451
|
Terakawa T, Higo J, Takada S. Multi-scale ensemble modeling of modular proteins with intrinsically disordered linker regions: application to p53. Biophys J 2015; 107:721-729. [PMID: 25099811 DOI: 10.1016/j.bpj.2014.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/28/2014] [Accepted: 06/18/2014] [Indexed: 10/24/2022] Open
Abstract
In eukaryotic proteins, intrinsically disordered regions (IDRs) are ubiquitous and often exist in linker regions that flank the functional domains of modular proteins, regulating their functions. For detailed structural ensemble modeling of IDRs, we propose a multiscale method for IDRs that possess significant long-range order in modular proteins and apply it to the eukaryotic transcription factor p53 as an example. First, we performed all-atom (AA) molecular dynamics (MD) simulations of the explicitly solvated p53 linker region, without experimental restraint terms, finding fractional long-range contacts within the linker. Second, we fed this AA MD ensemble into a coarse-grained (CG) model, finding an optimal set of contact potentials. The optimized CG MD simulations reproduced the contact probability map from the AA MD simulations. Finally, we performed the CG MD simulation of the tetrameric p53 fragments including the core domains, the linker, and the tetramerization domain. Using the obtained ensemble, we theoretically calculated the small angle x-ray scattering (SAXS) profile of this fragment. The obtained SAXS profile agrees well with the experiment. We also found that the long-range contacts in the p53 linker region are required to reproduce the experimental SAXS profile. The developed framework in which we calculate the long-range contact probability map from the AA MD simulation and incorporate it to the CG model can be applied to broad range of IDRs.
Collapse
Affiliation(s)
- Tsuyoshi Terakawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan
| | - Junichi Higo
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| |
Collapse
|
452
|
Helma J, Cardoso MC, Muyldermans S, Leonhardt H. Nanobodies and recombinant binders in cell biology. J Cell Biol 2015; 209:633-44. [PMID: 26056137 PMCID: PMC4460151 DOI: 10.1083/jcb.201409074] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes.
Collapse
Affiliation(s)
- Jonas Helma
- Department of Biology II, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich, 82152 Planegg-Martinsried, Germany
| | - M Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Heinrich Leonhardt
- Department of Biology II, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
453
|
Tian T, Harding A. How MAP kinase modules function as robust, yet adaptable, circuits. Cell Cycle 2015; 13:2379-90. [PMID: 25483189 DOI: 10.4161/cc.29349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Genetic and biochemical studies have revealed that the diversity of cell types and developmental patterns evident within the animal kingdom is generated by a handful of conserved, core modules. Core biological modules must be robust, able to maintain functionality despite perturbations, and yet sufficiently adaptable for random mutations to generate phenotypic variation during evolution. Understanding how robust, adaptable modules have influenced the evolution of eukaryotes will inform both evolutionary and synthetic biology. One such system is the MAP kinase module, which consists of a 3-tiered kinase circuit configuration that has been evolutionarily conserved from yeast to man. MAP kinase signal transduction pathways are used across eukaryotic phyla to drive biological functions that are crucial for life. Here we ask the fundamental question, why do MAPK modules follow a conserved 3-tiered topology rather than some other number? Using computational simulations, we identify a fundamental 2-tiered circuit topology that can be readily reconfigured by feedback loops and scaffolds to generate diverse signal outputs. When this 2-kinase circuit is connected to proximal input kinases, a 3-tiered modular configuration is created that is both robust and adaptable, providing a biological circuit that can regulate multiple phenotypes and maintain functionality in an uncertain world. We propose that the 3-tiered signal transduction module has been conserved through positive selection, because it facilitated the generation of phenotypic variation during eukaryotic evolution.
Collapse
Affiliation(s)
- Tianhai Tian
- a School of Mathematical Science; Monash University; Victoria, Australia
| | | |
Collapse
|
454
|
Leibly DJ, Arbing MA, Pashkov I, DeVore N, Waldo GS, Terwilliger TC, Yeates TO. A Suite of Engineered GFP Molecules for Oligomeric Scaffolding. Structure 2015; 23:1754-1768. [PMID: 26278175 DOI: 10.1016/j.str.2015.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/08/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
Applications ranging from synthetic biology to protein crystallization could be advanced by facile systems for connecting multiple proteins together in predefined spatial relationships. One approach to this goal is to engineer many distinct assembly forms of a single carrier protein or scaffold, to which other proteins of interest can then be readily attached. In this work we chose GFP as a scaffold and engineered many alternative oligomeric forms, driven by either specific disulfide bond formation or metal ion addition. We generated a wide range of spatial arrangements of GFP subunits from 11 different oligomeric variants, and determined their X-ray structures in a total of 33 distinct crystal forms. Some of the oligomeric GFP variants show geometric polymorphism depending on conditions, while others show considerable geometric rigidity. Potential future applications of this system are discussed.
Collapse
Affiliation(s)
- David J Leibly
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Mark A Arbing
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Inna Pashkov
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Natasha DeVore
- Bioscience Division, Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545, USA
| | - Geoffrey S Waldo
- Bioscience Division, Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545, USA
| | - Thomas C Terwilliger
- Bioscience Division, Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545, USA
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
455
|
Jin X, Liu Y, Liu J, Lu W, Liang Z, Zhang D, Liu G, Zhu H, Xu N, Liang S. The Overexpression of IQGAP1 and β-Catenin Is Associated with Tumor Progression in Hepatocellular Carcinoma In Vitro and In Vivo. PLoS One 2015; 10:e0133770. [PMID: 26252773 PMCID: PMC4529304 DOI: 10.1371/journal.pone.0133770] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/01/2015] [Indexed: 02/05/2023] Open
Abstract
The IQ-domain GTPase-activating protein 1 (IQGAP1) is a multifunctional scaffold protein, which interacts with diverse proteins to regulate cell adhesion and cell migration. The abnormal expression of IQGAP1 widely exists in many cancers, but biological roles of IQGAP1 cooperation with its interacting proteins to involve in tumorigenesis remain to clarify. In this study, we have found that IQGAP1 interacts with β-catenin and regulates β-catenin expression in hepatocellular carcinoma (HCC) cells. The expression levels of IQGAP1 and β-catenin and their associations have a positive correlation with cell metastasis ability in several HCC cell lines. The up-regulation of IQGAP1 and β-catenin improves cell proliferation and migration ability of HCC cells, whereas the knockdown of IQGAP1 by small interfering RNA can decrease β-catenin expression, which results in the reduction of cell proliferation and migration ability in vitro. In addition, a significantly higher expression of IQGAP1 and β-catenin also usually exists in human HCC tissues, especially their overexpression is clinicopathologically associated with tumor malignancy. Generally the overexpression and interactions of IQGAP1 and β-catenin contribute to HCC progression by promoting cell proliferation and migration.
Collapse
Affiliation(s)
- Xuewen Jin
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, P. R. China
| | - Yuling Liu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, P. R. China
| | - Jingjing Liu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, P. R. China
| | - Weiliang Lu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, P. R. China
| | - Ziwei Liang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, P. R. China
| | - Dan Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, P. R. China
| | - Gang Liu
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P. R. China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing,100034, P. R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing,100034, P. R. China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, P. R. China
- * E-mail:
| |
Collapse
|
456
|
Lai YT, Jiang L, Chen W, Yeates TO. On the predictability of the orientation of protein domains joined by a spanning alpha-helical linker. Protein Eng Des Sel 2015; 28:491-9. [DOI: 10.1093/protein/gzv035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 11/14/2022] Open
|
457
|
Chen Y, Liang Z, Fei E, Chen Y, Zhou X, Fang W, Fu WY, Fu AKY, Ip NY. Axin Regulates Dendritic Spine Morphogenesis through Cdc42-Dependent Signaling. PLoS One 2015. [PMID: 26204446 PMCID: PMC4512687 DOI: 10.1371/journal.pone.0133115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During development, scaffold proteins serve as important platforms for orchestrating signaling complexes to transduce extracellular stimuli into intracellular responses that regulate dendritic spine morphology and function. Axin (“axis inhibitor”) is a key scaffold protein in canonical Wnt signaling that interacts with specific synaptic proteins. However, the cellular functions of these protein–protein interactions in dendritic spine morphology and synaptic regulation are unclear. Here, we report that Axin protein is enriched in synaptic fractions, colocalizes with the postsynaptic marker PSD-95 in cultured hippocampal neurons, and interacts with a signaling protein Ca2+/calmodulin-dependent protein kinase II (CaMKII) in synaptosomal fractions. Axin depletion by shRNA in cultured neurons or intact hippocampal CA1 regions significantly reduced dendritic spine density. Intriguingly, the defective dendritic spine morphogenesis in Axin-knockdown neurons could be restored by overexpression of the small Rho-GTPase Cdc42, whose activity is regulated by CaMKII. Moreover, pharmacological stabilization of Axin resulted in increased dendritic spine number and spontaneous neurotransmission, while Axin stabilization in hippocampal neurons reduced the elimination of dendritic spines. Taken together, our findings suggest that Axin promotes dendritic spine stabilization through Cdc42-dependent cytoskeletal reorganization.
