451
|
Akasapu S, Hinds AB, Powell WC, Walczak MA. Total synthesis of micrococcin P1 and thiocillin I enabled by Mo(vi) catalyst. Chem Sci 2019; 10:1971-1975. [PMID: 30881626 PMCID: PMC6383332 DOI: 10.1039/c8sc04885a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/03/2018] [Indexed: 12/05/2022] Open
Abstract
Thiopeptides are a class of potent antibiotics with promising therapeutic potential. We developed a novel Mo(vi)-oxide/picolinic acid catalyst for the cyclodehydration of cysteine peptides to form thiazoline heterocycles. With this powerful tool in hand, we completed the total syntheses of two representative thiopeptide antibiotics: micrococcin P1 and thiocillin I. These two concise syntheses (15 steps, longest linear sequence) feature a C-H activation strategy to install the trisubstituted pyridine core and thiazole groups. The synthetic material displays promising antimicrobial properties measured against a series of Gram-positive bacteria.
Collapse
Affiliation(s)
- Siddhartha Akasapu
- Department of Chemistry , University of Colorado , Boulder , CO 80309 , USA .
| | - Aaron B Hinds
- Department of Chemistry , University of Colorado , Boulder , CO 80309 , USA .
| | - Wyatt C Powell
- Department of Chemistry , University of Colorado , Boulder , CO 80309 , USA .
| | - Maciej A Walczak
- Department of Chemistry , University of Colorado , Boulder , CO 80309 , USA .
| |
Collapse
|
452
|
Ho PL, Ong HK, Teo J, Ow DSW, Chao SH. HEXIM1 Peptide Exhibits Antimicrobial Activity Against Antibiotic Resistant Bacteria Through Guidance of Cell Penetrating Peptide. Front Microbiol 2019; 10:203. [PMID: 30800117 PMCID: PMC6376162 DOI: 10.3389/fmicb.2019.00203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
The emergence of antibiotic resistant bacteria is one of the biggest threats to human health worldwide. In 2017, World Health Organization listed the world’s most dangerous antibiotic-resistant bacteria or “superbugs,” such as carbapenem-resistant Pseudomonas aeruginosa and Escherichia coli, indicating the highest priority needs for new antibiotics. The possibility that such infectious diseases may soon be untreatable, due to decreased antibiotic efficacy, creates an urgent need for novel and alternative antimicrobials. Antimicrobial peptides are naturally occurring small molecules found in the innate immunity of mammals, plants and bacteria, and are potentially therapeutic candidates against drug-resistant bacteria. In this study, we examine the antimicrobial activities of the cytotoxic peptides derived from the basic region (BR) of the human hexamethylene bisacetamide-inducible protein 1 (HEXIM1). We found that, when fused with a cell penetrating peptide, the HEXIM1 BR peptide and its derivative, BR-RRR12, exhibited inhibitory activities against selected “superbugs.” Negligible effects on the viability of human keratinocyte cell line were observed when the bactericidal dosages of HEXIM1 BR peptides were used. Different killing kinetics were observed between the membrane permeabilizing antimicrobial peptides and HEXIM1 BR peptides, suggesting that a different antimicrobial mechanism might be utilized by the HEXIM1 BR peptides. Using an in vitro translation system based on E. coli lysates, we found that HEXIM1 BR peptides blocked bacterial translation. Taken together, we identify the HEXIM1 BR peptide as a novel antimicrobial peptide with potent inhibitory activity against antibiotic-resistant “superbugs.”
Collapse
Affiliation(s)
- Pooi Leng Ho
- Microbial Cells, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Han Kee Ong
- Expression Engineering Groups, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jeanette Teo
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Dave Siak-Wei Ow
- Microbial Cells, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sheng-Hao Chao
- Expression Engineering Groups, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
453
|
Antioxidant and Neuroprotective Potential of the Brown Seaweed Bifurcaria bifurcata in an in vitro Parkinson's Disease Model. Mar Drugs 2019; 17:md17020085. [PMID: 30717087 PMCID: PMC6410415 DOI: 10.3390/md17020085] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/14/2023] Open
Abstract
Bifurcaria bifurcata is a marine brown seaweed mainly found on the Atlantic coast. Herein, we report the antioxidant and neuroprotective activities of seven fractions (F1⁻F7) obtained by normal phase chromatography from the B. bifurcata dichloromethane extract, as well as of its two major isolated diterpenes. Total phenolic content of fractions was determined by the Folin⁻Ciocalteu method, while antioxidant activity was evaluated by the DPPH, ORAC, and FRAP assays. Neuroprotective effects were evaluated in a neurotoxic model induced by 6-hydroxydopamine (6-OHDA) in a human neuroblastoma cell line (SH-SY5Y), while the mechanisms associated to neuroprotection were investigated by the determination of mitochondrial membrane potential, H₂O₂ production, Caspase-3 activity, and by observation of DNA fragmentation. Fractions F4 and F5 exhibited the best neuroprotective and antioxidant activities, respectively. F4 fraction prevented changes in mitochondrial potential, and induced a reduction of H₂O₂ levels production and an increase in cell viability, suggesting that it may contain multi-target compounds acting on different pathways. Hence, this fraction was subjected to purification steps, affording the known diterpenes eleganolone and eleganonal. Both compounds exhibited antioxidant potential, being interesting candidates for further neuroprotective studies.
Collapse
|
454
|
Wu Y, Ding X, Xu S, Yang Y, Zhang X, Wang C, Lei H, Zhao Y. Design and synthesis of biaryloxazolidinone derivatives containing a rhodanine or thiohydantoin moiety as novel antibacterial agents against Gram-positive bacteria. Bioorg Med Chem Lett 2019; 29:496-502. [DOI: 10.1016/j.bmcl.2018.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022]
|
455
|
Karmakar P, Gaitonde V. Promising Recent Strategies with Potential Clinical Translational Value to Combat Antibacterial Resistant Surge. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E21. [PMID: 30709019 PMCID: PMC6473725 DOI: 10.3390/medicines6010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/10/2019] [Accepted: 01/26/2019] [Indexed: 12/27/2022]
Abstract
Multiple drug resistance (MDR) for the treatment of bacterial infection has been a significant challenge since the beginning of the 21st century. Many of the small molecule-based antibiotic treatments have failed on numerous occasions due to a surge in MDR, which has claimed millions of lives worldwide. Small particles (SPs) consisting of metal, polymer or carbon nanoparticles (NPs) of different sizes, shapes and forms have shown considerable antibacterial effect over the past two decades. Unlike the classical small-molecule antibiotics, the small particles are less exposed so far to the bacteria to trigger a resistance mechanism, and hence have higher chances of fighting the challenge of the MDR process. Until recently, there has been limited progress of clinical treatments using NPs, despite ample reports of in vitro antibacterial efficacy. In this review, we discuss some recent and unconventional strategies that have explored the antibacterial efficacy of these small particles, alone and in combination with classical small molecules in vivo, and demonstrate possibilities that are favorable for clinical translations in near future.
Collapse
Affiliation(s)
- Partha Karmakar
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
456
|
Chevrette MG, Carlson CM, Ortega HE, Thomas C, Ananiev GE, Barns KJ, Book AJ, Cagnazzo J, Carlos C, Flanigan W, Grubbs KJ, Horn HA, Hoffmann FM, Klassen JL, Knack JJ, Lewin GR, McDonald BR, Muller L, Melo WGP, Pinto-Tomás AA, Schmitz A, Wendt-Pienkowski E, Wildman S, Zhao M, Zhang F, Bugni TS, Andes DR, Pupo MT, Currie CR. The antimicrobial potential of Streptomyces from insect microbiomes. Nat Commun 2019; 10:516. [PMID: 30705269 PMCID: PMC6355912 DOI: 10.1038/s41467-019-08438-0] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/11/2019] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial resistance is a global health crisis and few novel antimicrobials have been discovered in recent decades. Natural products, particularly from Streptomyces, are the source of most antimicrobials, yet discovery campaigns focusing on Streptomyces from the soil largely rediscover known compounds. Investigation of understudied and symbiotic sources has seen some success, yet no studies have systematically explored microbiomes for antimicrobials. Here we assess the distinct evolutionary lineages of Streptomyces from insect microbiomes as a source of new antimicrobials through large-scale isolations, bioactivity assays, genomics, metabolomics, and in vivo infection models. Insect-associated Streptomyces inhibit antimicrobial-resistant pathogens more than soil Streptomyces. Genomics and metabolomics reveal their diverse biosynthetic capabilities. Further, we describe cyphomycin, a new molecule active against multidrug resistant fungal pathogens. The evolutionary trajectories of Streptomyces from the insect microbiome influence their biosynthetic potential and ability to inhibit resistant pathogens, supporting the promise of this source in augmenting future antimicrobial discovery.
