451
|
Fabbri M, Girnita L, Varani G, Calin GA. Decrypting noncoding RNA interactions, structures, and functional networks. Genome Res 2019; 29:1377-1388. [PMID: 31434680 PMCID: PMC6724670 DOI: 10.1101/gr.247239.118] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The world of noncoding RNAs (ncRNAs) is composed of an enormous and growing number of transcripts, ranging in length from tens of bases to tens of kilobases, involved in all biological processes and altered in expression and/or function in many types of human disorders. The premise of this review is the concept that ncRNAs, like many large proteins, have a multidomain architecture that organizes them spatially and functionally. As ncRNAs are beginning to be imprecisely classified into functional families, we review here how their structural properties might inform their functions with focus on structural architecture-function relationships. We will describe the properties of "interactor elements" (IEs) involved in direct physical interaction with nucleic acids, proteins, or lipids and of "structural elements" (SEs) directing their wiring within the "ncRNA interactor networks" through the emergence of secondary and/or tertiary structures. We suggest that spectrums of "letters" (ncRNA elements) are assembled into "words" (ncRNA domains) that are further organized into "phrases" (complete ncRNA structures) with functional meaning (signaling output) through complex "sentences" (the ncRNA interactor networks). This semiotic analogy can guide the exploitation of ncRNAs as new therapeutic targets through the development of IE-blockers and/or SE-lockers that will change the interactor partners' spectrum of proteins, RNAs, DNAs, or lipids and consequently influence disease phenotypes.
Collapse
Affiliation(s)
- Muller Fabbri
- University of Hawaii Cancer Center, Cancer Biology Program, Honolulu, Hawaii 96813, USA
| | - Leonard Girnita
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, Stockholm, 17164 Sweden
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - George A Calin
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
452
|
Long non-coding RNAs as regulators of Wnt/β catenin pathway. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
453
|
Marshall EA, Stewart GL, Sage AP, Lam WL, Brown CJ. Beyond sequence homology: Cellular biology limits the potential of XIST to act as a miRNA sponge. PLoS One 2019; 14:e0221371. [PMID: 31419261 PMCID: PMC6697314 DOI: 10.1371/journal.pone.0221371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/05/2019] [Indexed: 01/13/2023] Open
Abstract
Introduction The sponging of microRNAs by a long non-coding RNA (lncRNA) away from their coding gene targets is a conceptually-simple, yet biologically-complex method of lncRNA-mediated gene regulation. Currently, predictions of genes that participate in sponge-based regulation are largely based on sequence homology alone, which may not adequately reflect the cellular environment in which lncRNA:miRNA pairs interact. The vast number of potential interactions generated by these predictions impedes the identification of functional gene regulatory relationships, which necessitates an approach that considers biological context. XIST, the female-specific lncRNA canonically involved in silencing the X chromosome, has been suggested by many studies to act as a miRNA sponge. The sex-specificity of XIST provides the opportunity to study the biological feasibility of proposed XIST-miRNA interactions. Here we take a comprehensive approach by considering factors that affect possible regulation through XIST-miRNA sponging. Results To identify the most feasible candidates in a particular tissue (lung adenocarcinomas), we considered protein-coding genes that (1) were positively correlated with XIST expression within sexes, (2) were targeted by miRNAs shared with XIST, and (3) expressed in lung adenocarcinoma. This revealed a robust set of 124 genes potentially positively regulated by XIST through the sequestration of 804 shared miRNAs. We then used the basic sex-specific nature of XIST to compare the changes in miRNA-target gene relationships in endogenously high-XIST and low-XIST systems to discover a high-confidence set of only 13 miRNA-gene pairs. As XIST is expressed exclusively in the nucleus, we validated the nuclear presence of several of these high-confidence miRNAs using RT-qPCR, confirming the co-localization required for XIST to interact with these species. Conclusions We use a biology-driven approach to identify genes defended from miRNA-based inhibition by the lncRNA XIST. Importantly, we identify that only a small subset of miRNAs predicted by sequence homology alone have the capacity to mediate the XIST-target gene axis, as they are enriched in the nucleus and able to co-localize with XIST for sponging. Our results reinforce the necessary consideration of biological features in future studies of lncRNA:miRNA interactions.
Collapse
Affiliation(s)
- Erin A. Marshall
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Canada
- * E-mail:
| | - Greg L. Stewart
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Canada
| | - Adam P. Sage
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Canada
| | - Wan L. Lam
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Canada
| | - Carolyn J. Brown
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
454
|
Mustafin RN, Khusnutdinova EK. The Role of Reverse Transcriptase in the Origin of Life. BIOCHEMISTRY (MOSCOW) 2019; 84:870-883. [DOI: 10.1134/s0006297919080030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
455
|
Zhou Y, Xu C, Zhu W, He H, Zhang L, Tang B, Zeng Y, Tian Q, Deng HW. Long Noncoding RNA Analyses for Osteoporosis Risk in Caucasian Women. Calcif Tissue Int 2019; 105:183-192. [PMID: 31073748 PMCID: PMC6712977 DOI: 10.1007/s00223-019-00555-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Osteoporosis is a prevalent bone metabolic disease characterized by bone fragility. As a key pathophysiological mechanism, the disease is caused by excessive bone resorption (by osteoclasts) over bone formation (by osteoblasts). Peripheral blood monocytes (PBMs) is a major systemic cell model for bone metabolism by serving as progenitors of osteoclasts and producing cytokines important for osteoclastogenesis. Protein-coding genes for osteoporosis have been widely studied by mRNA analyses of PBMs in high versus low hip bone mineral density (BMD) subjects. However, long noncoding RNAs (lncRNAs), which account for a large proportion of human transcriptome, have seldom been studied. METHODS In this study, microarray analyses of monocytes were performed using Affymetrix exon 1.0 ST arrays in 73 Caucasian females (age: 47-56). LncRNA profile was generated by re-annotating exon array for lncRNAs detection, which yielded 12,007 lncRNAs mapped to the human genome. RESULTS 575 lncRNAs were differentially expressed between the two groups. In the high BMD subjects, 309 lncRNAs were upregulated and 266 lncRNAs were downregulated (nominally significant, raw p-value < 0.05). To investigate the relationship between mRNAs and lncRNAs, we used two approaches to predict the target genes of lncRNAs and found that 26 candidate lncRNAs might regulate mRNA expression. The majority of these lncRNAs were further validated to be potentially correlated with BMD by GWAS analysis. CONCLUSION Overall, our findings for the first time reported the lncRNAs profiles for osteoporosis and suggested the potential regulatory mechanism of lncRNAs on protein-coding genes in bone metabolism.
Collapse
Affiliation(s)
- Yu Zhou
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Chao Xu
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Wei Zhu
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Hao He
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Lan Zhang
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Beisha Tang
- School of Basic Medical Science, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Yong Zeng
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Qing Tian
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Hong-Wen Deng
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA.
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA.
- School of Basic Medical Science, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St., RM 1619F, New Orleans, LA, 70112, USA.
| |
Collapse
|
456
|
Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol Immunol 2019; 112:82-92. [DOI: 10.1016/j.molimm.2019.04.011] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022]
|
457
|
Lim LJ, Wong SYS, Huang F, Lim S, Chong SS, Ooi LL, Kon OL, Lee CG. Roles and Regulation of Long Noncoding RNAs in Hepatocellular Carcinoma. Cancer Res 2019; 79:5131-5139. [PMID: 31337653 DOI: 10.1158/0008-5472.can-19-0255] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/06/2019] [Accepted: 07/19/2019] [Indexed: 01/21/2023]
Abstract
Next-generation sequencing has uncovered thousands of long noncoding RNAs (lncRNA). Many are reported to be aberrantly expressed in various cancers, including hepatocellular carcinoma (HCC), and play key roles in tumorigenesis. This review provides an in-depth discussion of the oncogenic mechanisms reported to be associated with deregulated HCC-associated lncRNAs. Transcriptional expression of lncRNAs in HCC is modulated through transcription factors, or epigenetically by aberrant histone acetylation or DNA methylation, and posttranscriptionally by lncRNA transcript stability modulated by miRNAs and RNA-binding proteins. Seventy-four deregulated lncRNAs have been identified in HCC, of which, 52 are upregulated. This review maps the oncogenic roles of these deregulated lncRNAs by integrating diverse datasets including clinicopathologic features, affected cancer phenotypes, associated miRNA and/or protein-interacting partners as well as modulated gene/protein expression. Notably, 63 deregulated lncRNAs are significantly associated with clinicopathologic features of HCC. Twenty-three deregulated lncRNAs associated with both tumor and metastatic clinical features were also tumorigenic and prometastatic in experimental models of HCC, and eight of these mapped to known cancer pathways. Fifty-two upregulated lncRNAs exhibit oncogenic properties and are associated with prominent hallmarks of cancer, whereas 22 downregulated lncRNAs have tumor-suppressive properties. Aberrantly expressed lncRNAs in HCC exert pleiotropic effects on miRNAs, mRNAs, and proteins. They affect multiple cancer phenotypes by altering miRNA and mRNA expression and stability, as well as through effects on protein expression, degradation, structure, or interactions with transcriptional regulators. Hence, these insights reveal novel lncRNAs as potential biomarkers and may enable the design of precision therapy for HCC.