Collapse
Affiliation(s)
- Yu Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China
- * E-mail: (NI); (YC)
| | - Zhuoyi Liang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Erkang Fei
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuewen Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Xiaopu Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Weiqun Fang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wing-Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Amy K. Y. Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Nancy Y. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China
- * E-mail: (NI); (YC)
| |
Collapse
|
458
|
Schneider J, Mielich-Süss B, Böhme R, Lopez D. In vivo characterization of the scaffold activity of flotillin on the membrane kinase KinC of Bacillus subtilis. MICROBIOLOGY-SGM 2015; 161:1871-1887. [PMID: 26297017 DOI: 10.1099/mic.0.000137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Scaffold proteins are ubiquitous chaperones that bind to proteins and facilitate the physical interaction of the components of signal transduction pathways or multi-enzymic complexes. In this study, we used a biochemical approach to dissect the molecular mechanism of a membrane-associated scaffold protein, FloT, a flotillin-homologue protein that is localized in functional membrane microdomains of the bacterium Bacillus subtilis. This study provides unambiguous evidence that FloT physically binds to and interacts with the membrane-bound sensor kinase KinC. This sensor kinase activates biofilm formation in B. subtilis in response to the presence of the self-produced signal surfactin. Furthermore, we have characterized the mechanism by which the interaction of FloT with KinC benefits the activity of KinC. Two separate and synergistic effects constitute this mechanism: first, the scaffold activity of FloT promotes more efficient self-interaction of KinC and facilitates dimerization into its active form. Second, the selective binding of FloT to KinC prevents the occurrence of unspecific aggregation between KinC and other proteins that may generate dead-end intermediates that could titrate the activity of KinC. Flotillin proteins appear to play an important role in prokaryotes in promoting effective binding of signalling proteins with their correct protein partners.
Collapse
Affiliation(s)
- Johannes Schneider
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Benjamin Mielich-Süss
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Richard Böhme
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Daniel Lopez
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
- National Center for Biotechnology (CNB), Spanish Research Council (CSIC), Madrid 28050, Spain
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
459
|
Chaki SP, Barhoumi R, Rivera GM. Actin remodeling by Nck regulates endothelial lumen formation. Mol Biol Cell 2015; 26:3047-60. [PMID: 26157164 PMCID: PMC4551318 DOI: 10.1091/mbc.e15-06-0338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/01/2015] [Indexed: 01/03/2023] Open
Abstract
Nck-dependent actin remodeling enables endothelial morphogenesis by promoting cell elongation and proper organization of VE-cadherin intercellular junctions. Nck determines spatiotemporal patterns of Cdc42/aPKC activation to regulate endothelial apical-basal polarity and lumen formation. Multiple angiogenic cues modulate phosphotyrosine signaling to promote vasculogenesis and angiogenesis. Despite its functional and clinical importance, how vascular cells integrate phosphotyrosine-dependent signaling to elicit cytoskeletal changes required for endothelial morphogenesis remains poorly understood. The family of Nck adaptors couples phosphotyrosine signals with actin dynamics and therefore is well positioned to orchestrate cellular processes required in vascular formation and remodeling. Culture of endothelial cells in three-dimensional collagen matrices in the presence of VEGF stimulation was combined with molecular genetics, optical imaging, and biochemistry to show that Nck-dependent actin remodeling promotes endothelial cell elongation and proper organization of VE-cadherin intercellular junctions. Major morphogenetic defects caused by abrogation of Nck signaling included loss of endothelial apical-basal polarity and impaired lumenization. Time-lapse imaging using a Förster resonance energy transfer biosensor, immunostaining with phospho-specific antibodies, and GST pull-down assays showed that Nck determines spatiotemporal patterns of Cdc42/aPKC activation during endothelial morphogenesis. Our results demonstrate that Nck acts as an important hub integrating angiogenic cues with cytoskeletal changes that enable endothelial apical-basal polarization and lumen formation. These findings point to Nck as an emergent target for effective antiangiogenic therapy.
Collapse
Affiliation(s)
- Sankar P Chaki
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4467
| | - Gonzalo M Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467
| |
Collapse
|
460
|
Su J, Xu J, Zhang S. RACK1, scaffolding a heterotrimeric G protein and a MAPK cascade. TRENDS IN PLANT SCIENCE 2015; 20:405-407. [PMID: 25986967 DOI: 10.1016/j.tplants.2015.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 06/04/2023]
Abstract
Scaffold proteins of mitogen-activated protein kinase (MAPK) cascades play crucial roles in determining signal specificity, amplitude, and duration in yeast and mammals. Recently, RACK1 was identified as the first plant MAPK scaffold protein that connects heterotrimeric G protein with a MAPK cascade to form a unique signaling pathway in plant immunity.
Collapse
Affiliation(s)
- Jianbin Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuqun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
461
|
Ryu J, Park SH. Simple synthetic protein scaffolds can create adjustable artificial MAPK circuits in yeast and mammalian cells. Sci Signal 2015; 8:ra66. [PMID: 26126717 DOI: 10.1126/scisignal.aab3397] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As hubs for eukaryotic cell signaling, scaffold proteins are attractive targets for engineering and manipulating signaling circuits. We designed synthetic scaffolds with a repeated PDZ domain that interacted with engineered kinases of the mitogen-activated protein kinase (MAPK) cascade involved in yeast mating to investigate how modular interactions mediate kinase cascades. The synthetic scaffolds functioned as logic gates of signaling circuits. We replaced the endogenous yeast scaffold Ste5 with designer scaffolds with a variable numbers of a PDZ domain that bound kinases or phosphatases engineered with a PDZ-binding motif. Although association with the membrane was necessary for pathway activity, surprisingly, mating responses occurred when the circuit contained a scaffold with only two PDZ domains, which could only bind two of the three kinases simultaneously. Additionally, the three tiers of the MAPK pathway exhibited decreasing positional plasticity from the top [MAPK kinase kinase (MAPKKK)] to the bottom (MAPK) tier such that binding of a MAPKKK, but not a MAPK, from the osmoregulatory pathway or protein kinase C pathway to the synthetic scaffold activated a reporter of the mating response. We also showed that the output duration and intensity could be altered by recruiting phosphatases or varying the affinity of the recruited proteins for the scaffold and that a designer MAPK scaffold functioned in mammalian cells. Thus, this synthetic approach with designer scaffolds should enable the rational manipulation or engineering of signaling pathways and provide insight into the functional roles of scaffold proteins.
Collapse
Affiliation(s)
- Jihoon Ryu
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sang-Hyun Park
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
462
|
Peng M, Aye TT, Snel B, van Breukelen B, Scholten A, Heck AJR. Spatial Organization in Protein Kinase A Signaling Emerged at the Base of Animal Evolution. J Proteome Res 2015; 14:2976-87. [DOI: 10.1021/acs.jproteome.5b00370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mao Peng
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
- Department
of Toxicogenomics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Thin Thin Aye
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Berend Snel
- Theoretical
Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bas van Breukelen
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Arjen Scholten
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
463
|
Röck R, Bachmann V, Bhang HEC, Malleshaiah M, Raffeiner P, Mayrhofer JE, Tschaikner PM, Bister K, Aanstad P, Pomper MG, Michnick SW, Stefan E. In-vivo detection of binary PKA network interactions upon activation of endogenous GPCRs. Sci Rep 2015; 5:11133. [PMID: 26099953 PMCID: PMC4477410 DOI: 10.1038/srep11133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/14/2015] [Indexed: 12/21/2022] Open
Abstract
Membrane receptor-sensed input signals affect and modulate intracellular protein-protein interactions (PPIs). Consequent changes occur to the compositions of protein complexes, protein localization and intermolecular binding affinities. Alterations of compartmentalized PPIs emanating from certain deregulated kinases are implicated in the manifestation of diseases such as cancer. Here we describe the application of a genetically encoded Protein-fragment Complementation Assay (PCA) based on the Renilla Luciferase (Rluc) enzyme to compare binary PPIs of the spatially and temporally controlled protein kinase A (PKA) network in diverse eukaryotic model systems. The simplicity and sensitivity of this cell-based reporter allows for real-time recordings of mutually exclusive PPIs of PKA upon activation of selected endogenous G protein-coupled receptors (GPCRs) in cancer cells, xenografts of mice, budding yeast, and zebrafish embryos. This extends the application spectrum of Rluc PCA for the quantification of PPI-based receptor-effector relationships in physiological and pathological model systems.
Collapse
Affiliation(s)
- Ruth Röck
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Verena Bachmann
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Hyo-Eun C Bhang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21287, USA
| | - Mohan Malleshaiah
- Département de Biochimie, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
| | - Philipp Raffeiner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johanna E Mayrhofer
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Philipp M Tschaikner
- Institute of Molecular Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Klaus Bister
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Pia Aanstad
- Institute of Molecular Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21287, USA
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
464
|
Lai A, Sato PM, Peisajovich SG. Evolution of synthetic signaling scaffolds by recombination of modular protein domains. ACS Synth Biol 2015; 4:714-22. [PMID: 25587847 DOI: 10.1021/sb5003482] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Signaling scaffolds are proteins that interact via modular domains with multiple partners, regulating signaling networks in space and time and providing an ideal platform from which to alter signaling functions. However, to better exploit scaffolds for signaling engineering, it is necessary to understand the full extent of their modularity. We used a directed evolution approach to identify, from a large library of randomly shuffled protein interaction domains, variants capable of rescuing the signaling defect of a yeast strain in which Ste5, the scaffold in the mating pathway, had been deleted. After a single round of selection, we identified multiple synthetic scaffold variants with diverse domain architectures, able to mediate mating pathway activation in a pheromone-dependent manner. The facility with which this signaling network accommodates changes in scaffold architecture suggests that the mating signaling complex does not possess a single, precisely defined geometry into which the scaffold has to fit. These relaxed geometric constraints may facilitate the evolution of signaling networks, as well as their engineering for applications in synthetic biology.
