451
|
DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 2012; 148:1132-44. [PMID: 22424225 PMCID: PMC3337773 DOI: 10.1016/j.cell.2012.02.032] [Citation(s) in RCA: 610] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Indexed: 12/18/2022]
Abstract
An understanding of metabolic pathways based solely on biochemistry textbooks would underestimate the pervasive role of metabolism in essentially every aspect of biology. It is evident from recent work that many human diseases involve abnormal metabolic states--often genetically programmed--that perturb normal physiology and lead to severe tissue dysfunction. Understanding these metabolic outliers is now a crucial frontier in disease-oriented research. This Review discusses the broad impact of metabolism in cellular function and how modern concepts of metabolism can inform our understanding of common diseases like cancer and also considers the prospects of developing new metabolic approaches to disease treatment.
Collapse
Affiliation(s)
- Ralph J DeBerardinis
- Children's Research Institute, Department of Pediatrics and McDermott Center for Human Growth and Development, University of Texas-Southwestern Medical Center, Dallas, TX 75390-8502, USA.
| | | |
Collapse
|
452
|
Bensinger SJ, Christofk HR. New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol 2012; 23:352-61. [PMID: 22406683 DOI: 10.1016/j.semcdb.2012.02.003] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/21/2012] [Accepted: 02/05/2012] [Indexed: 12/22/2022]
Abstract
Altered cellular metabolism is a defining feature of cancer [1]. The best studied metabolic phenotype of cancer is aerobic glycolysis--also known as the Warburg effect--characterized by increased metabolism of glucose to lactate in the presence of sufficient oxygen. Interest in the Warburg effect has escalated in recent years due to the proven utility of FDG-PET for imaging tumors in cancer patients and growing evidence that mutations in oncogenes and tumor suppressor genes directly impact metabolism. The goals of this review are to provide an organized snapshot of the current understanding of regulatory mechanisms important for Warburg effect and its role in tumor biology. Since several reviews have covered aspects of this topic in recent years, we focus on newest contributions to the field and reference other reviews where appropriate.
Collapse
Affiliation(s)
- Steven J Bensinger
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
453
|
Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C, de Boer VCJ, Anastasiou D, Ito K, Sasaki AT, Rameh L, Carracedo A, Vander Heiden MG, Cantley LC, Pinton P, Haigis MC, Pandolfi PP. Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell 2012; 149:49-62. [PMID: 22401813 DOI: 10.1016/j.cell.2012.02.030] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 11/23/2011] [Accepted: 02/07/2012] [Indexed: 11/19/2022]
Abstract
Decremental loss of PTEN results in cancer susceptibility and tumor progression. PTEN elevation might therefore be an attractive option for cancer prevention and therapy. We have generated several transgenic mouse lines with PTEN expression elevated to varying levels by taking advantage of bacterial artificial chromosome (BAC)-mediated transgenesis. The "Super-PTEN" mutants are viable and show reduced body size due to decreased cell number, with no effect on cell size. Unexpectedly, PTEN elevation at the organism level results in healthy metabolism characterized by increased energy expenditure and reduced body fat accumulation. Cells derived from these mice show reduced glucose and glutamine uptake and increased mitochondrial oxidative phosphorylation and are resistant to oncogenic transformation. Mechanistically we find that PTEN elevation orchestrates this metabolic switch by regulating PI3K-dependent and -independent pathways and negatively impacting two of the most pronounced metabolic features of tumor cells: glutaminolysis and the Warburg effect.
Collapse
Affiliation(s)
- Isabel Garcia-Cao
- Cancer Genetics Program, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
454
|
Fan TWM, Lorkiewicz PK, Sellers K, Moseley HNB, Higashi RM, Lane AN. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol Ther 2012; 133:366-91. [PMID: 22212615 PMCID: PMC3471671 DOI: 10.1016/j.pharmthera.2011.12.007] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 12/14/2022]
Abstract
Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response. In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality.
Collapse
Affiliation(s)
- Teresa W-M Fan
- Department of Chemistry, University of Louisville, KY 40292, USA.
| | | | | | | | | | | |
Collapse
|
455
|
|
456
|
Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2012; 27:441-64. [PMID: 21985671 DOI: 10.1146/annurev-cellbio-092910-154237] [Citation(s) in RCA: 2231] [Impact Index Per Article: 171.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Warburg's observation that cancer cells exhibit a high rate of glycolysis even in the presence of oxygen (aerobic glycolysis) sparked debate over the role of glycolysis in normal and cancer cells. Although it has been established that defects in mitochondrial respiration are not the cause of cancer or aerobic glycolysis, the advantages of enhanced glycolysis in cancer remain controversial. Many cells ranging from microbes to lymphocytes use aerobic glycolysis during rapid proliferation, which suggests it may play a fundamental role in supporting cell growth. Here, we review how glycolysis contributes to the metabolic processes of dividing cells. We provide a detailed accounting of the biosynthetic requirements to construct a new cell and illustrate the importance of glycolysis in providing carbons to generate biomass. We argue that the major function of aerobic glycolysis is to maintain high levels of glycolytic intermediates to support anabolic reactions in cells, thus providing an explanation for why increased glucose metabolism is selected for in proliferating cells throughout nature.
Collapse
Affiliation(s)
- Sophia Y Lunt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
457
|
Flicking the Warburg switch-tyrosine phosphorylation of pyruvate dehydrogenase kinase regulates mitochondrial activity in cancer cells. Mol Cell 2012; 44:846-8. [PMID: 22195959 DOI: 10.1016/j.molcel.2011.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this issue of Molecular Cell, Hitosugi et al. (2011) show that the switch from oxidative phosphorylation to glycolysis in cancer cells is regulated by tyrosine phosphorylation of PDHK1.
Collapse
|
458
|
Ram PT, Mendelsohn J, Mills GB. Bioinformatics and systems biology. Mol Oncol 2012; 6:147-54. [PMID: 22377422 DOI: 10.1016/j.molonc.2012.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/24/2012] [Indexed: 11/20/2022] Open
Abstract
Delivering personalized therapeutic options to cancer patients based on the genetic and molecular aberrations of the tumor offers great promise to improve the outcomes of cancer therapy. Significant progress in biotechnology has allowed the measurement of tens of thousands of "omic" data points across multiple levels (DNA, RNA protein, metabolomics) from a single tumor biopsy sample in a reasonable time frame for making clinical decisions. With this data in hand, the challenge from the bioinformatics and systems biology point of view is how does one convert data into information and knowledge that can improve the delivery of personalized therapy to the patient.
Collapse
Affiliation(s)
- Prahlad T Ram
- Department of Systems Biology, Institute for Personalized Cancer Therapy, The University of Texas, MD Anderson Cancer Center, Houston, TX 77054, USA.
| | | | | |
Collapse
|
459
|
Tamada M, Nagano O, Tateyama S, Ohmura M, Yae T, Ishimoto T, Sugihara E, Onishi N, Yamamoto T, Yanagawa H, Suematsu M, Saya H. Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Res 2012; 72:1438-48. [PMID: 22293754 DOI: 10.1158/0008-5472.can-11-3024] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An increased glycolytic flux accompanied by activation of the pentose phosphate pathway (PPP) is implicated in chemoresistance of cancer cells. In this study, we found that CD44, a cell surface marker for cancer stem cells, interacts with pyruvate kinase M2 (PKM2) and thereby enhances the glycolytic phenotype of cancer cells that are either deficient in p53 or exposed to hypoxia. CD44 ablation by RNA interference increased metabolic flux to mitochondrial respiration and concomitantly inhibited entry into glycolysis and the PPP. Such metabolic changes induced by CD44 ablation resulted in marked depletion of cellular reduced glutathione (GSH) and increased the intracellular level of reactive oxygen species in glycolytic cancer cells. Furthermore, CD44 ablation enhanced the effect of chemotherapeutic drugs in p53-deficient or hypoxic cancer cells. Taken together, our findings suggest that metabolic modulation by CD44 is a potential therapeutic target for glycolytic cancer cells that manifest drug resistance.
Collapse
Affiliation(s)
- Mayumi Tamada
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
460
|
Goldberg MS, Sharp PA. Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. ACTA ACUST UNITED AC 2012; 209:217-24. [PMID: 22271574 PMCID: PMC3280873 DOI: 10.1084/jem.20111487] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Knockdown of pyruvate kinase M2 induces apoptosis and tumor regression of multiple cancer types. The development of cancer-specific therapeutics has been limited because most healthy cells and cancer cells depend on common pathways. Pyruvate kinase (PK) exists in M1 (PKM1) and M2 (PKM2) isoforms. PKM2, whose expression in cancer cells results in aerobic glycolysis and is suggested to bestow a selective growth advantage, is a promising target. Because many oncogenes impart a common alteration in cell metabolism, inhibition of the M2 isoform might be of broad applicability. We show that several small interfering (si) RNAs designed to target mismatches between the M2 and M1 isoforms confer specific knockdown of the former, resulting in decreased viability and increased apoptosis in multiple cancer cell lines but less so in normal fibroblasts or endothelial cells. In vivo delivery of siPKM2 additionally causes substantial tumor regression of established xenografts. Our results suggest that the inherent nucleotide-level specificity of siRNA can be harnessed to develop therapeutics that target isoform-specific exons in genes exhibiting differential splicing patterns in various cell types.
