451
|
Yang S, Zhao S, Ye Y, Jia L, Lou Y. Global research trends on the links between gut microbiota and cancer immunotherapy: A bibliometric analysis (2012-2021). Front Immunol 2022; 13:952546. [PMID: 36090978 PMCID: PMC9449151 DOI: 10.3389/fimmu.2022.952546] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background There is a crosstalk between gut microbiota (GM) and cancer immunotherapy (CI). The purpose of this study is to use bibliometric analysis to identify the highly cited papers relating to GM/CI and explore the research status and development trends of the GM/CI research. Methods A literature search regarding GM/CI publications from 2012 to 2021 was undertaken on July 4, 2022. The article titles, journals, authors, institutions, countries, total citations, keywords, and other information were extracted from the Science Citation Index Expanded (SCIE) of Web of Science Core Collection (WoSCC). The Bibliometrix of R package and VOSviewer were used for bibliometric analysis. Results A total of 665 papers were extracted. The number of papers has increased rapidly over the past decade, especially after 2018. The United States and China had the most publications and made great contributions to this field. Th5e Univ Texas MD Anderson Canc Ctr and Univ Paris Saclay were absolutely in the leading position in GM/CI. The most influential authors were Zitvogel L and Routy B. Frontiers in Immunology had the most publications and Science had the most total citations. Historical direct citation analysis explained the historical evolution in GM/CI. Highly cited papers and high-frequency keywords illustrated the current status and trends of GM/CI. Four clusters were identified and the important topics included the role of GM and antibiotics in CI, the methods of targeting GM to improve CI outcomes, the mechanism by which GM affects CI and the application of ICIs in melanoma. “Tumor microbiome”, “proton pump inhibitors” and “prognosis” may be the new focus of attention in the next few years. Conclusion This study filtered global publications on GM/CI correlation and analyzed their bibliometric characteristics, identified the most cited papers in GM/CI, and gained insight into the status, hotspots and trends of global GM/CI research, which may inform researchers and practitioners of future directions.
Collapse
Affiliation(s)
- Shanshan Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Suya Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yixiang Ye
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Liqun Jia
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia, ; Yanni Lou,
| | - Yanni Lou
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia, ; Yanni Lou,
| |
Collapse
|
452
|
Genta S, Coburn B, Cescon DW, Spreafico A. Patient-derived cancer models: Valuable platforms for anticancer drug testing. Front Oncol 2022; 12:976065. [PMID: 36033445 PMCID: PMC9413077 DOI: 10.3389/fonc.2022.976065] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Molecularly targeted treatments and immunotherapy are cornerstones in oncology, with demonstrated efficacy across different tumor types. Nevertheless, the overwhelming majority metastatic disease is incurable due to the onset of drug resistance. Preclinical models including genetically engineered mouse models, patient-derived xenografts and two- and three-dimensional cell cultures have emerged as a useful resource to study mechanisms of cancer progression and predict efficacy of anticancer drugs. However, variables including tumor heterogeneity and the complexities of the microenvironment can impair the faithfulness of these platforms. Here, we will discuss advantages and limitations of these preclinical models, their applicability for drug testing and in co-clinical trials and potential strategies to increase their reliability in predicting responsiveness to anticancer medications.
Collapse
Affiliation(s)
- Sofia Genta
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Bryan Coburn
- Division of Infectious Diseases, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - David W. Cescon
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
453
|
Schemczssen-Graeff Z, Pileggi M. Probiotics and live biotherapeutic products aiming at cancer mitigation and patient recover. Front Genet 2022; 13:921972. [PMID: 36017495 PMCID: PMC9395637 DOI: 10.3389/fgene.2022.921972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Molecular biology techniques allowed access to non-culturable microorganisms, while studies using analytical chemistry, as Liquid Chromatography and Tandem Mass Spectrometry, showed the existence of a complex communication system among bacteria, signaled by quorum sensing molecules. These approaches also allowed the understanding of dysbiosis, in which imbalances in the microbiome diversity, caused by antibiotics, environmental toxins and processed foods, lead to the constitution of different diseases, as cancer. Colorectal cancer, for example, can originate by a dysbiosis configuration, which leads to biofilm formation, production of toxic metabolites, DNA damage in intestinal epithelial cells through the secretion of genotoxins, and epigenetic regulation of oncogenes. However, probiotic strains can also act in epigenetic processes, and so be use for recovering important intestinal functions and controlling dysbiosis and cancer mitigation through the metabolism of drugs used in chemotherapy, controlling the proliferation of cancer cells, improving the immune response of the host, regulation of cell differentiation and apoptosis, among others. There are still gaps in studies on the effectiveness of the use of probiotics, therefore omics and analytical chemistry are important approaches to understand the role of bacterial communication, formation of biofilms, and the effects of probiotics and microbiome on chemotherapy. The use of probiotics, prebiotics, synbiotics, and metabiotics should be considered as a complement to other more invasive and hazard therapies, such chemotherapy, surgery, and radiotherapy. The study of potential bacteria for cancer treatment, as the next-generation probiotics and Live Biotherapeutic Products, can have a controlling action in epigenetic processes, enabling the use of these bacteria for the mitigation of specific diseases through changes in the regulation of genes of microbiome and host. Thus, it is possible that a path of medicine in the times to come will be more patient-specific treatments, depending on the environmental, genetic, epigenetic and microbiome characteristics of the host.
Collapse
Affiliation(s)
- Zelinda Schemczssen-Graeff
- Comparative Immunology Laboratory, Department of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Marcos Pileggi
- Environmental Microbiology Laboratory, Structural and Molecular Biology and Genetics Department, Life Sciences and Health Institute, Ponta Grossa State University, Ponta Grossa, Brazil
- *Correspondence: Marcos Pileggi,
| |
Collapse
|
454
|
Zhou P, Hu Y, Wang X, Shen L, Liao X, Zhu Y, Yu J, Zhao F, Zhou Y, Shen H, Li J. Microbiome in cancer: An exploration of carcinogenesis, immune responses and immunotherapy. Front Immunol 2022; 13:877939. [PMID: 36003378 PMCID: PMC9393638 DOI: 10.3389/fimmu.2022.877939] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is a major disease endangering human health. More and more studies have shown that microorganisms play an extremely important role in the occurrence, development and treatment of tumors. As a very promising tumor treatment strategy, immunotherapy has also been proved to have a great relationship with microorganisms. Here, the authors review the contribution of the microbiota to cancer and the research on its impact on cancer immunotherapy. We also highlight the possible mechanism of their interaction and outlined the potential application of microbiota in tumor immunotherapy.
Collapse
Affiliation(s)
- Pei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Luxuan Shen
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Xinghao Liao
- Department of Medical Examination, Chengdu Seventh People’s Hospital, Chengdu, China
| | - Yajuan Zhu
- Department of Biotherapy and Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yi Zhou
- Department of Medical Examination, Chengdu Seventh People’s Hospital, Chengdu, China
| | - Hengshui Shen
- Sichuan Aupone Pharmaceutical Co., Ltd, Chengdu, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
- *Correspondence: Jiong Li,
| |
Collapse
|
455
|
Fang Y, Yang G, Yang J, Ren J, You L, Zhao Y. Human microbiota colonization and pancreatic ductal carcinoma. Crit Rev Microbiol 2022:1-14. [PMID: 35924947 DOI: 10.1080/1040841x.2022.2080526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high mortality rate and a poor prognosis. The human microbiota has been confirmed to participate in oncogenesis and may influence the treatment response to both chemotherapy and immunotherapy. Evidence for the association of the microbiota with PDAC risk, tumorigenesis, treatment response, and survival period is rapidly emerging. The oral microbiota and gut microbiota have the potential to be used in early diagnosis and risk stratification. Intratumor microbiota-targeted intervention strategies may be used as adjuvants to current treatments to improve therapeutic efficacy and overall survival. Here, we summarize the effect and association of the oral, gut and intratumor microbiota on the oncogenesis, progression and treatment of PDAC, as well as the potential of the microbiota to serve as a biomarker for the diagnosis and prognosis of PDAC, as well as a therapeutic target.
Collapse
Affiliation(s)
- Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
456
|
He X, Sun C, Fang J, Wu C, Zhang Y, Zhang X, Fang Y. In Vitro Colonic Fermentation Profiles and Microbial Responses of Cellulose Derivatives with Different Colloidal States. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9509-9519. [PMID: 35881531 DOI: 10.1021/acs.jafc.2c01721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although cellulose derivatives are widely applied in the food industry, the effects of their structural properties on colonic health is unknown. Here, four types of cellulose derivatives, including microcrystalline cellulose (MCC), TEMPO-oxidized nanofibrillated cellulose (TOCNF), TEMPO-oxidized nanocrystalline cellulose (TOCNC), and carboxymethyl cellulose (CMC) were selected to investigate their in vitro fermentation profiles. TOCNF exhibited the highest production of total short-chain fatty acids (SCFAs), followed by TOCNC. The results suggested that reduced particle size and increased aspect ratio improved the fermentability of insoluble cellulose derivatives. MCC and CMC were barely fermented with similar total SCFAs production as the blank. 16S rRNA sequencing revealed that the fermentation of cellulose derivatives resulted in divergent microbial community structures. Moreover, Bacteroides cellulosilyticus showed high specificity to utilize TOCNF and TOCNC. The findings demonstrated that the colloidal states of cellulose derivatives, such as size and solubility, were important factors governing microbial community composition and metabolites.
