451
|
|
452
|
Boluda C, Rico V, Divakar P, Nadyeina O, Myllys L, McMullin R, Zamora J, Scheidegger C, Hawksworth D. Evaluating methodologies for species delimitation: the mismatch between phenotypes and genotypes in lichenized fungi ( Bryoria sect. Implexae, Parmeliaceae). PERSOONIA 2019; 42:75-100. [PMID: 31551615 PMCID: PMC6712543 DOI: 10.3767/persoonia.2019.42.04] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/18/2018] [Indexed: 01/07/2023]
Abstract
In many lichen-forming fungi, molecular phylogenetic analyses lead to the discovery of cryptic species within traditional morphospecies. However, in some cases, molecular sequence data also questions the separation of phenotypically characterised species. Here we apply an integrative taxonomy approach - including morphological, chemical, molecular, and distributional characters - to re-assess species boundaries in a traditionally speciose group of hair lichens, Bryoria sect. Implexae. We sampled multilocus sequence and microsatellite data from 142 specimens from a broad intercontinental distribution. Molecular data included DNA sequences of the standard fungal markers ITS, IGS, GAPDH, two newly tested loci (FRBi15 and FRBi16), and SSR frequencies from 18 microsatellite markers. Datasets were analysed with Bayesian and maximum likelihood phylogenetic reconstruction, phenogram reconstruction, STRUCTURE Bayesian clustering, principal coordinate analysis, haplotype network, and several different species delimitation analyses (ABGD, PTP, GMYC, and DISSECT). Additionally, past population demography and divergence times are estimated. The different approaches to species recognition do not support the monophyly of the 11 currently accepted morphospecies, and rather suggest the reduction of these to four phylogenetic species. Moreover, three of these are relatively recent in origin and cryptic, including phenotypically and chemically variable specimens. Issues regarding the integration of an evolutionary perspective into taxonomic conclusions in species complexes, which have undergone recent diversification, are discussed. The four accepted species, all epitypified by sequenced material, are Bryoria fuscescens, B. glabra, B. kockiana, and B. pseudofuscescens. Ten species rank names are reduced to synonymy. In the absence of molecular data, they can be recorded as the B. fuscescens complex. Intraspecific phenotype plasticity and factors affecting the speciation of different morphospecies in this group of Bryoria are outlined.
Collapse
Affiliation(s)
- C.G. Boluda
- Departamento de Farmacología, Farmacognosia y Botánica (U.D. Botánica), Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, Madrid 28040, Spain
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf 8903, Switzerland
| | - V.J. Rico
- Departamento de Farmacología, Farmacognosia y Botánica (U.D. Botánica), Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, Madrid 28040, Spain
| | - P.K. Divakar
- Departamento de Farmacología, Farmacognosia y Botánica (U.D. Botánica), Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, Madrid 28040, Spain
| | - O. Nadyeina
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf 8903, Switzerland
| | - L. Myllys
- Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, 00014 University of Helsinki, Finland
| | - R.T. McMullin
- Research and Collections, Canadian Museum of Nature, Ottawa, ON K1P 6P4, Canada
| | - J.C. Zamora
- Departamento de Farmacología, Farmacognosia y Botánica (U.D. Botánica), Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, Madrid 28040, Spain
- Museum of Evolution, Uppsala University, Norbyvägen 16, 75236 Uppsala, Sweden
| | - C. Scheidegger
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf 8903, Switzerland
| | - D.L. Hawksworth
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; and Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey TW9 3DS, United Kingdom
| |
Collapse
|
453
|
May TW, Cooper JA, Dahlberg A, Furci G, Minter DW, Mueller GM, Pouliot A, Yang Z. Recognition of the discipline of conservation mycology. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2019; 33:733-736. [PMID: 30264893 DOI: 10.1111/cobi.13228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Tom W May
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, VIC, 3004, Australia
| | - Jerry A Cooper
- Manaaki Whenua - Landcare Research, 54 Gerald Street, Lincoln, 7608, New Zealand
| | - Anders Dahlberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, 750 07, Uppsala, Sweden
| | - Giuliana Furci
- Fundación Fungi, Paseo Bulnes 79 oficina 112A, Santiago, Chile
| | | | - Gregory M Mueller
- Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL, 60022, U.S.A
| | - Alison Pouliot
- Fenner School, Australian National University, Linnaeus Way, Canberra, ACT, 2601, Australia
| | - Zhuliang Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
454
|
Magray AR, Lone SA, Ganai BA, Ahmad F, Dar GJ, Dar JS, Rehman S. Comprehensive, classical and molecular characterization methods of Saprolegnia (Oomycota; Stramnipila), an important fungal pathogen of fish. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
455
|
Vogt E, Künzler M. Discovery of novel fungal RiPP biosynthetic pathways and their application for the development of peptide therapeutics. Appl Microbiol Biotechnol 2019; 103:5567-5581. [PMID: 31147756 DOI: 10.1007/s00253-019-09893-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