Collapse
Affiliation(s)
- Marc G Chevrette
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, 53706, WI, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Caitlin M Carlson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Humberto E Ortega
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Chris Thomas
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Gene E Ananiev
- McArdle Laboratory for Cancer Research, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Kenneth J Barns
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Adam J Book
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Julian Cagnazzo
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Camila Carlos
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Will Flanigan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Kirk J Grubbs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Heidi A Horn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - F Michael Hoffmann
- McArdle Laboratory for Cancer Research, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269, CT, USA
| | - Jennifer J Knack
- Department of Biology, Large Lakes Observatory, University of Minnesota-Duluth, Duluth, 55812, MN, USA
| | - Gina R Lewin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Bradon R McDonald
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Laura Muller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Weilan G P Melo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Adrián A Pinto-Tomás
- Center for Research in Microscopic Structures and Department of Biochemistry, School of Medicine, University of Costa Rica, San José, 10102, Costa Rica
| | - Amber Schmitz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | | | - Scott Wildman
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Miao Zhao
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, 53705, WI, USA
| | - Fan Zhang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Tim S Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, 53705, WI, USA
| | - Monica T Pupo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA.
| |
Collapse
|
457
|
Miró-Canturri A, Ayerbe-Algaba R, Smani Y. Drug Repurposing for the Treatment of Bacterial and Fungal Infections. Front Microbiol 2019; 10:41. [PMID: 30745898 PMCID: PMC6360151 DOI: 10.3389/fmicb.2019.00041] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/11/2019] [Indexed: 12/26/2022] Open
Abstract
Multidrug-resistant (MDR) pathogens pose a well-recognized global health threat that demands effective solutions; the situation is deemed a global priority by the World Health Organization and the European Centre for Disease Prevention and Control. Therefore, the development of new antimicrobial therapeutic strategies requires immediate attention to avoid the ten million deaths predicted to occur by 2050 as a result of MDR bacteria. The repurposing of drugs as therapeutic alternatives for infections has recently gained renewed interest. As drugs approved by the United States Food and Drug Administration, information about their pharmacological characteristics in preclinical and clinical trials is available. Therefore, the time and economic costs required to evaluate these drugs for other therapeutic applications, such as the treatment of bacterial and fungal infections, are mitigated. The goal of this review is to provide an overview of the scientific evidence on potential non-antimicrobial drugs targeting bacteria and fungi. In particular, we aim to: (i) list the approved drugs identified in drug screens as potential alternative treatments for infections caused by MDR pathogens; (ii) review their mechanisms of action against bacteria and fungi; and (iii) summarize the outcome of preclinical and clinical trials investigating approved drugs that target these pathogens.
Collapse
Affiliation(s)
- Andrea Miró-Canturri
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Rafael Ayerbe-Algaba
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| |
Collapse
|
458
|
A diversity-oriented rhodamine library for wide-spectrum bactericidal agents with low inducible resistance against resistant pathogens. Nat Commun 2019; 10:258. [PMID: 30651565 PMCID: PMC6335415 DOI: 10.1038/s41467-018-08241-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance is a public health emergency and warrants coordinated global efforts. Challenge is that no alternative molecular platform has been identified for discovery of abundant antimicrobial hit compounds. Xanthene libraries have been screened for bioactive compounds. However, the potentially accessible chemistry space of xanthene dyes is limited by the existing xanthene synthesis. Herein we report a mild one-step synthesis, which permits late-stage introduction of a xanthene moiety onto i.e. natural products, pharmaceuticals, and bioactive compounds and construction of a focused library of rhodamine dyes exhibiting facile functional, topographical and stereochemical diversity. In vitro screening yields 37 analogs with mid-to-high bactericidal activity against WHO priority drug-resistant pathogens. These findings suggest that synthetic dye libraries exhibiting high structural diversity is a feasible chemical space combating antibacterial resistance, to complement the natural sources. Preparation of xanthene-containing compounds has been limited due to structural bias existing methods pose. Here, the authors developed a mild, diversity-oriented method for rhodamines synthesis, leading to the finding of compounds with antibacterial potency against a variety of bacterial species.
Collapse
|
459
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019. [DOI: 10.1039/c8np00091c [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
460
|
Luppi L, Babut T, Petit E, Rolland M, Quemener D, Soussan L, Moradi MA, Semsarilar M. Antimicrobial polylysine decorated nano-structures prepared through polymerization induced self-assembly (PISA). Polym Chem 2019. [DOI: 10.1039/c8py01351a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polylysine decorated diblock copolymer nano-objects are prepared by polymerization-induced self-assemblyviaRAFT dispersion polymerization of 2-hydroxypropyl methacrylate. Antimicrobial properties of the resulting nano-objects evaluated using a gram positive bacteria.
Collapse
Affiliation(s)
- L. Luppi
- Institut Européen des Membranes
- IEM
- UMR 5635
- University of Montpellier
- ENSCM
| | - T. Babut
- Institut Européen des Membranes
- IEM
- UMR 5635
- University of Montpellier
- ENSCM
| | - E. Petit
- Institut Européen des Membranes
- IEM
- UMR 5635
- University of Montpellier
- ENSCM
| | - M. Rolland
- Institut Européen des Membranes
- IEM
- UMR 5635
- University of Montpellier
- ENSCM
| | - D. Quemener
- Institut Européen des Membranes
- IEM
- UMR 5635
- University of Montpellier
- ENSCM
| | - L. Soussan
- Institut Européen des Membranes
- IEM
- UMR 5635
- University of Montpellier
- ENSCM
| | - M. A. Moradi
- Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - M. Semsarilar
- Institut Européen des Membranes
- IEM
- UMR 5635
- University of Montpellier
- ENSCM
| |
Collapse
|
461
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019; 36:1412-1436. [DOI: 10.1039/c8np00091c] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
462
|
Molecules that Inhibit Bacterial Resistance Enzymes. Molecules 2018; 24:molecules24010043. [PMID: 30583527 PMCID: PMC6337270 DOI: 10.3390/molecules24010043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Antibiotic resistance mediated by bacterial enzymes constitutes an unmet clinical challenge for public health, particularly for those currently used antibiotics that are recognized as "last-resort" defense against multidrug-resistant (MDR) bacteria. Inhibitors of resistance enzymes offer an alternative strategy to counter this threat. The combination of inhibitors and antibiotics could effectively prolong the lifespan of clinically relevant antibiotics and minimize the impact and emergence of resistance. In this review, we first provide a brief overview of antibiotic resistance mechanism by bacterial secreted enzymes. Furthermore, we summarize the potential inhibitors that sabotage these resistance pathways and restore the bactericidal activity of inactive antibiotics. Finally, the faced challenges and an outlook for the development of more effective and safer resistance enzyme inhibitors are discussed.
Collapse
|
463
|
Selwood T, Larsen BJ, Mo CY, Culyba MJ, Hostetler ZM, Kohli RM, Reitz AB, Baugh SDP. Advancement of the 5-Amino-1-(Carbamoylmethyl)-1H-1,2,3-Triazole-4-Carboxamide Scaffold to Disarm the Bacterial SOS Response. Front Microbiol 2018; 9:2961. [PMID: 30619111 PMCID: PMC6305444 DOI: 10.3389/fmicb.2018.02961] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
Many antibiotics, either directly or indirectly, cause DNA damage thereby activating the bacterial DNA damage (SOS) response. SOS activation results in expression of genes involved in DNA repair and mutagenesis, and the regulation of the SOS response relies on two key proteins, LexA and RecA. Genetic studies have indicated that inactivating the regulatory proteins of this response sensitizes bacteria to antibiotics and slows the appearance of resistance. However, advancement of small molecule inhibitors of the SOS response has lagged, despite their clear promise in addressing the threat of antibiotic resistance. Previously, we had addressed this deficit by performing a high throughput screen of ∼1.8 million compounds that monitored for inhibition of RecA-mediated auto-proteolysis of Escherichia coli LexA, the reaction that initiates the SOS response. In this report, the refinement of the 5-amino-1-(carbamoylmethyl)-1H-1,2,3-triazole-4-carboxamide scaffold identified in the screen is detailed. After development of a modular synthesis, a survey of key activity determinants led to the identification of an analog with improved potency and increased breadth, targeting auto-proteolysis of LexA from both E. coli and Pseudomonas aeruginosa. Comparison of the structure of this compound to those of others in the series suggests structural features that may be required for activity and cross-species breadth. In addition, the feasibility of small molecule modulation of the SOS response was demonstrated in vivo by the suppression of the appearance of resistance. These structure activity relationships thus represent an important step toward producing Drugs that Inhibit SOS Activation to Repress Mechanisms Enabling Resistance (DISARMERs).