Collapse
Affiliation(s)
- Andicus Lai
- Department of Cell and Systems
Biology University of Toronto 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | - Paloma M. Sato
- Department of Cell and Systems
Biology University of Toronto 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | - Sergio G. Peisajovich
- Department of Cell and Systems
Biology University of Toronto 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
465
|
Lau J, Hernandez-Alicea L, Vass RH, Chien P. A Phosphosignaling Adaptor Primes the AAA+ Protease ClpXP to Drive Cell Cycle-Regulated Proteolysis. Mol Cell 2015; 59:104-16. [PMID: 26073542 DOI: 10.1016/j.molcel.2015.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/31/2015] [Accepted: 05/04/2015] [Indexed: 11/30/2022]
Abstract
The response regulator CpdR couples phosphorylation events in Caulobacter crescentus with the AAA+ protease ClpXP to provide punctuated degradation of crucial substrates involved in cell cycle regulation. CpdR functions like an adaptor to alter substrate choice by ClpXP; however, it remains unclear how CpdR influences its multiple targets. Here we show that, unlike canonical ClpXP adaptors, CpdR alone does not strongly bind its substrate. Instead, CpdR binds the N-terminal domain of ClpX and prepares (primes) the unfoldase for substrate engagement. This priming creates a recruitment interface that docks multiple substrates and additional adaptor components. We show that adaptor-dependent priming of ClpX avoids concentration-dependent inhibition that limits traditional scaffolding adaptors. Phosphosignaling disrupts the adaptor-protease interaction, and mutations in CpdR that impact ClpX binding tune adaptor activity and biological function. Together, these results reveal how a single adaptor can command global changes in proteome composition through priming of a protease.
Collapse
Affiliation(s)
- Joanne Lau
- Microbiology Graduate Program, Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Lisa Hernandez-Alicea
- Molecular and Cellular Biology Graduate Program, Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Robert H Vass
- Molecular and Cellular Biology Graduate Program, Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Peter Chien
- Microbiology Graduate Program, Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003, USA; Molecular and Cellular Biology Graduate Program, Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
466
|
Meyer R, Faesen A, Vogel K, Jeganathan S, Musacchio A, Niemeyer CM. DNA-Directed Assembly of Capture Tools for Constitutional Studies of Large Protein Complexes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2669-2674. [PMID: 25649737 DOI: 10.1002/smll.201403544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/11/2015] [Indexed: 06/04/2023]
Abstract
Large supramolecular protein complexes, such as the molecular machinery involved in gene regulation, cell signaling, or cell division, are key in all fundamental processes of life. Detailed elucidation of structure and dynamics of such complexes can be achieved by reverse-engineering parts of the complexes in order to probe their interactions with distinctive binding partners in vitro. The exploitation of DNA nanostructures to mimic partially assembled supramolecular protein complexes in which the presence and state of two or more proteins are decisive for binding of additional building blocks is reported here. To this end, four-way DNA Holliday junction motifs bearing a fluorescein and a biotin tag, for tracking and affinity capture, respectively, are site-specifically functionalized with centromeric protein (CENP) C and CENP-T. The latter serves as baits for binding of the so-called KMN component, thereby mimicking early stages of the assembly of kinetochores, structures that mediate and control the attachment of microtubules to chromosomes in the spindle apparatus. Results from pull-down experiments are consistent with the hypothesis that CENP-C and CENP-T may bind cooperatively to the KMN network.
Collapse
Affiliation(s)
- Rebecca Meyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Alex Faesen
- Max-Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Katrin Vogel
- TU Dortmund, Fakultät für Chemie und Chemische Biologie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn Str. 6, 44227, Dortmund, Germany
| | - Sadasivam Jeganathan
- Max-Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Andrea Musacchio
- Max-Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
467
|
Choi S, Thapa N, Tan X, Hedman AC, Anderson RA. PIP kinases define PI4,5P₂signaling specificity by association with effectors. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:711-23. [PMID: 25617736 PMCID: PMC4380618 DOI: 10.1016/j.bbalip.2015.01.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 12/21/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI4,5P₂) is an essential lipid messenger with roles in all eukaryotes and most aspects of human physiology. By controlling the targeting and activity of its effectors, PI4,5P₂modulates processes, such as cell migration, vesicular trafficking, cellular morphogenesis, signaling and gene expression. In cells, PI4,5P₂has a much higher concentration than other phosphoinositide species and its total content is largely unchanged in response to extracellular stimuli. The discovery of a vast array of PI4,5P₂ binding proteins is consistent with data showing that the majority of cellular PI4,5P₂is sequestered. This supports a mechanism where PI4,5P₂functions as a localized and highly specific messenger. Further support of this mechanism comes from the de novo synthesis of PI4,5P₂which is often linked with PIP kinase interaction with PI4,5P₂effectors and is a mechanism to define specificity of PI4,5P₂signaling. The association of PI4,5P₂-generating enzymes with PI4,5P₂effectors regulate effector function both temporally and spatially in cells. In this review, the PI4,5P₂effectors whose functions are tightly regulated by associations with PI4,5P₂-generating enzymes will be discussed. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Suyong Choi
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Narendra Thapa
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Xiaojun Tan
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Andrew C Hedman
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
468
|
Sub-chronic administration of LY294002 sensitizes cervical cancer cells to chemotherapy by enhancing mitochondrial JNK signaling. Biochem Biophys Res Commun 2015; 463:538-44. [PMID: 26032505 DOI: 10.1016/j.bbrc.2015.05.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/16/2015] [Indexed: 11/20/2022]
Abstract
Chemo-sensitization is used to improve the efficacy of chemotherapeutic agents against cancers, and understanding the precise molecular mechanisms of chemo-sensitization could lead to safer and more effective approaches to treat cancer. We have previously demonstrated that mitochondrial c-Jun N-terminal Kinase (JNK) signaling is a critical component of cell death. Mitochondrial JNK signaling is coordinated on the scaffold protein Sab. In this work, we developed a sub-chronic chemo-sensitization model by exposing HeLa cells to low-dose (2 μM) LY294002. We found that this treatment increased Sab expression on mitochondria, an effect not observed in acute exposures. To examine the role of Sab in chemo-sensitization, we ectopically expressed and silenced Sab in HeLa cells. We found that elevating Sab levels in HeLa cells increased the efficacy of chemotherapeutic agents, paclitaxel and cisplatin, while silencing Sab decreased the sensitivity of cells towards these agents. The effect of Sab-mediated signaling appeared to be dependent upon mitogen dependent protein kinases (MAPKs) as ablation of Sab's MAPK-binding motifs prevented chemo-sensitization. These results suggest that mitochondrial JNK signaling is an adaptable signaling pathway that can be enhanced or restored in cancer cells to improve therapeutic efficacy.
Collapse
|
469
|
Pham VD, Lee SH, Park SJ, Hong SH. Production of gamma-aminobutyric acid from glucose by introduction of synthetic scaffolds between isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase in recombinant Escherichia coli. J Biotechnol 2015; 207:52-7. [PMID: 25997833 DOI: 10.1016/j.jbiotec.2015.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 11/30/2022]
Abstract
Escherichia coli were engineered for the direct production of gamma-aminobutyric acid from glucose by introduction of synthetic protein scaffold. In this study, three enzymes consisting GABA pathway (isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase) were connected via synthetic protein scaffold. By introduction of scaffold, 0.92g/L of GABA was produced from 10g/L of glucose while no GABA was produced in wild type E. coli. The optimum pH and temperature for GABA production were 4.5 and 30°C, respectively. When competing metabolic network was inactivated by knockout mutation, maximum GABA concentration of 1.3g/L was obtained from 10g/L glucose. The recombinant E. coli strain which produces GABA directly from glucose was successfully constructed by introduction of protein scaffold.
Collapse
Affiliation(s)
- Van Dung Pham
- Department of Chemical Engineering, University of Ulsan, 93 Daehakro, Nam-gu, Ulsan 680-749, Republic of Korea
| | - Seung Hwan Lee
- Department of Biotechnology&Bioengineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Si Jae Park
- Department of Environmental Engineering and Energy, Myongji University, San 38-2, Nam-dong, Cheoin-gu, Gyeonggido, Yongin-si 449-728, Republic of Korea
| | - Soon Ho Hong
- Department of Chemical Engineering, University of Ulsan, 93 Daehakro, Nam-gu, Ulsan 680-749, Republic of Korea.
| |
Collapse
|
470
|
Wang X, Hou Y, Deng K, Zhang Y, Wang DC, Ding J. Structural Insights into the Molecular Recognition between Cerebral Cavernous Malformation 2 and Mitogen-Activated Protein Kinase Kinase Kinase 3. Structure 2015; 23:1087-96. [PMID: 25982527 DOI: 10.1016/j.str.2015.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/16/2015] [Accepted: 04/02/2015] [Indexed: 11/18/2022]
Abstract
Cerebral cavernous malformation 2 (CCM2) functions as an adaptor protein implicated in various biological processes. By interacting with the mitogen-activated protein kinase MEKK3, CCM2 either mediates the activation of MEKK3 signaling in response to osmotic stress or negatively regulates MEKK3 signaling, which is important for normal cardiovascular development. However, the molecular basis governing CCM2-MEKK3 interaction is largely unknown. Here we report the crystal structure of the CCM2 C-terminal part (CCM2ct) containing both the five-helix domain (CCM2cts) and the following C-terminal tail. The end of the C-terminal tail forms an isolated helix, which interacts intramolecularly with CCM2cts. By biochemical studies we identified the N-terminal amphiphilic helix of MEKK3 (MEKK3-nhelix) as the essential structural element for CCM2ct binding. We further determined the crystal structure of CCM2cts-MEKK3-nhelix complex, in which MEKK3-nhelix binds to the same site of CCM2cts for CCM2ct intramolecular interaction. These findings build a structural framework for understanding CCM2ct-MEKK3 molecular recognition.