Collapse
Affiliation(s)
- Xiangxiang He
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayi Fang
- Department of Polymers Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenxi Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Xiaowei Zhang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
457
|
Peiffer LB, White JR, Jones CB, Slottke RE, Ernst SE, Moran AE, Graff JN, Sfanos KS. Composition of gastrointestinal microbiota in association with treatment response in individuals with metastatic castrate resistant prostate cancer progressing on enzalutamide and initiating treatment with anti-PD-1 (pembrolizumab). Neoplasia 2022; 32:100822. [PMID: 35908379 PMCID: PMC9340532 DOI: 10.1016/j.neo.2022.100822] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 01/04/2023]
Abstract
Recent studies in cancer patients and animal models demonstrate that intestinal microbiota influence the therapeutic efficacy of cancer treatments, including immune checkpoint inhibition. However, no studies to-date have investigated relationships between gastrointestinal microbiota composition and response to checkpoint inhibition in advanced metastatic castrate resistant prostate cancer (mCRPC). We performed 16S rRNA gene sequencing of fecal DNA from 23 individuals with mCRPC progressing on enzalutamide and just prior to treatment with anti-PD-1 (pembrolizumab) to determine whether certain features of the microbiome are associated with treatment response (defined as serum PSA decrease >50% at any time on treatment or radiographic response per RECIST V.1.1). Global bacterial composition was similar between responders and non-responders, as assessed by multiple alpha and beta diversity metrics. However, certain bacterial taxa identified by sequencing across multiple 16S rRNA hypervariable regions were consistently associated with response, including the archetypal oral bacterium Streptococcus salivarius. Quantitative PCR (qPCR) of DNA extracts from fecal samples confirmed increased Streptococcus salivarius fecal levels in responders, whereas qPCR of oral swish DNA extracts showed no relationship between oral Streptococcus salivarius levels and response status. Contrary to previous reports in other cancer types, Akkermansia muciniphila levels were reduced in responder samples as assessed by both 16S rRNA sequencing and qPCR. We further analyzed our data in the context of a previously published “integrated index” describing bacteria associated with response and non-response to checkpoint inhibition. We found that the index was not reflective of response status in our cohort. Lastly, we demonstrate little change in the microbiome over time, and with pembrolizumab treatment. Our results suggest that the association between fecal microbiota and treatment response to immunotherapy may be unique to cancer type and/or previous treatment history.
Collapse
Affiliation(s)
- Lauren B Peiffer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Carli B Jones
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel E Slottke
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Sarah E Ernst
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy E Moran
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Julie N Graff
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA; Portland VA Health Care System, Portland, OR, USA.
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Oncology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
458
|
Wu Q, Gao ZJ, Yu X, Wang P. Dietary regulation in health and disease. Signal Transduct Target Ther 2022; 7:252. [PMID: 35871218 PMCID: PMC9308782 DOI: 10.1038/s41392-022-01104-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
Nutriments have been deemed to impact all physiopathologic processes. Recent evidences in molecular medicine and clinical trials have demonstrated that adequate nutrition treatments are the golden criterion for extending healthspan and delaying ageing in various species such as yeast, drosophila, rodent, primate and human. It emerges to develop the precision-nutrition therapeutics to slow age-related biological processes and treat diverse diseases. However, the nutritive advantages frequently diversify among individuals as well as organs and tissues, which brings challenges in this field. In this review, we summarize the different forms of dietary interventions extensively prescribed for healthspan improvement and disease treatment in pre-clinical or clinical. We discuss the nutrient-mediated mechanisms including metabolic regulators, nutritive metabolism pathways, epigenetic mechanisms and circadian clocks. Comparably, we describe diet-responsive effectors by which dietary interventions influence the endocrinic, immunological, microbial and neural states responsible for improving health and preventing multiple diseases in humans. Furthermore, we expatiate diverse patterns of dietotheroapies, including different fasting, calorie-restricted diet, ketogenic diet, high-fibre diet, plants-based diet, protein restriction diet or diet with specific reduction in amino acids or microelements, potentially affecting the health and morbid states. Altogether, we emphasize the profound nutritional therapy, and highlight the crosstalk among explored mechanisms and critical factors to develop individualized therapeutic approaches and predictors.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhi-Jie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
459
|
The Effect of the Gut Microbiota on Systemic and Anti-Tumor Immunity and Response to Systemic Therapy against Cancer. Cancers (Basel) 2022; 14:cancers14153563. [PMID: 35892821 PMCID: PMC9330582 DOI: 10.3390/cancers14153563] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota can have opposing functions from pro-tumorigenic to anti-tumorigenic effects. Increasing preclinical and clinical evidence suggests that the intestinal microbiota affects cancer patients’ response to immune checkpoint inhibitors (ICIs) immunotherapy, such as anti-programmed cell death protein 1 (PD-1) and its ligand (PD-L1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Microbiota-induced inflammation possibly contributes to tumor growth and cancer development. Microbiota-derived metabolites can also be converted to carcinogenic agents related to genetic mutations and DNA damage in organs such as the colon. However, other attributes of microbiota, such as greater diversity and specific bacterial species and their metabolites, are linked to better clinical outcomes and potentially improved anti-tumor immunity. In addition, the intratumoral microbial composition strongly affects T-cell-mediated cytotoxicity and anti-tumor immune surveillance, adding more complexity to the cancer-microbiome-immune axis. Despite the emerging clinical evidence for the activity of the gut microbiota in immuno-oncology, the fundamental mechanisms of such activity are not well understood. This review provides an overview of underlying mechanisms by which the gut microbiota and its metabolites enhance or suppress anti-tumor immune responses. Understanding such mechanisms allows for better design of microbiome-specific treatment strategies to improve the clinical outcome in cancer patients undergoing systemic therapy.
Collapse
|
460
|
Inamura K, Hamada T, Bullman S, Ugai T, Yachida S, Ogino S. Cancer as microenvironmental, systemic and environmental diseases: opportunity for transdisciplinary microbiomics science. Gut 2022; 71:gutjnl-2022-327209. [PMID: 35820782 PMCID: PMC9834441 DOI: 10.1136/gutjnl-2022-327209] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Cancer is generally regarded as a localised disease, with the well-established role of the tumour microenvironment. However, the realm of cancer goes beyond the tumour microenvironment, and cancer should also be regarded as a systemic and environmental disease. The exposome (ie, the totality of exposures), which encompasses diets, supplements, smoking, alcohol, other lifestyle factors, medications, etc, likely alters the microbiome (inclusive of bacteria, viruses, archaea, fungi, parasites, etc) and immune system in various body sites and influences tumour phenotypes. The systemic metabolic/inflammatory status, which is likely influenced by exposures and intestinal physiological changes, may affect tissue microenvironment of colorectum and any other organs. Germline genomic factors can modify disease phenotypes via gene-by-environment interactions. Although challenges exist, it is crucial to advance not only basic experimental research that can analyse the effects of exposures, microorganisms and microenvironmental components on tumour evolution but also interdisciplinary human population research that can dissect the complex pathogenic roles of the exposome, microbiome and immunome. Metagenomic, metatranscriptomic and metabolomic analyses should be integrated into well-designed population research combined with advanced methodologies of artificial intelligence and molecular pathological epidemiology. Ideally, a prospective cohort study design that enables biospecimen (such as stool) collection before disease detection should be considered to address reverse causation and recall biases. Robust experimental and observational research together can provide insights into dynamic interactions between environmental exposures, microbiota, tumour and immunity during carcinogenesis processes, thereby helping us develop precision prevention and therapeutic strategies to ultimately reduce the cancer burden.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Division of Genomic Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Shuji Ogino
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
461
|
Tonneau M, Nolin-Lapalme A, Kazandjian S, Auclin E, Panasci J, Benlaifaoui M, Ponce M, Al-Saleh A, Belkaid W, Naimi S, Mihalcioiu C, Watson I, Bouin M, Miller W, Hudson M, Wong MK, Pezo RC, Turcotte S, Bélanger K, Jamal R, Oster P, Velin D, Richard C, Messaoudene M, Elkrief A, Routy B. Helicobacter pylori serology is associated with worse overall survival in patients with melanoma treated with immune checkpoint inhibitors. Oncoimmunology 2022; 11:2096535. [PMID: 35832043 PMCID: PMC9272833 DOI: 10.1080/2162402x.2022.2096535] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022] Open
Abstract
The microbiome is now regarded as one of the hallmarks of cancer and several strategies to modify the gut microbiota to improve immune checkpoint inhibitor (ICI) activity are being evaluated in clinical trials. Preliminary data regarding the upper gastro-intestinal microbiota indicated that Helicobacter pylori seropositivity was associated with a negative prognosis in patients amenable to ICI. In 97 patients with advanced melanoma treated with ICI, we assessed the impact of H. pylori on outcomes and microbiome composition. We performed H. pylori serology and profiled the fecal microbiome with metagenomics sequencing. Among the 97 patients, 22% were H. pylori positive (Pos). H. pylori Pos patients had a significantly shorter overall survival (p = .02) compared to H. pylori negative (Neg) patients. In addition, objective response rate and progression-free survival were decreased in H. pylori Pos patients. Metagenomics sequencing did not reveal any difference in diversity indexes between the H. pylori groups. At the taxa level, Eubacterium ventriosum, Mediterraneibacter (Ruminococcus) torques, and Dorea formicigenerans were increased in the H. pylori Pos group, while Alistipes finegoldii, Hungatella hathewayi and Blautia producta were over-represented in the H. pylori Neg group. In a second independent cohort of patients with NSCLC, diversity indexes were similar in both groups and Bacteroides xylanisolvens was increased in H. pylori Neg patients. Our results demonstrated that the negative impact of H. pylori on outcomes seem to be independent from the fecal microbiome composition. These findings warrant further validation and development of therapeutic strategies to eradicate H. pylori in immuno-oncology arena.