Collapse
Affiliation(s)
- Trevor Selwood
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| | - Brian J Larsen
- Fox Chase Chemical Diversity Center, Inc., Doylestown, PA, United States
| | - Charlie Y Mo
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew J Culyba
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| | - Zachary M Hostetler
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| | - Allen B Reitz
- Fox Chase Chemical Diversity Center, Inc., Doylestown, PA, United States
| | - Simon D P Baugh
- Fox Chase Chemical Diversity Center, Inc., Doylestown, PA, United States
| |
Collapse
|
464
|
Guzmán GI, Olson CA, Hefner Y, Phaneuf PV, Catoiu E, Crepaldi LB, Micas LG, Palsson BO, Feist AM. Reframing gene essentiality in terms of adaptive flexibility. BMC SYSTEMS BIOLOGY 2018; 12:143. [PMID: 30558585 PMCID: PMC6296033 DOI: 10.1186/s12918-018-0653-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 11/13/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Essentiality assays are important tools commonly utilized for the discovery of gene functions. Growth/no growth screens of single gene knockout strain collections are also often utilized to test the predictive power of genome-scale models. False positive predictions occur when computational analysis predicts a gene to be non-essential, however experimental screens deem the gene to be essential. One explanation for this inconsistency is that the model contains the wrong information, possibly an incorrectly annotated alternative pathway or isozyme reaction. Inconsistencies could also be attributed to experimental limitations, such as growth tests with arbitrary time cut-offs. The focus of this study was to resolve such inconsistencies to better understand isozyme activities and gene essentiality. RESULTS In this study, we explored the definition of conditional essentiality from a phenotypic and genomic perspective. Gene-deletion strains associated with false positive predictions of gene essentiality on defined minimal medium for Escherichia coli were targeted for extended growth tests followed by population sequencing and transcriptome analysis. Of the twenty false positive strains available and confirmed from the Keio single gene knock-out collection, 11 strains were shown to grow with longer incubation periods making these actual true positives. These strains grew reproducibly with a diverse range of growth phenotypes. The lag phase observed for these strains ranged from less than one day to more than 7 days. It was found that 9 out of 11 of the false positive strains that grew acquired mutations in at least one replicate experiment and the types of mutations ranged from SNPs and small indels associated with regulatory or metabolic elements to large regions of genome duplication. Comparison of the detected adaptive mutations, modeling predictions of alternate pathways and isozymes, and transcriptome analysis of KO strains suggested agreement for the observed growth phenotype for 6 out of the 9 cases where mutations were observed. CONCLUSIONS Longer-term growth experiments followed by whole genome sequencing and transcriptome analysis can provide a better understanding of conditional gene essentiality and mechanisms of adaptation to such perturbations. Compensatory mutations are largely reproducible mechanisms and are in agreement with genome-scale modeling predictions to loss of function gene deletion events.
Collapse
Affiliation(s)
- Gabriela I Guzmán
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Connor A Olson
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Patrick V Phaneuf
- Department of Bioinformatics and Systems Biology, University of California, San Diego, 92093, La Jolla, CA, USA
| | - Edward Catoiu
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Lais B Crepaldi
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA.,Department of Chemical Engineering, University of Ribeirão Preto, São Paulo, Brazil
| | - Lucas Goldschmidt Micas
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA.,Department of Chemical and Petroleum Engineering, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Department of Pediatrics, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
465
|
Biogenic nanomaterials: Synthesis, characterization, growth mechanism, and biomedical applications. J Microbiol Methods 2018; 157:65-80. [PMID: 30552971 DOI: 10.1016/j.mimet.2018.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The biosynthesis of nanomaterials is a huge and intensifying field of research due to their application in various areas, in particular the biomedical and pharmaceutical fields. In this review, we focused on the biosynthesis of both metallic and semiconductor nanomaterials and their application in biomedicine and pharmaceutics. In order to meet an exponentially increasing need for nanostructured materials, the biological route for the synthesis of nanomaterials will have to be explored, offering advantages over chemical and physical methods as a simpler, more cost effective, and environmentally friendly method, and for which there is no need to use high pressure and temperatures or toxic chemicals. This review discusses in detail the potential role of bioreducing and capping/stabilizing agents in biosynthesis. This review also investigates the application of various biosynthetic nanomaterials as antimicrobial materials, in clinical detection, for drug delivery and wound-healing, and as anti-diabetic materials.
Collapse
|
466
|
Bohlmann L, De Oliveira DMP, El-Deeb IM, Brazel EB, Harbison-Price N, Ong CLY, Rivera-Hernandez T, Ferguson SA, Cork AJ, Phan MD, Soderholm AT, Davies MR, Nimmo GR, Dougan G, Schembri MA, Cook GM, McEwan AG, von Itzstein M, McDevitt CA, Walker MJ. Chemical Synergy between Ionophore PBT2 and Zinc Reverses Antibiotic Resistance. mBio 2018; 9:e02391-18. [PMID: 30538186 PMCID: PMC6299484 DOI: 10.1128/mbio.02391-18] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 11/20/2022] Open
Abstract
The World Health Organization reports that antibiotic-resistant pathogens represent an imminent global health disaster for the 21st century. Gram-positive superbugs threaten to breach last-line antibiotic treatment, and the pharmaceutical industry antibiotic development pipeline is waning. Here we report the synergy between ionophore-induced physiological stress in Gram-positive bacteria and antibiotic treatment. PBT2 is a safe-for-human-use zinc ionophore that has progressed to phase 2 clinical trials for Alzheimer's and Huntington's disease treatment. In combination with zinc, PBT2 exhibits antibacterial activity and disrupts cellular homeostasis in erythromycin-resistant group A Streptococcus (GAS), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE). We were unable to select for mutants resistant to PBT2-zinc treatment. While ineffective alone against resistant bacteria, several clinically relevant antibiotics act synergistically with PBT2-zinc to enhance killing of these Gram-positive pathogens. These data represent a new paradigm whereby disruption of bacterial metal homeostasis reverses antibiotic-resistant phenotypes in a number of priority human bacterial pathogens.IMPORTANCE The rise of bacterial antibiotic resistance coupled with a reduction in new antibiotic development has placed significant burdens on global health care. Resistant bacterial pathogens such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus are leading causes of community- and hospital-acquired infection and present a significant clinical challenge. These pathogens have acquired resistance to broad classes of antimicrobials. Furthermore, Streptococcus pyogenes, a significant disease agent among Indigenous Australians, has now acquired resistance to several antibiotic classes. With a rise in antibiotic resistance and reduction in new antibiotic discovery, it is imperative to investigate alternative therapeutic regimens that complement the use of current antibiotic treatment strategies. As stated by the WHO Director-General, "On current trends, common diseases may become untreatable. Doctors facing patients will have to say, Sorry, there is nothing I can do for you."
Collapse
Affiliation(s)
- Lisa Bohlmann
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - David M P De Oliveira
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Ibrahim M El-Deeb
- Institute for Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Erin B Brazel
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | | | - Cheryl-Lynn Y Ong
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Tania Rivera-Hernandez
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Scott A Ferguson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Amanda J Cork
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Amelia T Soderholm
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Graeme R Nimmo
- Pathology Queensland Central Laboratory, Brisbane, QLD, Australia
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
467
|
Alessi AM, Redeker KR, Chong JPJ. A practical introduction to microbial molecular ecology through the use of isolation chips. Ecol Evol 2018; 8:12286-12298. [PMID: 30619545 PMCID: PMC6309002 DOI: 10.1002/ece3.4748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
In the context of antimicrobial resistance as one of the most serious issues faced globally by health providers, we explored a practical introduction to molecular microbial ecology. We designed field work and practical experiments for third year members of a 4 year undergraduate Masters Program, in which the students employed traditional and novel isolation techniques to identify antimicrobial activities from soil dwelling microorganisms. Students gained experience in isolating DNA from complex microbial communities, amplifying 16S rRNA genes and applied richness/diversity indices as well as principal coordinate analyses to the interpretation of the data they obtained from high throughput sequencing. Our results confirmed that isolation chips facilitate the growth of a greater diversity and different species subset from the complex soil microorganism community than traditional plate spreading techniques. However, rarefaction of 16S rRNA amplicon sequencing data showed that the majority of observed species in soil remain unculturable by current methods. Based on the written reports produced by the students carrying out the work, we concluded that the described protocols are robust and informative, that these activities provide a good practical introduction to the theories and practice of molecular ecology and can be easily deployed to groups of six or more students in a cost-effective manner.
Collapse
|
468
|
Jehan M, Saeed F, Khan Z, Shah M, Sikandar A, Inayat A, Ali S, Mehmood Khan A, Talib A, Aasim M, Ali Khan A. Investigative evaluation of Cassia absus for antibacterial capacity and biomimetic synthesis of silver nanoparticles. IET Nanobiotechnol 2018; 12:1062-1066. [PMID: 30964014 PMCID: PMC8676245 DOI: 10.1049/iet-nbt.2018.5054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 11/19/2022] Open
Abstract
Cassia absus is used for medicinal purposes for a long time all over the world. In this study, the authors report the antimicrobial potential of C. absus extracts obtained with different solvents. The extract(s) obtained with ethyl acetate yielded the best antibacterial effects because of a rich supply of oxalates and alkaloids in it. The same extract was also exploited for reducing Ag+ ions (to metallic Ag0) for the synthesis of nanoparticles. Electron microscopy revealed that the silver nanoparticles were ∼18-25 nm in diameter. The Fourier-transform infrared evaluation pointed towards the fact that flavonoids present in the plant extract were acting as reductants while amino groups were the bound stabilisation agents to the synthesised nanoparticles limiting the diameter to a certain threshold and avoiding aggregation naturally. A comparative antibacterial assay of C. absus versus Ag nanoparticles showed that the nanoparticles as well as organic (ethyl acetate) extract of the plant checked the growth of selected (MDR) superbugs. However, the biosynthesised Ag nanoparticles returned better antibacterial efficacies than ethyl acetate extract.