Collapse
Affiliation(s)
- Xiaoyan Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Hubei 442000, People's Republic of China
| | - Yanjie Hou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Kai Deng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Hubei 442000, People's Republic of China
| | - Ying Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Da-Cheng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Jingjin Ding
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| |
Collapse
|
471
|
Hierarchical feedback modules and reaction hubs in cell signaling networks. PLoS One 2015; 10:e0125886. [PMID: 25951347 PMCID: PMC4424001 DOI: 10.1371/journal.pone.0125886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 03/24/2015] [Indexed: 11/20/2022] Open
Abstract
Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks.
Collapse
|
472
|
Schneider J, Klein T, Mielich-Süss B, Koch G, Franke C, Kuipers OP, Kovács ÁT, Sauer M, Lopez D. Spatio-temporal remodeling of functional membrane microdomains organizes the signaling networks of a bacterium. PLoS Genet 2015; 11:e1005140. [PMID: 25909364 PMCID: PMC4409396 DOI: 10.1371/journal.pgen.1005140] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium. Cellular membranes organize proteins related to signal transduction, protein sorting and membrane trafficking into the so-called lipid rafts. It has been proposed that the functional diversity of lipid rafts would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known due in part to the complexity that entails the manipulation of eukaryotic cells. The recent discovery that bacteria organize many cellular processes in membrane microdomains (FMMs), functionally similar to the eukaryotic lipid rafts, prompted us to explore FMMs diversity in the bacterial model Bacillus subtilis. We show that diversification of FMMs occurs in cells and gives rise to functionally distinct microdomains, which compartmentalize distinct signal transduction pathways and regulate the expression of different genetic programs. We discovered that FMMs diversification does not occur randomly. Cells sequentially regulate the specialization of the FMMs during cell growth to ensure an effective and diverse activation of signaling processes.
Collapse
Affiliation(s)
- Johannes Schneider
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
| | - Teresa Klein
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Benjamin Mielich-Süss
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
| | - Gudrun Koch
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
| | - Christian Franke
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Oscar P. Kuipers
- Molecular Genetics Group,Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ákos T. Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Daniel Lopez
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
473
|
Zhang Y, Wang P, Shao W, Zhu JK, Dong J. The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division. Dev Cell 2015; 33:136-49. [PMID: 25843888 PMCID: PMC4406870 DOI: 10.1016/j.devcel.2015.02.022] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/16/2015] [Accepted: 02/25/2015] [Indexed: 11/24/2022]
Abstract
Cell polarization is linked to fate determination during asymmetric division of plant stem cells, but the underlying molecular mechanisms remain unknown. In Arabidopsis, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) is polarized to control stomatal asymmetric division. A mitogen-activated protein kinase (MAPK) cascade determines terminal stomatal fate by promoting the degradation of the lineage determinant SPEECHLESS (SPCH). Here, we demonstrate that a positive-feedback loop between BASL and the MAPK pathway constitutes a polarity module at the cortex. Cortical localization of BASL requires phosphorylation mediated by MPK3/6. Phosphorylated BASL functions as a scaffold and recruits the MAPKKK YODA and MPK3/6 to spatially concentrate signaling at the cortex. Activated MPK3/6 reinforces the feedback loop by phosphorylating BASL and inhibits stomatal fate by phosphorylating SPCH. Polarization of the BASL-MAPK signaling feedback module represents a mechanism connecting cell polarity to fate differentiation during asymmetric stem cell division in plants.
Collapse
Affiliation(s)
- Ying Zhang
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Pengcheng Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Wanchen Shao
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, Piscataway, NJ 08901, USA
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA; Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, Piscataway, NJ 08901, USA.
| |
Collapse
|
474
|
Abstract
Cellular responses to environmental cues involve the mobilization of GTPases, protein kinases and phosphoprotein phosphatases. The spatial organization of these signalling enzymes by scaffold proteins helps to guide the flow of molecular information. Allosteric modulation of scaffolded enzymes can alter their catalytic activity or sensitivity to second messengers in a manner that augments, insulates or terminates local cellular events. This Review examines the features of scaffold proteins and highlights examples of locally organized groups of signalling enzymes that drive essential physiological processes, including hormone action, heart rate, cell division, organelle movement and synaptic transmission.
Collapse
|
475
|
Alexa A, Gógl G, Glatz G, Garai Á, Zeke A, Varga J, Dudás E, Jeszenői N, Bodor A, Hetényi C, Reményi A. Structural assembly of the signaling competent ERK2-RSK1 heterodimeric protein kinase complex. Proc Natl Acad Sci U S A 2015; 112:2711-6. [PMID: 25730857 PMCID: PMC4352816 DOI: 10.1073/pnas.1417571112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) bind and activate their downstream kinase substrates, MAPK-activated protein kinases (MAPKAPKs). Notably, extracellular signal regulated kinase 2 (ERK2) phosphorylates ribosomal S6 kinase 1 (RSK1), which promotes cellular growth. Here, we determined the crystal structure of an RSK1 construct in complex with its activator kinase. The structure captures the kinase-kinase complex in a precatalytic state where the activation loop of the downstream kinase (RSK1) faces the enzyme's (ERK2) catalytic site. Molecular dynamics simulation was used to show how this heterodimer could shift into a signaling-competent state. This structural analysis combined with biochemical and cellular studies on MAPK→MAPKAPK signaling showed that the interaction between the MAPK binding linear motif (residing in a disordered kinase domain extension) and the ERK2 "docking" groove plays the major role in making an encounter complex. This interaction holds kinase domains proximal as they "readjust," whereas generic kinase domain surface contacts bring them into a catalytically competent state.
Collapse
Affiliation(s)
- Anita Alexa
- Lendület Protein Interaction Group, Institute of Enzymology, Research Centre for Natural Sciences, and
| | - Gergő Gógl
- Lendület Protein Interaction Group, Institute of Enzymology, Research Centre for Natural Sciences, and Departments of Biochemistry and
| | - Gábor Glatz
- Lendület Protein Interaction Group, Institute of Enzymology, Research Centre for Natural Sciences, and
| | | | - András Zeke
- Lendület Protein Interaction Group, Institute of Enzymology, Research Centre for Natural Sciences, and
| | | | - Erika Dudás
- Institute of Chemistry, Laboratory of Structural Chemistry and Biology, 1117 Budapest, Hungary
| | | | - Andrea Bodor
- Institute of Chemistry, Laboratory of Structural Chemistry and Biology, 1117 Budapest, Hungary
| | - Csaba Hetényi
- MTA-ELTE Molecular Biophysics Research Group, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Attila Reményi
- Lendület Protein Interaction Group, Institute of Enzymology, Research Centre for Natural Sciences, and
| |
Collapse
|
476
|
BRUCE regulates DNA double-strand break response by promoting USP8 deubiquitination of BRIT1. Proc Natl Acad Sci U S A 2015; 112:E1210-9. [PMID: 25733871 DOI: 10.1073/pnas.1418335112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The DNA damage response (DDR) is crucial for genomic integrity. BRIT1 (breast cancer susceptibility gene C terminus-repeat inhibitor of human telomerase repeat transcriptase expression), a tumor suppressor and early DDR factor, is recruited to DNA double-strand breaks (DSBs) by phosphorylated H2A histone family, member X (γ-H2AX), where it promotes chromatin relaxation by recruiting the switch/sucrose nonfermentable (SWI-SNF) chromatin remodeler to facilitate DDR. However, regulation of BRIT1 recruitment is not fully understood. The baculovirus IAP repeat (BIR)-containing ubiquitin-conjugating enzyme (BRUCE) is an inhibitor of apoptosis protein (IAP). Here, we report a non-IAP function of BRUCE in the regulation of the BRIT1-SWI-SNF DSB-response pathway and genomic stability. We demonstrate that BRIT1 is K63 ubiquitinated in unstimulated cells and that deubiquitination of BRIT1 is a prerequisite for its recruitment to DSB sites by γ-H2AX. We show mechanistically that BRUCE acts as a scaffold, bridging the ubiquitin-specific peptidase 8 (USP8) and BRIT1 in a complex to coordinate USP8-catalyzed deubiquitination of BRIT1. Loss of BRUCE or USP8 impairs BRIT1 deubiquitination, BRIT1 binding with γ-H2AX, the formation of BRIT1 DNA damage foci, and chromatin relaxation. Moreover, BRUCE-depleted cells display reduced homologous recombination repair, and BRUCE-mutant mice exhibit repair defects and genomic instability. These findings identify BRUCE and USP8 as two hitherto uncharacterized critical DDR regulators and uncover a deubiquitination regulation of BRIT1 assembly at damaged chromatin for efficient DDR and genomic stability.
Collapse
|
477
|
Abstract
An interesting concept in the organization of cellular membranes is the proposed existence of lipid rafts. Membranes of eukaryotic cells organize signal transduction proteins into membrane rafts or lipid rafts that are enriched in particular lipids such as cholesterol and are important for the correct functionality of diverse cellular processes. The assembly of lipid rafts in eukaryotes has been considered a fundamental step during the evolution of cellular complexity, suggesting that bacteria and archaea were organisms too simple to require such a sophisticated organization of their cellular membranes. However, it was recently discovered that bacteria organize many signal transduction, protein secretion, and transport processes in functional membrane microdomains, which are equivalent to the lipid rafts of eukaryotic cells. This review contains the most significant advances during the last 4 years in understanding the structural and biological role of lipid rafts in bacteria. Furthermore, this review shows a detailed description of a number of molecular and genetic approaches related to the discovery of bacterial lipid rafts as well as an overview of the group of tentative lipid-protein and protein-protein interactions that give consistency to these sophisticated signaling platforms. Additional data suggesting that lipid rafts are widely distributed in bacteria are presented in this review. Therefore, we discuss the available techniques and optimized protocols for the purification and analysis of raft-associated proteins in various bacterial species to aid in the study of bacterial lipid rafts in other laboratories that could be interested in this topic. Overall, the discovery of lipid rafts in bacteria reveals a new level of sophistication in signal transduction and membrane organization that was unexpected for bacteria and shows that bacteria are more complex than previously appreciated.