Collapse
Affiliation(s)
- Marion Tonneau
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Université de Médecine, Lille, France
| | - Alexis Nolin-Lapalme
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | | | - Edouard Auclin
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Justin Panasci
- Department of Oncology, McGill University Health Center, QC, Canada
| | - Myriam Benlaifaoui
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Mayra Ponce
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Afnan Al-Saleh
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Wiam Belkaid
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Sabrine Naimi
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | | | - Ian Watson
- Rosalind and Morris Goodman Cancer Institute, Montréal, QC, Canada
| | - Mickael Bouin
- Department of Gastroenterology, Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Wilson Miller
- Lady Davis Institute of the Jewish General Hospital, Montreal, QC, Canada
| | - Marie Hudson
- Lady Davis Institute of the Jewish General Hospital, Montreal, QC, Canada
| | - Matthew K. Wong
- Division of Medical Oncology, Sunnybrook Health Sciences Center, Odette Cancer Center, QC, Canada
| | - Rossanna C. Pezo
- Division of Medical Oncology, Sunnybrook Health Sciences Center, Odette Cancer Center, QC, Canada
| | - Simon Turcotte
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Surgery, Centre Hospitalier de l’Université de Montréal, QC, Canada
| | - Karl Bélanger
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Division of Hemato-Oncology, Centre Hospitalier de l’Université de Montréal (CHUM)Montreal, QC, Canada
| | - Rahima Jamal
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Division of Hemato-Oncology, Centre Hospitalier de l’Université de Montréal (CHUM)Montreal, QC, Canada
| | - Paul Oster
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Dominique Velin
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Corentin Richard
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Meriem Messaoudene
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Arielle Elkrief
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Bertrand Routy
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Division of Hemato-Oncology, Centre Hospitalier de l’Université de Montréal (CHUM)Montreal, QC, Canada
| |
Collapse
|
462
|
Shah UA, Iyengar NM. Plant-Based and Ketogenic Diets As Diverging Paths to Address Cancer: A Review. JAMA Oncol 2022; 8:1201-1208. [PMID: 35797039 PMCID: PMC10184023 DOI: 10.1001/jamaoncol.2022.1769] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance As the incidence of cancer and metabolic disorders, such as obesity, concurrently rise, there has been increasing awareness of the pervasive effect of nutrition. The whole foods plant-based diet (WFPBD) and ketogenic diet (KD) have gained popularity in oncology, and this topic is increasingly permeating clinical dialogue. Observations Dietary intake is associated with multiple pathways involved in carcinogenesis and tumor progression. Consumption of a plant-enriched diet is associated with reduced cancer incidence and is recommended by dietary guidelines for cancer prevention. Despite a starkly different nutrient composition, a WFPBD and KD can be associated with weight loss, decreased inflammation, and decreased insulin levels. In addition, a WFPBD is associated with increased fiber, phytochemicals, and butyrate levels and decreased insulin-like growth factor 1 levels, whereas a KD exerts potential anticancer effects by increasing β hydroxybutyrate levels. A KD may be of interest in select, less common settings, such as tumors treated with phosphatidylinositol 3-kinase inhibitors, which induce hyperinsulinemia and hyperglycemia. Completed interventional trials have focused on increasing fruit and vegetable intake or reducing fat intake but have not specifically tested WFPBD or KD for cancer prevention or treatment. Currently available data support plant-based diets as opposed to KD as part of a lifestyle associated with reduced cancer risk. In the postdiagnosis setting, there are currently no rigorously tested approaches that support the recommendation of any diet to treat cancer. Conclusions and Relevance The results of this review suggest that the collective evidence supports plant-enriched diets vs KD for the reduction of cancer risk and the improvement of metabolic disorders in survivors. Additional prospective randomized clinical trials are needed to encourage use of dietary modification across the cancer continuum. Rigorous trial designs that adapt classical oncologic end points may identify populations that are likely to benefit from starkly contrasting diets. Current data support prioritization of plant-based diets, and future data could further personalize dietary recommendations in cancer populations.
Collapse
Affiliation(s)
- Urvi A Shah
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Neil M Iyengar
- Department of Medicine, Weill Cornell Medical College, New York, New York.,Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
463
|
Issa M, Tang J, Guo Y, Coss C, Mace TA, Bischof J, Phelps M, Presley CJ, Owen DH. Risk factors and predictors of immune-related adverse events: implications for patients with non-small cell lung cancer. Expert Rev Anticancer Ther 2022; 22:861-874. [PMID: 35786142 DOI: 10.1080/14737140.2022.2094772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICI) are now utilized as a standard of care treatment for multiple cancers, including in both the metastatic setting as well as in earlier stages of disease. The identification of unique immune-related adverse events (irAE) that occur during ICI treatment has led to intense research to identify potential risk factors and biomarkers that may assist in clinical decision making. Although initial studies in ICI were primarily in advanced stage disease, the use of ICI in earlier stages of disease as adjuvant therapies requires a better understanding of patient risk stratification to mitigate or prevent serious irAE. AREAS COVERED In this review, we set out to describe the current state of research regarding potential risk factors for irAE in patients with non-small cell lung cancer, as well as explore the barriers to understanding irAE. We review data from irAE that occur in large phase 3 trials and prospective studies focusing on irAE, as well as the many retrospective studies that currently form the bulk of our understanding of irAE.
Collapse
Affiliation(s)
- Majd Issa
- Division of Medical Oncology, Department of Internal Medicine, the Ohio State University Wexner Medical Center - Comprehensive Cancer Center, Columbus, USA
| | - Joy Tang
- Division of Medical Oncology, Department of Internal Medicine, the Ohio State University Wexner Medical Center - Comprehensive Cancer Center, Columbus, USA
| | - Yizhen Guo
- College of Pharmacy, the Ohio State University Wexner Medical Center - Comprehensive Cancer Center, Columbus, USA
| | - Chris Coss
- College of Pharmacy, the Ohio State University Wexner Medical Center - Comprehensive Cancer Center, Columbus, USA
| | - Thomas A Mace
- Division of Gastroenterology, Hepatology & Nutrition, Department of Internal Medicine, the Ohio State University Wexner Medical Center, Columbus, USA
| | - Jason Bischof
- Department of Emergency Medicine, the Ohio State University Wexner Medical Center - Comprehensive Cancer Center, Columbus, USA
| | - Mitch Phelps
- College of Pharmacy, the Ohio State University Wexner Medical Center - Comprehensive Cancer Center, Columbus, USA
| | - Carolyn J Presley
- Division of Medical Oncology, Department of Internal Medicine, the Ohio State University Wexner Medical Center - Comprehensive Cancer Center, Columbus, USA
| | - Dwight H Owen
- Division of Medical Oncology, Department of Internal Medicine, the Ohio State University Wexner Medical Center - Comprehensive Cancer Center, Columbus, USA
| |
Collapse
|
464
|
Greathouse KL, Wyatt M, Johnson AJ, Toy EP, Khan JM, Dunn K, Clegg DJ, Reddy S. Diet-microbiome interactions in cancer treatment: Opportunities and challenges for precision nutrition in cancer. Neoplasia 2022; 29:100800. [PMID: 35500546 PMCID: PMC9065883 DOI: 10.1016/j.neo.2022.100800] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
Abstract
Dietary patterns contribute to cancer risk. Separately, microbial factors influence the development of several cancers. However, the interaction of diet and the microbiome and their joint contribution to cancer treatment response needs more research. The microbiome significantly impacts drug metabolism, immune activation, and response to immunotherapy. One of the critical factors affecting the microbiome structure and function is diet. Data demonstrate that the diet and microbiome composition affects the immune response. Moreover, malnutrition is a significant confounder to cancer therapy response. There is little understanding of the interaction of malnutrition with the microbiome in the context of cancer. This review aims to address the current knowledge of dietary intake patterns and malnutrition among cancer patients and the impact on treatment outcomes. Second, this review will provide evidence linking the microbiome to cancer treatment response and provide evidence of the potentially strong effect that diet could have on this interaction. This review will formulate critical questions that will need further research to understand the diet-microbiome relationship in cancer treatment response and directions for future research to guide us to precision nutrition therapy to improve cancer outcomes.
Collapse
|
465
|
Ting NLN, Lau HCH, Yu J. Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes. Gut 2022; 71:1412-1425. [PMID: 35277453 PMCID: PMC9185832 DOI: 10.1136/gutjnl-2021-326264] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/25/2022] [Indexed: 02/06/2023]
Abstract
Despite the promising advances in novel cancer therapy such as immune checkpoint inhibitors (ICIs), limitations including therapeutic resistance and toxicity remain. In recent years, the relationship between gut microbiota and cancer has been extensively studied. Accumulating evidence reveals the role of microbiota in defining cancer therapeutic efficacy and toxicity. Unlike host genetics, microbiota can be easily modified via multiple strategies, including faecal microbiota transplantation (FMT), probiotics and antibiotics. Preclinical studies have identified the mechanisms on how microbes influence cancer treatment outcomes. Clinical trials have also demonstrated the potential of microbiota modulation in cancer treatments. Herein, we review the mechanistic insights of gut microbial interactions with chemotherapy and ICIs, particularly focusing on the interplay between gut bacteria and the pharmacokinetics (eg, metabolism, enzymatic degradation) or pharmacodynamics (eg, immunomodulation) of cancer treatment. The translational potential of basic findings in clinical settings is then explored, including using microbes as predictive biomarkers and microbial modulation by antibiotics, probiotics, prebiotics, dietary modulations and FMT. We further discuss the current limitations of gut microbiota modulation in patients with cancer and suggest essential directions for future study. In the era of personalised medicine, it is crucial to understand the microbiota and its interactions with cancer. Manipulating the gut microbiota to augment cancer therapeutic responses can provide new insights into cancer treatment.