Collapse
Affiliation(s)
- Mehreen Jehan
- Department of Microbiology, Government Postgraduate College No. 2, Mandian, Abbottabad, KP, Pakistan
| | - Fiza Saeed
- Department of Microbiology, Government Postgraduate College No. 2, Mandian, Abbottabad, KP, Pakistan
| | - Zanib Khan
- Department of Biosciences, COMSATS University Islamabad, Tarlai Kalan, 45550 Islamabad, Pakistan
| | - Muddassar Shah
- Department of Microbiology, Government Postgraduate College No. 2, Mandian, Abbottabad, KP, Pakistan
| | - Ayesha Sikandar
- Department of Microbiology, Government Postgraduate College No. 2, Mandian, Abbottabad, KP, Pakistan
| | - Afia Inayat
- Department of Microbiology, Government Postgraduate College No. 2, Mandian, Abbottabad, KP, Pakistan
| | - Sartaj Ali
- Department of Microbiology, Government Postgraduate College No. 2, Mandian, Abbottabad, KP, Pakistan
| | - Arshad Mehmood Khan
- Department of Microbiology, Government Postgraduate College No. 2, Mandian, Abbottabad, KP, Pakistan
| | - Ayesha Talib
- Department of Biosciences, COMSATS University Islamabad, Tarlai Kalan, 45550 Islamabad, Pakistan
| | - Muhammad Aasim
- Department of Biotechnology, University of Malakand, Dir Lower, KP, Pakistan
| | - Abid Ali Khan
- Department of Biosciences, COMSATS University Islamabad, Tarlai Kalan, 45550 Islamabad, Pakistan.
| |
Collapse
|
469
|
An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing. Carbohydr Polym 2018; 201:522-531. [DOI: 10.1016/j.carbpol.2018.08.090] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/13/2018] [Accepted: 08/21/2018] [Indexed: 01/07/2023]
|
470
|
Hu R, Zhou F, Zhou T, Shen J, Wang Z, Zhao Z, Qin A, Tang BZ. Specific discrimination of gram-positive bacteria and direct visualization of its infection towards mammalian cells by a DPAN-based AIEgen. Biomaterials 2018; 187:47-54. [DOI: 10.1016/j.biomaterials.2018.09.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/29/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
|
471
|
Efflux pump-mediated resistance to antifungal compounds can be prevented by conjugation with triphenylphosphonium cation. Nat Commun 2018; 9:5102. [PMID: 30504815 PMCID: PMC6269435 DOI: 10.1038/s41467-018-07633-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 11/13/2018] [Indexed: 11/21/2022] Open
Abstract
Antifungal resistance due to upregulation of efflux pumps is prevalent in clinical Candida isolates. Potential efflux pump substrates (PEPSs), which are active against strains deficient in efflux pumps but inactive against wild-type strains, are usually missed in routine antifungal screening. Here we present a method for identification of PEPSs, and show that conjugation with mitochondria-targeting triphenylphosphonium cation (TPP+) can enhance or restore the compounds’ antifungal activity. The screening method involves co-culturing a wild-type C. albicans strain and a Cdr efflux pump-deficient strain, labelled with different fluorescent proteins. We identify several PEPSs from a library of natural terpenes, and restore their antifungal activity against wild-type and azole-resistant C. albicans by conjugation with TPP+. The most active conjugate (IS-2-Pi-TPP) kills C. albicans cells, prevents biofilm formation and eliminates preformed biofilms, without inducing significant resistance. The antifungal activity is accompanied by mitochondrial dysfunction and increased levels of intracellular reactive oxygen species. In addition, IS-2-Pi-TPP is effective against C. albicans in a mouse model of skin infection. Antifungal resistance due to upregulation of efflux pumps is common in Candida albicans. Here, the authors show that conjugation with mitochondria-targeting triphenylphosphonium cation can enhance or restore the antifungal activity of potential efflux pump substrates.
Collapse
|
472
|
Ando H. [Creation of synthetic bacterial viruses]. Nihon Saikingaku Zasshi 2018; 73:201-210. [PMID: 30487377 DOI: 10.3412/jsb.73.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacteria are closely related with human health and diseases. For example, the emergence of drug-resistant bacteria is a serious problem in the world. Studying the human microbiome shows its important role for our health. But we have very limited tools to edit bacterial population. Antibiotics are generally broad-spectrum and unable to kill only bad bacteria. The natural enemies of bacteria, called bacteriophage (phage), have highly specific host range, and thus promising candidates for targeted bacterial population editing. However, isolation and characterization of natural phages can be a time-, labor- and cost-intensive way. Also, developing phage-based therapeutics and diagnostics is limited by the difficulty of engineering phages. Here, I describe a phage genome-engineering platform and synthetic phages with tunable host ranges to overcome these challenges.
Collapse
Affiliation(s)
- Hiroki Ando
- Department of Microbiology, Graduate School of Medicine, Gifu University
| |
Collapse
|
473
|
Song Y, Lu F, Li H, Wang H, Zhang M, Liu Y, Kang Z. Degradable Carbon Dots from Cigarette Smoking with Broad-Spectrum Antimicrobial Activities against Drug-Resistant Bacteria. ACS APPLIED BIO MATERIALS 2018; 1:1871-1879. [DOI: 10.1021/acsabm.8b00421] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuxiang Song
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu P. R. China
| | - Fang Lu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hao Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu P. R. China
| | - Huibo Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu P. R. China
| | - Mengling Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu P. R. China
| | - Yang Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu P. R. China
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu P. R. China
| |
Collapse
|
474
|
Xi Y, Ge J, Guo Y, Lei B, Ma PX. Biomimetic Elastomeric Polypeptide-Based Nanofibrous Matrix for Overcoming Multidrug-Resistant Bacteria and Enhancing Full-Thickness Wound Healing/Skin Regeneration. ACS NANO 2018; 12:10772-10784. [PMID: 30481960 DOI: 10.1021/acsnano.8b01152] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Overcoming the multidrug-resistant (MDR) bacterial infection is a challenge and urgently needed in wound healing. Few wound dressings possess the capacity to treat MDR bacterial infections and enhance wound healing. Herein, we develop an elastomeric, photoluminescent, and antibacterial hybrid polypeptide-based nanofibrous matrix as a multifunctional platform to inhibit the MDR bacteria and enhance wound healing. The hybrid nanofibrous matrix was composed of poly(citrate)-ε-poly lysine (PCE) and poly caprolactone (PCL). The PCL-PCE hybrid nanofibrous matrix showed a biomimetic elastomeric behavior, robust antibacterial activity including killing MDR bacteria capacity, and excellent biocompatibility. PCL-PCE nanofibrous system can efficiently prevent the MDR bacteria-derived wound infection and significantly enhance the complete skin-thickness wound healing and skin regeneration in a mouse model. PCL-PCE hybrid nanofibrous matrix might become a competitive multifunctional dressing for bacteria-infected wound healing and skin regeneration.
Collapse
|
475
|
Synthesis, antimicrobial activity, attenuation of aminoglycoside resistance in MRSA, and ribosomal A-site binding of pyrene-neomycin conjugates. Eur J Med Chem 2018; 163:381-393. [PMID: 30530174 DOI: 10.1016/j.ejmech.2018.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 01/27/2023]
Abstract
The development of new ligands that have comparable or enhanced therapeutic efficacy relative to current drugs is vital to the health of the global community in the short and long term. One strategy to accomplish this goal is to functionalize sites on current antimicrobials to enhance specificity and affinity while abating resistance mechanisms of infectious organisms. Herein, we report the synthesis of a series of pyrene-neomycin B (PYR-NEO) conjugates, their binding affinity to A-site RNA targets, resistance to aminoglycoside-modifying enzymes (AMEs), and antibacterial activity against a wide variety of bacterial strains of clinical relevance. PYR-NEO conjugation significantly alters the affinities of NEO for bacterial A-site targets. The conjugation of PYR to NEO significantly increased the resistance of NEO to AME modification. PYR-NEO conjugates exhibited broad-spectrum activity towards Gram-positive bacteria, including improved activity against NEO-resistant methicillin-resistant Staphylococcus aureus (MRSA) strains.