Collapse
Affiliation(s)
- Marc Bramkamp
- Department of Biology I, University of Munich (LMU), Planegg/Martinsried, Germany
| | - Daniel Lopez
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
| |
Collapse
|
478
|
Hsiao V, de los Santos ELC, Whitaker WR, Dueber JE, Murray RM. Design and implementation of a biomolecular concentration tracker. ACS Synth Biol 2015; 4:150-61. [PMID: 24847683 PMCID: PMC4384833 DOI: 10.1021/sb500024b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Indexed: 01/17/2023]
Abstract
As a field, synthetic biology strives to engineer increasingly complex artificial systems in living cells. Active feedback in closed loop systems offers a dynamic and adaptive way to ensure constant relative activity independent of intrinsic and extrinsic noise. In this work, we use synthetic protein scaffolds as a modular and tunable mechanism for concentration tracking through negative feedback. Input to the circuit initiates scaffold production, leading to colocalization of a two-component system and resulting in the production of an inhibitory antiscaffold protein. Using a combination of modeling and experimental work, we show that the biomolecular concentration tracker circuit achieves dynamic protein concentration tracking in Escherichia coli and that steady state outputs can be tuned.
Collapse
Affiliation(s)
- Victoria Hsiao
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California United States
| | - Emmanuel L. C. de los Santos
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California United States
| | - Weston R. Whitaker
- Department
of Microbiology and Immunology, Stanford
University, Palo Alto, California United States
| | - John E. Dueber
- Department
of Bioengineering, University of California, Berkeley, California United States
| | - Richard M. Murray
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California United States
- Department
of Control and Dynamical Systems, California
Institute of Technology, Pasadena, California United States
| |
Collapse
|
479
|
Laukens K, Naulaerts S, Berghe WV. Bioinformatics approaches for the functional interpretation of protein lists: from ontology term enrichment to network analysis. Proteomics 2015; 15:981-96. [PMID: 25430566 DOI: 10.1002/pmic.201400296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/16/2014] [Accepted: 11/24/2014] [Indexed: 12/24/2022]
Abstract
The main result of a great deal of the published proteomics studies is a list of identified proteins, which then needs to be interpreted in relation to the research question and existing knowledge. In the early days of proteomics this interpretation was only based on expert insights, acquired by digesting a large amount of relevant literature. With the growing size and complexity of the experimental datasets, many computational techniques, databases, and tools have claimed a central role in this task. In this review we discuss commonly and less commonly used methods to functionally interpret experimental proteome lists and compare them with available knowledge. We first address several functional analysis and enrichment techniques based on ontologies and literature. Then we outline how various types of network and pathway information can be used. While the problem of functional interpretation of proteome data is to an extent equivalent to the interpretation of transcriptome or other ''omics'' data, this paper addresses some of the specific challenges and solutions of the proteomics field.
Collapse
Affiliation(s)
- Kris Laukens
- Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan, Antwerp, Belgium; Biomedical Informatics Research Center Antwerp (biomina), University of Antwerp / Antwerp University Hospital, Antwerp, Belgium
| | | | | |
Collapse
|
480
|
Terzo EA, Lyons SM, Poulton JS, Temple BRS, Marzluff WF, Duronio RJ. Distinct self-interaction domains promote Multi Sex Combs accumulation in and formation of the Drosophila histone locus body. Mol Biol Cell 2015; 26:1559-74. [PMID: 25694448 PMCID: PMC4395134 DOI: 10.1091/mbc.e14-10-1445] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/12/2015] [Indexed: 11/11/2022] Open
Abstract
The Drosophila Multi Sex Combs (Mxc) protein is necessary for the recruitment of histone mRNA biosynthetic factors to the histone locus body (HLB). Mxc contains multiple domains required for HLB assembly and histone mRNA biosynthesis. Two N-terminal domains of Mxc are essential for promoting HLB assembly via a self-interaction. Nuclear bodies (NBs) are structures that concentrate proteins, RNAs, and ribonucleoproteins that perform functions essential to gene expression. How NBs assemble is not well understood. We studied the Drosophila histone locus body (HLB), a NB that concentrates factors required for histone mRNA biosynthesis at the replication-dependent histone gene locus. We coupled biochemical analysis with confocal imaging of both fixed and live tissues to demonstrate that the Drosophila Multi Sex Combs (Mxc) protein contains multiple domains necessary for HLB assembly. An important feature of this assembly process is the self-interaction of Mxc via two conserved N-terminal domains: a LisH domain and a novel self-interaction facilitator (SIF) domain immediately downstream of the LisH domain. Molecular modeling suggests that the LisH and SIF domains directly interact, and mutation of either the LisH or the SIF domain severely impairs Mxc function in vivo, resulting in reduced histone mRNA accumulation. A region of Mxc between amino acids 721 and 1481 is also necessary for HLB assembly independent of the LisH and SIF domains. Finally, the C-terminal 195 amino acids of Mxc are required for recruiting FLASH, an essential histone mRNA-processing factor, to the HLB. We conclude that multiple domains of the Mxc protein promote HLB assembly in order to concentrate factors required for histone mRNA biosynthesis.
Collapse
Affiliation(s)
- Esteban A Terzo
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Shawn M Lyons
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - John S Poulton
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Brenda R S Temple
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
481
|
Li Z, Park HR, Shi Z, Li Z, Pham CD, Du Y, Khuri FR, Zhang Y, Han Q, Fu H. Pro-oncogenic function of HIP-55/Drebrin-like (DBNL) through Ser269/Thr291-phospho-sensor motifs. Oncotarget 2015; 5:3197-209. [PMID: 24912570 PMCID: PMC4102803 DOI: 10.18632/oncotarget.1900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
HIP-55 (HPK1-interacting protein of 55 kDa, also named DBNL, SH3P7, and mAbp1) is a multidomain adaptor protein that is critical for organ development and the immune response. Here, we report the coupling of HIP-55 to cell growth control through its 14-3-3-binding phospho-Ser/Thr-sensor sites. Using affinity chromatography, we found HIP-55 formed a complex with 14-3-3 proteins, revealing a new node in phospho-Ser/Thr-mediated signaling networks. In addition, we demonstrated that HIP-55 is required for proper cell growth control. Enforced HIP-55 expression promoted proliferation, colony formation, migration, and invasion of lung cancer cells while silencing of HIP-55 reversed these effects. Importantly, HIP-55 was found to be upregulated in lung cancer cell lines and in tumor tissues of lung cancer patients. Upregulated HIP-55 was required to promote the growth of tumors in a xenograft animal model. However, tumors with S269A/T291A-mutated HIP-55, which ablates 14-3-3 binding, exhibited significantly reduced sizes, supporting a vital role of the HIP-55/14-3-3 protein interaction node in transmitting oncogenic signals. Mechanistically, HIP-55-mediated tumorigenesis activity appears to be in part mediated by antagonizing the tumor suppressor function of HPK1. Thus, the HIP-55–mediated oncogenic pathway, through S269/T291, may be exploited for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Zijian Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
482
|
Hutchins JRA. What's that gene (or protein)? Online resources for exploring functions of genes, transcripts, and proteins. Mol Biol Cell 2015; 25:1187-201. [PMID: 24723265 PMCID: PMC3982986 DOI: 10.1091/mbc.e13-10-0602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The genomic era has enabled research projects that use approaches including genome-scale screens, microarray analysis, next-generation sequencing, and mass spectrometry-based proteomics to discover genes and proteins involved in biological processes. Such methods generate data sets of gene, transcript, or protein hits that researchers wish to explore to understand their properties and functions and thus their possible roles in biological systems of interest. Recent years have seen a profusion of Internet-based resources to aid this process. This review takes the viewpoint of the curious biologist wishing to explore the properties of protein-coding genes and their products, identified using genome-based technologies. Ten key questions are asked about each hit, addressing functions, phenotypes, expression, evolutionary conservation, disease association, protein structure, interactors, posttranslational modifications, and inhibitors. Answers are provided by presenting the latest publicly available resources, together with methods for hit-specific and data set-wide information retrieval, suited to any genome-based analytical technique and experimental species. The utility of these resources is demonstrated for 20 factors regulating cell proliferation. Results obtained using some of these are discussed in more depth using the p53 tumor suppressor as an example. This flexible and universally applicable approach for characterizing experimental hits helps researchers to maximize the potential of their projects for biological discovery.
Collapse
Affiliation(s)
- James R A Hutchins
- Institute of Human Genetics, Centre National de la Recherche Scientifique (CNRS), 34396 Montpellier, France
| |
Collapse
|
483
|
Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS, Lim WA. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 2015; 160:339-50. [PMID: 25533786 PMCID: PMC4297522 DOI: 10.1016/j.cell.2014.11.052] [Citation(s) in RCA: 707] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/27/2014] [Accepted: 11/19/2014] [Indexed: 12/28/2022]
Abstract
Eukaryotic cells execute complex transcriptional programs in which specific loci throughout the genome are regulated in distinct ways by targeted regulatory assemblies. We have applied this principle to generate synthetic CRISPR-based transcriptional programs in yeast and human cells. By extending guide RNAs to include effector protein recruitment sites, we construct modular scaffold RNAs that encode both target locus and regulatory action. Sets of scaffold RNAs can be used to generate synthetic multigene transcriptional programs in which some genes are activated and others are repressed. We apply this approach to flexibly redirect flux through a complex branched metabolic pathway in yeast. Moreover, these programs can be executed by inducing expression of the dCas9 protein, which acts as a single master regulatory control point. CRISPR-associated RNA scaffolds provide a powerful way to construct synthetic gene expression programs for a wide range of applications, including rewiring cell fates or engineering metabolic pathways.
