-2H-1,2,4-benzothiadiazine 1,1-Dioxides as Positive Allosteric Modulators of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors with Nanomolar Potency. J Med Chem 2017; 61:251-264. [PMID: 29256599 DOI: 10.1021/acs.jmedchem.7b01323] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report here the synthesis of 7-phenoxy-substituted 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides and their evaluation as AMPA receptor positive allosteric modulators (AMPApams). The impact of substitution on the phenoxy ring and on the nitrogen atom at the 4-position was examined. At GluA2(Q) expressed in HEK293 cells (calcium flux experiment), the most potent compound was 11m (4-cyclopropyl-7-(3-methoxyphenoxy)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide, EC50 = 2.0 nM). The Hill coefficient in the screening and the shape of the dimerization curve in small-angle X-ray scattering (SAXS) experiments using isolated GluA2 ligand-binding domain (GluA2-LBD) are consistent with binding of one molecule of 11m per dimer interface, contrary to most benzothiadiazine dioxides developed to date. This observation was confirmed by the X-ray structure of 11m bound to GluA2-LBD and by NMR. This is the first benzothiadiazine dioxide AMPApam to reach the nanomolar range.
Collapse
Affiliation(s)
- Eric Goffin
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Quartier Hôpital B36 Av. Hippocrate 15 B-4000 Liège, Belgium
| | - Thomas Drapier
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Quartier Hôpital B36 Av. Hippocrate 15 B-4000 Liège, Belgium
| | - Anja Probst Larsen
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , DK-2100 Copenhagen, Denmark
| | - Pierre Geubelle
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Quartier Hôpital B36 Av. Hippocrate 15 B-4000 Liège, Belgium.,Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège , Liège, Belgium
| | - Christopher P Ptak
- Department of Molecular Medicine, Cornell University , Ithaca, New York 14850, United States
| | - Saara Laulumaa
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , DK-2100 Copenhagen, Denmark
| | - Karoline Rovinskaja
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , DK-2100 Copenhagen, Denmark
| | - Julie Gilissen
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Quartier Hôpital B36 Av. Hippocrate 15 B-4000 Liège, Belgium.,Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège , Liège, Belgium
| | - Pascal de Tullio
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Quartier Hôpital B36 Av. Hippocrate 15 B-4000 Liège, Belgium
| | - Lars Olsen
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , DK-2100 Copenhagen, Denmark
| | - Karla Frydenvang
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , DK-2100 Copenhagen, Denmark
| | - Bernard Pirotte
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Quartier Hôpital B36 Av. Hippocrate 15 B-4000 Liège, Belgium
| | - Julien Hanson
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Quartier Hôpital B36 Av. Hippocrate 15 B-4000 Liège, Belgium.,Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège , Liège, Belgium
| | - Robert E Oswald
- Department of Molecular Medicine, Cornell University , Ithaca, New York 14850, United States
| | - Jette Sandholm Kastrup
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , DK-2100 Copenhagen, Denmark
| | - Pierre Francotte
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Quartier Hôpital B36 Av. Hippocrate 15 B-4000 Liège, Belgium
| |
Collapse
|
465
|
Hsieh CL, Ptak CP, Tseng A, Suguiura IMDS, McDonough SP, Sritrakul T, Li T, Lin YP, Gillilan RE, Oswald RE, Chang YF. Extended low-resolution structure of a Leptospira antigen offers high bactericidal antibody accessibility amenable to vaccine design. eLife 2017; 6:e30051. [PMID: 29210669 PMCID: PMC5749957 DOI: 10.7554/elife.30051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/02/2017] [Indexed: 01/16/2023] Open
Abstract
Pathogens rely on proteins embedded on their surface to perform tasks essential for host infection. These obligatory structures exposed to the host immune system provide important targets for rational vaccine design. Here, we use a systematically designed series of multi-domain constructs in combination with small angle X-ray scattering (SAXS) to determine the structure of the main immunoreactive region from a major antigen from Leptospira interrogans, LigB. An anti-LigB monoclonal antibody library exhibits cell binding and bactericidal activity with extensive domain coverage complementing the elongated architecture observed in the SAXS structure. Combining antigenic motifs in a single-domain chimeric immunoglobulin-like fold generated a vaccine that greatly enhances leptospiral protection over vaccination with single parent domains. Our study demonstrates how understanding an antigen's structure and antibody accessible surfaces can guide the design and engineering of improved recombinant antigen-based vaccines.
Collapse
Affiliation(s)
- Ching-Lin Hsieh
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Christopher P Ptak
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
- Department of Molecular Medicine, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Andrew Tseng
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | | | - Sean P McDonough
- Department of Biomedical Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Tepyuda Sritrakul
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Ting Li
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Yi-Pin Lin
- Division of Infectious DiseaseWadsworth Center, New York State Department of HealthAlbanyUnited States
| | - Richard E Gillilan
- Macromolecular Diffraction Facility at CHESS (MacCHESS)Cornell UniversityIthacaUnited States
| | - Robert E Oswald
- Department of Molecular Medicine, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| |
Collapse
|