Collapse
|
476
|
Wlodarchak N, Teachout N, Beczkiewicz J, Procknow R, Schaenzer AJ, Satyshur K, Pavelka M, Zuercher W, Drewry D, Sauer JD, Striker R. In Silico Screen and Structural Analysis Identifies Bacterial Kinase Inhibitors which Act with β-Lactams To Inhibit Mycobacterial Growth. Mol Pharm 2018; 15:5410-5426. [PMID: 30285456 PMCID: PMC6648700 DOI: 10.1021/acs.molpharmaceut.8b00905] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
New tools and concepts are needed to combat antimicrobial resistance. Actinomycetes and firmicutes share several eukaryotic-like Ser/Thr kinases (eSTK) that offer antibiotic development opportunities, including PknB, an essential mycobacterial eSTK. Despite successful development of potent biochemical PknB inhibitors by many groups, clinically useful microbiologic activity has been elusive. Additionally, PknB kinetics are not fully described, nor are structures with specific inhibitors available to inform inhibitor design. We used computational modeling with available structural information to identify human kinase inhibitors predicted to bind PknB, and we selected hits based on drug-like characteristics intended to increase the likelihood of cell entry. The computational model suggested a family of inhibitors, the imidazopyridine aminofurazans (IPAs), bind PknB with high affinity. We performed an in-depth characterization of PknB and found that these inhibitors biochemically inhibit PknB, with potency roughly following the predicted models. A novel X-ray structure confirmed that the inhibitors bound as predicted and made favorable protein contacts with the target. These inhibitors also have antimicrobial activity toward mycobacteria and nocardia. We demonstrated that the inhibitors are uniquely potentiated by β-lactams but not antibiotics traditionally used to treat mycobacteria, consistent with PknB's role in sensing cell wall stress. This is the first demonstration in the phylum actinobacteria that some β-lactam antibiotics could be more effective if paired with a PknB inhibitor. Collectively, our data show that in silico modeling can be used as a tool to discover promising drug leads, and the inhibitors we discovered can act with clinically relevant antibiotics to restore their efficacy against bacteria with limited treatment options.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- Department of Medicine, University of Wisconsin-Madison, 3341 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Nathan Teachout
- Department of Medicine, University of Wisconsin-Madison, 3341 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Jeffrey Beczkiewicz
- Department of Medicine, University of Wisconsin-Madison, 3341 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Rebecca Procknow
- Department of Medicine, University of Wisconsin-Madison, 3341 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Adam J. Schaenzer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 4203 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Kenneth Satyshur
- Small Molecule Screening Facility, Carbone Cancer Center, University of Wisconsin-Madison, 1111Highland Ave., Madison, WI 53705
| | - Martin Pavelka
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14620
| | - William Zuercher
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, SGC Center for Chemical Biology, 120 Mason Farm Rd., Chapel Hill, NC 27599
| | - David Drewry
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, SGC Center for Chemical Biology, 120 Mason Farm Rd., Chapel Hill, NC 27599
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 4203 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706
| | - Rob Striker
- Department of Medicine, University of Wisconsin-Madison, 3341 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706,William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terr., Madison, WI 53705,To whom correspondence should be addressed Rob Striker, Department of Medicine, University of Wisconsin-Madison, 3301 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706, 608-263-2994,
| |
Collapse
|
477
|
Song Z, Wang H, Wu Y, Gu J, Li S, Han H. Fabrication of Bis-Quaternary Ammonium Salt as an Efficient Bactericidal Weapon Against Escherichia coli and Staphylococcus aureus. ACS OMEGA 2018; 3:14517-14525. [PMID: 30411069 PMCID: PMC6217699 DOI: 10.1021/acsomega.8b01265] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/25/2018] [Indexed: 05/19/2023]
Abstract
Combating bacterial pathogens has become a global concern, especially the emergence of drug-resistant bacteria have made conventional antibiotics lose their efficiency. This grim situation suggests the necessity to explore novel antibacterial agents with favorable safety and strong antibacterial activity. Here, we took the advantage of quaternary ammonium compounds and synthesized a long-chain high-molecular organic bis-quaternary ammonium salt (BQAS) with a broad-spectrum bactericidal activity through a facile one-pot reaction. The bactericidal effect of BQAS was evaluated by two bacterial human pathogens: Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive), which are the major cause of diarrheal infections in children and adults. Our experimental results indicate that the bactericidal activity of BQAS is linked to the strong contact between the positively charged quaternary ammonium groups and the bacterial cells, thus leading to a temporary and locally high concentration of reactive oxygen species, which subsequently triggers oxidative stress and membrane damage in the bacteria. This mechanism was further confirmed by several assays, such as the membrane permeabilization assay, fluorescent-based cell live/dead test, scanning electron microscopy, transmission electron microscopy, together with the lactate dehydrogenase release assay, which all indicated that BQAS induced damage to the cytoplasmic membrane and the leakage of intracellular fluid containing essential molecules. The excellent bactericidal activity of BQAS suggests its great application potential as a promising candidate against the rapid emergence of drug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Zhiyong Song
- State
Key Laboratory of Agricultural Microbiology, College of Science, and State Key Laboratory
of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huajuan Wang
- State
Key Laboratory of Agricultural Microbiology, College of Science, and State Key Laboratory
of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yang Wu
- State
Key Laboratory of Agricultural Microbiology, College of Science, and State Key Laboratory
of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiangjiang Gu
- State
Key Laboratory of Agricultural Microbiology, College of Science, and State Key Laboratory
of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuojun Li
- State
Key Laboratory of Agricultural Microbiology, College of Science, and State Key Laboratory
of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Heyou Han
- State
Key Laboratory of Agricultural Microbiology, College of Science, and State Key Laboratory
of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
478
|
Identification of novel antimicrobial peptide from Asian sea bass (Lates calcarifer) by in silico and activity characterization. PLoS One 2018; 13:e0206578. [PMID: 30365554 PMCID: PMC6203393 DOI: 10.1371/journal.pone.0206578] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 10/16/2018] [Indexed: 11/29/2022] Open
Abstract
Background The global crisis of antibiotic resistance increases the demand for the new promising alternative drugs such as antimicrobial peptides (AMPs). Accordingly, we have described a new, previously unrecognized effective AMP, named dicentracin-like, from Asian sea bass and characterized its antimicrobial activity by comparison with moronecidin. Methodology/ Results Gene expression analysis demonstrated the expression of dicentracin-like peptide in tissues of the immune system such as the skin and the head kidney, which is an important endocrine and lymphoid organ. Moronecidin and dicentracin-like exhibited a higher antibacterial activity against gram-positive bacteria relative to gram-negative ones, while both peptides showed a greater binding ability to gram-negative bacteria compared to gram-positive ones. This contradiction between antibacterial activity and binding affinity may be related to the outer membrane from gram-negative bacteria. Compared with moronecidin, dicentracin-like peptide showed more potent binding ability to all gram-positive and gram-negative bacteria. In addition, dicentracin-like peptide exhibited a high antibacterial activity against the investigated microorganisms, except against Staphylococcus aureus. A direct relationship was found between the binding affinity/cationicity and the antibiofilm activity of the peptides wherein, an elevation in pH corresponded to a decrease in their antibiofilm property. Time-kill kinetics analysis against clinical Acinetobacter baumannii isolate indicated that bactericidal effect of dicentracin-like and moronecidin at inhibitory concentration (1XMIC) was observed after 4 and 6 hours, respectively, while bactericidal effect of both AMPs at concentration of 2XMIC was observed after 2 hours. Dicentracin-like peptide showed higher inhibitory activity at subinhibitory concentration (1/2XMIC), relative to moronecidin. Compared with moronecidin, dicentracin-like peptide possessed greater binding affinity to bacteria at high salt concentration, as well as at alkaline pH; In addition, dicentracin-like exhibited a higher antibiofilm activity in comparison to moronecidin even at alkaline pH. Hemolytic analysis against human RBC revealed that hemolytic activity of moronecidin was more potent than that of dicentracin-like, which is consistent with its greater non-polar face hydrophobicity. Conclusions In the present study, In Silico comparative sequence analysis and antimicrobial characterization led to identify a new, previously unrecognized antimicrobial function for named dicentracin-like peptide by comparison with moronecidin, representing a possible template for designing new effective AMPs and improving known ones.
Collapse
|
479
|
Feigman MS, Kim S, Pidgeon SE, Yu Y, Ongwae GM, Patel DS, Regen S, Im W, Pires MM. Synthetic Immunotherapeutics against Gram-negative Pathogens. Cell Chem Biol 2018; 25:1185-1194.e5. [PMID: 29983273 PMCID: PMC6195440 DOI: 10.1016/j.chembiol.2018.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/06/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
Abstract
While traditional drug discovery continues to be an important platform for the search of new antibiotics, alternative approaches should also be pursued to complement these efforts. We herein designed a class of molecules that decorate bacterial cell surfaces with the goal of re-engaging components of the immune system toward Escherichia coli and Pseudomonas aeruginosa. More specifically, conjugates were assembled using polymyxin B (an antibiotic that inherently attaches to the surface of Gram-negative pathogens) and antigenic epitopes that recruit antibodies found in human serum. We established that the spacer length played a significant role in hapten display within the bacterial cell surface, a result that was confirmed both experimentally and via molecular dynamics simulations. Most importantly, we demonstrated the specific killing of bacteria by our agent in the presence of human serum. By enlisting the immune system, these agents have the potential to pave the way for a potent antimicrobial modality.
Collapse
Affiliation(s)
| | - Seonghoon Kim
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Sean E Pidgeon
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Yuming Yu
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | | | - Dhilon S Patel
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Steven Regen
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Marcos M Pires
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
480
|
Extracellularly oxidative activation and inactivation of matured prodrug for cryptic self-resistance in naphthyridinomycin biosynthesis. Proc Natl Acad Sci U S A 2018; 115:11232-11237. [PMID: 30327344 DOI: 10.1073/pnas.1800502115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Understanding how antibiotic-producing bacteria deal with highly reactive chemicals will ultimately guide therapeutic strategies to combat the increasing clinical resistance crisis. Here, we uncovered a distinctive self-defense strategy featured by a secreted oxidoreductase NapU to perform extracellularly oxidative activation and conditionally overoxidative inactivation of a matured prodrug in naphthyridinomycin (NDM) biosynthesis from Streptomyces lusitanus NRRL 8034. It was suggested that formation of NDM first involves a nonribosomal peptide synthetase assembly line to generate a prodrug. After exclusion and prodrug maturation, we identified a pharmacophore-inactivated intermediate, which required reactivation by NapU via oxidative C-H bond functionalization extracellularly to afford NDM. Beyond that, NapU could further oxidatively inactivate the NDM pharmacophore to avoid self-cytotoxicity if they coexist longer than necessary. This discovery represents an amalgamation of sophisticatedly temporal and spatial shielding mode conferring self-resistance in antibiotic biosynthesis from Gram-positive bacteria.