Collapse
Affiliation(s)
- Lee Jin Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Samuel Y S Wong
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Feiyang Huang
- NUS High School of Math and Science, Singapore, Singapore
| | - Sheng Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore.,Raffles Institution, Singapore, Singapore
| | - Samuel S Chong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - London Lucien Ooi
- Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Oi Lian Kon
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Caroline G Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
458
|
PIN1 transcript variant 2 acts as a long non-coding RNA that controls the HIF-1-driven hypoxic response. Sci Rep 2019; 9:10599. [PMID: 31332228 PMCID: PMC6646326 DOI: 10.1038/s41598-019-47071-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/10/2019] [Indexed: 02/08/2023] Open
Abstract
The transcription factor HIF-1 induces the expression of genes that are essential for cell survival and oxygen homeostasis in hypoxic conditions. The prolyl isomerase Pin1 plays a role in the regulation of HIF-1α. However, the mechanism by which Pin1 controls HIF-1α remains controversial. Surprisingly, we here show that a PIN1 transcript downregulates HIF-1α as a long non-coding RNA. Pin1-silencing siRNAs augmented the hypoxia-induced expression of HIF-1α, thereby upregulating the expression of HIF-1 target genes. However, the overexpression of Pin1 protein did not inhibit the hypoxic expression of HIF-1α. Pin1 restoration in Pin1-depleted cells also failed to reverse the induction of HIF-1α by Pin1 knockdown. Unexpectedly, HIF-1α was found to be induced by both siRNAs for PIN1 transcript variants 1/2 and that for PIN1 transcript variants 2/3, indicating that the PIN1 transcript variant 2 (PIN1-v2) is responsible for HIF-1α induction. Mechanistically, PIN1-v2, which is classified as a long non-coding RNA due to early termination of translation, was evaluated to inhibit the transcription of HIF1A gene. In conclusion, PIN1-v2 may function in balancing the HIF-1-driven gene expression under hypoxia.
Collapse
|
459
|
Zhang P, Wu W, Chen Q, Chen M. Non-Coding RNAs and their Integrated Networks. J Integr Bioinform 2019; 16:/j/jib.2019.16.issue-3/jib-2019-0027/jib-2019-0027.xml. [PMID: 31301674 PMCID: PMC6798851 DOI: 10.1515/jib-2019-0027] [Citation(s) in RCA: 425] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/02/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic genomes are pervasively transcribed. Besides protein-coding RNAs, there are different types of non-coding RNAs that modulate complex molecular and cellular processes. RNA sequencing technologies and bioinformatics methods greatly promoted the study of ncRNAs, which revealed ncRNAs' essential roles in diverse aspects of biological functions. As important key players in gene regulatory networks, ncRNAs work with other biomolecules, including coding and non-coding RNAs, DNAs and proteins. In this review, we discuss the distinct types of ncRNAs, including housekeeping ncRNAs and regulatory ncRNAs, their versatile functions and interactions, transcription, translation, and modification. Moreover, we summarize the integrated networks of ncRNA interactions, providing a comprehensive landscape of ncRNAs regulatory roles.
Collapse
Affiliation(s)
- Peijing Zhang
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenyi Wu
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
460
|
Li S, Hussain F, Unnithan GC, Dong S, UlAbdin Z, Gu S, Mathew LG, Fabrick JA, Ni X, Carrière Y, Tabashnik BE, Li X. A long non-coding RNA regulates cadherin transcription and susceptibility to Bt toxin Cry1Ac in pink bollworm, Pectinophora gossypiella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 158:54-60. [PMID: 31378361 DOI: 10.1016/j.pestbp.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 05/29/2023]
Abstract
Extensive planting of transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) has spurred increasingly rapid evolution of resistance in pests. In the pink bollworm, Pectinophora gossypiella, a devastating global pest, resistance to Bt toxin Cry1Ac produced by transgenic cotton is linked with mutations in a gene (PgCad1) encoding a cadherin protein that binds Cry1Ac in the larval midgut. We previously reported a long non-coding RNA (lncRNA) in intron 20 of cadherin alleles associated with both resistance and susceptibility to Cry1Ac. Here we tested the hypothesis that reducing expression of this lncRNA decreases transcription of PgCad1 and susceptibility to Cry1Ac. Quantitative RT-PCR showed that feeding susceptible neonates small interfering RNAs (siRNAs) targeting this lncRNA but not PgCad1 decreased the abundance of transcripts of both the lncRNA and PgCad1. Moreover, neonates fed the siRNAs had lower susceptibility to Cry1Ac. The results imply that the lncRNA increases transcription of PgCad1 and susceptibility of pink bollworm to Cry1Ac. The results suggest that disruption of lncRNA expression could be a novel mechanism of pest resistance to Bt toxins.
Collapse
Affiliation(s)
- Shengyun Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Fiaz Hussain
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; Insect Molecular Biology Lab, Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Shuanglin Dong
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zain UlAbdin
- Insect Molecular Biology Lab, Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Shaohua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lolita G Mathew
- USDA, ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Jeffrey A Fabrick
- USDA, ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Xinzhi Ni
- USDA, ARS Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
461
|
Sergeeva OV, Korinfskaya SA, Kurochkin II, Zatsepin TS. Long Noncoding RNA LL35/Falcor Regulates Expression of Transcription Factor Foxa2 in Hepatocytes in Normal and Fibrotic Mouse Liver. Acta Naturae 2019; 11:66-74. [PMID: 31720018 PMCID: PMC6826158 DOI: 10.32607/20758251-2019-11-3-66-74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Long noncoding RNAs (lncRNA) play important roles in the regulation of
transcription, splicing, translation, and other processes in the cell. Human
and mouse lncRNA (DEANR1 and LL35/Falcor, respectively) located in the genomic
environment in close proximity to the Foxa2 transcription factor were
discovered earlier. In this work, tissue-specific expression of LL35/Falcor
lncRNA has been shown in mouse liver and lungs. The use of antisense
oligonucleotides allowed us to achieve LL35/Falcor lncRNA downregulation by
90%. As a result, the level of Foxa2 mRNA and protein dropped, which confirms
the involvement of LL35/Falcor lncRNA in the regulation of transcription factor
Foxa2. We have shown a decrease in the expression of LL35 lncRNA in liver
fibrosis, which correlates with the previously published data for mRNA Foxa2.
Thus, lncRNA LL35 regulates Foxa2 expression in the liver not only in normal
conditions, but also during development of fibrosis, which allows one to
consider lncRNA a biomarker of this pathological process.
Collapse
Affiliation(s)
- O. V. Sergeeva
- Skolkovo Institute of Science and Technology, Bolshoy Blvd. 30, bldg. 1, Moscow, 121205, Russia
| | - S. A. Korinfskaya
- Skolkovo Institute of Science and Technology, Bolshoy Blvd. 30, bldg. 1, Moscow, 121205, Russia
| | - I. I. Kurochkin
- Skolkovo Institute of Science and Technology, Bolshoy Blvd. 30, bldg. 1, Moscow, 121205, Russia
| | - T. S. Zatsepin
- Skolkovo Institute of Science and Technology, Bolshoy Blvd. 30, bldg. 1, Moscow, 121205, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninsikie gory 1, bldg. 3, Moscow, 119991, Russia
| |
Collapse
|
462
|
Varon M, Levy T, Mazor G, Ben David H, Marciano R, Krelin Y, Prasad M, Elkabets M, Pauck D, Ahmadov U, Picard D, Qin N, Borkhardt A, Reifenberger G, Leprivier G, Remke M, Rotblat B. The long noncoding RNA TP73-AS1 promotes tumorigenicity of medulloblastoma cells. Int J Cancer 2019; 145:3402-3413. [PMID: 31081944 DOI: 10.1002/ijc.32400] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/11/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022]
Abstract
Medulloblastoma is the most common malignant brain cancer in children. Since previous studies have mainly focused on alterations in the coding genome, our understanding of the contribution of long noncoding RNAs (lncRNAs) to medulloblastoma biology is just emerging. Using patient-derived data, we show that the promoter of lncRNA TP73-AS1 is hypomethylated and that the transcript is highly expressed in the SHH subgroup. Furthermore, high expression of TP73-AS1 is correlated with poor outcome in patients with TP53 wild-type SHH tumors. Silencing TP73-AS1 in medulloblastoma tumor cells induced apoptosis, while proliferation and migration were inhibited in culture. In vivo, silencing TP73-AS1 in medulloblastoma tumor cells resulted in reduced tumor growth, reduced proliferation of tumor cells, increased apoptosis and led to prolonged survival of tumor-bearing mice. Together, our study suggests that the lncRNA TP73-AS1 is a prognostic marker and therapeutic target in medulloblastoma tumors and serves as a proof of concept that lncRNAs are important factors in the disease.
Collapse
Affiliation(s)
- Mor Varon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tal Levy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Gal Mazor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Hila Ben David
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ran Marciano
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| | - Yakov Krelin
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Manu Prasad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - David Pauck
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ulvi Ahmadov
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Daniel Picard
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Nan Qin
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Guido Reifenberger
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.,Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Gabriel Leprivier
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marc Remke
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| |
Collapse
|
463
|
Zhang JJ, Fan LP. Long non-coding RNA CRNDE enhances cervical cancer progression by suppressing PUMA expression. Biomed Pharmacother 2019; 117:108726. [PMID: 31202167 DOI: 10.1016/j.biopha.2019.108726] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/17/2023] Open
Abstract
Cervical cancer is the second most common gynecological malignancy, and it remains a leading cause of tumor-related death among female in the world. Long non-coding RNAs (lncRNAs) have been indicated to play essential roles in tumorigenesis, and the lncRNA colorectal neoplasia differentially expressed (CRNDE) is increased in several tumors. Nevertheless, little is known about the effects of lncRNA CRNDE on human cervical cancer. The aim of the study was to explore the clinical significance of lncRNA CRNDE expression in human cervical cancer. Our results indicated that CRNDE expression was increased in cervical cancer tissues and several cervical cancer cell lines. Through loss-of-function and gain-of-function approaches, we found that CRNDE knockdown markedly reduced cervical cancer cell proliferation, while CRNDE overexpression significantly promoted cervical cancer cell growth. Consistently, CRNDE decreasing obviously inhibited tumorigenicity of cervical cancer cells in vivo, whereas CRNDE increasing markedly promoted cervical cancer progression. Mechanistically, we verified that CRNDE bond to p53 upregulated modulator of apoptosis (PUMA), and PUMA was required for CRNDE to enhance cervical cancer cell growth. Our study demonstrated that CRNDE, combined with PUMA, could be utilized as factor for the clinical diagnosis and prognosis of cervical cancer, and might be potential target for developing effective therapeutic strategy to prevent cervical cancer progression.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Department of Gynecology, Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Li-Ping Fan
- Department of Gynecology, Fufeng County People's Hospital, Baoji 722299, China
| |
Collapse
|
464
|
Skuratovskaia D, Vulf M, Komar A, Kirienkova E, Litvinova L. Promising Directions in Atherosclerosis Treatment Based on Epigenetic Regulation Using MicroRNAs and Long Noncoding RNAs. Biomolecules 2019; 9:E226. [PMID: 31212708 PMCID: PMC6627269 DOI: 10.3390/biom9060226] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is one of the leading causes of mortality from cardiovascular disease (CVD) and is a chronic inflammatory disease of the middle and large arteries caused by a disruption of lipid metabolism. Noncoding RNA (ncRNA), including microRNA (miRNA), small interfering RNA (siRNA) and long noncoding RNA (lncRNA), was investigated for the treatment of atherosclerosis. Regulation of the expression of noncoding RNA targets the constituent element of the pathogenesis of atherosclerosis. Currently, miRNA therapy commonly employs miRNA antagonists and mimic compounds. In this review, attention is focused on approaches to correcting molecular disorders based on the genetic regulation of the transcription of key genes responsible for the development of atherosclerosis. Promising technologies were considered for the treatment of atherosclerosis, and examples are given for technologies that have been shown to be effective in clinical trials.