Collapse
Affiliation(s)
- Nick Lung-Ngai Ting
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
466
|
|
467
|
Gunjur A, Manrique‐Rincón AJ, Klein O, Behren A, Lawley TD, Welsh SJ, Adams DJ. 'Know thyself' - host factors influencing cancer response to immune checkpoint inhibitors. J Pathol 2022; 257:513-525. [PMID: 35394069 PMCID: PMC9320825 DOI: 10.1002/path.5907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionised oncology and are now standard-of-care for the treatment of a wide variety of solid neoplasms. However, tumour responses remain unpredictable, experienced by only a minority of ICI recipients across malignancy types. Therefore, there is an urgent need for better predictive biomarkers to identify a priori the patients most likely to benefit from these therapies. Despite considerable efforts, only three such biomarkers are FDA-approved for clinical use, and all rely on the availability of tumour tissue for immunohistochemical staining or genomic assays. There is emerging evidence that host factors - for example, genetic, metabolic, and immune factors, as well as the composition of one's gut microbiota - influence the response of a patient's cancer to ICIs. Tantalisingly, some of these factors are modifiable, paving the way for co-therapies that may enhance the therapeutic index of these treatments. Herein, we review key host factors that are of potential biomarker value for response to ICI therapy, with a particular focus on the proposed mechanisms for these influences. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ashray Gunjur
- Experimental Cancer Genetics, Wellcome Sanger InstituteHinxtonUK,Olivia Newton‐John Cancer Research InstituteLa Trobe University School of Cancer MedicineHeidelbergAustralia
| | - Andrea J Manrique‐Rincón
- Experimental Cancer Genetics, Wellcome Sanger InstituteHinxtonUK,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of MedicineUniversity of CambridgeCambridgeUK
| | - Oliver Klein
- Olivia Newton‐John Cancer Research InstituteLa Trobe University School of Cancer MedicineHeidelbergAustralia,Department of Medical OncologyAustin HealthHeidelbergAustralia
| | - Andreas Behren
- Olivia Newton‐John Cancer Research InstituteLa Trobe University School of Cancer MedicineHeidelbergAustralia,Department of MedicineUniversity of MelbourneParkvilleAustralia
| | | | - Sarah J Welsh
- Department of SurgeryUniversity of CambridgeCambridgeUK,Cambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger InstituteHinxtonUK
| |
Collapse
|
468
|
Takada K, Buti S, Bersanelli M, Shimokawa M, Takamori S, Matsubara T, Takenaka T, Okamoto T, Hamatake M, Tsuchiya-Kawano Y, Otsubo K, Nakanishi Y, Okamoto I, Pinato DJ, Cortellini A, Yoshizumi T. Antibiotic-dependent effect of probiotics in patients with non-small cell lung cancer treated with PD-1 checkpoint blockade. Eur J Cancer 2022; 172:199-208. [PMID: 35780526 DOI: 10.1016/j.ejca.2022.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND We previously validated in European patients with NSCLC treated with programmed death-1 (PD-1) checkpoint inhibitors the cumulative detrimental effect of concomitant medications. MATERIALS AND METHODS We evaluated the prognostic ability of a "drug score" computed on the basis of baseline corticosteroids, proton pump inhibitors, and antibiotics, in an independent cohort of Japanese patients with advanced NSCLC treated with PD-1 monotherapy. Subsequently, we assessed the impact of baseline probiotics on the score's diagnostic ability and their interaction with antibiotics in influencing survival. RESULTS Among the 293 eligible patients, good (19.5 months), intermediate (13.4 months), and poor (3.7 months) risk groups displayed a significantly different overall survival (OS) (log-rank test for trend: p = 0.016), but with a limited diagnostic ability (C-index: 0.57, 95%CI: 0.53-0.61), while no significant impact on progression-free survival (PFS) was reported (log-rank test for trend: p = 0.080; C-index: 0.55, 95%CI: 0.52-0.58). Considering the impact of the probiotics∗antibiotics interaction (p-value 0.0510) on OS, we implemented the drug score by assigning 0 points to concomitant antibiotics and probiotics. With the adapted drug score good, intermediate, and poor risk patients achieved a median OS of 19.6 months, 13.1 months, and 3.7 months, respectively, with a similar diagnostic ability (log-rank test for trend: p = 0.006; C-index: 0.58, 95%CI: 0.54-0.61). However, the diagnostic ability for PFS of the adapted score was improved (log-rank test for trend: p = 0.034; C-index: 0.62, 95%CI: 0.54-0.69). CONCLUSIONS Although we failed to validate the drug score in this independent Japanese cohort, we showed that probiotics may have an antibiotic-dependent impact on its prognostic value. Further investigation looking at the effect of concomitant medications and probiotics across cohorts of different ethnicities is warranted.
Collapse
Affiliation(s)
- Kazuki Takada
- Department of Surgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | | | - Mototsugu Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan; Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Shinkichi Takamori
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Taichi Matsubara
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Motoharu Hamatake
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Yuko Tsuchiya-Kawano
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Kohei Otsubo
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Yoichi Nakanishi
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - David J Pinato
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK; Department of Translational Medicine, Università Del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Alessio Cortellini
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK.
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
469
|
Westheim AJF, Stoffels LM, Dubois LJ, van Bergenhenegouwen J, van Helvoort A, Langen RCJ, Shiri-Sverdlov R, Theys J. Fatty Acids as a Tool to Boost Cancer Immunotherapy Efficacy. Front Nutr 2022; 9:868436. [PMID: 35811951 PMCID: PMC9260274 DOI: 10.3389/fnut.2022.868436] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Although immunotherapy represents one of the most potent therapeutic anti-cancer approaches, only a limited number of patients shows clinical benefit. Recent evidence suggests that patients' nutritional status plays a major role in immunotherapy outcome. Fatty acids are essential in a balanced diet and well-known to influence the immune response. Moreover, short-chain fatty acids (SCFAs) show beneficial effects in metabolic disorders as well as in cancer and polyunsaturated fatty acids (PUFAs) contribute to body weight and fat free mass preservation in cancer patients. In line with these data, several studies imply a role for SCFAs and PUFAs in boosting the outcome of immunotherapy. In this review, we specifically focus on mechanistic data showing that SCFAs modulate the immunogenicity of tumor cells and we discuss the direct effects of SCFAs and PUFAs on the immune system in the context of cancer. We provide preclinical and clinical evidence indicating that SCFAs and PUFAs may have the potential to boost immunotherapy efficacy. Finally, we describe the challenges and address opportunities for successful application of nutritional interventions focusing on SCFAs and PUFAs to increase the therapeutic potential of immunotherapeutic approaches for cancer.
Collapse
Affiliation(s)
- Annemarie J. F. Westheim
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Lara M. Stoffels
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Ludwig J. Dubois
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Danone Nutricia Research, Utrecht, Netherlands
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ardy van Helvoort
- Danone Nutricia Research, Utrecht, Netherlands
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- *Correspondence: Jan Theys
| |
Collapse
|
470
|
Shelkey E, Oommen D, Stirling ER, Soto-Pantoja DR, Cook KL, Lu Y, Votanopoulos KI, Soker S. Immuno-reactive cancer organoid model to assess effects of the microbiome on cancer immunotherapy. Sci Rep 2022; 12:9983. [PMID: 35705580 PMCID: PMC9200712 DOI: 10.1038/s41598-022-13930-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has demonstrated good efficacy in many cancer types. In cancers such as non-resectable advanced or metastatic triple-negative breast cancer (TNBC), it has recently been approved as a promising treatment. However, clinical data shows overall response rates (ORRs) from ~ 3-40% in breast cancer patients, depending on subtype, previous treatments, and mutation status. Composition of the host-microbiome has a significant role in cancer development and therapeutic responsiveness. Some bacterial families are conducive to oncogenesis and progression, while others aid innate and therapeutically induced anti-tumor immunity. Modeling microbiome effects on anti-tumor immunity in ex vivo systems is challenging, forcing the use of in vivo models, making it difficult to dissect direct effects on immune cells from combined effects on tumor and immune cells. We developed a novel immune-enhanced tumor organoid (iTO) system to study factors affecting ICB response. Using the 4T1 TNBC murine cell line and matched splenocytes, we demonstrated ICB-induced response. Further administration of bacterial-derived metabolites from species found in the immunomodulatory host-microbiome significantly increased ICB-induced apoptosis of tumor cells and altered immune cell receptor expression. These outcomes represent a method to isolate individual factors that alter ICB response and streamline the study of microbiome effects on ICB efficacy.
Collapse
Affiliation(s)
- Ethan Shelkey
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA
- Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - David Oommen
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA
- Current Address: Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | | | | | | | - Yong Lu
- Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Current Address: Houston Methodist Research Institute, Houston, TX, 77030, USA
| | | | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA.
- Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Wake Forest Baptist Medical Center, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
471
|
Guo Q, Qin H, Liu X, Zhang X, Chen Z, Qin T, Chang L, Zhang W. The Emerging Roles of Human Gut Microbiota in Gastrointestinal Cancer. Front Immunol 2022; 13:915047. [PMID: 35784372 PMCID: PMC9240199 DOI: 10.3389/fimmu.2022.915047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota is composed of a large number of microorganisms with a complex structure. It participates in the decomposition, digestion, and absorption of nutrients; promotes the development of the immune system; inhibits the colonization of pathogens; and thus modulates human health. In particular, the relationship between gut microbiota and gastrointestinal tumor progression has attracted widespread concern. It was found that the gut microbiota can influence gastrointestinal tumor progression in independent ways. Here, we focused on the distribution of gut microbiota in gastrointestinal tumors and further elaborated on the impact of gut microbiota metabolites, especially short-chain fatty acids, on colorectal cancer progression. Additionally, the effects of gut microbiota on gastrointestinal tumor therapy are outlined. Finally, we put forward the possible problems in gut microbiota and the gastrointestinal oncology field and the efforts we need to make.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Qianqian Guo, ; Wenzhou Zhang,
| | - Hai Qin
- Department of Clinical Laboratory, Guizhou Provincial Orthopedic Hospital, Guiyang City, China
| | - Xueling Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xinxin Zhang
- The Second Clinical Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Province Engineering Research Center of Artificial Intelligence and Internet of Things Wise Medical, Zhengzhou, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Linlin Chang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Qianqian Guo, ; Wenzhou Zhang,
| |
Collapse
|
472
|
Yue Y, Hu YJ. A new approach to testing mediation of the microbiome at both the community and individual taxon levels. Bioinformatics 2022; 38:3173-3180. [PMID: 35512399 PMCID: PMC9191207 DOI: 10.1093/bioinformatics/btac310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION Understanding whether and which microbes played a mediating role between an exposure and a disease outcome are essential for researchers to develop clinical interventions to treat the disease by modulating the microbes. Existing methods for mediation analysis of the microbiome are often limited to a global test of community-level mediation or selection of mediating microbes without control of the false discovery rate (FDR). Further, while the null hypothesis of no mediation at each microbe is a composite null that consists of three types of null, most existing methods treat the microbes as if they were all under the same type of null, leading to excessive false positive results. RESULTS We propose a new approach based on inverse regression that regresses the microbiome data at each taxon on the exposure and the exposure-adjusted outcome. Then, the P-values for testing the coefficients are used to test mediation at both the community and individual taxon levels. This approach fits nicely into our Linear Decomposition Model (LDM) framework, so our new method LDM-med, implemented in the LDM framework, enjoys all the features of the LDM, e.g. allowing an arbitrary number of taxa to be tested simultaneously, supporting continuous, discrete, or multivariate exposures and outcomes (including survival outcomes), and so on. Using extensive simulations, we showed that LDM-med always preserved the FDR of testing individual taxa and had adequate sensitivity; LDM-med always controlled the type I error of the global test and had compelling power over existing methods. The flexibility of LDM-med for a variety of mediation analyses is illustrated by an application to a murine microbiome dataset, which identified several plausible mediating taxa. AVAILABILITY AND IMPLEMENTATION Our new method has been added to our R package LDM, which is available on GitHub at https://github.com/yijuanhu/LDM. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ye Yue
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Yi-Juan Hu
- To whom correspondence should be addressed.
| |
Collapse
|
473
|
Hone Lopez S, Jalving M, Fehrmann RS, Nagengast WB, de Vries EG, de Haan JJ. The gut wall’s potential as a partner for precision oncology in immune checkpoint treatment. Cancer Treat Rev 2022; 107:102406. [DOI: 10.1016/j.ctrv.2022.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/02/2022]
|
474
|
Abstract
Human skin forms a protective barrier against the external environment and is our first line of defense against toxic, solar, and pathogenic insults. Our skin also defines our outward appearance, protects our internal tissues and organs, acts as a sensory interface, and prevents dehydration. Crucial to the skin's barrier function is the colonizing microbiota, which provides protection against pathogens, tunes immune responses, and fortifies the epithelium. Here we highlight recent advances in our understanding of how the microbiota mediates multiple facets of skin barrier function. We discuss recent insights into pathological host-microbiota interactions and implications for disorders of the skin and distant organs. Finally, we examine how microbiota-based mechanisms can be targeted to prevent or manage skin disorders and impaired wound healing.
Collapse
Affiliation(s)
- Tamia A Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth A Grice
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
475
|
Tomita Y, Goto Y, Sakata S, Imamura K, Minemura A, Oka K, Hayashi A, Jodai T, Akaike K, Anai M, Hamada S, Iyama S, Saruwatari K, Saeki S, Takahashi M, Ikeda T, Sakagami T. Clostridium butyricum therapy restores the decreased efficacy of immune checkpoint blockade in lung cancer patients receiving proton pump inhibitors. Oncoimmunology 2022; 11:2081010. [PMID: 35655708 PMCID: PMC9154751 DOI: 10.1080/2162402x.2022.2081010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yusuke Tomita
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiko Goto
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinya Sakata
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kosuke Imamura
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayaka Minemura
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | - Kentaro Oka
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | - Atsushi Hayashi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | - Takayuki Jodai
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimitaka Akaike
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Moriyasu Anai
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shohei Hamada
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinji Iyama
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichi Saruwatari
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Sho Saeki
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Tokunori Ikeda
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
476
|
Yusuf K, Saha S, Umar S. Health Benefits of Dietary Fiber for the Management of Inflammatory Bowel Disease. Biomedicines 2022; 10:1242. [PMID: 35740264 PMCID: PMC9220141 DOI: 10.3390/biomedicines10061242] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC), two components of inflammatory bowel disease (IBD), are painful conditions that affect children and adults. Despite substantial research, there is no permanent cure for IBD, and patients face an increased risk of colon cancer. Dietary fiber's health advantages have been thoroughly investigated, and it is recommended for its enormous health benefits. This review article discusses the importance of appropriate fiber intake in managing IBD, emphasizing how optimal fiber consumption can significantly help IBD patients.
Collapse
Affiliation(s)
- Kafayat Yusuf
- Department of Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, 4028 Wahl Hall East, Kansas City, KS 66160, USA;
| | - Subhrajit Saha
- Department of Radiation Oncology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA;
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, 4028 Wahl Hall East, Kansas City, KS 66160, USA;
| |
Collapse
|
477
|
Chang SC, Chiang HH, Liu CY, Li YJ, Lu CL, Lee YP, Huang CJ, Lai CL. Intestinal Mucosal Barrier Improvement with Prebiotics: Histological Evaluation of Longish Glucomannan Hydrolysates-Induced Innate T Lymphocyte Activities in Mice. Nutrients 2022; 14:nu14112220. [PMID: 35684019 PMCID: PMC9182621 DOI: 10.3390/nu14112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Use of prebiotics is a growing topic in healthcare. A lightweight molecule and water-soluble fiber ingredient, longish glucomannan hydrolysates (LGH), has been developed to improve the intestinal mucosal barrier and confer gut health benefits. This study aims to investigate the implications of continuous LGH intervening in intestinal epithelium integrity and protective immunity against chemical dextran sodium sulfate (DSS)-induced colitis. Twelve male BALB/c mice were randomly arranged into four groups. The LGH/DSS group had results in bodyweight variance, epithelial cell density, and aberrancy score as good as the LGH group, and both were equivalent to the control group. LGH consumption effectively protects the distal intestinal epithelium by activating innate T lymphocytes. Meanwhile, T-cell subsets in subepithelial interspersion take a bystander role in these microenvironmental alterations. Under this stress, the cluster of differentiation 3 (CD3)+ T cells infiltrate the epithelium, while CD4+ T cells inversely appear in submucosal large lymphoid aggregates/isolated lymphoid follicles (ILFs) in which significant CD3+, CD4+, and CD8+ T-cell populations agglomerate. Moreover, forkhead box P3 (Foxp3) and interleukin 17 (IL-17) are observed in these ILFs. Agglomerated CD4+ T-cell lineages may have roles with proinflammatory T helper 17 cells and anti-inflammatory regulatory T cells in balancing responses to intraluminal antigens. Collectively, LGH administration may function in immune modulation to protect against DSS-induced inflammation.