Collapse
Affiliation(s)
- Michael S Goldberg
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
461
|
Kee JM, Muir TW. Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. ACS Chem Biol 2012; 7:44-51. [PMID: 22148577 DOI: 10.1021/cb200445w] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This year (2012) marks the 50th anniversary of the discovery of protein histidine phosphorylation. Phosphorylation of histidine (pHis) is now widely recognized as being critical to signaling processes in prokaryotes and lower eukaryotes. However, the modification is also becoming more widely reported in mammalian cellular processes and implicated in certain human disease states such as cancer and inflammation. Nonetheless, much remains to be understood about the role and extent of the modification in mammalian cell biology. Studying the functional role of pHis in signaling, either in vitro or in vivo, has proven devilishly hard, largely due to the chemical instability of the modification. As a consequence, we are currently handicapped by a chronic lack of chemical and biochemical tools with which to study histidine phosphorylation. Here, we discuss the challenges associated with studying the chemical biology of pHis and review recent progress that offers some hope that long-awaited biochemical reagents for studying this elusive posttranslational modification (PTM) might soon be available.
Collapse
Affiliation(s)
- Jung-Min Kee
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
462
|
Abstract
Cellular metabolism influences life and death decisions. An emerging theme in cancer biology is that metabolic regulation is intricately linked to cancer progression. In part, this is due to the fact that proliferation is tightly regulated by availability of nutrients. Mitogenic signals promote nutrient uptake and synthesis of DNA, RNA, proteins and lipids. Therefore, it seems straight-forward that oncogenes, that often promote proliferation, also promote metabolic changes. In this review we summarize our current understanding of how 'metabolic transformation' is linked to oncogenic transformation, and why inhibition of metabolism may prove a cancer's 'Achilles' heel'. On one hand, mutation of metabolic enzymes and metabolic stress sensors confers synthetic lethality with inhibitors of metabolism. On the other hand, hyperactivation of oncogenic pathways makes tumors more susceptible to metabolic inhibition. Conversely, an adequate nutrient supply and active metabolism regulates Bcl-2 family proteins and inhibits susceptibility to apoptosis. Here, we provide an overview of the metabolic pathways that represent anti-cancer targets and the cell death pathways engaged by metabolic inhibitors. Additionally, we will detail the similarities between metabolism of cancer cells and metabolism of proliferating cells.
Collapse
|
463
|
Abstract
Cancer is classically considered as a genetic and, more recently, epigenetic multistep disease. Despite seminal studies in the 1920s by Warburg showing a characteristic metabolic pattern for tumors, cancer bioenergetics has often been relegated to the backwaters of cancer biology. This review aims to provide a historical account on cancer metabolism research, and to try to integrate and systematize the metabolic strategies in which cancer cells engage to overcome selective pressures during their inception and evolution. Implications of this renovated view on some common concepts and in therapeutics are also discussed.
Collapse
Affiliation(s)
- L M R Ferreira
- Life Sciences Department, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.
| | | | | |
Collapse
|
464
|
Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 2012; 148:259-72. [PMID: 22225612 DOI: 10.1016/j.cell.2011.11.050] [Citation(s) in RCA: 520] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 08/11/2011] [Accepted: 11/17/2011] [Indexed: 12/13/2022]
Abstract
Identification of the factors critical to the tumor-initiating cell (TIC) state may open new avenues in cancer therapy. Here we show that the metabolic enzyme glycine decarboxylase (GLDC) is critical for TICs in non-small cell lung cancer (NSCLC). TICs from primary NSCLC tumors express high levels of the oncogenic stem cell factor LIN28B and GLDC, which are both required for TIC growth and tumorigenesis. Overexpression of GLDC and other glycine/serine enzymes, but not catalytically inactive GLDC, promotes cellular transformation and tumorigenesis. We found that GLDC induces dramatic changes in glycolysis and glycine/serine metabolism, leading to changes in pyrimidine metabolism to regulate cancer cell proliferation. In the clinic, aberrant activation of GLDC correlates with poorer survival in lung cancer patients, and aberrant GLDC expression is observed in multiple cancer types. This link between glycine metabolism and tumorigenesis may provide novel targets for advancing anticancer therapy.
Collapse
|
465
|
Redel BK, Brown AN, Spate LD, Whitworth KM, Green JA, Prather RS. Glycolysis in preimplantation development is partially controlled by the Warburg Effect. Mol Reprod Dev 2011; 79:262-71. [PMID: 22213464 DOI: 10.1002/mrd.22017] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/09/2011] [Indexed: 01/06/2023]
Abstract
Glucose metabolism in preimplantation embryos has traditionally been viewed from a somatic cell viewpoint. Here, we show that gene expression in early embryos is similar to rapidly dividing cancer cells. In vitro-produced pig blastocysts were subjected to deep-sequencing, and were found to express two gene variants that have been ascribed importance to cancer cell metabolism (HK2 and the M2 variant of PKM2). Development was monitored and gene expression was quantified in additional embryos cultured in low or high O(2) (5% CO(2), 5% O(2), 90% N(2) vs. 5% CO(2) in air). Development to the blastocyst stage in the two atmospheres was similar, except low O(2) resulted in more total and inner cell mass nuclei than high O(2). Of the 15 candidate genes selected that are involved in glucose metabolism, only TALDO1 and PDK1 were increased in the low O(2) environment. One paradigm that has been used to explain glycolysis under low oxygen tension is the Warburg Effect (WE). The WE predicts that expression of both HK2 and PKM2 M2 results in a slowing of glucose metabolism through the TCA cycle, thereby forcing the products of glycolysis to be metabolized through the pentose phosphate pathway and to lactic acid. This charging of the system is apparently so important to the early embryo that redundant mechanisms are present, that is, a fetal form of PKM2 and high levels of PDK1. Here, we set the framework for using the WE to describe glucose metabolism and energy production during preimplantation development.
Collapse
Affiliation(s)
- Bethany K Redel
- Division of Animal Science, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|
466
|
Abstract
Increased glucose uptake and accumulation of lactate, even under normoxic conditions (i.e., aerobic glycolysis or the Warburg Effect), is a common feature of cancer cells. This phenomenon clearly indicates that lactate is not a surrogate of tumor hypoxia. Tumor lactate can predict for metastases and overall survival of patients, as shown by several studies of different entities. Metastasis of tumors is promoted by lactate-induced secretion of hyaluronan by tumor-associated fibroblasts that create a milieu favorable for migration. Lactate itself has been found to induce the migration of cells and cell clusters. Furthermore, radioresistance has been positively correlated with lactate concentrations, suggesting an antioxidative capacity of lactate. Findings on interactions of tumor metabolites with immune cells indicate a contribution of lactate to the immune escape. Furthermore, lactate bridges the gap between high lactate levels in wound healing, chronic inflammation, and cancer development. Tumor cells ensure sufficient oxygen and nutrient supply for proliferation through lactate-induced secretion of VEGF, resulting in the formation of new vessels. In summary, accumulation of lactate in solid tumors is a pivotal and early event in the development of malignancies. The determination of lactate should enter further clinical trials to confirm its relevance in cancer biology.
Collapse
Affiliation(s)
- Franziska Hirschhaeuser
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | |
Collapse
|
467
|
Chiavarina B, Whitaker-Menezes D, Martinez-Outschoorn UE, Witkiewicz AK, Birbe R, Howell A, Pestell RG, Smith J, Daniel R, Sotgia F, Lisanti MP. Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth. Cancer Biol Ther 2011; 12:1101-13. [PMID: 22236875 DOI: 10.4161/cbt.12.12.18703] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have previously demonstrated that enhanced aerobic glycolysis and/or autophagy in the tumor stroma supports epithelial cancer cell growth and aggressive behavior, via the secretion of high-energy metabolites. These nutrients include lactate and ketones, as well as chemical building blocks, such as amino acids (glutamine) and nucleotides. Lactate and ketones serve as fuel for cancer cell oxidative metabolism, and building blocks sustain the anabolic needs of rapidly proliferating cancer cells. We have termed these novel concepts the "Reverse Warburg Effect," and the "Autophagic Tumor Stroma Model of Cancer Metabolism." We have also identified a loss of stromal caveolin-1 (Cav-1) as a marker of stromal glycolysis and autophagy. The aim of the current study was to provide genetic evidence that enhanced glycolysis in stromal cells favors tumorigenesis. To this end, normal human fibroblasts were genetically-engineered to express the two isoforms of pyruvate kinase M (PKM1 and PKM2), a key enzyme in the glycolytic pathway. In a xenograft model, fibroblasts expressing PKM1 or PKM2 greatly promoted the growth of co-injected MDA-MB-231 breast cancer cells, without an increase in tumor angiogenesis. Interestingly, PKM1 and PKM2 promoted tumorigenesis by different mechanism(s). Expression of PKM1 enhanced the glycolytic power of stromal cells, with increased output of lactate. Analysis of tumor xenografts demonstrated that PKM1 fibroblasts greatly induced tumor inflammation, as judged by CD45 staining. In contrast, PKM2 did not lead to lactate accumulation, but triggered a "pseudo-starvation" response in stromal cells, with induction of an NFκB-dependent autophagic program, and increased output of the ketone body 3-hydroxy-buryrate. Strikingly, in situ evaluation of Complex IV activity in the tumor xenografts demonstrated that stromal PKM2 expression drives mitochondrial respiration specifically in tumor cells. Finally, immuno-histochemistry analysis of human breast cancer samples lacking stromal Cav-1 revealed PKM1 and PKM2 expression in the tumor stroma. Thus, our data indicate that a subset of human breast cancer patients with a loss of stromal Cav-1 show profound metabolic changes in the tumor microenvironment. As such, this subgroup of patients may benefit therapeutically from potent inhibitors targeting glycolysis, autophagy and/or mitochondrial activity (such as metformin).