Collapse
Affiliation(s)
- Daria Skuratovskaia
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Maria Vulf
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Aleksandra Komar
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Elena Kirienkova
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Larisa Litvinova
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| |
Collapse
|
465
|
Lessons learned from a lncRNA odyssey for two genes with vascular functions, DLL4 and TIE1. Vascul Pharmacol 2019; 114:103-109. [PMID: 30910126 DOI: 10.1016/j.vph.2018.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/24/2018] [Accepted: 06/13/2018] [Indexed: 01/30/2023]
Abstract
Pervasive transcription is a feature of the human genome that requires better understanding. Over the last decade or so, RNA species longer than 200 nucleotides-dubbed long non-coding RNA (lncRNAs)-had been found in sense or anti-sense orientation within or outside of genes that encode proteins. Importantly, lncRNA-mediated gene regulation and the elements that control lncRNA expression are a source of fascination among molecular biologists. In vascular biology, a dozen or so lncRNAs had been identified, and progress occurs each day. In this review, we highlighted our laboratories' contribution to the lncRNA field by discussing lessons learned from two lncRNAs in the tyrosine kinase containing immunoglobulin and epidermal growth factor homology1 (Tie1) and delta-like 4 (Dll4) loci. These genes are responsible for basic vascular patterning and pathophysiological remodeling in angiogenesis.
Collapse
|
466
|
Thompson RD, Baisden JT, Zhang Q. NMR characterization of RNA small molecule interactions. Methods 2019; 167:66-77. [PMID: 31128236 DOI: 10.1016/j.ymeth.2019.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 01/25/2023] Open
Abstract
Exciting discoveries of naturally occurring ligand-sensing and disease-linked noncoding RNAs have promoted significant interests in understanding RNA-small molecule interactions. NMR spectroscopy is a powerful tool for characterizing intermolecular interactions. In this review, we describe protocols and approaches for applying NMR spectroscopy to investigate interactions between RNA and small molecules. We review protocols for RNA sample preparation, methods for identifying RNA-binding small molecules, approaches for mapping RNA-small molecule interactions, determining complex structures, and characterizing binding kinetics. We hope this review will provide a guideline to streamline NMR applications in studying RNA-small molecule interactions, facilitating both basic mechanistic understandings of RNA functions and translational efforts in developing RNA-targeted therapeutics.
Collapse
Affiliation(s)
- Rhese D Thompson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jared T Baisden
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
467
|
Shi HJ, Wang MW, Sun JT, Wang H, Li YF, Chen BR, Fan Y, Wang SB, Wang ZM, Wang QM, Wang LS. A novel long noncoding RNA FAF inhibits apoptosis via upregulating FGF9 through PI3K/AKT signaling pathway in ischemia-hypoxia cardiomyocytes. J Cell Physiol 2019; 234:21973-21987. [PMID: 31093967 DOI: 10.1002/jcp.28760] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 01/03/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been increasingly considered to play an important role in the pathological process of various cardiovascular diseases, which often bind to the proximal promoters of the protein-coding gene to regulate the protein expression. However, the functions and mechanisms of lncRNAs in cardiomyocytes have not been fully elucidated. High-throughput RNA sequencing was performed to identify the differently expressed lncRNAs and messenger RNAs (mRNAs) between acute myocardial infarction (AMI) rats and healthy controls. One novel lncRNA FGF9-associated factor (termed FAF) and mRNAs in AMI rats were verified by bioinformatics, real-time polymerase chain reaction or western blot. Moreover, RNA fluorescence in situ hybridization was performed to determine the location of lncRNA. Subsequently, a series of in vitro assays were used to observe the functions of lncRNA FAF in cardiomyocytes. The expression of lncRNA FAF and FGF9 were remarkably decreased in ischemia-hypoxia cardiomyocytes and heart tissues of AMI rats. Overexpression of FAF could significantly inhibit cardiomyocytes apoptosis induced by ischemia and hypoxia. Conversely, knockdown of lncRNA FAF could promote apoptosis in ischemia-hypoxia cardiomyocytes. Moreover, overexpression of lncRNA FAF could also increase the expression of FGF9. Knockdown of the FGF9 expression could promote apoptosis in cardiomyocytes with the insult of ischemia and hypoxia, which was consistent with the effect of lncRNA FAF overexpression on cardiomyocyte apoptosis. Mechanistically, FGF9 inhibited cardiomyocytes apoptosis through activating signaling tyrosine kinase FGFR2 via phosphoinositide 3-kinase/protein kinase B signaling pathway. Thus, lncRNA FAF plays a protective role in ischemia-hypoxia cardiomyocytes and may serve as a treatment target for AMI.
Collapse
Affiliation(s)
- Hao-Jie Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming-Wei Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-Teng Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Fei Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bing-Rui Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Fan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Si-Bo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zi-Mu Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi-Ming Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lian-Sheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
468
|
A long noncoding RNA distributed in both nucleus and cytoplasm operates in the PYCARD-regulated apoptosis by coordinating the epigenetic and translational regulation. PLoS Genet 2019; 15:e1008144. [PMID: 31086376 PMCID: PMC6534332 DOI: 10.1371/journal.pgen.1008144] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/24/2019] [Accepted: 04/17/2019] [Indexed: 02/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) participate in various biological processes such as apoptosis. The function of lncRNAs is closely correlated with their localization within the cell. While regulatory potential of many lncRNAs has been revealed at specific subcellular location, the biological significance of discrete distribution of an lncRNA in different cellular compartments remains largely unexplored. Here, we identified an lncRNA antisense to the pro-apoptotic gene PYCARD, named PYCARD-AS1, which exhibits a dual nuclear and cytoplasmic distribution and is required for the PYCARD silencing in breast cancer cells. The PYCARD-regulated apoptosis is controlled by PYCARD-AS1; moreover, PYCARD-AS1 regulates apoptosis in a PYCARD-dependent manner, indicating that PYCARD is a critical downstream target of PYCARD-AS1. Mechanistically, PYCARD-AS1 can localize to the PYCARD promoter, where it facilitates DNA methylation and H3K9me2 modification by recruiting the chromatin-suppressor proteins DNMT1 and G9a. Moreover, PYCARD-AS1 and PYCARD mRNA can interact with each other via their 5' overlapping region, leading to inhibition of ribosome assembly in the cytoplasm for PYCARD translation. This study reveals a mechanism whereby an lncRNA works at different cellular compartments to regulate the pro-apoptotic gene PYCARD at both the epigenetic and translational levels, contributing to the PYCARD-regulated apoptosis, and also sheds new light on the role of discretely distributed lncRNAs in diverse biological processes.
Collapse
|
469
|
Beiki H, Liu H, Huang J, Manchanda N, Nonneman D, Smith TPL, Reecy JM, Tuggle CK. Improved annotation of the domestic pig genome through integration of Iso-Seq and RNA-seq data. BMC Genomics 2019; 20:344. [PMID: 31064321 PMCID: PMC6505119 DOI: 10.1186/s12864-019-5709-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/17/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Our understanding of the pig transcriptome is limited. RNA transcript diversity among nine tissues was assessed using poly(A) selected single-molecule long-read isoform sequencing (Iso-seq) and Illumina RNA sequencing (RNA-seq) from a single White cross-bred pig. RESULTS Across tissues, a total of 67,746 unique transcripts were observed, including 60.5% predicted protein-coding, 36.2% long non-coding RNA and 3.3% nonsense-mediated decay transcripts. On average, 90% of the splice junctions were supported by RNA-seq within tissue. A large proportion (80%) represented novel transcripts, mostly produced by known protein-coding genes (70%), while 17% corresponded to novel genes. On average, four transcripts per known gene (tpg) were identified; an increase over current EBI (1.9 tpg) and NCBI (2.9 tpg) annotations and closer to the number reported in human genome (4.2 tpg). Our new pig genome annotation extended more than 6000 known gene borders (5' end extension, 3' end extension, or both) compared to EBI or NCBI annotations. We validated a large proportion of these extensions by independent pig poly(A) selected 3'-RNA-seq data, or human FANTOM5 Cap Analysis of Gene Expression data. Further, we detected 10,465 novel genes (81% non-coding) not reported in current pig genome annotations. More than 80% of these novel genes had transcripts detected in > 1 tissue. In addition, more than 80% of novel intergenic genes with at least one transcript detected in liver tissue had H3K4me3 or H3K36me3 peaks mapping to their promoter and gene body, respectively, in independent liver chromatin immunoprecipitation data. CONCLUSIONS These validated results show significant improvement over current pig genome annotations.