Collapse
Affiliation(s)
- Shih-Chang Chang
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei 106438, Taiwan;
| | - Hui-Hsun Chiang
- School of Nursing, National Defense Medical Center, Taipei 114201, Taiwan;
| | - Chih-Yi Liu
- Division of Pathology, Sijhih Cathay General Hospital, New Taipei City 221037, Taiwan;
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yu-Ju Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Chung-Lun Lu
- Aquatic Technology Research Center, Agricultural Technology Research Institute, Xiangshan, Hsinchu 300110, Taiwan;
| | - Yung-Pin Lee
- Research and Development, Healthy-Bioceuticals Company, Taipei 114201, Taiwan;
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei 106438, Taiwan;
- Department of Biochemistry, National Defense Medical Center, Taipei 114201, Taiwan
| | - Ching-Long Lai
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
- Correspondence:
| |
Collapse
|
478
|
Yue Y, Hu YJ. Extension of PERMANOVA to Testing the Mediation Effect of the Microbiome. Genes (Basel) 2022; 13:940. [PMID: 35741702 PMCID: PMC9222534 DOI: 10.3390/genes13060940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, we have seen a growing volume of evidence linking the microbiome and human diseases or clinical outcomes, as well as evidence linking the microbiome and environmental exposures. Now comes the time to assess whether the microbiome mediates the effects of exposures on the outcomes, which will enable researchers to develop interventions to modulate outcomes by modifying microbiome compositions. Use of distance matrices is a popular approach to analyzing complex microbiome data that are high-dimensional, sparse, and compositional. However, the existing distance-based methods for mediation analysis of microbiome data, MedTest and MODIMA, only work well in limited scenarios. PERMANOVA is currently the most commonly used distance-based method for testing microbiome associations. Using the idea of inverse regression, here we extend PERMANOVA to test microbiome-mediation effects by including both the exposure and the outcome as covariates and basing the test on the product of their F statistics. This extension of PERMANOVA, which we call PERMANOVA-med, naturally inherits all the flexible features of PERMANOVA, e.g., allowing adjustment of confounders, accommodating continuous, binary, and multivariate exposure and outcome variables including survival outcomes, and providing an omnibus test that combines the results from analyzing multiple distance matrices. Our extensive simulations indicated that PERMANOVA-med always controlled the type I error and had compelling power over MedTest and MODIMA. Frequently, MedTest had diminished power and MODIMA had inflated type I error. Using real data on melanoma immunotherapy response, we demonstrated the wide applicability of PERMANOVA-med through 16 different mediation analyses, only 6 of which could be performed by MedTest and 4 by MODIMA.
Collapse
Affiliation(s)
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA;
| |
Collapse
|
479
|
Huo R, Zhang M, Zhang Y, Bai X, Zhang Y, Guo X. Effects of Oat Complex High-Fiber Formula Powder on the Composition of Intestinal Microbiota and Enzyme Activities in Mice Induced by a High-Fat Diet. Front Nutr 2022; 9:871556. [PMID: 35685874 PMCID: PMC9172999 DOI: 10.3389/fnut.2022.871556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Using oat-corn-konjac extruded mixed powder, oat bran micro powder, skim milk powder, Pueraria whole powder, and pumpkin powder as raw materials, a formula powder with high dietary fiber was prepared, and its effect on obesity in mice with a high-fat diet was investigated. After 7 days of adaptive feeding, the mice were divided into blank group, high-fat diet group, formula powder + high-fat diet group, and weight-loss drug + high-fat diet group. After 8 weeks of treatment, the body weight of mice were observed and measured to determine the composition of tract flora, liver leptin content, insulin content, and activities of AMP-activated protein kinase (AMPK), lipoprotein lipase (LPL), fatty acid synthetase (FAS), sterol-regulatory element-binding proteins (SREBPs), and acetyl CoA carboxylase 1 (ACC1). The results indicated that treatment with the formula powder could reduce the body weight of mice and increase the abundance of Bifidobacterium, Akkermansia, and Romboutsia compared to the group given a high-fat diet. Moreover, the leptin and insulin contents of the experimental group decreased from 5.67 μg/L to 0.12 μg/L and from 12.71 μg/L to 7.13 μg/L, respectively, compared to the control group, which was not significantly different from the blank group (P > 0.05). Also, the activities of AMPK and LPL increased, and the activities of FAS, SREBPs, and ACC1 were significantly decreased (P < 0.05). Some pathogenic bacteria were significantly positively correlated with leptin and FAS and significantly negatively correlated with LPL. Some beneficial bacteria were positively correlated with LPL. Therefore, the formula powder used in this study could reduce the body weight of mice, increase the abundance of some beneficial bacteria in the colonic intestinal microbiota, and improve the activities of enzymes related to lipid metabolism in the liver. This study provides a theoretical reference for the pathway by which high-fiber diet improves liver and intestinal metabolic abnormalities.
Collapse
|
480
|
Brown ZJ, Hewitt DB, Pawlik TM. Experimental drug treatments for hepatocellular carcinoma: Clinical trial failures 2015 to 2021. Expert Opin Investig Drugs 2022; 31:693-706. [PMID: 35580650 DOI: 10.1080/13543784.2022.2079491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a major health problem worldwide with limited systemic therapy options. Since the approval of sorafenib in 2008, no systemic therapy has provided a sustained/robust/survival benefit for patients with advanced HCC until recently. Many initially promising therapies have been trialed, but survival outcomes remained stagnant. As such, knowledge concerning previous treatment failures may help guide further areas of study, as well inform future therapeutic approaches. AREA COVERED This article reviews recent advances in the treatment of HCC. Despite some recent success, many systemic and locoregional therapies have failed to produce significant improvements in outcome. These treatment failures are examined and insight into pathways for future success are discussed. EXPERT OPINION Combination atezolizumab and bevacizumab has changed the landscape of systemic treatment for patients with HCC when it became the first therapy after demonstrating improve outcomes over sorafenib. Clinical trials in patients with advanced HCC have inherent difficulty with challenges to determine if a patient's declining liver function is secondary to disease progression, worsening cirrhosis, or drug toxicity, which may skew results. As we gain more knowledge of underlying genetic alterations behind the pathophysiology of the development of HCC, molecular markers may be identified to assist in predicting which patients would respond to a specific therapy.
Collapse
|
481
|
Schummer P, Schilling B. How representative are data from global trials on programmed death-1 blockade in melanoma? Br J Dermatol 2022; 187:283-284. [PMID: 35508326 DOI: 10.1111/bjd.21621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick Schummer
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Bastian Schilling
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
482
|
Kim AJ, Hong DS, George GC. Dietary Influences On Symptomatic And Non-Symptomatic Toxicities During Cancer Treatment: A Narrative Review. Cancer Treat Rev 2022; 108:102408. [DOI: 10.1016/j.ctrv.2022.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
|
483
|
Lim SA, Su W, Chapman NM, Chi H. Lipid metabolism in T cell signaling and function. Nat Chem Biol 2022; 18:470-481. [PMID: 35484263 PMCID: PMC11103273 DOI: 10.1038/s41589-022-01017-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/17/2022] [Indexed: 12/19/2022]
Abstract
T cells orchestrate adaptive immunity against pathogens and other immune challenges, but their dysfunction can also mediate the pathogenesis of cancer and autoimmunity. Metabolic adaptation in response to immunological and microenvironmental signals contributes to T cell function and fate decision. Lipid metabolism has emerged as a key regulator of T cell responses, with selective lipid metabolites serving as metabolic rheostats to integrate environmental cues and interplay with intracellular signaling processes. Here, we discuss how extracellular, de novo synthesized and membrane lipids orchestrate T cell biology. We also describe the roles of lipids as regulators of intracellular signaling at the levels of transcriptional, epigenetic and post-translational regulation in T cells. Finally, we summarize therapeutic targeting of lipid metabolism and signaling, and conclude with a discussion of important future directions. Understanding the molecular and functional interplay between lipid metabolism and T cell biology will ultimately inform therapeutic intervention for human disease.
Collapse
Affiliation(s)
- Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wei Su
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
484
|
Chelvanambi M, Wargo JA. Trust your gut when it comes to driving CARs. MED 2022; 3:281-283. [DOI: 10.1016/j.medj.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
485
|
Kumar P, Brazel D, DeRogatis J, Valerin JBG, Whiteson K, Chow WA, Tinoco R, Moyers JT. The cure from within? a review of the microbiome and diet in melanoma. Cancer Metastasis Rev 2022; 41:261-280. [PMID: 35474500 PMCID: PMC9042647 DOI: 10.1007/s10555-022-10029-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
Therapy for cutaneous melanoma, the deadliest of the skin cancers, is inextricably linked to the immune system. Once thought impossible, cures for metastatic melanoma with immune checkpoint inhibitors have been developed within the last decade and now occur regularly in the clinic. Unfortunately, half of tumors do not respond to checkpoint inhibitors and efforts to further exploit the immune system are needed. Tantalizing associations with immune health and gut microbiome composition suggest we can improve the success rate of immunotherapy. The gut contains over half of the immune cells in our bodies and increasingly, evidence is linking the immune system within our gut to melanoma development and treatment. In this review, we discuss the importance the skin and gut microbiome may play in the development of melanoma. We examine the differences in the microbial populations which inhabit the gut of those who develop melanoma and subsequently respond to immunotherapeutics. We discuss the role of dietary intake on the development and treatment of melanoma. And finally, we review the landscape of published and registered clinical trials therapeutically targeting the microbiome in melanoma through dietary supplements, fecal microbiota transplant, and microbial supplementation.