Collapse
Affiliation(s)
- Barbara Chiavarina
- Departments of Stem Cell Biology and Regenerative Medicine and Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
468
|
Qu W, Oya S, Lieberman BP, Ploessl K, Wang L, Wise DR, Divgi CR, Chodosh LA, Chodosh LP, Thompson CB, Kung HF. Preparation and characterization of L-[5-11C]-glutamine for metabolic imaging of tumors. J Nucl Med 2011; 53:98-105. [PMID: 22173839 DOI: 10.2967/jnumed.111.093831] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Recently, there has been a renewed interest in the study of tumor metabolism above and beyond the Warburg effect. Studies on cancer cell metabolism have provided evidence that tumor-specific activation of signaling pathways, such as the upregulation of the oncogene myc, can regulate glutamine uptake and its metabolism through glutaminolysis to provide the cancer cell with a replacement of energy source. METHODS We report a convenient procedure to prepare l-[5-(11)C]-glutamine. The tracer was evaluated in 9L and SF188 tumor cells (glioma and astrocytoma cell lines). The biodistribution of l-[5-(11)C]-glutamine in rodent tumor models was investigated by dissection and PET. RESULTS By reacting (11)C-cyanide ion with protected 4-iodo-2-amino-butanoic ester, the key intermediate was obtained in good yield. After hydrolysis with trifluoroacetic and sulfonic acids, the desired optically pure l-[5-(11)C]-glutamine was obtained (radiochemical yield, 5% at the end of synthesis; radiochemical purity, >95%). Tumor cell uptake studies showed maximum uptake of l-[5-(11)C]-glutamine reached 17.9% and 22.5% per 100 μg of protein, respectively, at 60 min in 9L and SF188 tumor cells. At 30 min after incubation, more than 30% of the activity appeared to be incorporated into cellular protein. Biodistribution in normal mice showed that l-[5-(11)C]-glutamine had significant pancreas uptake (7.37 percentage injected dose per gram at 15 min), most likely due to the exocrine function and high protein turnover within the pancreas. Heart uptake was rapid, and there was 3.34 percentage injected dose per gram remaining at 60 min after injection. Dynamic small-animal PET studies in rats bearing xenografted 9L tumors and in transgenic mice bearing spontaneous mammary gland tumors showed a prominent tumor uptake and retention. CONCLUSION The data demonstrated that this tracer was favorably taken up in the tumor models. The results suggest that l-[5-(11)C]-glutamine might be useful for probing in vivo tumor metabolism in glutaminolytic tumors.
Collapse
Affiliation(s)
- Wenchao Qu
- Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
469
|
|
470
|
|
471
|
Freeman MR, Kim J, Lisanti MP, Di Vizio D. A metabolic perturbation by U0126 identifies a role for glutamine in resveratrol-induced cell death. Cancer Biol Ther 2011; 12:966-77. [PMID: 22108021 DOI: 10.4161/cbt.12.11.18136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Recent evidence has identified substantial overlap between metabolic and oncogenic biochemical pathways, suggesting novel approaches to cancer intervention. For example, cholesterol lowering statins and the antidiabetes medication metformin both act as chemopreventive agents in prostate and other cancers. The natural compound resveratrol has similar properties: increasing insulin sensitivity, suppressing adipogenesis, and inducing apoptotic death of cancer cells in vitro. However, in vivo tumor xenografts acquire resistance to resveratrol by an unknown mechanism, while mouse models of metabolic disorders respond more consistently to the compound. Here we demonstrate that castration-resistant human prostate cancer C4-2 cells are more sensitive to resveratrol-induced apoptosis than isogenic androgen-dependent LNCaP cells. The MEK inhibitor U0126 antagonized resveratrol-induced apoptosis in C4-2 cells, but this effect was not seen with other MEK inhibitors. U0126 was found to inhibit mitochondrial function and shift cells to aerobic glycolysis independently of MEK. Mitochondrial activity of U0126 arose through decomposition, producing both mitochondrial fluorescence and cyanide, a known inhibitor of complex IV. Applying U0126 mitochondrial inhibition to C4-2 cell apoptosis, we tested the possibility that glutamine supplementation of citric acid cycle intermediate α-ketoglutarate may be involved. Suppression of the conversion of glutamate to α-ketoglutarate antagonized resveratrol-induced death in C4-2 cells. A similar effect was also seen by reducing extracellular glutamine concentration in the culture medium, suggesting that resveratrol-induced death is dependent on glutamine metabolism, a process frequently dysregulated in cancer. Further work on resveratrol and metabolism in cancer is warranted to ascertain if the glutamine dependence has clinical implications.
Collapse
Affiliation(s)
- Michael R Freeman
- The Urological Diseases Research Center, Children's Hospital Boston, MA, USA.
| | | | | | | |
Collapse
|
472
|
Lund T, Callaghan MF, Williams P, Turmaine M, Bachmann C, Rademacher T, Roitt IM, Bayford R. The influence of ligand organization on the rate of uptake of gold nanoparticles by colorectal cancer cells. Biomaterials 2011; 32:9776-84. [DOI: 10.1016/j.biomaterials.2011.09.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 09/07/2011] [Indexed: 01/09/2023]
|
473
|
Tiziani S, Kang Y, Choi JS, Roberts W, Paternostro G. Metabolomic high-content nuclear magnetic resonance-based drug screening of a kinase inhibitor library. Nat Commun 2011; 2:545. [PMID: 22109519 DOI: 10.1038/ncomms1562] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/21/2011] [Indexed: 01/13/2023] Open
Abstract
Metabolism is altered in many highly prevalent diseases and is controlled by a complex network of intracellular regulators. Monitoring cell metabolism during treatment is extremely valuable to investigate cellular response and treatment efficacy. Here we describe a nuclear magnetic resonance-based method for screening of the metabolomic response of drug-treated mammalian cells in a 96-well format. We validate the method using drugs having well-characterized targets and report the results of a screen of a kinase inhibitor library. Four hits are validated from their action on an important clinical parameter, the lactate to pyruvate ratio. An eEF-2 kinase inhibitor and an NF-kB activation inhibitor increased lactate/pyruvate ratio, whereas an MK2 inhibitor and an inhibitor of PKA, PKC and PKG induced a decrease. The method is validated in cell lines and in primary cancer cells, and may have potential applications in both drug development and personalized therapy.
Collapse
Affiliation(s)
- Stefano Tiziani
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
474
|
Yu Y, Clippinger AJ, Pierciey FJ, Alwine JC. Viruses and metabolism: alterations of glucose and glutamine metabolism mediated by human cytomegalovirus. Adv Virus Res 2011; 80:49-67. [PMID: 21762821 DOI: 10.1016/b978-0-12-385987-7.00003-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies of human cytomegalovirus (HCMV) infection have demonstrated that the virus significantly alters cellular metabolism, especially the utilization of glucose and glutamine. Glucose is not broken down by the tricarboxylic acid (TCA) cycle in infected cells; instead, it is used biosynthetically for fatty acid synthesis for membranes needed during the infection. In this chapter, we discuss the possibility that HCMV integrates its mechanisms for manipulating cellular signaling and stress responses to induce novel adipocyte-like differentiation in order to alter metabolism so that glucose can be used synthetically, that is, for fatty acids and lipids. This process diverts glucose from the TCA cycle and requires induction of enzymes that can convert glutamine to α-ketoglutarate to maintain the TCA cycle (anaplerosis). We discuss data proposing that the anaplerotic utilization of glutamine may be mediated, in part, by c-Myc activation, and the induction of adipocyte-like differentiation may result from the activation of the endoplasmic reticulum resident kinase PKR-like ER kinase. These alterations in metabolism during HCMV infection are comparable to those seen in many tumor cells. Indeed, the alterations in cellular signaling, stress responses, and metabolism that have been characterized could result in unexpected pathogenesis, potentially implicating HCMV as an agent or subtle cofactor in many maladies. Better understanding of HCMV's effects on cell signaling and metabolism will show how HCMV-mediated modifications of cellular processes relate to pathogenesis and will suggest novel avenues for antiviral therapy.