Collapse
Affiliation(s)
- H Beiki
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA
| | - H Liu
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA
| | - J Huang
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.,College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - N Manchanda
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 819 Wallace Road, Ames, IA, 50011, USA
| | - D Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - T P L Smith
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - J M Reecy
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA
| | - C K Tuggle
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.
| |
Collapse
|
470
|
Rossi M, Bucci G, Rizzotto D, Bordo D, Marzi MJ, Puppo M, Flinois A, Spadaro D, Citi S, Emionite L, Cilli M, Nicassio F, Inga A, Briata P, Gherzi R. LncRNA EPR controls epithelial proliferation by coordinating Cdkn1a transcription and mRNA decay response to TGF-β. Nat Commun 2019; 10:1969. [PMID: 31036808 PMCID: PMC6488594 DOI: 10.1038/s41467-019-09754-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 03/27/2019] [Indexed: 12/25/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as regulators of fundamental biological processes. Here we report on the characterization of an intergenic lncRNA expressed in epithelial tissues which we termed EPR (Epithelial cell Program Regulator). EPR is rapidly downregulated by TGF-β and its sustained expression largely reshapes the transcriptome, favors the acquisition of epithelial traits, and reduces cell proliferation in cultured mammary gland cells as well as in an animal model of orthotopic transplantation. EPR generates a small peptide that localizes at epithelial cell junctions but the RNA molecule per se accounts for the vast majority of EPR-induced gene expression changes. Mechanistically, EPR interacts with chromatin and regulates Cdkn1a gene expression by affecting both its transcription and mRNA decay through its association with SMAD3 and the mRNA decay-promoting factor KHSRP, respectively. We propose that EPR enables epithelial cells to control proliferation by modulating waves of gene expression in response to TGF-β. Several lncRNAs are regulated by TGF-β. Here the authors report that an intergenic lncRNA —EPR— is a component of the TGF-β signaling pathway and controls epithelial cell proliferation by altering transcription and mRNA decay of Cdkn1a. EPR overexpression restrains tumor growth of orthotopically transplanted mice.
Collapse
Affiliation(s)
- Martina Rossi
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.,DIMES Sezione Biochimica-Università di Genova, 16132, Genova, Italy
| | - Gabriele Bucci
- Center of Translational Genomics and Bioinformatics, IRCCS Ospedale San Raffaele, 20132, Milano, Italy
| | - Dario Rizzotto
- Laboratory of Transcriptional Networks, Center for Integrative Biology, CIBIO, University of Trento, 38123, Trento, Italy
| | - Domenico Bordo
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Matteo J Marzi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milano, Italy
| | - Margherita Puppo
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.,DIMES Sezione Biochimica-Università di Genova, 16132, Genova, Italy
| | - Arielle Flinois
- Department of Cell Biology, University of Geneve, 1211, Geneve, Switzerland
| | - Domenica Spadaro
- Department of Cell Biology, University of Geneve, 1211, Geneve, Switzerland
| | - Sandra Citi
- Department of Cell Biology, University of Geneve, 1211, Geneve, Switzerland
| | - Laura Emionite
- Animal Facility, IRCCS Policlinico San Martino, 16132, Genova, Italy
| | - Michele Cilli
- Animal Facility, IRCCS Policlinico San Martino, 16132, Genova, Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milano, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Center for Integrative Biology, CIBIO, University of Trento, 38123, Trento, Italy.
| | - Paola Briata
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.
| | - Roberto Gherzi
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.
| |
Collapse
|
471
|
Shields EJ, Petracovici AF, Bonasio R. lncRedibly versatile: biochemical and biological functions of long noncoding RNAs. Biochem J 2019; 476:1083-1104. [PMID: 30971458 PMCID: PMC6745715 DOI: 10.1042/bcj20180440] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts that do not code for proteins, but nevertheless exert regulatory effects on various biochemical pathways, in part via interactions with proteins, DNA, and other RNAs. LncRNAs are thought to regulate transcription and other biological processes by acting, for example, as guides that target proteins to chromatin, scaffolds that facilitate protein-protein interactions and complex formation, and orchestrators of phase-separated compartments. The study of lncRNAs has reached an exciting time, as recent advances in experimental and computational methods allow for genome-wide interrogation of biochemical and biological mechanisms of these enigmatic transcripts. A better appreciation for the biochemical versatility of lncRNAs has allowed us to begin closing gaps in our knowledge of how they act in diverse cellular and organismal contexts, including development and disease.
Collapse
Affiliation(s)
- Emily J Shields
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| | - Ana F Petracovici
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
- Graduate Group in Genetics and Epigenetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A.
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| |
Collapse
|
472
|
Bosselut R. Control of Intra-Thymic αβ T Cell Selection and Maturation by H3K27 Methylation and Demethylation. Front Immunol 2019; 10:688. [PMID: 31001282 PMCID: PMC6456692 DOI: 10.3389/fimmu.2019.00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/13/2019] [Indexed: 12/25/2022] Open
Abstract
In addition to transcription factor binding, the dynamics of DNA modifications (methylation) and chromatin structure are essential contributors to the control of transcription in eukaryotes. Research in the past few years has emphasized the importance of histone H3 methylation at lysine 27 for lineage specific gene repression, demonstrated that deposition of this mark at specific genes is subject to differentiation-induced changes during development, and identified enzymatic activities, methyl transferases and demethylases, that control these changes. The present review discusses the importance of these mechanisms during intrathymic αβ T cell selection and late differentiation.
Collapse
Affiliation(s)
- Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
473
|
Giraud G, Terrone S, Bourgeois CF. Functions of DEAD box RNA helicases DDX5 and DDX17 in chromatin organization and transcriptional regulation. BMB Rep 2019. [PMID: 30293550 PMCID: PMC6330936 DOI: 10.5483/bmbrep.2018.51.12.234] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA helicases DDX5 and DDX17 are multitasking proteins that regulate gene expression in different biological contexts through diverse activities. Special attention has long been paid to their function as coregulators of transcription factors, providing insight about their functional association with a number of chromatin modifiers and remodelers. However, to date, the variety of described mechanisms has made it difficult to understand precisely how these proteins work at the molecular level, and the contribution of their ATPase domain to these mechanisms remains unclear as well. In light of their association with long noncoding RNAs that are key epigenetic regulators, an emerging view is that DDX5 and DDX17 may act through modulating the activity of various ribonucleoprotein complexes that could ensure their targeting to specific chromatin loci. This review will comprehensively describe the current knowledge on these different mechanisms. We will also discuss the potential roles of DDX5 and DDX17 on the 3D chromatin organization and how these could impact gene expression at the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Guillaume Giraud
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, CNRS UMR 5239, INSERM U1210, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| | - Sophie Terrone
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, CNRS UMR 5239, INSERM U1210, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, CNRS UMR 5239, INSERM U1210, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| |
Collapse
|
474
|
Xu H, Cao L, Sun B, Wei Y, Liang M. Transcriptomic Analysis of Potential "lncRNA-mRNA" Interactions in Liver of the Marine Teleost Cynoglossus semilaevis Fed Diets With Different DHA/EPA Ratios. Front Physiol 2019; 10:331. [PMID: 31001132 PMCID: PMC6454198 DOI: 10.3389/fphys.2019.00331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/11/2019] [Indexed: 01/22/2023] Open
Abstract
Long non-coding RNAs (lncRNA) have emerged as important regulators of lipid metabolism and have been shown to play multifaceted roles in controlling transcriptional gene regulation, but very little relevant information has been available in fish, especially in non-model fish species. With a feeding trial on a typical marine teleost tongue sole C. semilaevis followed by transcriptomic analysis, the present study investigated the possible involvement of lncRNA in hepatic mRNA expression in response to different levels of dietary DHA and EPA, which are two most important fatty acids for marine fish. An 80-day feeding trial was conducted in a flow-through seawater system, and in this trial three experimental diets differing basically in DHA/EPA ratio, i.e., 0.61 (D/E-0.61), 1.46 (D/E-1.46), and 2.75 (D/E-2.75), were randomly assigned to 9 tanks of experimental fish. A total of 124.04 G high quality genome-wide clean data about coding and non-coding transcripts was obtained in the analysis of hepatic transcriptome. Compared to diet D/E-0.61, D/E-1.46 up-regulated expression of 178 lncRNAs and 2629 mRNAs, and down-regulated that of 47 lncRNAs and 3059 mRNAs, while D/E-2.75 resulted in much less change in gene expression. The co-expression and co-localization analysis of differentially expressed (DE) lncRNA and mRNA among dietary groups were then conducted. The co-expressed DE lncRNA and mRNA were primarily enriched in GO terms such as Metabolic process, Intracellular organelle, Catalytic activity, and Oxidoreductase activity, as well as in KEGG pathways such as Ribosome and Oxidative phosphorylation. Overlap of co-expression and co-localization analysis, i.e., lncRNA–mRNA matches “XR_523541.1–solute carrier family 16, member 5 (slc16a5)” and “LNC_000285–bromodomain adjacent to zinc finger domain 2A (baz2a),” were observed in all inter-group comparisons, indicating that they might crucially mediate the effects of dietary DHA and EPA on hepatic gene expression in tongue sole. In conclusion, this was the first time in marine teleost to investigate the possible lncRNA–mRNA interactions in response to dietary fatty acids. The results provided novel knowledge of lncRNAs in non-model marine teleost, and will serve as important resources for future studies that further investigate the roles of lncRNAs in lipid metabolism of marine teleost.