Collapse
Affiliation(s)
- Jesse G Zalatan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michael E Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ricardo Almeida
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Luke A Gilbert
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Evan H Whitehead
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; UCSF Center for Systems and Synthetic Biology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Marie La Russa
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; UCSF Center for Systems and Synthetic Biology, University of California San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jordan C Tsai
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA
| | - John E Dueber
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lei S Qi
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; UCSF Center for Systems and Synthetic Biology, University of California San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA.
| | - Wendell A Lim
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA; UCSF Center for Systems and Synthetic Biology, University of California San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA.
| |
Collapse
|
484
|
Jensen MK, Keasling JD. Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res 2015; 15:1-10. [PMID: 25041737 DOI: 10.1111/1567-1364.12185] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/04/2014] [Accepted: 07/10/2014] [Indexed: 11/29/2022] Open
Abstract
The last 20 years of metabolic engineering has enabled bio-based production of fuels and chemicals from renewable carbon sources using cost-effective bioprocesses. Much of this work has been accomplished using engineered microorganisms that act as chemical factories. Although the time required to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed synthetic biology tools and their application to improve production of chemicals and fuels in yeast. Finally, we provide a perspective for the challenges that lie ahead.
Collapse
Affiliation(s)
- Michael K Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.,Joint BioEnergy Institute, Emeryville, CA, USA.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Chemical and Biomolecular Engineering & Department of Bioengineering University of California, Berkeley, CA, USA
| |
Collapse
|
485
|
HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa. PLoS Genet 2014; 10:e1004783. [PMID: 25412208 PMCID: PMC4238974 DOI: 10.1371/journal.pgen.1004783] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every ∼8 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta. Via co-immunoprecipitation experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2 cascade to upstream factors and proteins involved in this intriguing process of fungal communication. Cell fusion between genetically identical cells of the fungus Neurospora crassa occurs when germinating asexual cells (conidia) sense each other's proximity and redirect their growth. Chemotropic growth is dependent upon the assembly of a MAPK cascade (NRC-1/MEK-2/MAK-2) at the cell cortex (conidial anastomosis tubes; CATs), followed by disassembly over an ∼8 min cycle. A second protein required for fusion, SO, also assembles and disassembles at CAT tips during chemotropic growth, but with perfectly opposite dynamics to the MAK-2 complex. This process of germling chemotropism, oscillation and cell fusion is regulated by many genes and is poorly understood. Via a phosphoproteomics approach, we identify HAM-5, which functions as a scaffold for the MAK-2 signal transduction complex. HAM-5 is required for assembly/disassembly and oscillation of the MAK-2 complex during chemotropic growth. Our data supports a model whereby regulated modification of HAM-5 controls the disassembly of the MAK-2 MAPK complex and is essential for modulating the tempo of oscillation during chemotropic interactions.
Collapse
|
486
|
Jones LH, Narayanan A, Hett EC. Understanding and applying tyrosine biochemical diversity. MOLECULAR BIOSYSTEMS 2014; 10:952-69. [PMID: 24623162 DOI: 10.1039/c4mb00018h] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review highlights some of the recent advances made in our understanding of the diversity of tyrosine biochemistry and shows how this has inspired novel applications in numerous areas of molecular design and synthesis, including chemical biology and bioconjugation. The pathophysiological implications of tyrosine biochemistry will be presented from a molecular perspective and the opportunities for therapeutic intervention explored.
Collapse
Affiliation(s)
- Lyn H Jones
- Pfizer R&D, Chemical Biology Group, BioTherapeutics Chemistry, WorldWide Medicinal Chemistry, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | | | | |
Collapse
|
487
|
Coles CH, Mitakidis N, Zhang P, Elegheert J, Lu W, Stoker AW, Nakagawa T, Craig AM, Jones EY, Aricescu AR. Structural basis for extracellular cis and trans RPTPσ signal competition in synaptogenesis. Nat Commun 2014; 5:5209. [PMID: 25385546 PMCID: PMC4239663 DOI: 10.1038/ncomms6209] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/09/2014] [Indexed: 01/26/2023] Open
Abstract
Receptor protein tyrosine phosphatase sigma (RPTPσ) regulates neuronal extension and acts as a presynaptic nexus for multiple protein and proteoglycan interactions during synaptogenesis. Unknown mechanisms govern the shift in RPTPσ function, from outgrowth promotion to synaptic organization. Here, we report crystallographic, electron microscopic and small-angle X-ray scattering analyses, which reveal sufficient inter-domain flexibility in the RPTPσ extracellular region for interaction with both cis (same cell) and trans (opposite cell) ligands. Crystal structures of RPTPσ bound to its postsynaptic ligand TrkC detail an interaction surface partially overlapping the glycosaminoglycan-binding site. Accordingly, heparan sulphate and heparin oligomers compete with TrkC for RPTPσ binding in vitro and disrupt TrkC-dependent synaptic differentiation in neuronal co-culture assays. We propose that transient RPTPσ ectodomain emergence from the presynaptic proteoglycan layer allows capture by TrkC to form a trans-synaptic complex, the consequent reduction in RPTPσ flexibility potentiating interactions with additional ligands to orchestrate excitatory synapse formation.
Collapse
Affiliation(s)
- Charlotte H. Coles
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Nikolaos Mitakidis
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Peng Zhang
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| | - Jonathan Elegheert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Weixian Lu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Andrew W. Stoker
- Cancer Section, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, 702 Light Hall (0615), Nashville, Tennessee 37232-0615, USA
| | - Ann Marie Craig
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - A. Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
488
|
Bonnemay L, Hoffmann C, Gueroui Z. Remote control of signaling pathways using magnetic nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:342-54. [DOI: 10.1002/wnan.1313] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/04/2014] [Accepted: 09/29/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Louise Bonnemay
- Département de ChimieEcole Normale Supérieure ‐ PSL Research University, UMR 8640 ‐ CNRS ‐ ENS ‐ UPMCParisFrance
| | - Céline Hoffmann
- Département de ChimieEcole Normale Supérieure ‐ PSL Research University, UMR 8640 ‐ CNRS ‐ ENS ‐ UPMCParisFrance
| | - Zoher Gueroui
- Département de ChimieEcole Normale Supérieure ‐ PSL Research University, UMR 8640 ‐ CNRS ‐ ENS ‐ UPMCParisFrance
| |
Collapse
|
489
|
Yi P, Chew LL, Zhang Z, Ren H, Wang F, Cong X, Zheng L, Luo Y, Ouyang H, Low BC, Zhou YT. KIF5B transports BNIP-2 to regulate p38 mitogen-activated protein kinase activation and myoblast differentiation. Mol Biol Cell 2014; 26:29-42. [PMID: 25378581 PMCID: PMC4279227 DOI: 10.1091/mbc.e14-03-0797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cdo bridges scaffold proteins BNIP-2 and JLP to activate p38MAPK during myoblast differentiation. KIF5B is a novel interacting partner of BNIP-2 and promotes myogenic differentiation. KIF5B-dependent transport of BNIP-2 is essential for its promyogenic effects. The Cdo-p38MAPK (p38 mitogen-activated protein kinase) signaling pathway plays important roles in regulating skeletal myogenesis. During myogenic differentiation, the cell surface receptor Cdo bridges scaffold proteins BNIP-2 and JLP and activates p38MAPK, but the spatial-temporal regulation of this process is largely unknown. We here report that KIF5B, the heavy chain of kinesin-1 motor, is a novel interacting partner of BNIP-2. Coimmunoprecipitation and far-Western study revealed that BNIP-2 directly interacted with the motor and tail domains of KIF5B via its BCH domain. By using a range of organelle markers and live microscopy, we determined the endosomal localization of BNIP-2 and revealed the microtubule-dependent anterograde transport of BNIP-2 in C2C12 cells. The anterograde transport of BNIP-2 was disrupted by a dominant-negative mutant of KIF5B. In addition, knockdown of KIF5B causes aberrant aggregation of BNIP-2, confirming that KIF5B is critical for the anterograde transport of BNIP-2 in cells. Gain- and loss-of-function experiments further showed that KIF5B modulates p38MAPK activity and in turn promotes myogenic differentiation. Of importance, the KIF5B-dependent anterograde transport of BNIP-2 is critical for its promyogenic effects. Our data reveal a novel role of KIF5B in the spatial regulation of Cdo–BNIP-2–p38MAPK signaling and disclose a previously unappreciated linkage between the intracellular transporting system and myogenesis regulation.