Bioactive peptide natural products are an important source of therapeutics. Prominent examples are the antibiotic penicillin and the immunosuppressant cyclosporine which are both produced by fungi and have revolutionized modern medicine. Peptide biosynthesis can occur either non-ribosomally via large enzymes referred to as non-ribosomal peptide synthetases (NRPS) or ribosomally. Ribosomal peptides are synthesized as part of a larger precursor peptide where they are posttranslationally modified and subsequently proteolytically released. Such peptide natural products are referred to as ribosomally synthesized and posttranslationally modified peptides (RiPPs). Their biosynthetic pathways have recently received a lot of attention, both from a basic and applied research point of view, due to the discoveries of several novel posttranslational modifications of the peptide backbone. Some of these modifications were so far only known from NRPSs and significantly increase the chemical space covered by this class of peptide natural products. Latter feature, in combination with the promiscuity of the modifying enzymes and the genetic encoding of the peptide sequence, makes RiPP biosynthetic pathways attractive for synthetic biology approaches to identify novel peptide therapeutics via screening of de novo generated peptide libraries and, thus, exploit bioactive peptide natural products beyond their direct use as therapeutics. This review focuses on the recent discovery and characterization of novel RiPP biosynthetic pathways in fungi and their possible application for the development of novel peptide therapeutics.
Collapse
Affiliation(s)
- Eva Vogt
- ETH Zürich, Department of Biology, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Markus Künzler
- ETH Zürich, Department of Biology, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| |
Collapse
|
456
|
Cryptic Risks to Forest Biosecurity Associated with the Global Movement of Commercial Seed. FORESTS 2019. [DOI: 10.3390/f10050459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The import and export of tree seed carries with it risks of inadvertent introduction of pests and pathogens to hitherto unaffected regions. Although trade in seed of specified trees is regulated, phytosanitary requirements for most tree species are minimal, even those related to the most important forest tree species in a given region. A better understanding of the microbiome associated with seed intended for commercial production or ornamental use, and their potential risk with the transport from the source origin of distributors, will help regulatory agencies implement measures to safeguard seed health and avoid trade-related spread of potentially harmful pathogens. In this study we used high-throughput sequencing to show that highly diverse fungal communities were associated with seed of 14 different Pinus species obtained from seed banks (seed orchards) and retail sources (online distributors) in North America and Europe. Fungal diversity differed among the 23 seedlots tested. Community composition did not relate to the species of Pinus nor the country of origin. Assigned potential functions based on sequence identity using FUNGuild provided an overall understanding of the likely life strategies of fungal operational taxonomic units (OTUs). Of those sequences classified to a trophic level, 453 were plant pathogens, with the Dothideomycetes having the highest prevalence. The most common plant pathogens included Sydowia polyspora, Lasiodiplodia theobromae, Diplodia intermedia and Diplodia sapinea that were detected from the majority of Pinus species. The evidence presented here illustrates an urgent need for plant protection authorities, practitioners and the general public to recognize the potential risk of introducing harmful pathogens through innocent transport of seed.
Collapse
|
457
|
Hofstetter V, Buyck B, Eyssartier G, Schnee S, Gindro K. The unbearable lightness of sequenced-based identification. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00428-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
458
|
Aparicio-Cuevas MA, González MDC, Raja H, Rivero-Cruz I, Kurina SJ, Burdette JE, Oberlies NH, Figueroa M. Metabolites from the Marine-Facultative Aspergillus sp. MEXU 27854 and Gymnoascus hyalinosporus MEXU 29901 from Caleta Bay, Mexico. Tetrahedron Lett 2019; 60:1649-1652. [PMID: 32390667 DOI: 10.1016/j.tetlet.2019.05.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During our ongoing research on fungal strains from unexplored sources, the reinvestigation of the CHCl3-MeOH extract of the marine-facultative Aspergillus sp. MEXU 27854 yielded a new N-methyl cyclic pentapeptide (1) along with known butyrolactone II and PF1233 A. In addition, from the marine-facultative Gymnoascus hyalinosporus MEXU 29901, a new alternariol glucoside, 10-O-[β-D-(4-methoxyl-glucopyranosyl)]-4-O-methylalternariol (2) and known alternariol 4-O-methyl ether, alternariol and beauvericin, were isolated. The structures of 1 and 2 were established by detailed spectroscopic data, and their absolute configuration was ascertained by Marfey's analysis and HRESIMS-MS/MS data for 1, and by chemical degradation and optical rotation analysis for 2.