Collapse
Affiliation(s)
- Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lin Cao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Beijing Institute of Feed Control, Beijing, China
| | - Bo Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
475
|
Yang LX, Yang LK, Zhu J, Chen JH, Wang YH, Xiong K. Expression signatures of long non-coding RNA and mRNA in human traumatic brain injury. Neural Regen Res 2019; 14:632-641. [PMID: 30632503 PMCID: PMC6352599 DOI: 10.4103/1673-5374.247467] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/20/2018] [Indexed: 01/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play a key role in craniocerebral disease, although their expression profiles in human traumatic brain injury are still unclear. In this regard, in this study, we examined brain injury tissue from three patients of the 101st Hospital of the People's Liberation Army, China (specifically, a 36-year-old male, a 52-year-old female, and a 49-year-old female), who were diagnosed with traumatic brain injury and underwent brain contusion removal surgery. Tissue surrounding the brain contusion in the three patients was used as control tissue to observe expression characteristics of lncRNAs and mRNAs in human traumatic brain injury tissue. Volcano plot filtering identified 99 lncRNAs and 63 mRNAs differentially expressed in frontotemporal tissue of the two groups (P < 0.05, fold change > 1.2). Microarray analysis showed that 43 lncRNAs were up-regulated and 56 lncRNAs were down-regulated. Meanwhile, 59 mRNAs were up-regulated and 4 mRNAs were down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed 27 signaling pathways associated with target genes and, in particular, legionellosis and influenza A signaling pathways. Subsequently, a lncRNA-gene network was generated, which showed an absolute correlation coefficient value > 0.99 for 12 lncRNA-mRNA pairs. Finally, quantitative real-time polymerase chain reaction confirmed different expression of the five most up-regulated mRNAs within the two groups, which was consistent with the microarray results. In summary, our results show that expression profiles of mRNAs and lncRNAs are significantly different between human traumatic brain injury tissue and surrounding tissue, providing novel insight regarding lncRNAs' involvement in human traumatic brain injury. All participants provided informed consent. This research was registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-TCC-13004002) and the protocol version number is 1.0.
Collapse
Affiliation(s)
- Li-Xiang Yang
- Department of Neurosurgery, 101 Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Li-Kun Yang
- Department of Neurosurgery, 101 Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Jie Zhu
- Department of Neurosurgery, 101 Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Jun-Hui Chen
- Department of Neurosurgery, 101 Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Yu-Hai Wang
- Department of Neurosurgery, 101 Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
476
|
Transcription termination sequences support the expression of transgene product secreted with milk. Transgenic Res 2019; 28:401-410. [PMID: 30919251 DOI: 10.1007/s11248-019-00122-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/12/2019] [Indexed: 01/04/2023]
Abstract
Expression of the reporter gene in transgenic animals depends on the surrounding chromatin environment. Recent genome-wide studies have shown that, in mammals, the entire genome is transcribed. Transcription through a transgene often has a negative effect on the expression of a reporter gene. Here, we compared the ability of well-studied chicken chromatin insulator HS4 and bidirectional transcription terminators from the human genome to support high-level expression of the firefly luciferase gene (Fluc) under control of the previously characterized goat β-casein gene promoter. The insertion of HS4 or either of the two transcription terminators upstream of the promoter resulted in tenfold enhancement of Fluc expression in the mammary glands of transgenic mice. These results suggest that transcriptional terminators, similar to the HS4 insulator, can be used to improve the reporter gene expression in transgenic animals.
Collapse
|
477
|
Pardini B, Calin GA. MicroRNAs and Long Non-Coding RNAs and Their Hormone-Like Activities in Cancer. Cancers (Basel) 2019; 11:cancers11030378. [PMID: 30884898 PMCID: PMC6468345 DOI: 10.3390/cancers11030378] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/02/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Hormones are messengers circulating in the body that interact with specific receptors on the cell membrane or inside the cells and regulate, at a distal site, the activities of specific target organs. The definition of hormone has evolved in the last years. Hormones are considered in the context of cell–cell communication and mechanisms of cellular signaling. The best-known mechanisms of this kind are chemical receptor-mediated events, the cell–cell direct interactions through synapses, and, more recently, the extracellular vesicle (EV) transfer between cells. Recently, it has been extensively demonstrated that EVs are used as a way of communication between cells and that they are transporters of specific messenger signals including non-coding RNAs (ncRNAs) such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Circulating ncRNAs in body fluids and extracellular fluid compartments may have endocrine hormone-like effects because they can act at a distance from secreting cells with widespread consequences within the recipient cells. Here, we discuss and report examples of the potential role of miRNAs and lncRNAs as mediator for intercellular communication with a hormone-like mechanism in cancer.
Collapse
Affiliation(s)
- Barbara Pardini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA.
- Department of Medical Sciences, University of Turin, Turin 10126, Italy.
- Italian Institute for Genomic Medicine (IIGM), Turin 10126, Italy.
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
478
|
Long non-coding RNA FAM83H-AS1 is regulated by human papillomavirus 16 E6 independently of p53 in cervical cancer cells. Sci Rep 2019; 9:3662. [PMID: 30842470 PMCID: PMC6403315 DOI: 10.1038/s41598-019-40094-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
High-risk human papillomavirus (HPV) infection is one of the first events in the process of carcinogenesis in cervical and head and neck cancers. The expression of the viral oncoproteins E6 and E7 are essential in this process by inactivating the tumor suppressor proteins p53 and Rb, respectively, in addition to their interactions with other host proteins. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) have been found to be dysregulated in several cancers, suggesting an important role in tumorigenesis. In order to identify host lncRNAs affected by HPV infection, we expressed the high-risk HPV-16 E6 oncoprotein in primary human keratinocytes and measured the global lncRNA expression profile by high-throughput sequencing (RNA-seq). We found several host lncRNAs differentially expressed by E6 including GAS5, H19, and FAM83H-AS1. Interestingly, FAM83H-AS1 was found overexpressed in HPV-16 positive cervical cancer cell lines in an HPV-16 E6-dependent manner but independently of p53 regulation. Furthermore, FAM83H-AS1 was found to be regulated through the E6-p300 pathway. Knockdown of FAM83H-AS1 by siRNAs decreased cellular proliferation, migration and increased apoptosis. FAM83H-AS1 was also found to be altered in human cervical cancer tissues and high expression of this lncRNA was associated with worse overall survival, suggesting an important role in cervical carcinogenesis.
Collapse
|
479
|
Comprehensive Analysis of Differentially Expressed mRNA, lncRNA and circRNA and Their ceRNA Networks in the Longissimus Dorsi Muscle of Two Different Pig Breeds. Int J Mol Sci 2019; 20:ijms20051107. [PMID: 30836719 PMCID: PMC6429497 DOI: 10.3390/ijms20051107] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
Circular RNA (circRNA) and long non-coding RNA (lncRNA) are known to participate in adipogenesis and myogenic differentiation, but their impact on porcine muscle traits is not well understood. We compared their expressional profiles in the longissimus dorsi muscle of Chinese Huainan pigs (HN, the fat type) and Western commercial Duroc×(Landrace×Yorkshire) (DLY, the thin type) pigs, and 854 mRNAs, 233 lncRNAs, and 66 circRNAs (p < 0.05 and |log₂FoldChange|>1) were found to be differentially expressed. The differentially expressed mRNA and circRNA parental genes were enriched in the Wnt signaling pathway (adipogenesis), the transition between fast and slow fibers (myogenic differentiation), and alanine, aspartate and glutamate metabolism (pork flavor). The potential lncRNAs/circRNAs-miRNAs-mRNAs regulatory networks shared MYOD1, PPARD, miR-423-5p and miR-874, which were associated with skeletal muscle muscular proliferation, differentiation/regeneration and adipogenesis. Taken together, these differentially expressed non-coding RNAs may be involved in the molecular basis of muscle traits, acting as the competing endogenous RNA (ceRNA) for miRNAs.
Collapse
|
480
|
Seo JS, Diloknawarit P, Park BS, Chua NH. ELF18-INDUCED LONG NONCODING RNA 1 evicts fibrillarin from mediator subunit to enhance PATHOGENESIS-RELATED GENE 1 (PR1) expression. THE NEW PHYTOLOGIST 2019; 221:2067-2079. [PMID: 30307032 DOI: 10.1111/nph.15530] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/02/2018] [Indexed: 05/20/2023]
Abstract
Plant immune response is initiated upon the recognition of pathogen-associated molecular patterns such as elf18. Previously, we identified an Arabidopsis ELF18-INDUCED LONG NONCODING RNA 1 (ELENA1), as a positive transcriptional regulator of immune responsive genes. ELENA1 associated with Mediator subunit 19a (MED19a) to enhance enrichment of the complex on PATHOGENESIS-RELATED GENE 1 (PR1) promoter. In vitro and in vivo RNA-protein interaction experiments showed that ELENA1 can also interact with FIBRILLARIN 2 (FIB2). Co-immunoprecipitation and bimolecular fluorescence complementation assay showed that FIB2 directly interacts with MED19a in nucleoplasm and nucleolus. Analysis of fib2 mutant showed that FIB2 functions as a negative transcriptional regulator for immune responsive genes, including PR1. Genetic and biochemical analyses demonstrated that ELENA1 can dissociate the FIB2/MED19a complex and release FIB2 from PR1 promoter to enhance PR1 expression. ELENA1 increases PR1 expression by evicting the repressor (FIB2) from the activator (MED19a). Our findings uncover an additional layer of complexity in the transcriptional regulation of plant immune responsive genes by long noncoding RNA.