Collapse
|
481
|
Nilchan N, Phetsang W, Nowwarat T, Chaturongakul S, Jiarpinitnun C. Halogenated trimethoprim derivatives as multidrug-resistant Staphylococcus aureus therapeutics. Bioorg Med Chem 2018; 26:5343-5348. [PMID: 29784273 DOI: 10.1016/j.bmc.2018.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 11/28/2022]
Abstract
Incorporation of halogen atoms to drug molecule has been shown to improve its properties such as enhanced in membrane permeability and increased hydrophobic interactions to its target. To investigate the effect of halogen substitutions on the antibacterial activity of trimethoprim (TMP), we synthesized a series of halogen substituted TMP and tested for their antibacterial activities against global predominant methicillin resistant Staphylococcus aureus (MRSA) strains. Structure-activity relationship analysis suggested a trend in potency that correlated with the ability of the halogen atom to facilitate in hydrophobic interaction to saDHFR. The most potent derivative, iodinated trimethoprim (TMP-I), inhibited pathogenic bacterial growth with MIC as low as 1.25 μg/mL while the clinically used TMP derivative, diaveridine, showed resistance. Similar to TMP, synergistic studies indicated that TMP-I functioned synergistically with sulfamethoxazole. The simplicity in the synthesis from an inexpensive starting material, vanillin, highlighted the potential of TMP-I as antibacterial agent for MRSA infections.
Collapse
Affiliation(s)
- Napon Nilchan
- Department of Chemistry and Center for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Wanida Phetsang
- Department of Chemistry and Center for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Taechin Nowwarat
- Department of Chemistry and Center for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Soraya Chaturongakul
- Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand; Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Chutima Jiarpinitnun
- Department of Chemistry and Center for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| |
Collapse
|
482
|
Silva DR, Sardi JDCO, Freires IA, Silva ACB, Rosalen PL. In silico approaches for screening molecular targets in Candida albicans: A proteomic insight into drug discovery and development. Eur J Pharmacol 2018; 842:64-69. [PMID: 30326213 DOI: 10.1016/j.ejphar.2018.10.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/28/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022]
Abstract
Candida species are opportunistic pathogens which can cause conditions ranging from simple mucocutaneous infections to fungemia and death in immunosuppressed and hospitalized patients. Candida albicans is considered to be the species mostly associated with fungal infections in humans and, therefore, the mostly studied yeast. This microorganism has survival and virulence factors which, allied to a decreased host immunity response, make infection more difficult to control. Today, the current limited antifungal arsenal and a dramatic increase in fungal resistance have driven the need for the synthesis of drugs with novel mechanisms of action. However, the development of a new drug from discovery to marketing takes a long time and is highly costly. The objective of this review is to show that with advances in biotechnology and biofinformatics, in silico tools such as molecular docking can optimize such a timeline and reduce costs, while contributing to the design and development of targeted drugs. Here we highlight the most promising protein targets in Candida albicans for the development of drugs with new mechanisms of action.
Collapse
Affiliation(s)
- Diego Romário Silva
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901 - Areião, Piracicaba, SP CEP: 13414-018, Brazil
| | - Janaína de Cássia Orlandi Sardi
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901 - Areião, Piracicaba, SP CEP: 13414-018, Brazil
| | - Irlan Almeida Freires
- Department of Oral Biology, College of Dentistry, University of Florida, 1395 Center Dr., 32610 Gainesville, FL, USA
| | - Andréa Cristina Barbosa Silva
- Department of Dentistry, State University of Paraíba, Av. Cel. Pedro Targino - Centro, Araruna, PB CEP: 58233-000, Brazil
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901 - Areião, Piracicaba, SP CEP: 13414-018, Brazil.
| |
Collapse
|
483
|
Larsen EM, Johnson RJ. Microbial esterases and ester prodrugs: An unlikely marriage for combating antibiotic resistance. Drug Dev Res 2018; 80:33-47. [PMID: 30302779 DOI: 10.1002/ddr.21468] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
The rise of antibiotic resistance necessitates the search for new platforms for drug development. Prodrugs are common tools for overcoming drawbacks typically associated with drug formulation and delivery, with ester prodrugs providing a classic strategy for masking polar alcohol and carboxylic acid functionalities and improving cell permeability. Ester prodrugs are normally designed to have simple ester groups, as they are expected to be cleaved and reactivated by a wide spectrum of cellular esterases. However, a number of pathogenic and commensal microbial esterases have been found to possess significant substrate specificity and can play an unexpected role in drug metabolism. Ester protection can also introduce antimicrobial properties into previously nontoxic drugs through alterations in cell permeability or solubility. Finally, mutation to microbial esterases is a novel mechanism for the development of antibiotic resistance. In this review, we highlight the important pathogenic and xenobiotic functions of microbial esterases and discuss the development and application of ester prodrugs for targeting microbial infections and combating antibiotic resistance. Esterases are often overlooked as therapeutic targets. Yet, with the growing need to develop new antibiotics, a thorough understanding of the specificity and function of microbial esterases and their combined action with ester prodrug antibiotics will support the design of future therapeutics.
Collapse
Affiliation(s)
- Erik M Larsen
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana.,Department of Chemistry and Biochemistry, Bloomsburg University, Bloomsburg, Pennsylvania
| | - R Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana
| |
Collapse
|
484
|
Amniattalab A, Mohammadi R. Evaluation of antibiotic activity of methicillin in healing of full-thickness infected wounds with sensitized methicillin resistant Staphylococcus aureus in the presence of HAMLET. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:1043-1049. [PMID: 30524678 PMCID: PMC6281059 DOI: 10.22038/ijbms.2018.27751.6764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/18/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The novel healing choices for handling of infections due to multidrug resistant Staphylococcus aureus are reguired. HAMLET has been reported to be able to sensitize bacterial pathogens to traditional antimicrobial agents. The aim was to assess wound healing activity of methicillin in presence of HAMLET in methicillin resistant S. aureus (MRSA) infected wounds. MATERIALS AND METHODS Fifty male rats were randomized into five groups of ten animals each. In CONTROL group, 0.1 ml sterile saline 0.9% solution was added to the wounds with no infection. In MRSA group, the wounds were infected with MRSA and only treated with 0.1 ml the sterile saline (0.9%) solution. In MRSA/HAMLET group, infected wounds were cured with HAMLET (100 µg). In group MRSA/ Met, animals with infected wounds were cured with 0.1 ml local use of 1 mg/ml methicillin. In MRSA/Met/HAMLET group, animals with infected wounds were cured with local use of 0.1 ml solution of methicillin (1 mg/ml) and HAMLET (100 µg). All test formulations were used for ten consecutive days, twice a day, beginning from first treatment. RESULTS Microbiological examination, planimetric, histological and quantitative morphometric studies, immunohistochemical staining for angiogenesis, determination of hydroxyproline levels and RT-PCR for Caspase 3, Bcl-2 and p53 showed that there was significant difference between animals in MRSA/Met/ HAMLET group compared to other groups (P<0.05). CONCLUSION HAMLET could make methicillin beneficial for handling of MRSA infected wounds and had the prospective effect to consider this harmless agent for local application.
Collapse
Affiliation(s)
- Amir Amniattalab
- Young Researchers and Elite Club, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
485
|
Nayak B, Nanda A, Prabhakar V. Biogenic synthesis of silver nanoparticle from wasp nest soil fungus, Penicillium italicum and its analysis against multi drug resistance pathogens. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
486
|
Vision for medicine: Staphylococcus aureus biofilm war and unlocking key's for anti-biofilm drug development. Microb Pathog 2018; 123:339-347. [DOI: 10.1016/j.micpath.2018.07.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 01/28/2023]
|
487
|
Bell EW, Zheng EJ, Ryno LM. Identification of inhibitors of the E. coli chaperone SurA using in silico and in vitro techniques. Bioorg Med Chem Lett 2018; 28:3540-3548. [PMID: 30301675 DOI: 10.1016/j.bmcl.2018.09.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 11/15/2022]
Abstract
SurA is a gram-negative, periplasmic chaperone protein involved in the proper folding of outer membrane porins (OMPs), which protect bacteria against toxins in the extracellular environment by selectively regulating the passage of nutrients into the cell. Previous studies demonstrated that deletion of SurA renders bacteria more sensitive to toxins that compromise the integrity of the outer membrane. Inhibitors of SurA will perturb the folding of OMPs, leading to disruption of the outer membrane barrier and making the cell more vulnerable to toxic insults. The discovery of novel SurA inhibitors is therefore of great importance for developing alternative strategies to overcome antibiotic resistance. Our laboratory has screened over 10,000,000 compoundsin silicoby computationally docking these compounds onto the crystal structure of SurA. Through this screen and a screen of fragment compounds (molecular weight less than 250 g/mol), we found twelve commercially readily available candidate compounds that bind to the putative client binding site of SurA. We confirmed binding to SurA by developing and employing a competitive fluorescence anisotropy-based binding assay. Our results show that one of these compounds, Fmoc-β-(2-quinolyl)-d-alanine, binds the client binding site with high micromolar affinity. Using this compound as a lead, we also discovered that Fmoc-l-tryptophan and Fmoc-l-phenylalanine, but not Fmoc-l-tyrosine, bind SurA with similar micromolar affinity. To our knowledge, this is the first report of a competitive fluorescence anisotropy assay developed for the identification of inhibitors of the chaperone SurA, and the identification of three small molecules that bind SurA at its client binding site.