Collapse
Affiliation(s)
- Yongjun Yu
- Department of Cancer Biology, Abramson Family Cancer Research Institute, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
475
|
Icard P, Poulain L, Lincet H. Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta Rev Cancer 2011; 1825:111-6. [PMID: 22101401 DOI: 10.1016/j.bbcan.2011.10.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022]
Abstract
Cancers cells strongly stimulate glycolysis and glutaminolysis for their biosynthesis. Pyruvate derived from glucose is preferentially diverted towards the production of lactic acid (Warburg effect). Citrate censors ATP production and controls strategic enzymes of anabolic and catabolic pathways through feedback reactions. Mitochondrial citrate diffuses in the cytosol to restore oxaloacetate and acetyl-CoA. Whereas acetyl-CoA serves de novo lipid synthesis and histone acetylation, OAA is derived towards lactate production via pyruvate and / or a vicious cycle reforming mitochondrial citrate. This cycle allows cancer cells to burn their host's lipid and protein reserves in order to sustain their own biosynthesis pathways. In vitro, citrate has demonstrated anti-cancer properties when administered in excess, sensitizing cancer cells to chemotherapy. Understanding its central role is of particular relevance for the development of new strategies for counteracting cancer cell proliferation and overcoming chemoresistance.
Collapse
Affiliation(s)
- Philippe Icard
- Université de Caen Basse-Normandie, EA 1772, Unité Biologie et Thérapies Innovantes des Cancers Localement Agressifs, et Centre de Lutte Contre le Cancer François Baclesse, Avenue du général Harris, BP5026, F-14076 Caen Cedex 05, France.
| | | | | |
Collapse
|
476
|
Keliher EJ, Yoo J, Nahrendorf M, Lewis JS, Marinelli B, Newton A, Pittet MJ, Weissleder R. 89Zr-labeled dextran nanoparticles allow in vivo macrophage imaging. Bioconjug Chem 2011; 22:2383-9. [PMID: 22035047 DOI: 10.1021/bc200405d] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue macrophages play a critical role both in normal physiology and in disease states. However, because of a lack of specific imaging agents, we continue to have a poor understanding of their absolute numbers, flux rates, and functional states in different tissues. Here, we describe a new macrophage specific positron emission tomography imaging agent, labeled with zirconium-89 ((89)Zr), that was based on a cross-linked, short chain dextran nanoparticle (13 nm). Following systemic administration, the particle demonstrated a vascular half-life of 3.9 h and was found to be located primarily in tissue resident macrophages rather than other white blood cells. Subsequent imaging of the probe using a xenograft mouse model of cancer allowed for quantitation of tumor-associated macrophage numbers, which are of major interest in emerging molecular targeting strategies. It is likely that the material described, which allows the visualization of macrophage biology in vivo, will likewise be useful for a multitude of human applications.
Collapse
Affiliation(s)
- Edmund J Keliher
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | | | | | | | | | | | | | | |
Collapse
|
477
|
Vazquez A, Markert EK, Oltvai ZN. Serine biosynthesis with one carbon catabolism and the glycine cleavage system represents a novel pathway for ATP generation. PLoS One 2011; 6:e25881. [PMID: 22073143 PMCID: PMC3206798 DOI: 10.1371/journal.pone.0025881] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/12/2011] [Indexed: 12/21/2022] Open
Abstract
Previous experimental evidence indicates that some cancer cells have an alternative glycolysis pathway with net zero ATP production, implying that upregulation of glycolysis in these cells may not be related to the generation of ATP. Here we use a genome-scale model of human cell metabolism to investigate the potential metabolic alterations in cells using net zero ATP glycolysis. We uncover a novel pathway for ATP generation that involves reactions from serine biosynthesis, one-carbon metabolism and the glycine cleavage system, and show that the pathway is transcriptionally upregulated in an inducible murine model of Myc-driven liver tumorigenesis. This pathway has a predicted two-fold higher flux rate in cells using net zero ATP glycolysis than those using standard glycolysis and generates twice as much ATP with significantly lower rate of lactate - but higher rate of alanine secretion. Thus, in cells using the standard - or the net zero ATP glycolysis pathways a significant portion of the glycolysis flux is always associated with ATP generation, and the ratio between the flux rates of the two pathways determines the rate of ATP generation and lactate and alanine secretion during glycolysis.
Collapse
Affiliation(s)
- Alexei Vazquez
- Division of Bioinformatics and Surveillance, Department of Radiation Oncology, The Cancer Institute of New Jersey and University of Medicine and Dentistry of New Jersey, Robert-Wood Johnson Medical School, New Brunswick, New Jersey, United States of America.
| | | | | |
Collapse
|
478
|
Walsh MJ, Brimacombe KR, Veith H, Bougie JM, Daniel T, Leister W, Cantley LC, Israelsen WJ, Vander Heiden MG, Shen M, Auld DS, Thomas CJ, Boxer MB. 2-Oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg Med Chem Lett 2011; 21:6322-7. [PMID: 21958545 PMCID: PMC3224553 DOI: 10.1016/j.bmcl.2011.08.114] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 12/20/2022]
Abstract
Compared to normal differentiated cells, cancer cells have altered metabolic regulation to support biosynthesis and the expression of the M2 isozyme of pyruvate kinase (PKM2) plays an important role in this anabolic metabolism. While the M1 isoform is a highly active enzyme, the alternatively spliced M2 variant is considerably less active and expressed in tumors. While the exact mechanism by which decreased pyruvate kinase activity contributes to anabolic metabolism remains unclear, it is hypothesized that activation of PKM2 to levels seen with PKM1 may promote a metabolic program that is not conducive to cell proliferation. Here we report the third chemotype in a series of PKM2 activators based on the 2-oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamide scaffold. The synthesis, structure activity relationships, selectivity and notable physiochemical properties are described.
Collapse
Affiliation(s)
- Martin J. Walsh
- NIH Chemical Genomics Center, NIH Center for Translational Therapeutics, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Kyle R. Brimacombe
- NIH Chemical Genomics Center, NIH Center for Translational Therapeutics, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Henrike Veith
- NIH Chemical Genomics Center, NIH Center for Translational Therapeutics, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - James M. Bougie
- NIH Chemical Genomics Center, NIH Center for Translational Therapeutics, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Thomas Daniel
- NIH Chemical Genomics Center, NIH Center for Translational Therapeutics, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - William Leister
- NIH Chemical Genomics Center, NIH Center for Translational Therapeutics, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Lewis C. Cantley
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 USA
| | - William J. Israelsen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Dana-Farber Cancer Institute, Boston, MA 02115 USA
| | - Min Shen
- NIH Chemical Genomics Center, NIH Center for Translational Therapeutics, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Douglas S. Auld
- NIH Chemical Genomics Center, NIH Center for Translational Therapeutics, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Craig J. Thomas
- NIH Chemical Genomics Center, NIH Center for Translational Therapeutics, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Matthew B. Boxer
- NIH Chemical Genomics Center, NIH Center for Translational Therapeutics, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| |
Collapse
|
479
|
Locasale JW, Cantley LC. Metabolic flux and the regulation of mammalian cell growth. Cell Metab 2011; 14:443-51. [PMID: 21982705 PMCID: PMC3196640 DOI: 10.1016/j.cmet.2011.07.014] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 06/20/2011] [Accepted: 07/06/2011] [Indexed: 12/22/2022]
Abstract
The study of normal mammalian cell growth and the defects that contribute to disease pathogenesis links metabolism to cell growth. Here, we visit several aspects of growth-promoting metabolism, emphasizing recent advances in our understanding of how alterations in glucose metabolism affect cytosolic and mitochondrial redox potential and ATP generation. These alterations drive cell proliferation not only through supporting biosynthesis, energy metabolism, and maintaining redox potential but also through initiating signaling mechanisms that are still poorly characterized. The evolutionary basis of these additional layers of growth control is also discussed.