Collapse
Affiliation(s)
- Jun Sung Seo
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore City, 117604, Singapore
| | - Piyarut Diloknawarit
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore City, 117604, Singapore
| | - Bong Soo Park
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore City, 117604, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore City, 117604, Singapore
| |
Collapse
|
481
|
Yung Y, Ophir L, Yerushalmi GM, Baum M, Hourvitz A, Maman E. HAS2-AS1 is a novel LH/hCG target gene regulating HAS2 expression and enhancing cumulus cells migration. J Ovarian Res 2019; 12:21. [PMID: 30819231 PMCID: PMC6396505 DOI: 10.1186/s13048-019-0495-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 01/12/2023] Open
Abstract
Background The cumulus expansion process is one of the LH mediated ovulatory processes. Hyaluronan synthase 2 (HAS2) regulates the synthesis of hyaluronic acid, the main component of the cumulus expansion process. Recently, the lncRNA HAS2 antisense RNA 1 (HAS2-AS1) was identified in our global transcriptome RNA-sequencing of novel ovulation associated genes. The role of HAS2-AS1 in HAS2 regulation w.as studied previously with contradictive results in different models but not in the ovary. Taken together the induction of HAS2-AS1 and the important role of HAS2 in the cumulus expansion process, we hypothesize that HAS2-AS1 regulate HAS2 expression and function in the ovary. Therefore we undertook to study the expression, regulation, and possible functional role of HAS2-AS1 in the human ovary. Results HAS2-AS1, located within the HAS2 gene that was highly regulated in our library. We found that HAS2-AS1 express mainly in cumulus cells (CCs). Furthermore, HAS2-AS1 showed low expression in immature CCs and a significant increase expression in mature CCs. Functional studies reveal that inhibition of HAS2-AS1 by siRNA caused decrease expression of HAS2. Furthermore, inhibition of HAS2-AS1 by siRNA results in decrease migration of granulosa cells. Conclusions Our results suggest that HAS2-AS1 is an LH/hCG target gene that plays a positive role in HAS2 expression and thus might play a role in regulating cumulus expansion and migration.
Collapse
Affiliation(s)
- Yuval Yung
- IVF Unit and Reproduction Laboratory, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel., 5262100, Tel Hashomer, Israel.
| | - Libby Ophir
- IVF Unit and Reproduction Laboratory, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel., 5262100, Tel Hashomer, Israel
| | - Gil M Yerushalmi
- IVF Unit and Reproduction Laboratory, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel., 5262100, Tel Hashomer, Israel
| | - Micha Baum
- IVF Unit and Reproduction Laboratory, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel., 5262100, Tel Hashomer, Israel
| | - Ariel Hourvitz
- IVF Unit and Reproduction Laboratory, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel., 5262100, Tel Hashomer, Israel
| | - Ettie Maman
- IVF Unit and Reproduction Laboratory, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel., 5262100, Tel Hashomer, Israel
| |
Collapse
|
482
|
Karlik E, Ari S, Gozukirmizi N. LncRNAs: genetic and epigenetic effects in plants. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1581085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Elif Karlik
- Department of Biotechnology Institute of Graduate Studies in Science and Engineering, Istanbul University, Istanbul, Turkey
- Department of Molecular Biology and Genetics Faculty of Science, Istinye University, Istanbul, Turkey
| | - Sule Ari
- Department of Molecular Biology and Genetics Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Nermin Gozukirmizi
- Department of Molecular Biology and Genetics Faculty of Science, Istanbul University, Istanbul, Turkey
- Department of Molecular Biology and Genetics Faculty of Science, Istinye University, Istanbul, Turkey
| |
Collapse
|
483
|
Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Noncoding RNA 2019; 5:ncrna5010017. [PMID: 30781588 PMCID: PMC6468922 DOI: 10.3390/ncrna5010017] [Citation(s) in RCA: 395] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
The identification of RNAs that are not translated into proteins was an important breakthrough, defining the diversity of molecules involved in eukaryotic regulation of gene expression. These non-coding RNAs can be divided into two main classes according to their length: short non-coding RNAs, such as microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). The lncRNAs in association with other molecules can coordinate several physiological processes and their dysfunction may impact in several pathologies, including cancer and infectious diseases. They can control the flux of genetic information, such as chromosome structure modulation, transcription, splicing, messenger RNA (mRNA) stability, mRNA availability, and post-translational modifications. Long non-coding RNAs present interaction domains for DNA, mRNAs, miRNAs, and proteins, depending on both sequence and secondary structure. The advent of new generation sequencing has provided evidences of putative lncRNAs existence; however, the analysis of transcriptomes for their functional characterization remains a challenge. Here, we review some important aspects of lncRNA biology, focusing on their role as regulatory elements in gene expression modulation during physiological and disease processes, with implications in host and pathogens physiology, and their role in immune response modulation.
Collapse
|
484
|
Mustafin RN. Functional Dualism of Transposon Transcripts in Evolution of Eukaryotic Genomes. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360418070019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
485
|
He RZ, Luo DX, Mo YY. Emerging roles of lncRNAs in the post-transcriptional regulation in cancer. Genes Dis 2019; 6:6-15. [PMID: 30906827 PMCID: PMC6411652 DOI: 10.1016/j.gendis.2019.01.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence indicates that long non-coding RNAs (lncRNAs) can play a pivotal role in regulation of diverse cellular processes. In particular, lncRNAs can serve as master gene regulators at transcriptional and posttranscriptional levels, leading to tumorigenesis. In this review, we discuss latest developments in lncRNA-meditated gene expression at the post-transcriptional level, including gene splicing, mRNA stability, protein stability and nuclear trafficking.
Collapse
Affiliation(s)
- Rong-Zhang He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078 Hunan, China
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated the First People's Hospital of Chenzhou of University of South China, Chenzhou, 432000, China
- Department of Pharmacology/Toxicology, and Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Di-Xian Luo
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated the First People's Hospital of Chenzhou of University of South China, Chenzhou, 432000, China
| | - Yin-Yuan Mo
- Department of Pharmacology/Toxicology, and Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Corresponding author.
| |
Collapse
|
486
|
Butova R, Vychytilova-Faltejskova P, Souckova A, Sevcikova S, Hajek R. Long Non-Coding RNAs in Multiple Myeloma. Noncoding RNA 2019; 5:E13. [PMID: 30682861 PMCID: PMC6468639 DOI: 10.3390/ncrna5010013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematooncological disease of malignant plasma cells in the bone marrow. While new treatment brought unprecedented increase of survival of patients, MM pathogenesis is yet to be clarified. Increasing evidence of expression of long non-coding RNA molecules (lncRNA) linked to development and progression of many tumors suggested their important role in tumorigenesis. To date, over 15,000 lncRNA molecules characterized by diversity of function and specificity of cell distribution were identified in the human genome. Due to their involvement in proliferation, apoptosis, metabolism, and differentiation, they have a key role in the biological processes and pathogenesis of many diseases, including MM. This review summarizes current knowledge of non-coding RNAs (ncRNA), especially lncRNAs, and their role in MM pathogenesis. Undeniable involvement of lncRNAs in MM development suggests their potential as biomarkers.
Collapse
Affiliation(s)
- Romana Butova
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.
| | | | - Adela Souckova
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.
| | - Sabina Sevcikova
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.
| | - Roman Hajek
- Department of Hematooncology, University Hospital Ostrava and Faculty of Medicine, University Ostrava, 70852 Ostrava, Czech Republic.
| |
Collapse
|
487
|
MicroRNA-1224 Splicing CircularRNA-Filip1l in an Ago2-Dependent Manner Regulates Chronic Inflammatory Pain via Targeting Ubr5. J Neurosci 2019; 39:2125-2143. [PMID: 30651325 DOI: 10.1523/jneurosci.1631-18.2018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022] Open
Abstract
Dysfunctions of gene transcription and translation in the nociceptive pathways play the critical role in development and maintenance of chronic pain. Circular RNAs (circRNAs) are emerging as new players in regulation of gene expression, but whether and how circRNAs are involved in chronic pain remain elusive. We showed here that complete Freund's adjuvant-induced chronic inflammation pain significantly increased circRNA-Filip1l (filamin A interacting protein 1-like) expression in spinal neurons of mice. Blockage of this increase attenuated complete Freund's adjuvant-induced nociceptive behaviors, and overexpression of spinal circRNA-Filip1l in naive mice mimicked the nociceptive behaviors as evidenced by decreased thermal and mechanical nociceptive threshold. Furthermore, we found that mature circRNA-Filip1l expression was negatively regulated by miRNA-1224 via binding and splicing of precursor of circRNA-Filip1l (pre-circRNA-Filip1l) in the Argonaute-2 (Ago2)-dependent manner. Increase of spinal circRNA-Filip1l expression resulted from the decrease of miRNA-1224 expression under chronic inflammation pain state. miRNA-1224 knockdown or Ago2 overexpression induced nociceptive behaviors in naive mice, which was prevented by the knockdown of spinal circRNA-Filip1l. Finally, we demonstrated that a ubiquitin protein ligase E3 component n-recognin 5 (Ubr5), validated as a target of circRNA-Filip1l, plays a pivotal role in regulation of nociception by spinal circRNA-Filip1l. These data suggest that miRNA-1224-mediated and Ago2-dependent modulation of spinal circRNA-Filip1l expression regulates nociception via targeting Ubr5, revealing a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.SIGNIFICANCE STATEMENT circRNAs are emerging as new players in regulation of gene expression. Here, we found that the increase of circRNA-Filip1l mediated by miRNA-1224 in an Ago2-dependent way in the spinal cord is involved in regulation of nociception via targeting Ubr5 Our study reveals a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.
Collapse
|
488
|
Seo JS, Chua NH. Analysis of Interaction Between Long Noncoding RNAs and Protein by RNA Immunoprecipitation in Arabidopsis. Methods Mol Biol 2019; 1933:289-295. [PMID: 30945193 DOI: 10.1007/978-1-4939-9045-0_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in several processes including control of gene expression. These RNAs function through binding to histone-modifying complexes and transcriptional machinery including transcription factor, mediator, and RNA polymerase II. We present methods for the discovery and characterization of lncRNAs. RNA immunoprecipitation (RIP) is a modified version of chromatin immunoprecipitation (ChIP), and it is now generally used in lncRNA study. The method allows for testing of lncRNA-protein interactions in vivo. RIP assay facilitates the identification of consensus sequences of preferred binding site for the RNA-binding protein under study, and identification of the binding sites can provide valuable information on the possible mechanism by which the RNA-binding protein functions.