Collapse
Affiliation(s)
- Peng Yi
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li Li Chew
- Department of Biological Sciences and Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Ziwang Zhang
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hao Ren
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feiya Wang
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoxia Cong
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liling Zheng
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and
| | - Yan Luo
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and
| | - Hongwei Ouyang
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Boon Chuan Low
- Department of Biological Sciences and Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Yi Ting Zhou
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
490
|
Hu Y, Wang F, Lu CH, Girsh J, Golub E, Willner I. Switchable Enzyme/DNAzyme Cascades by the Reconfiguration of DNA Nanostructures. Chemistry 2014; 20:16203-9. [DOI: 10.1002/chem.201404122] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 01/16/2023]
|
491
|
Patrick R, Lê Cao KA, Kobe B, Bodén M. PhosphoPICK: modelling cellular context to map kinase-substrate phosphorylation events. ACTA ACUST UNITED AC 2014; 31:382-9. [PMID: 25304781 DOI: 10.1093/bioinformatics/btu663] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MOTIVATION The determinants of kinase-substrate phosphorylation can be found both in the substrate sequence and the surrounding cellular context. Cell cycle progression, interactions with mediating proteins and even prior phosphorylation events are necessary for kinases to maintain substrate specificity. While much work has focussed on the use of sequence-based methods to predict phosphorylation sites, there has been very little work invested into the application of systems biology to understand phosphorylation. Lack of specificity in many kinase substrate binding motifs means that sequence methods for predicting kinase binding sites are susceptible to high false-positive rates. RESULTS We present here a model that takes into account protein-protein interaction information, and protein abundance data across the cell cycle to predict kinase substrates for 59 human kinases that are representative of important biological pathways. The model shows high accuracy for substrate prediction (with an average AUC of 0.86) across the 59 kinases tested. When using the model to complement sequence-based kinase-specific phosphorylation site prediction, we found that the additional information increased prediction performance for most comparisons made, particularly on kinases from the CMGC family. We then used our model to identify functional overlaps between predicted CDK2 substrates and targets from the E2F family of transcription factors. Our results demonstrate that a model harnessing context data can account for the short-falls in sequence information and provide a robust description of the cellular events that regulate protein phosphorylation. AVAILABILITY AND IMPLEMENTATION The method is freely available online as a web server at the website http://bioinf.scmb.uq.edu.au/phosphopick. CONTACT m.boden@uq.edu.au SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ralph Patrick
- School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia
| | - Kim-Anh Lê Cao
- School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia School of Chemistry and Molecular Biosciences and Queensland Facility for Advanced Bioinformatics, The University of Queensland, St Lucia 4072, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, St Lucia 4102, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia
| |
Collapse
|
492
|
Aryal UK, Xiong Y, McBride Z, Kihara D, Xie J, Hall MC, Szymanski DB. A proteomic strategy for global analysis of plant protein complexes. THE PLANT CELL 2014; 26:3867-82. [PMID: 25293756 PMCID: PMC4247564 DOI: 10.1105/tpc.114.127563] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/11/2014] [Accepted: 09/18/2014] [Indexed: 05/20/2023]
Abstract
Global analyses of protein complex assembly, composition, and location are needed to fully understand how cells coordinate diverse metabolic, mechanical, and developmental activities. The most common methods for proteome-wide analysis of protein complexes rely on affinity purification-mass spectrometry or yeast two-hybrid approaches. These methods are time consuming and are not suitable for many plant species that are refractory to transformation or genome-wide cloning of open reading frames. Here, we describe the proof of concept for a method allowing simultaneous global analysis of endogenous protein complexes that begins with intact leaves and combines chromatographic separation of extracts from subcellular fractions with quantitative label-free protein abundance profiling by liquid chromatography-coupled mass spectrometry. Applying this approach to the crude cytosolic fraction of Arabidopsis thaliana leaves using size exclusion chromatography, we identified hundreds of cytosolic proteins that appeared to exist as components of stable protein complexes. The reliability of the method was validated by protein immunoblot analysis and comparisons with published size exclusion chromatography data and the masses of known complexes. The method can be implemented with appropriate instrumentation, is applicable to any biological system, and has the potential to be further developed to characterize the composition of protein complexes and measure the dynamics of protein complex localization and assembly under different conditions.
Collapse
Affiliation(s)
- Uma K Aryal
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Yi Xiong
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Zachary McBride
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 Department of Computer Science, Purdue University, West Lafayette, Indiana 47907
| | - Jun Xie
- Department of Statistics, Purdue University, West Lafayette, Indiana 47907
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Daniel B Szymanski
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
493
|
Nafis S, Kalaiarasan P, Brojen Singh RK, Husain M, Bamezai RNK. Apoptosis regulatory protein-protein interaction demonstrates hierarchical scale-free fractal network. Brief Bioinform 2014; 16:675-99. [PMID: 25256288 DOI: 10.1093/bib/bbu036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/21/2014] [Indexed: 12/29/2022] Open
Abstract
Dysregulation or inhibition of apoptosis favors cancer and many other diseases. Understanding of the network interaction of the genes involved in apoptotic pathway, therefore, is essential, to look for targets of therapeutic intervention. Here we used the network theory methods, using experimentally validated 25 apoptosis regulatory proteins and identified important genes for apoptosis regulation, which demonstrated a hierarchical scale-free fractal protein-protein interaction network. TP53, BRCA1, UBIQ and CASP3 were recognized as a four key regulators. BRCA1 and UBIQ were also individually found to control highly clustered modules and play an important role in the stability of the overall network. The connection among the BRCA1, UBIQ and TP53 proteins was found to be important for regulation, which controlled their own respective communities and the overall network topology. The feedback loop regulation motif was identified among NPM1, BRCA1 and TP53, and these crucial motif topologies were also reflected in high frequency. The propagation of the perturbed signal from hubs was found to be active upto some distance, after which propagation started decreasing and TP53 was the most efficient signal propagator. From the functional enrichment analysis, most of the apoptosis regulatory genes associated with cardiovascular diseases and highly expressed in brain tissues were identified. Apart from TP53, BRCA1 was observed to regulate apoptosis by influencing motif, propagation of signals and module regulation, reflecting their biological significance. In future, biochemical investigation of the observed hub-interacting partners could provide further understanding about their role in the pathophysiology of cancer.
Collapse
|
494
|
An optimized optogenetic clustering tool for probing protein interaction and function. Nat Commun 2014; 5:4925. [PMID: 25233328 PMCID: PMC4170572 DOI: 10.1038/ncomms5925] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/06/2014] [Indexed: 12/24/2022] Open
Abstract
The Arabidopsis photoreceptor cryptochrome 2 (CRY2) was previously used as an optogenetic module, allowing spatiotemporal control of cellular processes with light. Here we report the development of a new CRY2-derived optogenetic module, 'CRY2olig', which induces rapid, robust, and reversible protein oligomerization in response to light. Using this module, we developed a novel protein interaction assay, Light-Induced Co-clustering, that can be used to interrogate protein interaction dynamics in live cells. In addition to use probing protein interactions, CRY2olig can also be used to induce and reversibly control diverse cellular processes with spatial and temporal resolution. Here we demonstrate disrupting clathrin-mediated endocytosis and promoting Arp2/3-mediated actin polymerization with light. These new CRY2-based approaches expand the growing arsenal of optogenetic strategies to probe cellular function.
Collapse
|
495
|
Clancy T, Hovig E. From proteomes to complexomes in the era of systems biology. Proteomics 2014; 14:24-41. [PMID: 24243660 DOI: 10.1002/pmic.201300230] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/22/2013] [Accepted: 11/06/2013] [Indexed: 01/16/2023]
Abstract
Protein complexes carry out almost the entire signaling and functional processes in the cell. The protein complex complement of a cell, and its network of complex-complex interactions, is referred to here as the complexome. Computational methods to predict protein complexes from proteomics data, resulting in network representations of complexomes, have recently being developed. In addition, key advances have been made toward understanding the network and structural organization of complexomes. We review these bioinformatics advances, and their discovery-potential, as well as the merits of integrating proteomics data with emerging methods in systems biology to study protein complex signaling. It is envisioned that improved integration of proteomics and systems biology, incorporating the dynamics of protein complexes in space and time, may lead to more predictive models of cell signaling networks for effective modulation.
Collapse
Affiliation(s)
- Trevor Clancy
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
496
|
Katsura KA, Horst JA, Chandra D, Le TQ, Nakano Y, Zhang Y, Horst OV, Zhu L, Le MH, DenBesten PK. WDR72 models of structure and function: a stage-specific regulator of enamel mineralization. Matrix Biol 2014; 38:48-58. [PMID: 25008349 PMCID: PMC4185229 DOI: 10.1016/j.matbio.2014.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 06/21/2014] [Accepted: 06/26/2014] [Indexed: 12/18/2022]
Abstract
Amelogenesis Imperfecta (AI) is a clinical diagnosis that encompasses a group of genetic mutations, each affecting processes involved in tooth enamel formation and thus, result in various enamel defects. The hypomaturation enamel phenotype has been described for mutations involved in the later stage of enamel formation, including Klk4, Mmp20, C4orf26, and Wdr72. Using a candidate gene approach we discovered a novel Wdr72 human mutation in association with AI to be a 5-base pair deletion (c.806_810delGGCAG; p.G255VfsX294). To gain insight into the function of WDR72, we used computer modeling of the full-length human WDR72 protein structure and found that the predicted N-terminal sequence forms two beta-propeller folds with an alpha-solenoid tail at the C-terminus. This domain iteration is characteristic of vesicle coat proteins, such as beta'-COP, suggesting a role for WDR72 in the formation of membrane deformation complexes to regulate intracellular trafficking. Our Wdr72 knockout mouse model (Wdr72(-/-)), containing a LacZ reporter knock-in, exhibited hypomineralized enamel similar to the AI phenotype observed in humans with Wdr72 mutations. MicroCT scans of Wdr72(-/-) mandibles affirmed the hypomineralized enamel phenotype occurring at the onset of the maturation stage. H&E staining revealed a shortened height phenotype in the Wdr72(-/-) ameloblasts with retained proteins in the enamel matrix during maturation stage. H(+)/Cl(-) exchange transporter 5 (CLC5), an early endosome acidifier, was co-localized with WDR72 in maturation-stage ameloblasts and decreased in Wdr72(-/-) maturation-stage ameloblasts. There were no obvious differences in RAB4A and LAMP1 immunostaining of Wdr72(-/-) mice as compared to wildtype controls. Moreover, Wdr72(-/-) ameloblasts had reduced amelogenin immunoreactivity, suggesting defects in amelogenin fragment resorption from the matrix. These data demonstrate that WDR72 has a major role in enamel mineralization, most notably during the maturation stage, and suggest a function involving endocytic vesicle trafficking, possibly in the removal of amelogenin proteins.