Collapse
Affiliation(s)
- Jason W Locasale
- Department of Systems Biology, Harvard Medical School, Boston MA 02215, USA.
| | | |
Collapse
|
480
|
Bluemlein K, Grüning NM, Feichtinger RG, Lehrach H, Kofler B, Ralser M. No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. Oncotarget 2011; 2:393-400. [PMID: 21789790 PMCID: PMC3248187 DOI: 10.18632/oncotarget.278] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Warburg effect describes the circumstance that tumor cells preferentially use glycolysis rather than oxidative phosphorylation for energy production. It has been reported that this metabolic reconfiguration originates from a switch in the expression of alternative splice forms (PKM1 and PKM2) of the glycolytic enzyme pyruvate kinase (PK), which is also important for malignant transformation. However, analytical evidence for this assumption was still lacking. Using mass spectrometry, we performed an absolute quantification of PKM1 and PKM2 splice isoforms in 25 human malignant cancers, 6 benign oncocytomas, tissue matched controls, and several cell lines. PKM2 was the prominent isoform in all analyzed cancer samples and cell lines. However, this PKM2 dominance was not a result of a change in isoform expression, since PKM2 was also the predominant PKM isoform in matched control tissues. In unaffected kidney, lung, liver, and thyroid, PKM2 accounted for a minimum of 93% of total PKM, for 80% - 96% of PKM in colon, and 55% - 61% of PKM in bladder. Similar results were obtained for a panel of tumor and non-transformed cell lines, where PKM2 was the predominant form. Thus, our results reveal that an exchange in PKM1 to PKM2 isoform expression during cancer formation is not occurring, nor do these results support conclusions that PKM2 is specific for proliferating, and PKM1 for non-proliferating tissue.
Collapse
|
481
|
Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells. Mol Cell Biol 2011; 31:4938-50. [PMID: 21969607 DOI: 10.1128/mcb.06120-11] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Warburg effect describes an increase in aerobic glycolysis and enhanced lactate production in cancer cells. Lactate dehydrogenase A (LDH-A) regulates the last step of glycolysis that generates lactate and permits the regeneration of NAD(+). LDH-A gene expression is believed to be upregulated by both HIF and Myc in cancer cells to achieve increased lactate production. However, how oncogenic signals activate LDH-A to regulate cancer cell metabolism remains unclear. We found that the oncogenic receptor tyrosine kinase FGFR1 directly phosphorylates LDH-A. Phosphorylation at Y10 and Y83 enhances LDH-A activity by enhancing the formation of active, tetrameric LDH-A and the binding of LDH-A substrate NADH, respectively. Moreover, Y10 phosphorylation of LDH-A is common in diverse human cancer cells, which correlates with activation of multiple oncogenic tyrosine kinases. Interestingly, cancer cells with stable knockdown of endogenous LDH-A and rescue expression of a catalytic hypomorph LDH-A mutant, Y10F, demonstrate increased respiration through mitochondrial complex I to sustain glycolysis by providing NAD(+). However, such a compensatory increase in mitochondrial respiration in Y10F cells is insufficient to fully sustain glycolysis. Y10 rescue cells show decreased cell proliferation and ATP levels under hypoxia and reduced tumor growth in xenograft nude mice. Our findings suggest that tyrosine phosphorylation enhances LDH-A enzyme activity to promote the Warburg effect and tumor growth by regulating the NADH/NAD(+) redox homeostasis, representing an acute molecular mechanism underlying the enhanced lactate production in cancer cells.
Collapse
|
482
|
Hines IN, Hartwell HJ, Feng Y, Theve EJ, Hall GA, Hashway S, Connolly J, Fecteau M, Fox JG, Rogers AB. Insulin resistance and metabolic hepatocarcinogenesis with parent-of-origin effects in A×B mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2855-65. [PMID: 21967816 DOI: 10.1016/j.ajpath.2011.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/24/2011] [Accepted: 08/16/2011] [Indexed: 01/01/2023]
Abstract
Insulin resistance is a defining feature of metabolic syndrome and type 2 diabetes mellitus but also may occur independently of these conditions. Nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of these disorders, increases the risk of hepatocellular carcinoma (HCC). However, mechanisms linking hyperinsulinemia to NAFLD and HCC require clarification. We describe a novel model of primary insulin resistance and HCC with strong parent-of-origin effects. Male AB6F1 (A/JCr dam × C57BL/6 sire) but not B6AF1 (B6 dam × A/J sire) mice developed spontaneous insulin resistance, NAFLD, and HCC without obesity or diabetes. A survey of mitochondrial, imprinted, and sex-linked traits revealed modest associations with X-linked genes. However, a diet-induced obesity study, including B6.A chromosome substitution-strain (consomic) mice, showed no segregation by sex chromosome. Thus, parent-of-origin effects were specified within the autosomal genome. Next, we interrogated mechanisms of insulin-associated hepatocarcinogenesis. Steatotic hepatocytes exhibited adipogenic transition characterized by vacuolar metaplasia and up-regulation of vimentin, adipsin, fatty acid translocase (CD36), peroxisome proliferator-activated receptor-γ, and related products. This profile was largely recapitulated in insulin-supplemented primary mouse hepatocyte cultures. Importantly, pyruvate kinase M2, a fetal anabolic enzyme implicated in the Warburg effect, was activated by insulin in vivo and in vitro. Thus, our study reveals parent-of-origin effects in heritable insulin resistance, implicating adipogenic transition with acquired anabolic metabolism in the progression from NAFLD to HCC.
Collapse
Affiliation(s)
- Ian N Hines
- Department of Nutrition Sciences, East Carolina University, Greenville, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
483
|
Grüning NM, Rinnerthaler M, Bluemlein K, Mülleder M, Wamelink MMC, Lehrach H, Jakobs C, Breitenbach M, Ralser M. Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab 2011; 14:415-27. [PMID: 21907146 PMCID: PMC3202625 DOI: 10.1016/j.cmet.2011.06.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/23/2011] [Accepted: 06/22/2011] [Indexed: 12/11/2022]
Abstract
In proliferating cells, a transition from aerobic to anaerobic metabolism is known as the Warburg effect, whose reversal inhibits cancer cell proliferation. Studying its regulator pyruvate kinase (PYK) in yeast, we discovered that central metabolism is self-adapting to synchronize redox metabolism when respiration is activated. Low PYK activity activated yeast respiration. However, levels of reactive oxygen species (ROS) did not increase, and cells gained resistance to oxidants. This adaptation was attributable to accumulation of the PYK substrate phosphoenolpyruvate (PEP). PEP acted as feedback inhibitor of the glycolytic enzyme triosephosphate isomerase (TPI). TPI inhibition stimulated the pentose phosphate pathway, increased antioxidative metabolism, and prevented ROS accumulation. Thus, a metabolic feedback loop, initiated by PYK, mediated by its substrate and acting on TPI, stimulates redox metabolism in respiring cells. Originating from a single catalytic step, this autonomous reconfiguration of central carbon metabolism prevents oxidative stress upon shifts between fermentation and respiration.
Collapse
Affiliation(s)
- Nana-Maria Grüning
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
484
|
Abstract
In this issue of Molecular Cell, Lv et al. (2011) identify a novel feedback mechanism in which increased glycolysis induces the acetylation and chaperone-mediated autophagic degradation of the glycolytic regulator PKM2, revealing a novel metabolic feedback loop that drives tumor growth.
Collapse
Affiliation(s)
- Andrew N Macintyre
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
485
|
Wittwer JA, Robbins D, Wang F, Codarin S, Shen X, Kevil CG, Huang TT, Van Remmen H, Richardson A, Zhao Y. Enhancing mitochondrial respiration suppresses tumor promoter TPA-induced PKM2 expression and cell transformation in skin epidermal JB6 cells. Cancer Prev Res (Phila) 2011; 4:1476-84. [PMID: 21673231 PMCID: PMC4827450 DOI: 10.1158/1940-6207.capr-11-0028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Differentiated cells primarily metabolize glucose for energy via the tricarboxylic acid cycle and oxidative phosphorylation, but cancer cells thrive on a different mechanism to produce energy, characterized as the Warburg effect, which describes the increased dependence on aerobic glycolysis. The M2 isoform of pyruvate kinase (PKM2), which is responsible for catalyzing the final step of aerobic glycolysis, is highly expressed in cancer cells and may contribute to the Warburg effect. However, whether PKM2 plays a contributing role during early cancer development is unclear. In our studies, we have made an attempt to elucidate the effects of varying mitochondrial respiration substrates on skin cell transformation and expression of PKM2. Tumorigenicity in murine skin epidermal JB6 P+ (promotable) cells was measured in a soft agar assay using 12-O-tetradecanoylphorbol-13-acetate (TPA) as a tumor promoter. We observed a significant reduction in cell transformation upon pretreatment with the mitochondrial respiration substrate succinate or malate/pyruvate. We observed that increased expression and activity of PKM2 in TPA-treated JB6 P+ cells and pretreatment with succinate or malate/pyruvate suppressed the effects. In addition, TPA treatment also induced PKM2 whereas PKM1 expression was suppressed in mouse skin epidermal tissues in vivo. In comparison with JB6 P+ cells, the nonpromotable JB6 P- cells showed no increase in PKM2 expression or activity upon TPA treatment. Knockdown of PKM2 using a siRNA approach significantly reduced skin cell transformation. Thus, our results suggest that PKM2 activation could be an early event and play a contributing role in skin tumorigenesis.