Collapse
Affiliation(s)
- Eric W Bell
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St. A263, Oberlin, OH 44074, United States
| | - Erica J Zheng
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St. A263, Oberlin, OH 44074, United States
| | - Lisa M Ryno
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St. A263, Oberlin, OH 44074, United States.
| |
Collapse
|
488
|
Chevrette MG, Currie CR. Emerging evolutionary paradigms in antibiotic discovery. J Ind Microbiol Biotechnol 2018; 46:257-271. [PMID: 30269177 DOI: 10.1007/s10295-018-2085-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Antibiotics revolutionized medicine and remain its cornerstone. Despite their global importance and the continuous threat of resistant pathogens, few antibiotics have been discovered in recent years. Natural products, especially the secondary metabolites of Actinobacteria, have been the traditional discovery source of antibiotics. In nature, the chemistry of antibiotic natural products is shaped by the unique evolution and ecology of their producing organisms, yet these influences remain largely unknown. Here, we highlight the ecology of antibiotics employed by microbes in defensive symbioses and review the evolutionary processes underlying the chemical diversity and activity of microbe-derived antibiotics, including the dynamics of vertical and lateral transmission of biosynthetic pathways and the evolution of efficacy, targeting specificity, and toxicity. We argue that a deeper understanding of the ecology and evolution of microbial interactions and the metabolites that mediate them will allow for an alternative, rational approach to discover new antibiotics.
Collapse
Affiliation(s)
- Marc G Chevrette
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
489
|
Genilloud O. Mining Actinomycetes for Novel Antibiotics in the Omics Era: Are We Ready to Exploit This New Paradigm? Antibiotics (Basel) 2018; 7:E85. [PMID: 30257490 PMCID: PMC6316141 DOI: 10.3390/antibiotics7040085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/28/2022] Open
Abstract
The current spread of multi-drug resistance in a number of key pathogens and the lack of therapeutic solutions in development to address most of the emerging infections in the clinic that are difficult to treat have become major concerns. Microbial natural products represent one of the most important sources for the discovery of potential new antibiotics and actinomycetes have been one of the most relevant groups that are prolific producers of these bioactive compounds. Advances in genome sequencing and bioinformatic tools have collected a wealth of knowledge on the biosynthesis of these molecules. This has revealed the broad untapped biosynthetic diversity of actinomycetes, with large genomes and the capacity to produce more molecules than previously estimated, opening new opportunities to identify the novel classes of compounds that are awaiting to be discovered. Comparative genomics, metabolomics and proteomics and the development of new analysis and genetic engineering tools provide access to the integration of new knowledge and better understanding of the physiology of actinomycetes and their tight regulation of the production of natural products antibiotics. This new paradigm is fostering the development of new genomic-driven and culture-based strategies, which aims to deliver new chemical classes of antibiotics to be developed to the clinic and replenish the exhausted pipeline of drugs for fighting the progression of infection diseases in the near future.
Collapse
Affiliation(s)
- Olga Genilloud
- Fundación MEDINA, Avda Conocimiento 34, 18016 Granada, Spain.
| |
Collapse
|
490
|
Bommer A, Böhler O, Johannsen E, Dobrindt U, Kuczius T. Effect of chlorine on cultivability of Shiga toxin producing Escherichia coli (STEC) and β-lactamase genes carrying E. coli and Pseudomonas aeruginosa. Int J Med Microbiol 2018; 308:1105-1112. [PMID: 30262431 DOI: 10.1016/j.ijmm.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/02/2018] [Accepted: 09/13/2018] [Indexed: 11/15/2022] Open
Abstract
The worldwide spread of toxin-producing and multi-drug resistant bacteria in water, food and the environment is considered a major threat to human health. Drinking water quality is controlled by inspection of fecal indicators presence whereby viable contaminants will be efficiently reduced by chlorination which is a common process for disinfection. However, the all-out efficiency is arguable, because bacterial regrowth has been documented after disinfection. In this study, we investigated the stability of Shiga toxin producing Escherichia coli (STEC) and β-lactamase expressing E. coli and Pseudomonas aeruginosa isolates, both equipped with multiple or single β-lactamase resistance genes. The aim of the study was to analyze the efficiency of chlorine (Cl2) disinfection against shigatoxigenic or β-lactamase producing bacteria. Cl2 reacts with the bacterial cells after first contact. Counts of antibiotic resistant E. coli were lower after short than upon extended Cl2 treatment. P. aeruginosa counts decreased moderately upon 15-60 min treatment with 1.2 mg Cl2/l, while cells adapted to tap water were not cultivable anymore. We assume that the bacterial physiology changed to a temporary non-cultivatable state at first Cl2 contact followed by resuscitation of some cells at later stages. STEC viability went down continuously at low Cl2 concentrations and these toxigenic E. coli isolates exhibited slightly increased stability to Cl2 treatment compared with non-toxigenic E. coli. Controlling the efficiency of disinfection, realistic counts of cultivatable cells are achieved after extended Cl2 action.
Collapse
Affiliation(s)
- Anni Bommer
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany
| | - Olga Böhler
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany
| | - Eva Johannsen
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany
| | - Ulrich Dobrindt
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany
| | - Thorsten Kuczius
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany.
| |
Collapse
|
491
|
Li B, Qiu Y, Shi H, Yin H. The importance of lag time extension in determining bacterial resistance to antibiotics. Analyst 2018; 141:3059-67. [PMID: 27077143 DOI: 10.1039/c5an02649k] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is widely appreciated that widespread antibiotic resistance has significantly reduced the utility of today's antibiotics. Many antibiotics now fail to cure infectious diseases, although they are classified as effective bactericidal agents based on antibiotic susceptibility tests. Here, via kinetic growth assays, we evaluated the effects of 12 commonly used antibiotics on the lag phase of a range of pure environmental isolates and of sludge bacterial communities with a high diversity. We show that an extended lag phase offers bacteria survival advantages and promotes regrowth upon the removal of antibiotics. By utilizing both lag phase extension and IC50, the killing efficiency of an antibiotic on a strain or a community can be easily revealed. Interestingly, for several strains of relevance to endemic nosocomial infections (e.g. Acinetobacter sp. and Pseudomonas aeruginosa) and the diverse sludge communities, tetracycline and quinolone antibiotics are most likely to be resisted via extended lag phase. This discovery is significant from a clinical point view since underestimation of bacteria resistance can lead to the recurrence of diseases.
Collapse
Affiliation(s)
- Bing Li
- Environmental Simulation and Pollution Control State-key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China. and Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Yong Qiu
- Environmental Simulation and Pollution Control State-key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Hanchang Shi
- Environmental Simulation and Pollution Control State-key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huabing Yin
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| |
Collapse
|
492
|
Podnecky NL, Fredheim EGA, Kloos J, Sørum V, Primicerio R, Roberts AP, Rozen DE, Samuelsen Ø, Johnsen PJ. Conserved collateral antibiotic susceptibility networks in diverse clinical strains of Escherichia coli. Nat Commun 2018; 9:3673. [PMID: 30202004 PMCID: PMC6131505 DOI: 10.1038/s41467-018-06143-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/16/2018] [Indexed: 01/09/2023] Open
Abstract
There is urgent need to develop novel treatment strategies to reduce antimicrobial resistance. Collateral sensitivity (CS), where resistance to one antimicrobial increases susceptibility to other drugs, might enable selection against resistance during treatment. However, the success of this approach would depend on the conservation of CS networks across genetically diverse bacterial strains. Here, we examine CS conservation across diverse Escherichia coli strains isolated from urinary tract infections. We determine collateral susceptibilities of mutants resistant to relevant antimicrobials against 16 antibiotics. Multivariate statistical analyses show that resistance mechanisms, in particular efflux-related mutations, as well as the relative fitness of resistant strains, are principal contributors to collateral responses. Moreover, collateral responses shift the mutant selection window, suggesting that CS-informed therapies may affect evolutionary trajectories of antimicrobial resistance. Our data allow optimism for CS-informed therapy and further suggest that rapid detection of resistance mechanisms is important to accurately predict collateral responses.