Collapse
Affiliation(s)
| | | | - Huzefa Raja
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, North Carolina 27402, United States
| | - Isabel Rivero-Cruz
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Steven J Kurina
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, North Carolina 27402, United States
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
459
|
Jones EBG, Pang KL, Abdel-Wahab MA, Scholz B, Hyde KD, Boekhout T, Ebel R, Rateb ME, Henderson L, Sakayaroj J, Suetrong S, Dayarathne MC, Kumar V, Raghukumar S, Sridhar KR, Bahkali AHA, Gleason FH, Norphanphoun C. An online resource for marine fungi. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00426-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
460
|
Wu B, Hussain M, Zhang W, Stadler M, Liu X, Xiang M. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 2019; 10:127-140. [PMID: 31448147 PMCID: PMC6691916 DOI: 10.1080/21501203.2019.1614106] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/22/2019] [Indexed: 01/09/2023] Open
Abstract
The global bio-diversity of fungi has been extensively investigated and their species number has been estimated. Notably, the development of molecular phylogeny has revealed an unexpected fungal diversity and utilisation of culture-independent approaches including high-throughput amplicon sequencing has dramatically increased number of fungal operational taxonomic units. A number of novel taxa including new divisions, classes, orders and new families have been established in last decade. Many cryptic species were identified by molecular phylogeny. Based on recently generated data from culture-dependent and -independent survey on same samples, the fungal species on the earth were estimated to be 12 (11.7-13.2) million compared to 2.2-3.8 million species recently estimated by a variety of the estimation techniques. Moreover, it has been speculated that the current use of high-throughput sequencing techniques would reveal an even higher diversity than our current estimation. Recently, the formal classification of environmental sequences and permission of DNA sequence data as fungal names' type were proposed but strongly objected by the mycologist community. Surveys on fungi in unusual niches have indicated that many previously regarded "unculturable fungi" could be cultured on certain substrates under specific conditions. Moreover, the high-throughput amplicon sequencing, shotgun metagenomics and a single-cell genomics could be a powerful means to detect novel taxa. Here, we propose to separate the fungal types into physical type based on specimen, genome DNA (gDNA) type based on complete genome sequence of culturable and uncluturable fungal specimen and digital type based on environmental DNA sequence data. The physical and gDNA type should have priority, while the digital type can be temporal supplementary before the physical type and gDNA type being available. The fungal name based on the "digital type" could be assigned as the "clade" name + species name. The "clade" name could be the name of genus, family or order, etc. which the sequence of digital type affiliates to. Facilitating future cultivation efforts should be encouraged. Also, with the advancement in knowledge of fungi inhabiting various environments mostly because of rapid development of new detection technologies, more information should be expected for fungal diversity on our planet.
Collapse
Affiliation(s)
- Bing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Muzammil Hussain
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Weiwei Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
461
|
Praditya D, Kirchhoff L, Brüning J, Rachmawati H, Steinmann J, Steinmann E. Anti-infective Properties of the Golden Spice Curcumin. Front Microbiol 2019; 10:912. [PMID: 31130924 PMCID: PMC6509173 DOI: 10.3389/fmicb.2019.00912] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/10/2019] [Indexed: 01/02/2023] Open
Abstract
The search for novel anti-infectives is one of the most important challenges in natural product research, as diseases caused by bacteria, viruses, and fungi are influencing the human society all over the world. Natural compounds are a continuing source of novel anti-infectives. Accordingly, curcumin, has been used for centuries in Asian traditional medicine to treat various disorders. Numerous studies have shown that curcumin possesses a wide spectrum of biological and pharmacological properties, acting, for example, as anti-inflammatory, anti-angiogenic and anti-neoplastic, while no toxicity is associated with the compound. Recently, curcumin’s antiviral and antibacterial activity was investigated, and it was shown to act against various important human pathogens like the influenza virus, hepatitis C virus, HIV and strains of Staphylococcus, Streptococcus, and Pseudomonas. Despite the potency, curcumin has not yet been approved as a therapeutic antiviral agent. This review summarizes the current knowledge and future perspectives of the antiviral, antibacterial, and antifungal effects of curcumin.