Collapse
Affiliation(s)
- Jun Sung Seo
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY, USA
- TEMASEK Life Sciences Laboratory, Singapore, Singapore
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY, USA.
- TEMASEK Life Sciences Laboratory, Singapore, Singapore.
| |
Collapse
|
489
|
De Los Santos MC, Dragomir MP, Calin GA. The role of exosomal long non-coding RNAs in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1178-1192. [PMID: 31867576 PMCID: PMC6924635 DOI: 10.20517/cdr.2019.74] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the major challenges in oncology is drug resistance, which triggers relapse and shortens patients’ survival. In order to promote drug desensitization, cancer cells require the establishment of an ideal tumor microenvironment that accomplishes specific conditions. To achieve this objective, cellular communication is a key factor. Classically, cells were believed to restrictively communicate by ligand-receptor binding, physical cell-to-cell interactions and synapses. Nevertheless, the crosstalk between tumor cells and stroma cells has also been recently reported to be mediated through exosomes, the smallest extracellular vesicles, which transport a plethora of functionally active molecules, such as: proteins, lipids, messenger RNA, DNA, microRNA or long non-coding RNA (lncRNAs). LncRNAs are RNA molecules greater than 200 base pairs that are deregulated in cancer and other diseases. Exosomal lncRNAs are highly stable and can be found in several body fluids, being considered potential biomarkers for tumor liquid biopsy. Exosomal lncRNAs promote angiogenesis, cell proliferation and drug resistance. The role of exosomal lncRNAs in drug resistance affects the main treatment strategies in oncology: chemotherapy, targeted therapy, hormone therapy and immunotherapy. Overall, knowing the molecular mechanisms by which exosomal lncRNA induce pharmacologic resistance could improve further drug development and identify drug resistance biomarkers.
Collapse
Affiliation(s)
- Mireia Cruz De Los Santos
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Mihnea P Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 40015, Romania.,Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest 022328, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
490
|
Abstract
Transposable elements (TEs) are low-complexity elements (e.g., LINEs, SINEs, SVAs, and HERVs) that make up to two-thirds of the human genome. There is mounting evidence that TEs play an essential role in molecular functions that influence genomic plasticity and gene expression regulation. With the advent of next-generation sequencing approaches, our understanding of the relationship between TEs and psychiatric disorders will greatly improve. In this chapter, the Authors comprehensively summarize the state-of the-art of TE research in animal models and humans supporting a framework in which TEs play a functional role in mechanisms affecting a variety of behaviors, including neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Finally, the Authors discuss recent therapeutic applications raised from the increasing experimental evidence on TE functional mechanisms.
Collapse
Affiliation(s)
- G Guffanti
- McLean Hospital - Harvard Medical School, Belmont, MA, USA.
| | - A Bartlett
- Department of Psychology, University of Massachusetts, Boston, Boston, MA, USA
| | - P DeCrescenzo
- McLean Hospital - Harvard Medical School, Belmont, MA, USA
| | - F Macciardi
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - R Hunter
- Department of Psychology, University of Massachusetts, Boston, Boston, MA, USA
| |
Collapse
|
491
|
Park J, Lee H, Han N, Kwak S, Lee HT, Kim JH, Kang K, Youn BH, Yang JH, Jeong HJ, Kang JS, Kim SY, Han JW, Youn HD, Cho EJ. Long non-coding RNA ChRO1 facilitates ATRX/DAXX-dependent H3.3 deposition for transcription-associated heterochromatin reorganization. Nucleic Acids Res 2018; 46:11759-11775. [PMID: 30335163 PMCID: PMC6294499 DOI: 10.1093/nar/gky923] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 09/20/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022] Open
Abstract
Constitutive heterochromatin undergoes a dynamic clustering and spatial reorganization during myogenic differentiation. However the detailed mechanisms and its role in cell differentiation remain largely elusive. Here, we report the identification of a muscle-specific long non-coding RNA, ChRO1, involved in constitutive heterochromatin reorganization. ChRO1 is induced during terminal differentiation of myoblasts, and is specifically localized to the chromocenters in myotubes. ChRO1 is required for efficient cell differentiation, with global impacts on gene expression. It influences DNA methylation and chromatin compaction at peri/centromeric regions. Inhibition of ChRO1 leads to defects in the spatial fusion of chromocenters, and mislocalization of H4K20 trimethylation, Suv420H2, HP1, MeCP2 and cohesin. In particular, ChRO1 specifically associates with ATRX/DAXX/H3.3 complex at chromocenters to promote H3.3 incorporation and transcriptional induction of satellite repeats, which is essential for chromocenter clustering. Thus, our results unveil a mechanism involving a lncRNA that plays a role in large-scale heterochromatin reorganization and cell differentiation.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Differentiation
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Co-Repressor Proteins
- Female
- Gene Editing
- Gene Expression Regulation, Developmental
- HEK293 Cells
- Heterochromatin/chemistry
- Heterochromatin/metabolism
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Histones/genetics
- Histones/metabolism
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Methyl-CpG-Binding Protein 2/genetics
- Methyl-CpG-Binding Protein 2/metabolism
- Mice
- Mice, Inbred C57BL
- Molecular Chaperones
- Muscle Development/genetics
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- NIH 3T3 Cells
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Transcription, Genetic
- X-linked Nuclear Protein/genetics
- X-linked Nuclear Protein/metabolism
- Cohesins
Collapse
Affiliation(s)
- Jinyoung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hongmin Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Namshik Han
- Milner Therapeutics Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Sojung Kwak
- Department of Biomedical Sciences,National Creative Research Center for Epigenome Reprogramming Network, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Han-Teo Lee
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jae-Hwan Kim
- Department of Biomedical Sciences,National Creative Research Center for Epigenome Reprogramming Network, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Keonjin Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Byoung Ha Youn
- Medical Genome Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Jae-Hyun Yang
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Hyeon-Ju Jeong
- College of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Jong-Sun Kang
- College of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Seon-Young Kim
- Medical Genome Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hong-Duk Youn
- Department of Biomedical Sciences,National Creative Research Center for Epigenome Reprogramming Network, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Eun-Jung Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
492
|
Jiang S, Tan B, Zhang X. Identification of key lncRNAs in the carcinogenesis and progression of colon adenocarcinoma by co-expression network analysis. J Cell Biochem 2018; 120:6490-6501. [PMID: 30430631 DOI: 10.1002/jcb.27940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022]
Abstract
Colon adenocarcinoma (COAD) is one of the most common cancers, and its carcinogenesis and progression is influenced by multiple long non-coding RNAs (lncRNA), especially through the miRNA sponge effect. In this study, more than 4000 lncRNAs were re-annotated from the microarray datasets through probe sequence mapping to obtain reliable lncRNA expression profiles. As a systems biology method for describing the correlation patterns among genes across microarray samples, weighted gene co-expression network analysis was conducted to identify lncRNA modules associated with the five stepwise stages from normal colonic samples to COAD (n = 94). In the most relevant module (R2 = -0.78, P = 4E-20), four hub lncRNAs were identified (CTD-2396E7.11, PCGF5, RP11-33O4.1, and RP11-164P12.5). Then, these four hub lncRNAs were validated using two other independent datasets including GSE20916 (n = 145) and GSE39582 (n = 552). The results indicated that all hub lncRNAs were significantly negatively correlated with the three-stage colonic carcinogenesis, as well as TNM stages in COAD (one-way analysis of variance P < 0.05). Kaplan-Meier survival curve showed that patients with higher expression of each hub lncRNA had a significantly higher overall survival rate and lower relapse risk (log-rank P < 0.05). In conclusion, through co-expression analysis, we identified and validated four key lncRNAs in association with the carcinogenesis and progression of COAD, and these lncRNAs might have important clinical implications for improving the risk stratification, therapeutic decision and prognosis prediction in COAD patients.
Collapse
Affiliation(s)
- Shi Jiang
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Biyong Tan
- Department of Radiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Xingqiang Zhang
- Department of Radiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| |
Collapse
|
493
|
Zare K, Shademan M, Ghahramani Seno MM, Dehghani H. CRISPR/Cas9 Knockout Strategies to Ablate CCAT1 lncRNA Gene in Cancer Cells. Biol Proced Online 2018; 20:21. [PMID: 30410426 PMCID: PMC6211572 DOI: 10.1186/s12575-018-0086-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/11/2018] [Indexed: 02/01/2023] Open
Abstract
Background With the increasing discovery of long noncoding RNAs (lncRNAs), the application of functional techniques that could have very specific, efficient, and robust effects and readouts is necessary. Here, we have applied and analyzed three gene knockout (KO) strategies to ablate the CCAT1 gene in different colorectal adenocarcinoma cell lines. We refer to these strategies as “CRISPR excision”, “CRISPR HDR”, and “CRISPR du-HITI”. Results In order to obstruct the transcription of lncRNA or to alter its structure, in these strategies either a significant segment of the gene is removed, or a transcription termination signal is inserted in the target gene. We use RT-qPCR, RNA-seq, MTT, and colony formation assay to confirm the functional effects of CCAT1 gene ablation in knockout colorectal adenocarcinoma cell lines. We applied three different CRISPR/Cas9 mediated knockout strategies to abolish the transcription of CCAT1 lncRNA. CCAT1 knockout cells displayed dysregulation of genes involved in several biological processes, and a significant reduction for anchorage-independent growth. The du-HITI strategy introduced in this study removes a gene segment and inserts a reporter and a transcription termination signal in each of the two target alleles. The preparation of donor vector for this strategy is much easier than that in “CRISPR HDR”, and the selection of cells in this strategy is also much more practical than that in “CRISPR excision”. In addition, use of this technique in the first attempt of transfection, generates single cell knockouts for both alleles. Conclusions The strategies applied and introduced in this study can be used for the generation of CCAT1 knockout cell lines and in principle can be applied to the deletion of other lncRNAs for the study of their function. Electronic supplementary material The online version of this article (10.1186/s12575-018-0086-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khadijeh Zare
- 1Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Milad Shademan
- 1Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Mohammad M Ghahramani Seno
- 1Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.,2Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Hesam Dehghani
- 1Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.,2Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.,3Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| |
Collapse
|
494
|
Chen B, Li Y, He Y, Xue C, Xu F. The emerging roles of long non-coding RNA in gallbladder cancer tumorigenesis. Cancer Biomark 2018; 22:359-366. [PMID: 29758925 DOI: 10.3233/cbm-170979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Accumulating evidence suggests that long non-coding RNAs (lncRNAs) have important regulatory functions in gallbladder cancer (GBC) tumorigenesis and can serve as potential novel markers and/or targets for GBC. In this review, we critically discuss the emerging alteration of lncRNAs in GBC, the lncRNAs induced epigenetic regulation, the interaction of lncRNAs with microRNAs and lncRNAs effects on tumor-related signaling pathways. Additionally, contributions of lncRNAs in epithelial-mesenchymal transition process and energy metabolism reprogramming in GBC are also addressed. This may pave new ways towards the determination of GBC pathogenesis and lead to the development of new preventive and therapeutic strategies for GBC.