Collapse
Affiliation(s)
- Nicole L Podnecky
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037, Tromsø, Norway.
| | - Elizabeth G A Fredheim
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Julia Kloos
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Vidar Sørum
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Raul Primicerio
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Adam P Roberts
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Sylviusweg 72, PO Box 9505, 2300 RA, Leiden, The Netherlands
| | - Ørjan Samuelsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9037, Tromsø, Norway
| | - Pål J Johnsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
493
|
Xu X, Liu X, Tan L, Cui Z, Yang X, Zhu S, Li Z, Yuan X, Zheng Y, Yeung KWK, Chu PK, Wu S. Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomater 2018; 77:352-364. [PMID: 30030176 DOI: 10.1016/j.actbio.2018.07.030] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 01/20/2023]
Abstract
Since skin wounds are subject to bacterial infection and tissue regeneration may be impeded, there is demand for biomaterials that possess rapid bactericidal and tissue repair capability. Herein we report in situ promotion of wound healing by a photothermal therapy (PTT) assisted nanocatalytic antibacterial system utilizing a polydopamine (PDA) coating on hydroxyapatite (HAp) incorporated with gold nanoparticles (Au-HAp). The PDA@Au-HAp NPs produce hydroxyl radicals (OH) via catalysis of a small concentration of H2O2 to render bacteria more vulnerable to the temperature change. The antibacterial efficacy against Escherichia coli and Staphylococcus aureus is 96.8% and 95.2%, respectively, at a controlled photo-induced temperature of 45 °C that causes no damage to normal tissues. By combining catalysis with near-infrared (NIR) photothermal therapy, the PDA@Au-HAp NPs provide safe, rapid, and effective antibacterial activity compared to OH or PTT alone. In addition, this system stimulates the tissue repairing-related gene expression to facilitate the formation of granulation tissues and collagen synthesis and thus accelerate wound healing. After the 10-day treatment of skin wounds in vivo, PDA@Au-HAp group exhibits quicker recovery than the control group and both sterilization and healing are completed after the 10-day treatment. STATEMENT OF SIGNIFICANCE This study presents in situ promotion of wound healing by a low-temperature photothermal therapy (PTT) assisted nanocatalytic antibacterial system utilizing a polydopamine (PDA) coating on hydroxyapatite (HAp) incorporated with gold nanoparticles (Au-HAp). The PDA@Au-HAp NPs produce hydroxyl radicals (OH) via catalysis of a small concentration of H2O2 to render bacteria more vulnerable to temperature change. After irradiation by 808 nm laser, the antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) is 96.8% and 95.2%, respectively, at a low photo-induced temperature of 45 °C which causes no damage to normal tissues. In addition, this system stimulates the tissue repairing-related gene expression to facilitate the formation of granulation tissues and collagen synthesis and accelerate wound healing.
Collapse
|
494
|
Reddy GM, Sravya G, Yuvaraja G, Camilo A, Zyryanov GV, Garcia JR. Highly functionalized pyranopyrazoles: synthesis, antimicrobial activity, simulation studies and their structure activity relationships (SARs). RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3569-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
495
|
Zheng YY, Du RL, Cai SY, Liu ZH, Fang ZY, Liu T, So LY, Lu YJ, Sun N, Wong KY. Study of Benzofuroquinolinium Derivatives as a New Class of Potent Antibacterial Agent and the Mode of Inhibition Targeting FtsZ. Front Microbiol 2018; 9:1937. [PMID: 30174667 PMCID: PMC6107709 DOI: 10.3389/fmicb.2018.01937] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
New generation of antibacterial agents are urgently needed in order to fight the emergence of multidrug-resistant bacteria. FtsZ is currently identified as a promising target for new types of antimicrobial compounds development because of its conservative characteristics and its essential role played in bacterial cell division. In the present study, the antibacterial activity of a series of benzofuroquinolinium derivatives was investigated. The results show that the compounds possess potent antibacterial activity against drug resistant pathogens including MRSA, VREF and NDM-1 Escherichia coli. Biological studies reveal that the compound is an effective inhibitor that is able to suppress FtsZ polymerization and GTPase activity and thus stopping the cell division and causing cell death. More importantly, this series of compounds shows low cytotoxicity on mammalian cells and therefore they could be new chemotypes for the development of new antibacterial agents targeting the cell-division protein FtsZ.
Collapse
Affiliation(s)
- Yuan-Yuan Zheng
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ruo-Lan Du
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Sen-Yuan Cai
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhi-Hua Liu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Yuan Fang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting Liu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lok-Yan So
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yu-Jing Lu
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
- Goldenpomelo Biotechnology Co., Ltd., Meizhou, China
| | - Ning Sun
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou, China
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
496
|
Discovery of cationic nonribosomal peptides as Gram-negative antibiotics through global genome mining. Nat Commun 2018; 9:3273. [PMID: 30115920 PMCID: PMC6095874 DOI: 10.1038/s41467-018-05781-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/25/2018] [Indexed: 01/21/2023] Open
Abstract
The worldwide prevalence of infections caused by antibiotic-resistant Gram-negative bacteria poses a serious threat to public health due to the limited therapeutic alternatives. Cationic peptides represent a large family of antibiotics and have attracted interest due to their diverse chemical structures and potential for combating drug-resistant Gram-negative pathogens. Here, we analyze 7395 bacterial genomes to investigate their capacity for biosynthesis of cationic nonribosomal peptides with activity against Gram-negative bacteria. Applying this approach, we identify two novel compounds (brevicidine and laterocidine) showing bactericidal activities against antibiotic-resistant Gram-negative pathogens, such as Pseudomonas aeruginosa and colistin-resistant Escherichia coli, and an apparently low risk of resistance. The two peptides show efficacy against E. coli in a mouse thigh infection model. These findings may contribute to the discovery and development of Gram-negative antibiotics. Microbial genomes encode enzymes for biosynthesis of many uncharacterized peptides. Here, the authors screen over 7,300 bacterial genomes for potential biosynthesis of cationic non-ribosomal peptides, and identify two novel peptides with activities against antibiotic-resistant Gram-negative pathogens.
Collapse
|
497
|
Hopkins SP, Pant J, Goudie MJ, Schmiedt C, Handa H. Achieving Long-Term Biocompatible Silicone via Covalently Immobilized S-Nitroso- N-acetylpenicillamine (SNAP) That Exhibits 4 Months of Sustained Nitric Oxide Release. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27316-27325. [PMID: 30028941 PMCID: PMC7951114 DOI: 10.1021/acsami.8b08647] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ever since the role of endogenous nitric oxide (NO) in controlling a wide variety of biological functions was discovered approximately three decades back, multiple NO-releasing polymeric materials have been developed. However, most of these materials are typically short lived due to the inefficient incorporation of the NO donor molecules within the polymer matrix. In the present study, S-nitroso- N-acetyl penicillamine (SNAP) is covalently attached to poly(dimethylsiloxane) (PDMS) to create a highly stable nitric oxide (NO) releasing material for biomedical applications. By tethering SNAP to the cross-linker of PDMS, the NO donor is unable to leach into the surrounding environment. This is the first time that a sustainable NO release and bacterial inhibition for over 125 days has been achieved by any NO-releasing polymer with supporting evidence of potential long-term hemocompatibility and biocompatibility. The material proves to have very high antibacterial efficacy against Staphylococcus aureus by demonstrating a 99.99% reduction in the first 3 days in a continuous flow CDC bioreactor, whereas a similar inhibitory potential of 99.50% was maintained by the end of 1 month. Hemocompatibility of SNAP-PDMS was tested using a rabbit extracorporeal circuit (ECC) model over a 4 h period. Thrombus formation was greatly reduced within the SNAP-PDMS-coated ECCs compared to the control circuits, observing a 78% reduction in overall thrombus mass accumulation. These results demonstrate the potential of utilizing this material for blood and tissue contacting biomedical devices in long-term clinical applications where infection and unwanted clotting are major issues.
Collapse
Affiliation(s)
- Sean P. Hopkins
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Jitendra Pant
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Marcus J. Goudie
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Chad Schmiedt
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
498
|
Guo H. Design, Synthesis, and Antibacterial Evaluation of Propylene-tethered 8-Methoxyl Ciprofloxacin-isatin Hybrids. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hua Guo
- School of Chemistry and Life Science; Anshan Normal University; Anshan 114007 Liaoning China
| |
Collapse
|
499
|
HJH-1, a Broad-Spectrum Antimicrobial Activity and Low Cytotoxicity Antimicrobial Peptide. Molecules 2018; 23:molecules23082026. [PMID: 30110916 PMCID: PMC6222697 DOI: 10.3390/molecules23082026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
With the overuse of antibiotics, multidrug-resistant bacteria pose a significant threat to human health. Antimicrobial peptides (AMPs) are a promising alternative to conventional antibiotics. This study examines the antimicrobial and membrane activity of HJH-1, a cationic peptide derived from the hemoglobin α-subunit of bovine erythrocytes P3. HJH-1 shows potent antimicrobial activity against different bacterial species associated with infection and causes weaker hemolysis of erythrocytes, at least five times the minimum inhibitory concentration (MIC). HJH-1 has good stability to tolerance temperature, pH value, and ionic strength. The anionic membrane potential probe bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)] and propidium iodide are used as indicators of membrane integrity. In the presence of HJH-1 (1× MIC), Escherichiacoli membranes rapidly depolarise, whereas red blood cells show gradual hyperpolarisation. Scanning electron microscopy and transmission electron micrographs show that HJH-1 (1× MIC) damaged the membranes of Escherichia coli, Staphylococcus aureus, and Candida albicans. In conclusion, HJH-1 damages the integrity of the bacterial membrane, preventing the growth of bacteria. HJH-1 has broad-spectrum antibacterial activity, and these activities are performed by changing the normal cell transmembrane potential and disrupting the integrity of the bacterial membrane.
Collapse
|
500
|
|