Collapse
Affiliation(s)
- Dimas Praditya
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.,Institute of Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and The Helmholtz Centre for Infection Research, Hanover, Germany.,Research Center for Biotechnology, Indonesian Institute of Science, Cibinong, Indonesia
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Brüning
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Heni Rachmawati
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.,Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, Bandung, Indonesia
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
462
|
Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei D, Pem D, Ackah FK, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li J, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He MQ, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadthanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, Lim YW, Chen Y, Tkalčec Z, Zhang ZF, Luo ZL, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao RL, Lumyong S, et alPhookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei D, Pem D, Ackah FK, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li J, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He MQ, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadthanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, Lim YW, Chen Y, Tkalčec Z, Zhang ZF, Luo ZL, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao RL, Lumyong S, Boonmee S, Wen TC, Mortimer PE, Xu J. Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00421-w] [Show More Authors] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
463
|
It's All in the Genes: The Regulatory Pathways of Sexual Reproduction in Filamentous Ascomycetes. Genes (Basel) 2019; 10:genes10050330. [PMID: 31052334 PMCID: PMC6562746 DOI: 10.3390/genes10050330] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/23/2022] Open
Abstract
Sexual reproduction in filamentous ascomycete fungi results in the production of highly specialized sexual tissues, which arise from relatively simple, vegetative mycelia. This conversion takes place after the recognition of and response to a variety of exogenous and endogenous cues, and relies on very strictly regulated gene, protein, and metabolite pathways. This makes studying sexual development in fungi an interesting tool in which to study gene-gene, gene-protein, and protein-metabolite interactions. This review provides an overview of some of the most important genes involved in this process; from those involved in the conversion of mycelia into sexually-competent tissue, to those involved in the development of the ascomata, the asci, and ultimately, the ascospores.
Collapse
|
464
|
Rivera-Chávez J, Zacatenco-Abarca J, Morales-Jiménez J, Martínez-Aviña B, Hernández-Ortega S, Aguilar-Ramírez E. Cuautepestalorin, a 7,8-Dihydrochromene–Oxoisochromane Adduct Bearing a Hexacyclic Scaffold from Pestalotiopsis sp. IQ-011. Org Lett 2019; 21:3558-3562. [DOI: 10.1021/acs.orglett.9b00962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- José Rivera-Chávez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510 Ciudad de México, Mexico
| | - Jade Zacatenco-Abarca
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510 Ciudad de México, Mexico
| | - Jesús Morales-Jiménez
- CONACYT-Consorcio de Investigación, Innovación y Desarrollo para las Zonas Áridas (CIIDZA), Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Lomas 4a sección, 78216 San Luis Potosí, Mexico
| | - Blanca Martínez-Aviña
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510 Ciudad de México, Mexico
| | - Simón Hernández-Ortega
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510 Ciudad de México, Mexico
| | - Enrique Aguilar-Ramírez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510 Ciudad de México, Mexico
| |
Collapse
|
465
|
Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Genes Immun 2019; 20:403-414. [PMID: 31019254 DOI: 10.1038/s41435-019-0071-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022]
Abstract
Seminal work by Louis Pasteur revealed the contribution of fungi-yeasts and microsporidia to agroindustry and disease in animals, respectively. More than 150 years later, the impact of fungi on human health and beyond is an ever-increasing issue, although often underestimated. Recent studies estimate that fungal infections, especially those caused by Candida, Cryptococcus and Aspergillus species, kill more than one million people annually. Indeed, these neglected infections are in general very difficult to cure and the associated mortality remains very high even when antifungal treatments exist. The development of new antifungals and diagnostic tools that are both necessary to fight fungal diseases efficiently, requires greater insights in the biology of the fungal pathogens of humans in the context of the infection, on their epidemiology, and on their role in the human mycobiota. We also need a better understanding of the host immune responses to fungal pathogens as well as the genetic basis for the increased sensitivity of some individuals to fungal infections. Here, we highlight some recent progress made in these different areas of research, in particular based on work conducted in our own laboratories. These progress should lay the ground for better management of fungal infections, as they provide opportunities for better diagnostic, vaccination, the development of classical antifungals but also strategies for targeting virulence factors or the host.