Collapse
Affiliation(s)
- K A Katsura
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143-0422, USA
| | - J A Horst
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143-0422, USA
| | - D Chandra
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143-0422, USA
| | - T Q Le
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143-0422, USA
| | - Y Nakano
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143-0422, USA
| | - Y Zhang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143-0422, USA
| | - O V Horst
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143-0422, USA
| | - L Zhu
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143-0422, USA
| | - M H Le
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143-0422, USA
| | - P K DenBesten
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143-0422, USA
| |
Collapse
|
497
|
Sherman DR, Grundner C. Agents of change - concepts in Mycobacterium tuberculosis Ser/Thr/Tyr phosphosignalling. Mol Microbiol 2014; 94:231-41. [PMID: 25099260 DOI: 10.1111/mmi.12747] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2014] [Indexed: 11/26/2022]
Abstract
The flow of information from the outside to the inside of bacterial cells is largely directed by protein kinases. In addition to histidine/aspartate phosphorelays of two-component response regulators, recent work in Mycobacterium tuberculosis (Mtb) reinforces the idea that phosphorylation on serine (Ser), threonine (Thr) and tyrosine (Tyr) is central to bacterial physiology and pathogenesis, and that the corresponding phosphosystems are highly similar to those in eukaryotes. In this way, eukaryotes are a useful guide to understanding Ser/Thr/Tyr phosphorylation (O-phosphorylation) in prokaryotes such as Mtb. However, as novel functions and components of bacterial O-phosphorylation are identified, distinct differences between pro- and eukaryotic phosphosignalling systems become apparent. The emerging picture of O-phosphorylation in Mtb is complicated, goes beyond the eukaryotic paradigms, and shows the limitations of viewing bacterial phosphosignalling within the confines of the 'eukaryotic-like' model. Here, we summarize recent findings about Ser/Thr and the recently discovered Tyr phosphorylation pathways in Mtb, highlight the similarities and differences between eukaryotic and prokaryotic O-phosphorylation, and pose additional questions about signalling components, pathway organization, and ultimately, the cellular roles of O-phosphorylation in Mtb physiology and pathogenesis.
Collapse
Affiliation(s)
- David R Sherman
- Seattle Biomedical Research Institute, Seattle, WA, 98109, USA; Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | | |
Collapse
|
498
|
Luo N, Knudson W, Askew EB, Veluci R, Knudson CB. CD44 and hyaluronan promote the bone morphogenetic protein 7 signaling response in murine chondrocytes. Arthritis Rheumatol 2014; 66:1547-58. [PMID: 24497488 DOI: 10.1002/art.38388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/28/2014] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Cell-matrix interactions promote cartilage homeostasis. We previously found that Smad1, the transcriptional modulator of the canonical bone morphogenetic protein 7 (BMP-7) pathway, interacted with the cytoplasmic domain of CD44, the principal hyaluronan receptor on chondrocytes. To elucidate the physiologic function of CD44-Smad1 interactions, as well as the role of hyaluronan, we studied the response of chondrocytes isolated from CD44(-/-) and BALB/c (wild-type [WT]) mice to stimulation with BMP-7. METHODS In primary murine chondrocytes, CD44 expression was decreased by small interfering RNA (siRNA) transfection or was enhanced by plasmid transfection. Pericellular hyaluronan was removed by hyaluronidase treatment, or its endogenous synthesis was inhibited. Changes in response to BMP-7 stimulation were evaluated by Western blotting of Smad1 phosphorylation and aggrecan messenger RNA (mRNA) expression. RESULTS Chondrocytes from CD44(-/-) mice and WT mice transfected with CD44 siRNA were less responsive than untransfected chondrocytes from WT mice to BMP-7. CD44(-/-) mouse chondrocytes transfected with pCD44 showed increased sensitivity to BMP-7. Significant increases in aggrecan mRNA were observed in WT mouse chondrocytes in response to 10 ng/ml of BMP-7, whereas at least 100 ng/ml of BMP-7 was required for CD44(-/-) mouse chondrocytes. However, in chondrocytes from CD44(-/-) and WT mice, hyaluronidase treatment decreased cellular responses to BMP-7. Treatment of both bovine and murine chondrocytes with 4-methylumbelliferone to reduce the synthesis of endogenous hyaluronan confirmed that hyaluronan promoted BMP-7 signaling. CONCLUSION Taken together, these investigations into the mechanisms underlying BMP-7 signaling in chondrocytes revealed that while hyaluronan-dependent pericellular matrix is critical for BMP-7 signaling, the expression of CD44 promotes the cellular response to lower concentrations of BMP-7.
Collapse
Affiliation(s)
- Na Luo
- East Carolina University, Brody School of Medicine, Greenville, North Carolina; Nankai University School of Medicine, Tianjin, China
| | | | | | | | | |
Collapse
|
499
|
Ito T, Nakata M, Fukazawa J, Ishida S, Takahashi Y. Scaffold Function of Ca2+-Dependent Protein Kinase: Tobacco Ca2+-DEPENDENT PROTEIN KINASE1 Transfers 14-3-3 to the Substrate REPRESSION OF SHOOT GROWTH after Phosphorylation. PLANT PHYSIOLOGY 2014; 165:1737-1750. [PMID: 24920444 PMCID: PMC4119052 DOI: 10.1104/pp.114.236448] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A molecular mechanism to ensure signaling specificity is a scaffold. REPRESSION OF SHOOT GROWTH (RSG) is a tobacco (Nicotiana tabacum) transcription factor that is involved in gibberellin feedback regulation. The 14-3-3 proteins negatively regulate RSG by sequestering it in the cytoplasm in response to gibberellins. The N. tabacum Ca2+-dependent protein kinase NtCDPK1 was identified as an RSG kinase that promotes 14-3-3 binding of RSG by phosphorylation of RSG. CDPKs are unique sensor responders of Ca2+ that are only found in plants and some protozoans. Here, we report a scaffolding function of CDPK. 14-3-3 proteins bound to NtCDPK1 by a new mode. Autophosphorylation of NtCDPK1 was necessary for the formation of the binding between NtCDPK1 and 14-3-3 but not for its maintenance. NtCDPK1 formed a heterotrimer with RSG and 14-3-3. Furthermore, we found that NtCDPK1 transfers 14-3-3 to RSG after phosphorylation of RSG and that RSG dissociates from NtCDPK1 as a complex with 14-3-3. These results suggest that NtCDPK1 is an interesting scaffolding kinase that increases the specificity and efficiency of signaling by coupling catalysis with scaffolding on the same protein.
Collapse
Affiliation(s)
- Takeshi Ito
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan (T.I., M.N., J.F., Y.T.); andDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan (S.I.)
| | - Masaru Nakata
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan (T.I., M.N., J.F., Y.T.); andDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan (S.I.)
| | - Jutarou Fukazawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan (T.I., M.N., J.F., Y.T.); andDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan (S.I.)
| | - Sarahmi Ishida
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan (T.I., M.N., J.F., Y.T.); andDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan (S.I.)
| | - Yohsuke Takahashi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan (T.I., M.N., J.F., Y.T.); andDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan (S.I.)
| |
Collapse
|
500
|
Sarikaya-Bayram O, Bayram O, Feussner K, Kim JH, Kim HS, Kaever A, Feussner I, Chae KS, Han DM, Han KH, Braus GH. Membrane-bound methyltransferase complex VapA-VipC-VapB guides epigenetic control of fungal development. Dev Cell 2014; 29:406-20. [PMID: 24871947 DOI: 10.1016/j.devcel.2014.03.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 02/26/2014] [Accepted: 03/25/2014] [Indexed: 12/16/2022]
Abstract
Epigenetic and transcriptional control of gene expression must be coordinated in response to external signals to promote alternative multicellular developmental programs. The membrane-associated trimeric complex VapA-VipC-VapB controls a signal transduction pathway for fungal differentiation. The VipC-VapB methyltransferases are tethered to the membrane by the FYVE-like zinc finger protein VapA, allowing the nuclear VelB-VeA-LaeA complex to activate transcription for sexual development. Once the release from VapA is triggered, VipC-VapB is transported into the nucleus. VipC-VapB physically interacts with VeA and reduces its nuclear import and protein stability, thereby reducing the nuclear VelB-VeA-LaeA complex. Nuclear VapB methyltransferase diminishes the establishment of facultative heterochromatin by decreasing histone 3 lysine 9 trimethylation (H3K9me3). This favors activation of the regulatory genes brlA and abaA, which promote the asexual program. The VapA-VipC-VapB methyltransferase pathway combines control of nuclear import and stability of transcription factors with histone modification to foster appropriate differentiation responses.
Collapse
Affiliation(s)
- Ozlem Sarikaya-Bayram
- Department of Molecular Microbiology and Genetics, Georg August University, Grisebachstrasse 8, Göttingen 37077, Germany
| | - Ozgür Bayram
- Department of Molecular Microbiology and Genetics, Georg August University, Grisebachstrasse 8, Göttingen 37077, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, Georg August University, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany
| | - Jong-Hwa Kim
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 565-701, Korea
| | - Hee-Seo Kim
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 565-701, Korea; Department of Molecular Biology, Chonbuk National University, Jeonju 561-756, Korea
| | - Alexander Kaever
- Department of Bioinformatics, Georg August University, Goldschmidtstrasse 1, Göttingen 37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Georg August University, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany
| | - Keon-Sang Chae
- Department of Molecular Biology, Chonbuk National University, Jeonju 561-756, Korea
| | - Dong-Min Han
- Division of Life Sciences, Wonkwang University, Iksan 570-749, Korea
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 565-701, Korea
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Georg August University, Grisebachstrasse 8, Göttingen 37077, Germany.
| |
Collapse
|