Collapse
Affiliation(s)
- Jennifer A. Wittwer
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center–Shreveport, Shreveport, Louisiana
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio
| | - Delira Robbins
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center–Shreveport, Shreveport, Louisiana
| | - Fei Wang
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center–Shreveport, Shreveport, Louisiana
- College of Life Science, Jilin University, Changchun, China
| | - Sarah Codarin
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center–Shreveport, Shreveport, Louisiana
- Southwood High School, Shreveport, Louisiana
| | - Xinggui Shen
- Department of Pathology, LSU Health Sciences Center–Shreveport, Shreveport, Louisiana
| | - Christopher G. Kevil
- Department of Pathology, LSU Health Sciences Center–Shreveport, Shreveport, Louisiana
| | - Ting-Ting Huang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, and GRECC, VA Palo Alto Health Care System, Palo Alto, California
| | - Holly Van Remmen
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Arlan Richardson
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center–Shreveport, Shreveport, Louisiana
| |
Collapse
|
486
|
Abstract
Genetic events in cancer activate signalling pathways that alter cell metabolism. Clinical evidence has linked cell metabolism with cancer outcomes. Together, these observations have raised interest in targeting metabolic enzymes for cancer therapy, but they have also raised concerns that these therapies would have unacceptable effects on normal cells. However, some of the first cancer therapies that were developed target the specific metabolic needs of cancer cells and remain effective agents in the clinic today. Research into how changes in cell metabolism promote tumour growth has accelerated in recent years. This has refocused efforts to target metabolic dependencies of cancer cells as a selective anticancer strategy.
Collapse
|
487
|
Porporato PE, Dhup S, Dadhich RK, Copetti T, Sonveaux P. Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2011; 2:49. [PMID: 21904528 PMCID: PMC3161244 DOI: 10.3389/fphar.2011.00049] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/05/2011] [Indexed: 12/21/2022] Open
Abstract
CANCER IS A METABOLIC DISEASE AND THE SOLUTION OF TWO METABOLIC EQUATIONS: to produce energy with limited resources and to fulfill the biosynthetic needs of proliferating cells. Both equations are solved when glycolysis is uncoupled from oxidative phosphorylation in the tricarboxylic acid cycle, a process known as the glycolytic switch. This review addresses in a comprehensive manner the main molecular events accounting for high-rate glycolysis in cancer. It starts from modulation of the Pasteur Effect allowing short-term adaptation to hypoxia, highlights the key role exerted by the hypoxia-inducible transcription factor HIF-1 in long-term adaptation to hypoxia, and summarizes the current knowledge concerning the necessary involvement of aerobic glycolysis (the Warburg effect) in cancer cell proliferation. Based on the many observations positioning glycolysis as a central player in malignancy, the most advanced anticancer treatments targeting tumor glycolysis are briefly reviewed.
Collapse
Affiliation(s)
- Paolo E Porporato
- Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, University of Louvain Medical School Brussels, Belgium
| | | | | | | | | |
Collapse
|
488
|
Wang X, Moraes CT. Increases in mitochondrial biogenesis impair carcinogenesis at multiple levels. Mol Oncol 2011; 5:399-409. [PMID: 21855427 DOI: 10.1016/j.molonc.2011.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022] Open
Abstract
Although mitochondrial respiration is decreased in most cancer cells, the role of this decrease in carcinogenesis and cancer progression is still unclear. To better understand this phenomenon, instead of further inhibiting mitochondrial function, we induced mitochondrial biogenesis in transformed cells by activating the peroxisome proliferator-activated receptors (PPARs)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathways. This was achieved by treating the cells with bezafibrate, a PPARs panagonist that also enhances PGC-1α expression. We confirmed that bezafibrate treatment led to increased mitochondrial proteins and enzyme functions. We found that cells with increased mitochondrial biogenesis had decreased growth rates in glucose-containing medium. In addition, they became less invasive, which was directly linked to the reduced lactate levels. Surprisingly, even though bezafibrate-treated cells had higher levels of mitochondrial markers, total respiration was not significantly altered. However, respiratory coupling, and ATP levels were. Our data show that by increasing the efficiency of the mitochondrial oxidative phosphorylation system, cancer progression is hampered by decreases in cell proliferation and invasiveness.
Collapse
Affiliation(s)
- Xiao Wang
- Cancer Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136, USA
| | | |
Collapse
|
489
|
Young CD, Lewis AS, Rudolph MC, Ruehle MD, Jackman MR, Yun UJ, Ilkun O, Pereira R, Abel ED, Anderson SM. Modulation of glucose transporter 1 (GLUT1) expression levels alters mouse mammary tumor cell growth in vitro and in vivo. PLoS One 2011; 6:e23205. [PMID: 21826239 PMCID: PMC3149640 DOI: 10.1371/journal.pone.0023205] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/12/2011] [Indexed: 12/21/2022] Open
Abstract
Tumor cells exhibit an altered metabolism characterized by elevated aerobic glycolysis and lactate secretion which is supported by an increase in glucose transport and consumption. We hypothesized that reducing or eliminating the expression of the most prominently expressed glucose transporter(s) would decrease the amount of glucose available to breast cancer cells thereby decreasing their metabolic capacity and proliferative potential. Of the 12 GLUT family glucose transporters expressed in mice, GLUT1 was the most abundantly expressed at the RNA level in the mouse mammary tumors from MMTV-c-ErbB2 mice and cell lines examined. Reducing GLUT1 expression in mouse mammary tumor cell lines using shRNA or Cre/Lox technology reduced glucose transport, glucose consumption, lactate secretion and lipid synthesis in vitro without altering the concentration of ATP, as well as reduced growth on plastic and in soft agar. The growth of tumor cells with reduced GLUT1 expression was impaired when transplanted into the mammary fat pad of athymic nude mice in vivo. Overexpression of GLUT1 in a cell line with low levels of endogenous GLUT1 increased glucose transport in vitro and enhanced growth in nude mice in vivo as compared to the control cells with very low levels of GLUT1. These studies demonstrate that GLUT1 is the major glucose transporter in mouse mammary carcinoma models overexpressing ErbB2 or PyVMT and that modulation of the level of GLUT1 has an effect upon the growth of mouse mammary tumor cell lines in vivo.
Collapse
Affiliation(s)
- Christian D. Young
- Department of Pathology, University of Colorado School of Medicine, Anshutz Medical Campus, Aurora, Colorado, United States of America
| | - Andrew S. Lewis
- Department of Pathology, University of Colorado School of Medicine, Anshutz Medical Campus, Aurora, Colorado, United States of America
| | - Michael C. Rudolph
- Department of Pathology, University of Colorado School of Medicine, Anshutz Medical Campus, Aurora, Colorado, United States of America
| | - Marisa D. Ruehle
- Department of Pathology, University of Colorado School of Medicine, Anshutz Medical Campus, Aurora, Colorado, United States of America
| | - Matthew R. Jackman
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado School of Medicine, Anshutz Medical Campus, Aurora, Colorado, United States of America
| | - Ui J. Yun
- Division of Endocrinology, Metabolism, and Diabetes Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Olesya Ilkun
- Division of Endocrinology, Metabolism, and Diabetes Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Renata Pereira
- Division of Endocrinology, Metabolism, and Diabetes Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - E. Dale Abel
- Division of Endocrinology, Metabolism, and Diabetes Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Steven M. Anderson
- Department of Pathology, University of Colorado School of Medicine, Anshutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
490
|
Christofk HR, Wu N, Cantley LC, Asara JM. Proteomic screening method for phosphopeptide motif binding proteins using peptide libraries. J Proteome Res 2011; 10:4158-64. [PMID: 21774532 DOI: 10.1021/pr200578n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphopeptide binding domains mediate the directed and localized assembly of protein complexes essential to intracellular kinase signaling. To identify phosphopeptide binding proteins, we developed a proteomic screening method using immobilized partially degenerate phosphopeptide mixtures combined with SILAC and microcapillary LC-MS/MS. The method was used to identify proteins that specifically bound to phosphorylated peptide library affinity matrices, including pTyr, and the motifs pSer/pThr-Pro, pSer/pThr-X-X-X-pSer/pThr, pSer/pThr-Glu/Asp, or pSer/pThr-pSer/pThr in degenerate sequence contexts. Heavy and light SILAC lysates were applied to columns containing these phosphorylated and nonphosphorylated (control) peptide libraries respectively, and bound proteins were eluted, combined, digested, and analyzed by LC-MS/MS using a hybrid quadrupole-TOF mass spectrometer. Heavy/light peptide ion ratios were calculated, and peptides that yielded ratios greater than ∼3:1 were considered as being from potential phosphopeptide binding proteins since this ratio represents the lowest ratio from a known positive control. Many of those identified were known phosphopeptide-binding proteins, including the SH2 domain containing p85 subunit of PI3K bound to pTyr, 14-3-3 bound to pSer/pThr-Asp/Glu, polo-box domain containing PLK1 and Pin1 bound to pSer/pThr-Pro, and pyruvate kinase M2 binding to pTyr. Approximately half of the hits identified by the peptide library screens were novel. Protein domain enrichment analysis revealed that most pTyr hits contain SH2 domains, as expected, and to a lesser extent SH3, C1, STAT, Tyr phosphatase, Pkinase, C2, and PH domains; however, pSer/pThr motifs did not reveal enriched domains across hits.