Collapse
|
466
|
|
467
|
Santos ACDS, Trindade JVC, Lima CS, Barbosa RDN, da Costa AF, Tiago PV, de Oliveira NT. Morphology, phylogeny, and sexual stage of Fusarium caatingaense and Fusarium pernambucanum, new species of the Fusarium incarnatum-equiseti species complex associated with insects in Brazil. Mycologia 2019; 111:244-259. [PMID: 30924728 DOI: 10.1080/00275514.2019.1573047] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Based on morphological and molecular phylogenetic markers and the fertility of sexual crosses, two novel species of Fusarium associated with Dactylopius opuntiae (Hemiptera: Dactylopiidae) and Aleurocanthus woglumi (Hemiptera: Aleyrodidae) from northeastern Brazil are described as Fusarium caatingaense and F. pernambucanum. Partial sequences of five loci were generated for 29 entomopathogenic Fusarium isolates. Multilocus phylogenetic analyses demonstrated that F. caatingaense and F. pernambucanum belong to the Incarnatum clade of the Fusarium incarnatum-equiseti species complex (FIESC). These species displayed common morphological characters such as the production of various types of aerial conidia formed on monophialides and polyphialides and differ from each other mainly in the dimensions and morphology of their sporodochial conidia. Mating type polymerase chain reaction (PCR) revealed 17 MAT1-1 isolates and 12 MAT1-2 isolates, all of them heterothallic. Fertile perithecia were produced in 4.2% of infraspecific crosses of F. caatingaense and in 13.3% of infraspecific crosses of F. pernambucanum after 2-3 wk. Crosses between F. caatingaense and F. pernambucanum did not result in fertile perithecia. We demonstrate the existence of a sexual stage in species of the Incarnatum clade and describe the morphological characters of these sexual morphs for the first time. These results suggest that previously unknown sexual cycles contribute to the high genetic diversity within FIESC.
Collapse
Affiliation(s)
- Ana Carla da Silva Santos
- a Departamento de Micologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego 1235 , Cidade Universitária , Recife , Pernambuco , 50670-901 , Brazil
| | - José Vinícius Correia Trindade
- a Departamento de Micologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego 1235 , Cidade Universitária , Recife , Pernambuco , 50670-901 , Brazil
| | - Cristiano Souza Lima
- b Departamento de Fitotecnia, Universidade Federal do Ceará , Av. Mister Hull 2977, Presidente Kennedy , Fortaleza , Ceará , 60356-001 , Brazil
| | - Renan do Nascimento Barbosa
- a Departamento de Micologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego 1235 , Cidade Universitária , Recife , Pernambuco , 50670-901 , Brazil
| | - Antonio Félix da Costa
- c Instituto Agronômico de Pernambuco , Av. General San Martin 1371, Bongi, Recife , Pernambuco , 50761-000 , Brazil
| | - Patricia Vieira Tiago
- a Departamento de Micologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego 1235 , Cidade Universitária , Recife , Pernambuco , 50670-901 , Brazil
| | - Neiva Tinti de Oliveira
- a Departamento de Micologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego 1235 , Cidade Universitária , Recife , Pernambuco , 50670-901 , Brazil
| |
Collapse
|
468
|
Hu P, Wu L, Hollister EB, Wang AS, Somenahally AC, Hons FM, Gentry TJ. Fungal Community Structural and Microbial Functional Pattern Changes After Soil Amendments by Oilseed Meals of Jatropha curcas and Camelina sativa: A Microcosm Study. Front Microbiol 2019; 10:537. [PMID: 30984123 PMCID: PMC6450180 DOI: 10.3389/fmicb.2019.00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/01/2019] [Indexed: 11/13/2022] Open
Abstract
The meals after oil extraction from many oilseed crops have nutrition and biofumigation potential for land application. Oilseed meal (SM) from the dedicated bioenergy crop Jatropha curcas were implicated to contain compounds that have antibacterial properties on some soil pathogens. However, little is known about its effect on non-targeted soil microbial community, especially on fungi. SM from Camelina sativa contains moderate level of glucosinolates (GLS) and was under studied. To investigate soil fungal community responses to jatropha and camelina SMs, we conducted a lab based microcosm study, amending soil with 1% SMs of jatropha, camelina, flax, and biomass of wheat straw. Fungal community abundance and structure were analyzed based on the ITS region using qPCR and tag-pyrosequencing. Microbial functional changes were examined by community level physiological profile (CLPP) using Biolog assay. Both SMs from jatropha and camelina showed biofumigant properties and inhibited fungal proliferation. Jatropha SM significantly altered soil fungal community structures with lower fungal biodiversity and higher Chaetomium composition. Camelina SM amended soil promoted Fusarium proliferation. CLPP indicated sequential hierarchy for C metabolism in the oilseed-amended microcosms was generally complex C > phosphate-associated C > carboxylic acids > carbohydrates > amines > amino acids. No significant difference in CLPP was detected due to the type of SM treatment. Our data indicate that both SMs of jatropha and camelina have biofumigant properties and can differentially impact soil microbial communities, and the changes were relatively persistent over time. Microbial functional patterns on the other side were not impacted by SM type. Our study revealed biofumigant and nutritional influence of SMs from dedicated biofuel plants on soil microbial community. This information will help properly using jatropha and camelina SMs for pathogen control while minimizing their negative impacts on non-target microorganisms. However, further studies in the field are demanded to investigate their influences in real practice.