Collapse
Affiliation(s)
- Priyanka Kumar
- Department of Medicine, University of California Irvine, Orange, CA, USA
| | - Danielle Brazel
- Department of Medicine, University of California Irvine, Orange, CA, USA
| | - Julia DeRogatis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, USA
| | - Jennifer B Goldstein Valerin
- Division of Hematology and Oncology, Department of Medicine, University of California Irvine, 101 The City Drive South, Building 200, Orange, CA, 92868, USA
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, USA
| | - Warren A Chow
- Division of Hematology and Oncology, Department of Medicine, University of California Irvine, 101 The City Drive South, Building 200, Orange, CA, 92868, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, USA
| | - Justin T Moyers
- Division of Hematology and Oncology, Department of Medicine, University of California Irvine, 101 The City Drive South, Building 200, Orange, CA, 92868, USA.
| |
Collapse
|
486
|
Mautner L, Hoyos M, Dangel A, Berger C, Ehrhardt A, Baiker A. Replication kinetics and infectivity of SARS-CoV-2 variants of concern in common cell culture models. Virol J 2022; 19:76. [PMID: 35473640 PMCID: PMC9038516 DOI: 10.1186/s12985-022-01802-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND During the ongoing Covid-19 pandemic caused by the emerging virus SARS-CoV-2, research in the field of coronaviruses has expanded tremendously. The genome of SARS-CoV-2 has rapidly acquired numerous mutations, giving rise to several Variants of Concern (VOCs) with altered epidemiological, immunological, and pathogenic properties. METHODS As cell culture models are important tools to study viruses, we investigated replication kinetics and infectivity of SARS-CoV-2 in the African Green Monkey-derived Vero E6 kidney cell line and the two human cell lines Caco-2, a colon epithelial carcinoma cell line, and the airway epithelial carcinoma cell line Calu-3. We assessed viral RNA copy numbers and infectivity of viral particles in cell culture supernatants at different time points ranging from 2 to 96 h post-infection. RESULTS We here describe a systematic comparison of growth kinetics of the five SARS-CoV-2 VOCs Alpha/B.1.1.7, Beta/B.1.351, Gamma/P.1, Delta/B.1.617.2, and Omicron/B.1.1.529 and a non-VOC/B.1.1 strain on three different cell lines to provide profound information on the differential behaviour of VOCs in different cell lines for researchers worldwide. We show distinct differences in viral replication kinetics of the SARS-CoV-2 non-VOC and five VOCs on the three cell culture models Vero E6, Caco-2, and Calu-3. CONCLUSION This is the first systematic comparison of all SARS-CoV-2 VOCs on three different cell culture models. This data provides support for researchers worldwide in their experimental design for work on SARS-CoV-2. It is recommended to perform virus isolation and propagation on Vero E6 while infection studies or drug screening and antibody-based assays should rather be conducted on the human cell lines Caco-2 and Calu-3.
Collapse
Affiliation(s)
- Lena Mautner
- Unit of Molecular Biologic Analytics and Biogenetics, Bavarian Health and Food Safety Authority, Veterinaerstrasse 2, 85764, Oberschleißheim, Germany
| | - Mona Hoyos
- Unit of Molecular Biologic Analytics and Biogenetics, Bavarian Health and Food Safety Authority, Veterinaerstrasse 2, 85764, Oberschleißheim, Germany
| | - Alexandra Dangel
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764, Oberschleißheim, Germany
| | - Carola Berger
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764, Oberschleißheim, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453, Witten, Germany
| | - Armin Baiker
- Unit of Molecular Biologic Analytics and Biogenetics, Bavarian Health and Food Safety Authority, Veterinaerstrasse 2, 85764, Oberschleißheim, Germany. .,Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453, Witten, Germany.
| |
Collapse
|
487
|
Targeting the gut and tumor microbiota in cancer. Nat Med 2022; 28:690-703. [PMID: 35440726 DOI: 10.1038/s41591-022-01779-2] [Citation(s) in RCA: 274] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
Microorganisms within the gut and other niches may contribute to carcinogenesis, as well as shaping cancer immunosurveillance and response to immunotherapy. Our understanding of the complex relationship between different host-intrinsic microorganisms, as well as the multifaceted mechanisms by which they influence health and disease, has grown tremendously-hastening development of novel therapeutic strategies that target the microbiota to improve treatment outcomes in cancer. Accordingly, the evaluation of a patient's microbial composition and function and its subsequent targeted modulation represent key elements of future multidisciplinary and precision-medicine approaches. In this Review, we outline the current state of research toward harnessing the microbiome to better prevent and treat cancer.
Collapse
|
488
|
Dectin-1b activation by arabinoxylans induces trained immunity in human monocyte-derived macrophages. Int J Biol Macromol 2022; 209:942-950. [PMID: 35447262 DOI: 10.1016/j.ijbiomac.2022.04.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 01/21/2023]
Abstract
Arabinoxylans of various structures and sources have shown to possess the ability to induce a range of immune responses in different cell types in vitro and in vivo. Although the underlying mechanisms remain to be fully established, several studies point towards the involvement of activation of pattern recognition receptors (PRRs). Activation of specific PRRs (i.e., Dectin-1 and CR3) has also been shown to play a key role in the induction of a non-specific memory response in innate immune cells, termed 'trained innate immunity'. In the current study, we assessed whether arabinoxylans are also able to induce trained innate immunity. To this end, a range of arabinoxylan preparations from different sources were tested for their physicochemical properties and their capacity to induce innate immune training and resilience. In human macrophages, rice and wheat-derived arabinoxylan preparations induced training and/or resilience effects, the extent depending on fiber particle size and solubility. Using a Dectin-1 antagonist or a CR3 antibody, it was demonstrated that arabinoxylan-induced trained immunity in macrophages is mainly dependent on Dectin-1b. These findings build on previous observations showing the immunomodulatory potential of arabinoxylans as biological response modifiers and open up promising avenues for their use as health promoting ingredients.
Collapse
|
489
|
Nogrady B. How gut reactions are shaping cancer treatment. Nature 2022; 604:S1-S3. [PMID: 35388199 DOI: 10.1038/d41586-022-00933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
490
|
Cancer immunotherapy resistance: The impact of microbiome-derived short-chain fatty acids and other emerging metabolites. Life Sci 2022; 300:120573. [DOI: 10.1016/j.lfs.2022.120573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022]
|
491
|
Abstract
In the past decade, substantial advances have been made in understanding the biology of tumour-associated macrophages (TAMs), and their clinical relevance is emerging. A particular aspect that is becoming increasingly clear is that the interaction of TAMs with cancer cells and stromal cells in the tumour microenvironment enables and sustains most of the hallmarks of cancer. Therefore, manipulation of TAMs could enable improved disease control in a substantial fraction of patients across a large number of cancer types. In this Review, we examine the diversity of TAMs in various cancer indications and how this heterogeneity is being revisited with the advent of single-cell technologies, and then explore the current knowledge on the functional roles of different TAM states and the prognostic and predictive value of TAM-related signatures. We also review agents targeting TAMs that are currently being or will soon be tested in clinical trials, and how manipulations of TAMs can improve existing anticancer treatments. Finally, we discuss how TAM-targeting approaches could be further integrated into routine clinical practice, considering a precision oncology approach and viewing TAMs as a dynamic population that can evolve under treatment pressure.
Collapse
|
492
|
Newsome RC, Gharaibeh RZ, Pierce CM, da Silva WV, Paul S, Hogue SR, Yu Q, Antonia S, Conejo-Garcia JR, Robinson LA, Jobin C. Interaction of bacterial genera associated with therapeutic response to immune checkpoint PD-1 blockade in a United States cohort. Genome Med 2022; 14:35. [PMID: 35346337 PMCID: PMC8961902 DOI: 10.1186/s13073-022-01037-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/08/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Recent studies show that human gut microbial composition can determine whether a patient is a responder or non-responder to immunotherapy but have not identified a common microbial signal shared by responding patients. The functional relationship between immunity, intestinal microbiota, and NSCLC response to immune checkpoint inhibitor/inhibition (ICI) in an American cohort remains unexplored. METHODS RNAlater-preserved fecal samples were collected from 65 pre-treatment (baseline) and post-treatment stage III/IV NSCLC patients undergoing ICI therapy, categorized as responders or non-responders according to RECIST criteria. Pooled and individual responder and non-responder microbiota were transplanted into a gnotobiotic mouse model of lung cancer and treated with ICIs. 16S rDNA and RNA sequencing was performed on patient fecal samples, 16S rDNA sequencing on mouse fecal samples, and flow cytometric analysis on mouse tumor tissue. RESULTS Responder patients have both a different microbial community structure than non-responders (P = 0.004) and a different bacterial transcriptome (PC2 = 0.03) at baseline. Taxa significantly enriched in responders include amplicon sequence variants (ASVs) belonging to the genera Ruminococcus, Akkermansia, and Faecalibacterium. Pooled and individual responder microbiota transplantation into gnotobiotic mice decreased tumor growth compared to non-responder colonized mice following ICI (P = 0.023, P = 0.019, P = 0.008, respectively). Responder tumors showed an increased anti-tumor cellular phenotype following ICI treatment. Responder mice are enriched with ASVs belonging to the genera Bacteroides, Blautia, Akkermansia, and Faecalibacterium. Overlapping taxa mapping between human and mouse cohorts correlated with tumor size and weight revealed a network highlighting responder-associated ASVs belonging to the genera Colidextribacter, Frisingicoccus, Marvinbryantia, and Blautia which have not yet been reported. CONCLUSIONS The role of isolate-specific function and bacterial gene expression in gut microbial-driven responsiveness to ICI has been underappreciated. This work supports further investigation using isolate-driven models to characterize the mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Rachel C Newsome
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Raad Z Gharaibeh
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christine M Pierce
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
- Present Address: Department of Epidemiology, BARDS, MRL, Merck Sharp & Dohme Corp., a Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Shirlene Paul
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Stephanie R Hogue
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Qin Yu
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Scott Antonia
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Lary A Robinson
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Christian Jobin
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Infectious Diseases and Immunology, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
493
|
Silveira MAD, Bilodeau S, Greten TF, Wang XW, Trinchieri G. The gut-liver axis: host microbiota interactions shape hepatocarcinogenesis. Trends Cancer 2022; 8:583-597. [PMID: 35331674 DOI: 10.1016/j.trecan.2022.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
Abstract
Although their etiologies vary, tumors share a common trait: the control of an oncogenic transcriptional program that is regulated by the interaction of the malignant cells with the stromal and immune cells in the tumor microenvironment (TME). The TME shows high phenotypic and functional heterogeneity that may be modulated by interactions with commensal microbes (the microbiota) both systemically and locally. Unlike host cells, the microbiota adapts after environmental perturbations, impacting host-microbe interactions. In the liver, the bidirectional relationship in the gut and its associated microbiota creates an interdependent environment. Therefore, the gut microbiota and its metabolites modulate liver gene expression directly and indirectly, causing an imbalance in the gut-liver axis, which may result in disease, including carcinogenesis.