Collapse
Affiliation(s)
- Heather R Christofk
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | | | | |
Collapse
|
491
|
Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, Heffron G, Metallo CM, Muranen T, Sharfi H, Sasaki AT, Anastasiou D, Mullarky E, Vokes NI, Sasaki M, Beroukhim R, Stephanopoulos G, Ligon AH, Meyerson M, Richardson AL, Chin L, Wagner G, Asara JM, Brugge JS, Cantley LC, Vander Heiden MG. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 2011; 43:869-74. [PMID: 21804546 PMCID: PMC3677549 DOI: 10.1038/ng.890] [Citation(s) in RCA: 875] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 06/27/2011] [Indexed: 02/06/2023]
Abstract
Most tumors exhibit increased glucose metabolism to lactate, however, the extent to which glucose-derived metabolic fluxes are used for alternative processes is poorly understood. Using a metabolomics approach with isotope labeling, we found that in some cancer cells a relatively large amount of glycolytic carbon is diverted into serine and glycine metabolism through phosphoglycerate dehydrogenase (PHGDH). An analysis of human cancers showed that PHGDH is recurrently amplified in a genomic region of focal copy number gain most commonly found in melanoma. Decreasing PHGDH expression impaired proliferation in amplified cell lines. Increased expression was also associated with breast cancer subtypes, and ectopic expression of PHGDH in mammary epithelial cells disrupted acinar morphogenesis and induced other phenotypic alterations that may predispose cells to transformation. Our findings show that the diversion of glycolytic flux into a specific alternate pathway can be selected during tumor development and may contribute to the pathogenesis of human cancer.
Collapse
Affiliation(s)
- Jason W. Locasale
- Department of Systems Biology, Harvard Medical School
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center; Department of Medicine, Harvard Medical School
| | | | - Tamar Melman
- Department of Systems Biology, Harvard Medical School
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center; Department of Medicine, Harvard Medical School
| | - Costas A. Lyssiotis
- Department of Systems Biology, Harvard Medical School
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center; Department of Medicine, Harvard Medical School
| | - Katherine R. Mattaini
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology
| | - Adam J. Bass
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School
- Cancer Program, Broad Institute of MIT and Harvard
| | - Gregory Heffron
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School
| | | | - Taru Muranen
- Department of Cell Biology, Harvard Medical School
| | - Hadar Sharfi
- Department of Systems Biology, Harvard Medical School
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center; Department of Medicine, Harvard Medical School
| | - Atsuo T. Sasaki
- Department of Systems Biology, Harvard Medical School
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center; Department of Medicine, Harvard Medical School
| | - Dimitrios Anastasiou
- Department of Systems Biology, Harvard Medical School
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center; Department of Medicine, Harvard Medical School
| | - Edouard Mullarky
- Department of Systems Biology, Harvard Medical School
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center; Department of Medicine, Harvard Medical School
| | - Natalie I. Vokes
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology
| | - Mika Sasaki
- Department of Systems Biology, Harvard Medical School
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center; Department of Medicine, Harvard Medical School
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School
- Cancer Program, Broad Institute of MIT and Harvard
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School
| | | | - Azra H. Ligon
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School
- Department of Pathology, Brigham and Women’s Hospital
| | - Matthew Meyerson
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School
- Cancer Program, Broad Institute of MIT and Harvard
- Center for Cancer Genome Discovery, Dana Farber Cancer Institute, Harvard Medical School
| | - Andrea L Richardson
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School
- Department of Pathology, Brigham and Women’s Hospital
| | - Lynda Chin
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School
- Department of Dermatology, Harvard Medical School
| | - Gerhard Wagner
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School
| | - John M Asara
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center; Department of Medicine, Harvard Medical School
| | | | - Lewis C. Cantley
- Department of Systems Biology, Harvard Medical School
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center; Department of Medicine, Harvard Medical School
| | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School
| |
Collapse
|
492
|
Chiaradonna F, Moresco RM, Airoldi C, Gaglio D, Palorini R, Nicotra F, Messa C, Alberghina L. From cancer metabolism to new biomarkers and drug targets. Biotechnol Adv 2011; 30:30-51. [PMID: 21802503 DOI: 10.1016/j.biotechadv.2011.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/13/2011] [Indexed: 12/14/2022]
Abstract
Great interest is presently given to the analysis of metabolic changes that take place specifically in cancer cells. In this review we summarize the alterations in glycolysis, glutamine utilization, fatty acid synthesis and mitochondrial function that have been reported to occur in cancer cells and in human tumors. We then propose considering cancer as a system-level disease and argue how two hallmarks of cancer, enhanced cell proliferation and evasion from apoptosis, may be evaluated as system-level properties, and how this perspective is going to modify drug discovery. Given the relevance of the analysis of metabolism both for studies on the molecular basis of cancer cell phenotype and for clinical applications, the more relevant technologies for this purpose, from metabolome and metabolic flux analysis in cells by Nuclear Magnetic Resonance and Mass Spectrometry technologies to positron emission tomography on patients, are analyzed. The perspectives offered by specific changes in metabolism for a new drug discovery strategy for cancer are discussed and a survey of the industrial activity already going on in the field is reported.
Collapse
Affiliation(s)
- F Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
493
|
Koglin N, Mueller A, Berndt M, Schmitt-Willich H, Toschi L, Stephens AW, Gekeler V, Friebe M, Dinkelborg LM. Specific PET Imaging of xC− Transporter Activity Using a 18F-Labeled Glutamate Derivative Reveals a Dominant Pathway in Tumor Metabolism. Clin Cancer Res 2011; 17:6000-11. [DOI: 10.1158/1078-0432.ccr-11-0687] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
494
|
Zhang A, Williamson CD, Wong DS, Bullough MD, Brown KJ, Hathout Y, Colberg-Poley AM. Quantitative proteomic analyses of human cytomegalovirus-induced restructuring of endoplasmic reticulum-mitochondrial contacts at late times of infection. Mol Cell Proteomics 2011; 10:M111.009936. [PMID: 21742798 DOI: 10.1074/mcp.m111.009936] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Endoplasmic reticulum-mitochondrial contacts, known as mitochondria-associated membranes, regulate important cellular functions including calcium signaling, bioenergetics, and apoptosis. Human cytomegalovirus is a medically important herpesvirus whose growth increases energy demand and depends upon continued cell survival. To gain insight into how human cytomegalovirus infection affects endoplasmic reticulum-mitochondrial contacts, we undertook quantitative proteomics of mitochondria-associated membranes using differential stable isotope labeling by amino acids in cell culture strategy and liquid chromatography-tandem MS analysis. This is the first reported quantitative proteomic analyses of a suborganelle during permissive human cytomegalovirus infection. Human fibroblasts were uninfected or human cytomegalovirus-infected for 72 h. Heavy mitochondria-associated membranes were isolated from paired unlabeled, uninfected cells and stable isotope labeling by amino acids in cell culture-labeled, infected cells and analyzed by liquid chromatography-tandem MS analysis. The results were verified by a reverse labeling experiment. Human cytomegalovirus infection dramatically altered endoplasmic reticulum-mitochondrial contacts by late times. Notable is the increased abundance of several fundamental networks in the mitochondria-associated membrane fraction of human cytomegalovirus-infected fibroblasts. Chaperones, including HSP60 and BiP, which is required for human cytomegalovirus assembly, were prominently increased at endoplasmic reticulum-mitochondrial contacts after infection. Minimal translational and translocation machineries were also associated with endoplasmic reticulum-mitochondrial contacts and increased after human cytomegalovirus infection as were glucose regulated protein 75 and the voltage dependent anion channel, which can form an endoplasmic reticulum-mitochondrial calcium signaling complex. Surprisingly, mitochondrial metabolic enzymes and cytosolic glycolytic enzymes were confidently detected in the mitochondria-associated membrane fraction and increased therein after infection. Finally, proapoptotic regulatory proteins, including Bax, cytochrome c, and Opa1, were augmented in endoplasmic reticulum-mitochondrial contacts after infection, suggesting attenuation of proapoptotic signaling by their increased presence therein. Together, these results suggest that human cytomegalovirus infection restructures the proteome of endoplasmic reticulum-mitochondrial contacts to bolster protein translation at these junctions, calcium signaling to mitochondria, cell survival, and bioenergetics and, thereby, allow for enhanced progeny production.