Collapse
Affiliation(s)
- Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yuting He
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Feng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
495
|
Kato M. Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease. Kidney Res Clin Pract 2018; 37:197-209. [PMID: 30254844 PMCID: PMC6147183 DOI: 10.23876/j.krcp.2018.37.3.197] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 02/01/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major renal complication of diabetes that leads to renal dysfunction and end-stage renal disease (ESRD). Major features of DKD include accumulation of extracellular matrix proteins and glomerular hypertrophy, especially in early stage. Transforming growth factor-β plays key roles in regulation of profibrotic genes and signal transducers such as Akt kinase and MAPK as well as endoplasmic reticulum stress, oxidant stress, and autophagy related to hypertrophy in diabetes. Many drugs targeting the pathogenic signaling in DKD (mostly through protein-coding genes) are under development. However, because of the limited number of protein-coding genes, noncoding RNAs (ncRNAs) including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are attracting more attention as potential new drug targets for human diseases. Some miRNAs and lncRNAs regulate each other (by hosting, enhancing transcription from the neighbor, hybridizing each other, and changing chromatin modifications) and create circuits and cascades enhancing the pathogenic signaling in DKD. In this short and focused review, the functional significance of ncRNAs (miRNAs and lncRNAs) in the early stages of DKD and their therapeutic potential are discussed.
Collapse
Affiliation(s)
- Mitsuo Kato
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
496
|
Abstract
Small nucleolar RNAs (snoRNAs) are a family of conserved nuclear RNAs that function in the modification of small nuclear RNAs (snRNAs) or ribosomal RNAs (rRNAs), or participate in the processing of rRNAs during ribosome subunit maturation. Eukaryotic DNA transcription and RNA processing produce many long noncoding RNA (lncRNA) species. Although most lncRNAs are processed like typical mRNAs to be 5' capped and 3' polyadenylated, other types of lncRNAs are stabilized from primary Pol II transcripts by alternative mechanisms. One way to generate stable lncRNAs is to co-operate with snoRNA processing to produce snoRNA-ended lncRNAs (sno-lncRNAs) and 5' snoRNA-ended and 3'-polyadenylated lncRNAs (SPAs). Rather than silently accumulating in the nucleus, some sno-lncRNAs and SPAs are involved in the regulation of pre-rRNA transcription and alternative splicing of pre-mRNAs. Here we provide a mini-review to discuss the biogenesis and functions of these unusually processed lncRNAs.
Collapse
Affiliation(s)
- Yu-Hang Xing
- a State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology , Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai , China
| | - Ling-Ling Chen
- a State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology , Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai , China.,b School of Life Science and Technology , ShanghaiTech University , Shanghai , China
| |
Collapse
|
497
|
Samson J, Cronin S, Dean K. BC200 (BCYRN1) - The shortest, long, non-coding RNA associated with cancer. Noncoding RNA Res 2018; 3:131-143. [PMID: 30175286 PMCID: PMC6114260 DOI: 10.1016/j.ncrna.2018.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/22/2022] Open
Abstract
With the discovery that the level of RNA synthesis in human cells far exceeds what is required to express protein-coding genes, there has been a concerted scientific effort to identify, catalogue and uncover the biological functions of the non-coding transcriptome. Long, non-coding RNAs (lncRNAs) are a diverse group of RNAs with equally wide-ranging biological roles in the cell. An increasing number of studies have reported alterations in the expression of lncRNAs in various cancers, although unravelling how they contribute specifically to the disease is a bigger challenge. Originally described as a brain-specific, non-coding RNA, BC200 (BCYRN1) is a 200-nucleotide, predominantly cytoplasmic lncRNA that has been linked to neurodegenerative disease and several types of cancer. Here we summarise what is known about BC200, primarily from studies in neuronal systems, before turning to a review of recent work that aims to understand how this lncRNA contributes to cancer initiation, progression and metastasis, along with its possible clinical utility as a biomarker or therapeutic target.
Collapse
Affiliation(s)
| | | | - K. Dean
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
498
|
Hermans-Beijnsberger S, van Bilsen M, Schroen B. Long non-coding RNAs in the failing heart and vasculature. Noncoding RNA Res 2018; 3:118-130. [PMID: 30175285 PMCID: PMC6114261 DOI: 10.1016/j.ncrna.2018.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Following completion of the human genome, it became evident that the majority of our DNA is transcribed into non-coding RNAs (ncRNAs) instead of protein-coding messenger RNA. Deciphering the function of these ncRNAs, including both small- and long ncRNAs (lncRNAs), is an emerging field of research. LncRNAs have been associated with many disorders and a number have been identified as key regulators in the development and progression of disease, including cardiovascular disease (CVD). CVD causes millions of deaths worldwide, annually. Risk factors include coronary artery disease, high blood pressure and ageing. In this review, we will focus on the roles of lncRNAs in the cellular and molecular processes that underlie the development of CVD: cardiomyocyte hypertrophy, fibrosis, inflammation, vascular disease and ageing. Finally, we discuss the biomarker and therapeutic potential of lncRNAs.
Collapse
Affiliation(s)
- Steffie Hermans-Beijnsberger
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - Marc van Bilsen
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - Blanche Schroen
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
499
|
Li F, Zhang Q, Gong Y, Yu J. The lncKLF6/KLF6 feedback loop regulates the growth of non-small cell lung cancer. Am J Cancer Res 2018; 8:1427-1439. [PMID: 30210914 PMCID: PMC6129497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023] Open
Abstract
Non-small lung cancer (NSCLC) is one of the most common causes of cancer-associated death worldwide. Long noncoding RNAs (lncRNAs) regulate cancer initiation and progression through different mechanisms. In the present study, we characterized a novel lncRNA named lncKLF6, which was upregulated in NSCLC and associated with poor clinical outcomes. lncKLF6 inhibited Kruppel-like factor 6 (KLF6) transcription and then facilitated NSCLC growth. lncKLF6 is associated with the epigenetic repressor BMI1 and regulates its stability via recruiting deubiquitinase USP22. Moreover, it was revealed that lncKLF6 was a KLF6-responsive lncRNA, as KLF6 could occupy the lncKLF6 promoter to facilitate its transcription. The negative feedback loop of lncKLF6 and KLF6 continuously enhanced the oncogenic effects. Thus, our study elucidates the mechanism of lncKLF6-mediated growth via suppression of KLF6, which provides the promising target for developing new therapeutic strategy in NSCLC.
Collapse
Affiliation(s)
- Fei Li
- Department of Pulmonary and Critical Care Medicine (PCCM) ward II, Hebei Cangzhou Central Hospital Hebei Province, China
| | - Qianyun Zhang
- Department of Pulmonary and Critical Care Medicine (PCCM) ward II, Hebei Cangzhou Central Hospital Hebei Province, China
| | - Yange Gong
- Department of Pulmonary and Critical Care Medicine (PCCM) ward II, Hebei Cangzhou Central Hospital Hebei Province, China
| | - Jinxiang Yu
- Department of Pulmonary and Critical Care Medicine (PCCM) ward II, Hebei Cangzhou Central Hospital Hebei Province, China
| |
Collapse
|
500
|
Yang S, Sun Z, Zhou Q, Wang W, Wang G, Song J, Li Z, Zhang Z, Chang Y, Xia K, Liu J, Yuan W. MicroRNAs, long noncoding RNAs, and circular RNAs: potential tumor biomarkers and targets for colorectal cancer. Cancer Manag Res 2018; 10:2249-2257. [PMID: 30100756 PMCID: PMC6065600 DOI: 10.2147/cmar.s166308] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Noncoding RNAs (ncRNAs) can be divided into microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), pRNAs, and tRNAs. Traditionally, miRNAs exert their biological function mainly through the inhibition of translation via the induction of target RNA transcript degradation. lncRNAs and circRNAs were once considered to have no potential to code proteins. Here, we will review the current knowledge on ncRNAs in relation to their origins, characteristics, and functions. We will also review how ncRNAs work as competitive endogenous RNA, gene transcription and expression regulators, and RNA-binding protein sponges in colorectal cancer (CRC). Notably, except for the abovementioned mechanisms, recent advances revealed that lncRNAs can also act as the precursor of miRNAs, and a small portion of lncRNAs and circRNAs was verified to have the potential to code proteins, providing new evidence for the significance of ncRNAs in CRC tumorigenesis and development.
Collapse
Affiliation(s)
- Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China.,Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450002, People's Republic of China
| | - Guixian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Junmin Song
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Zhen Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Zhiyong Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Yuan Chang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Kunkun Xia
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| |
Collapse
|