Collapse
Affiliation(s)
- Maruhen A D Silveira
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, QC G1V 4G2, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC G1R 3S3, Canada
| | - Steve Bilodeau
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, QC G1V 4G2, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC G1R 3S3, Canada; Centre de Recherche en Données Massives de l'Université Laval, Québec, QC G1V 0A6, Canada; Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA; NCI-CCR Liver Cancer Program, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; NCI-CCR Liver Cancer Program, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| | - Giorgio Trinchieri
- NCI-CCR Liver Cancer Program, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
494
|
Abstract
The commensal microbiota is an important source of inter-subject heterogeneity and can impact human health through modulation of host immunity. Because the abundance and metabolic functions of various gut microbes are affected by dietary elements, recent studies in Cell and Science test the links between diet, microbiota, and immune system modulation.
Collapse
Affiliation(s)
- Vyara Matson
- Department of Pathology, The University of Chicago, Chicago, IL, USA.
| | - Thomas F Gajewski
- Department of Pathology, The University of Chicago, Chicago, IL, USA; Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
495
|
A probiotic supplement boosts response to cancer immunotherapy. Nat Med 2022; 28:633-634. [PMID: 35288698 DOI: 10.1038/s41591-022-01723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
496
|
Prescription Patterns, Recurrence, and Toxicity Rates of Adjuvant Treatment for Stage III/IV Melanoma—A Real World Single-Center Analysis. BIOLOGY 2022; 11:biology11030422. [PMID: 35336796 PMCID: PMC8945449 DOI: 10.3390/biology11030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Adjuvant treatment with the immune checkpoint inhibitors (ICI) pembrolizumab or nivolumab, or the targeted therapies dabrafenib and trametinib is recommended for patients with completely resected stage III melanoma and significantly decreases recurrence risk. Currently, limited data are available on physicians’ prescription preferences regarding ICI and targeted therapies and patient outcome in clinical practice. This study investigates the real-world situation of 109 patients from the Cancer Center of the University Hospital Bern, Switzerland, with an indication for adjuvant treatment since 2018. We describe treatment patterns, recurrence, and toxicity rates under immune checkpoint inhibitors, and targeted therapies. Abstract Approved adjuvant treatment options for stage III melanoma are the immune checkpoint inhibitors (ICI) pembrolizumab and nivolumab, and in presence of a BRAF V600E/K mutation additionally dabrafenib in combination with trametinib (BRAFi/MEKi). This study aims to describe prescription patterns and recurrence and toxicity rates of adjuvant-treated melanoma patients from the Cancer Center of the University Hospital Bern, Switzerland. One hundred and nine patients with an indication for adjuvant treatment were identified. Five (4.6%) had contraindications and, as such, were not proposed any adjuvant treatment, while 10 patients (9.2%) declined treatment. BRAF status was known for 91 (83.5%) patients. Of 40 (36.7%) patients with BRAF V600E/K melanoma, pembrolizumab was prescribed to 18 (45.0%), nivolumab to 16 (40.0%), and dabrafenib/trametinib to three (7.5%) patients. Grade 3–4 toxicity was reported in 18.9% and 16.7% of all the patients treated with pembrolizumab and nivolumab, respectively. No toxicities were observed for dabrafenib/trametinib. Thirty-eight percent of the patients treated with pembrolizumab and 40.0% of those treated with nivolumab relapsed. No relapses were reported for dabrafenib/trametinib. Prescription patterns indicate a clear preference for adjuvant ICI treatment.
Collapse
|
497
|
Tu SM, Pisters LL. Stem-Cell Theory of Cancer: Implications for Antiaging and Anticancer Strategies. Cancers (Basel) 2022; 14:1338. [PMID: 35267646 PMCID: PMC8909197 DOI: 10.3390/cancers14051338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
A stem-cell theory of cancer predicates that not only does the cell affect the niche, the niche also affects the cell. It implicates that even though genetic makeup may be supreme, cellular context is key. When we attempt to solve the mystery of a long cancer-free life, perhaps we need to search no further than the genetics and epigenetics of the naked mole-rat. When we try to unlock the secrets in the longevity and quality of life, perhaps we need to look no further than the lifestyle and habits of the super centenarians. We speculate that people with Down's syndrome and progeria age faster but have fewer cancers, because they are depleted of stem cells, and, as a consequence, have fewer opportunities for stem cell defects that could predispose them to the development of cancer. We contemplate whether these incredible experiments of nature may provide irrefutable evidence that cancer is a stem-cell disease-fewer aberrant stem cells, fewer cancers; no defective stem cells, no cancer. In this perspective, we investigate a stem-cell origin of aging and cancer. We elaborate an intriguing inverse relationship between longevity and malignancy in the naked mole-rat, in Down's syndrome, and in progeria. We postulate that stem-cell pools and stemness factors may affect aging and dictate cancer. We propose that a healthy microbiome may protect and preserve stem cell reserves and provide meaningful antiaging effects and anticancer benefits.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Louis L. Pisters
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
498
|
Poonacha KNT, Villa TG, Notario V. The Interplay among Radiation Therapy, Antibiotics and the Microbiota: Impact on Cancer Treatment Outcomes. Antibiotics (Basel) 2022; 11:331. [PMID: 35326794 PMCID: PMC8944497 DOI: 10.3390/antibiotics11030331] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/01/2022] Open
Abstract
Radiation therapy has been used for more than a century, either alone or in combination with other therapeutic modalities, to treat most types of cancer. On average, radiation therapy is included in the treatment plans for over 50% of all cancer patients, and it is estimated to contribute to about 40% of curative protocols, a success rate that may reach 90%, or higher, for certain tumor types, particularly on patients diagnosed at early disease stages. A growing body of research provides solid support for the existence of bidirectional interaction between radiation exposure and the human microbiota. Radiation treatment causes quantitative and qualitative changes in the gut microbiota composition, often leading to an increased abundance of potentially hazardous or pathogenic microbes and a concomitant decrease in commensal bacteria. In turn, the resulting dysbiotic microbiota becomes an important contributor to worsen the adverse events caused in patients by the inflammatory process triggered by the radiation treatment and a significant determinant of the radiation therapy anti-tumor effectiveness. Antibiotics, which are frequently included as prophylactic agents in cancer treatment protocols to prevent patient infections, may affect the radiation/microbiota interaction through mechanisms involving both their antimicrobial activity, as a mediator of microbiota imbalances, and their dual capacity to act as pro- or anti-tumorigenic effectors and, consequently, as critical determinants of radiation therapy outcomes. In this scenario, it becomes important to introduce the use of probiotics and/or other agents that may stabilize the healthy microbiota before patients are exposed to radiation. Ultimately, newly developed methodologies may facilitate performing personalized microbiota screenings on patients before radiation therapy as an accurate way to identify which antibiotics may be used, if needed, and to inform the overall treatment planning. This review examines currently available data on these issues from the perspective of improving radiation therapy outcomes.
Collapse
Affiliation(s)
| | - Tomás G. Villa
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15705 La Coruña, Spain;
| | - Vicente Notario
- Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
499
|
Abstract
The human gut microbiota has a major impact on cancer immunosurveillance. In a recent Science paper, Spencer et al. reported the interesting observation that low dietary fiber intake or ingestion of commercially available probiotics both affect the anticancer effects mediated by immunotherapy in mice and patients with advanced melanoma.
Collapse
|
500
|
Wei J, Hu M, Du H. Improving Cancer Immunotherapy: Exploring and Targeting Metabolism in Hypoxia Microenvironment. Front Immunol 2022; 13:845923. [PMID: 35281061 PMCID: PMC8907427 DOI: 10.3389/fimmu.2022.845923] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Although immunotherapy has achieved good results in various cancer types, a large proportion of patients are limited from the benefits. Hypoxia and metabolic reprogramming are the common and critical factors that impact immunotherapy response. Here, we present current research on the metabolism reprogramming induced by hypoxia on antitumor immunity and discuss the recent progression among preclinical and clinical trials exploring the therapeutic effects combining targeting hypoxia and metabolism with immunotherapy. By evaluating the little clinical translation of the combined therapy, we provide insight into "understanding and regulating cellular metabolic plasticity under the current tumor microenvironment (TME)," which is essential to explore the strategy for boosting immune responses by targeting the metabolism of tumor cells leading to harsh TMEs. Therefore, we highlight the potential value of advanced single-cell technology in revealing the metabolic heterogeneity and corresponding phenotype of each cell subtype in the current hypoxic lesion from the clinical patients, which can uncover potential metabolic targets and therapeutic windows to enhance immunotherapy.
Collapse
Affiliation(s)
| | | | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|