Collapse
Affiliation(s)
- Aiping Zhang
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | | | | | | | | | | | | |
Collapse
|
495
|
Kultima K, Sköld K, Borén M. Biomarkers of disease and post-mortem changes - Heat stabilization, a necessary tool for measurement of protein regulation. J Proteomics 2011; 75:145-59. [PMID: 21708298 DOI: 10.1016/j.jprot.2011.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/25/2011] [Accepted: 06/07/2011] [Indexed: 12/25/2022]
Abstract
This review focuses on post sampling changes and how the Stabilizor system has been used to control this natural biological process and potential implications on cancer-specific biomarkers due to post sampling changes. Tissue sampling is a major traumatic event that can have drastic effects within a very short timeframe at the molecular level [1] resulting in loss of sample quality due to post-mortem changes. A heat-stabilization technology, using the Stabilizor system, has been developed to quickly and permanently abolish the enzymatic activity that causes these changes post-sampling and so preserve sample quality. The Stabilizor system has been shown to give better sample quality when analyzing a variety of tissues in various proteomic workflows. In this paper we discuss the impact of using heat-stabilized tissue in different proteomic applications. Based on our observations regarding the overlap between commonly changing proteins and proteins found to change post-mortem we also highlight a group of proteins of particular interest in cancer studies.
Collapse
Affiliation(s)
- Kim Kultima
- Analytical Chemistry, Department of Physical and Analytical Chemistry, Uppsala University, 75124, Uppsala, Sweden
| | | | | |
Collapse
|
496
|
Cloutier M, Wang E. Dynamic modeling and analysis of cancer cellular network motifs. Integr Biol (Camb) 2011; 3:724-32. [PMID: 21674097 DOI: 10.1039/c0ib00145g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With the advent of high-throughput biology, we now routinely scan cells and organisms at practically all levels, from genome to protein, metabolism, signaling and other cellular functions. This methodology allowed biological studies to move from a reductionist approach, such as isolation of specific pathways and mechanisms, to a more integrative approach, where biological systems are seen as a network of interconnected components that provide specific outputs and functions in response to stimuli. Recent literature on biological networks demonstrates two important concepts that we will consider in this review: (i) cellular pathways are highly interconnected and should not be studied separately, but as a network; (ii) simple, recurrent feedback motifs within the network can produce very specific functions that favor their modular use. The first theme differs from the traditional approach in biology because it provides a framework (i.e., the network view) in which large datasets are analyzed with an unbiased view. The second theme (feedback motifs) shows the importance of locally analyzing the dynamic properties of biological networks in order to better understand their functionality. We will review these themes with examples from cell signaling networks, gene regulatory networks and metabolic pathways. The deregulation of cellular networks (metabolism, signaling etc.) is involved in cancer, but the size of the networks and resulting non-linear behavior do not allow for intuitive reasoning. In that context, we argue that the qualitative classification of the 'building blocs' of biological networks (i.e. the motifs) in terms of dynamics and functionality will be critical to improve our understanding of cancer biology and rationalize the wealth of information from high-throughput experiments. From the examples highlighted in this review, it is clear that dynamic feedback motifs can be used to provide a unified view of various cellular processes involved in cancer and this will be critical for future research on personalized and predictive cancer therapies.
Collapse
Affiliation(s)
- Mathieu Cloutier
- Computational Chemistry and Bioinformatics Group, Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | | |
Collapse
|
497
|
Abstract
Cancer cells re-program their metabolic machinery in order to satisfy their bioenergetic and biosynthetic requirements. A critical aspect of the re-programming of cancer cell metabolism involves changes in the glycolytic pathway (referred to as the “Warburg effect”). As an outcome of these changes, much of the pyruvate generated via the glycolytic pathway is converted to lactic acid, rather than being used to produce acetyl-CoA and ultimately, the citrate which enters the citric acid cycle. In order to compensate for these changes and to help maintain a functioning citric acid cycle, cancer cells often rely on elevated glutamine metabolism. Recently, we have found that this is achieved through a marked elevation of glutaminase activity in cancer cells. Here we further consider these findings and the possible mechanisms by which this important metabolic activity is regulated.
Collapse
Affiliation(s)
- Jon W Erickson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
498
|
Abstract
A key aberrant biological difference between tumor cells and normal differentiated
cells is altered metabolism, whereby cancer cells acquire a number of stable genetic
and epigenetic alterations to retain proliferation, survive under unfavorable
microenvironments and invade into surrounding tissues. A classic biochemical
adaptation is the metabolic shift to aerobic glycolysis rather than mitochondrial
oxidative phosphorylation, regardless of oxygen availability, a phenomenon termed the
“Warburg Effect”. Aerobic glycolysis, characterized by high glucose
uptake, low oxygen consumption and elevated production of lactate, is associated with
a survival advantage as well as the generation of substrates such as fatty acids,
amino acids and nucleotides necessary in rapidly proliferating cells. This review
discusses the role of key metabolic enzymes and their association with aerobic
glycolysis in Glioblastoma Multiforme (GBM), an aggressive, highly glycolytic and
deadly brain tumor. Targeting key metabolic enzymes involved in modulating the
“Warburg Effect” may provide a novel therapeutic approach either
singularly or in combination with existing therapies in GBMs.
Collapse
Affiliation(s)
- Amparo Wolf
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
499
|
Stieber D, Abdul Rahim SA, Niclou SP. Novel ways to target brain tumour metabolism. Expert Opin Ther Targets 2011; 15:1227-39. [PMID: 21635150 DOI: 10.1517/14728222.2011.588211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Glioblastoma remains a highly aggressive primary brain cancer with very poor prognosis. The detection of mutations in the metabolic enzyme isocitrate dehydrogenase in gliomas, has broadened our view of tumourigenic mechanisms. Together with renewed awareness of tumour-specific energy metabolism, research is pointed towards novel ways for targeting brain cancer. AREAS COVERED This paper reviews recent knowledge on the possible tumourigenic mechanism of mutant isocitrate dehydrogenase, and provides a detailed overview of cancer-specific metabolic enzymes associated with glycolysis and intracellular pH regulation. It also discusses available drugs that may serve as a basis for novel drug development to target metabolic transformation in gliomas. EXPERT OPINION Despite the fact that energy metabolism is a very basic cellular process, tumour specific alterations in key metabolic processes represent promising targets for glioma treatment. Novel therapies against gliomas, including those that target metabolic transformation, need to consider the genetic background of the individual tumours, to allow the correlation of treatment response with the underlying biological status, both in preclinical and clinical studies.
Collapse
Affiliation(s)
- Daniel Stieber
- Centre de Recherche Public de la Santé (CRP-Santé), Oncology Department , NorLux Neuro-Oncology Laboratory, Luxembourg
| | | | | |
Collapse
|
500
|
Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, Warren A, Scott H, Madhu B, Sharma N, Bon H, Zecchini V, Smith DM, DeNicola GM, Mathews N, Osborne M, Hadfield J, MacArthur S, Adryan B, Lyons SK, Brindle KM, Griffiths J, Gleave ME, Rennie PS, Neal DE, Mills IG. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 2011; 30:2719-33. [PMID: 21602788 PMCID: PMC3155295 DOI: 10.1038/emboj.2011.158] [Citation(s) in RCA: 501] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/21/2011] [Indexed: 11/09/2022] Open
Abstract
The androgen receptor (AR) is a key regulator of prostate growth and the principal drug target for the treatment of prostate cancer. Previous studies have mapped AR targets and identified some candidates which may contribute to cancer progression, but did not characterize AR biology in an integrated manner. In this study, we took an interdisciplinary approach, integrating detailed genomic studies with metabolomic profiling and identify an anabolic transcriptional network involving AR as the core regulator. Restricting flux through anabolic pathways is an attractive approach to deprive tumours of the building blocks needed to sustain tumour growth. Therefore, we searched for targets of the AR that may contribute to these anabolic processes and could be amenable to therapeutic intervention by virtue of differential expression in prostate tumours. This highlighted calcium/calmodulin-dependent protein kinase kinase 2, which we show is overexpressed in prostate cancer and regulates cancer cell growth via its unexpected role as a hormone-dependent modulator of anabolic metabolism. In conclusion, it is possible to progress from transcriptional studies to a promising therapeutic target by taking an unbiased interdisciplinary approach.
Collapse
Affiliation(s)
| | - Andy Lynch
- CRUK Cambridge Research Institute, Cambridge, UK
| | | | - Joan Boren
- CRUK Cambridge Research Institute, Cambridge, UK
| | - Rory Stark
- CRUK Cambridge Research Institute, Cambridge, UK
| | - Ladan Fazli
- The Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Anne Warren
- Department of Pathology, Addenbrookes Hospital, Cambridge, UK
| | - Helen Scott
- CRUK Cambridge Research Institute, Cambridge, UK
| | | | - Naomi Sharma
- CRUK Cambridge Research Institute, Cambridge, UK
| | - Helene Bon
- CRUK Cambridge Research Institute, Cambridge, UK
| | | | | | | | - Nik Mathews
- CRUK Cambridge Research Institute, Cambridge, UK
| | | | | | | | - Boris Adryan
- Cambridge Systems Biology Centre and Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | | | - Martin E Gleave
- The Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Paul S Rennie
- The Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - David E Neal
- CRUK Cambridge Research Institute, Cambridge, UK
| | - Ian G Mills
- CRUK Cambridge Research Institute, Cambridge, UK
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo, Oslo, Norway
| |
Collapse
|