Collapse
Affiliation(s)
- Ping Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangjun Wu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Emily B. Hollister
- Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital, Houston, TX, United States
| | - Autumn S. Wang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | | | - Frank M. Hons
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Terry J. Gentry
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
469
|
Chollet-Krugler M, Nguyen TTT, Sauvager A, Thüs H, Boustie J. Mycosporine-Like Amino Acids (MAAs) in Time-Series of Lichen Specimens from Natural History Collections. Molecules 2019; 24:E1070. [PMID: 30893758 PMCID: PMC6471344 DOI: 10.3390/molecules24061070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 01/15/2023] Open
Abstract
Mycosporine-like amino acids (MAAs) were quantified in fresh and preserved material of the chlorolichen Dermatocarpon luridum var. luridum (Verrucariaceae/Ascomycota). The analyzed samples represented a time-series of over 150 years. An HPLC coupled with a diode array detector (HPLC-DAD) in hydrophilic interaction liquid chromatography (HILIC) mode method was developed and validated for the quantitative determination of MAAs. We found evidence for substance specific differences in the quality of preservation of two MAAs (mycosporine glutamicol, mycosporine glutaminol) in Natural History Collections. We found no change in average mycosporine glutamicol concentrations over time. Mycosporine glutaminol concentrations instead decreased rapidly with no trace of this substance detectable in collections older than nine years. Our data predict that a screening for MAAs in organism samples from Natural History Collections can deliver results that are comparable to those obtained from fresh collections only for some MAAs (e.g., mycosporine glutamicol). For other MAAs, misleading, biased, or even false negative results will occur as a result of the storage sensitivity of substances such as mycosporine glutaminol. Our study demonstrates the value of pilot studies with time-series based on model taxa with a rich representation in the Natural History Collections.
Collapse
Affiliation(s)
- Marylène Chollet-Krugler
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000 Rennes, France.
| | - Thi Thu Tram Nguyen
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000 Rennes, France.
- Department of Chemistry, Faculty of Science, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, An Khanh, Ninh Kieu, Can Tho, 902495 Vietnam.
| | - Aurelie Sauvager
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000 Rennes, France.
| | - Holger Thüs
- State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany.
- The Natural History Museum London, Cromwell Rd, Kensington, London SW7 5BD, UK.
| | - Joël Boustie
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000 Rennes, France.
| |
Collapse
|
470
|
Lin HY, Wang JJ, Feng MG, Ying SH. Autophagy-related gene ATG7 participates in the asexual development, stress response and virulence of filamentous insect pathogenic fungus Beauveria bassiana. Curr Genet 2019; 65:1015-1024. [PMID: 30879087 DOI: 10.1007/s00294-019-00955-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
Autophagy is a sophisticated mechanism for maintaining cellular homeostasis, in which E1-like enzyme (ATG7) controls the activation of ubiquitin-like conjugation system in the autophagy pathway. In the insect pathogenic fungus Beauveria bassiana, a yeast ortholog of ATG7 was identified and functionally analyzed. Ablation of BbATG7 gene blocks the autophagic process under starvation stress. The mutant ΔBbATG7 exhibited impaired growth on the media with chitin as single nitrogen source. On rich media, gene loss did not cause notable effect on vegetative growth, but resulted in a considerable reduction in conidiation (71.6%) and blastospore yield (61.1%) in the mutant. In addition, the ΔBbATG7 mutant displayed increased sensitivity to stress caused by menadione and Congo red. The virulence of ΔBbATG7 mutant was significantly attenuated as indicated in topical and intrahemocoel injection assays. Our study indicates that BbATG7 contributes to B. bassiana virulence via regulating autophagy pathway and playing non-autophagic functions in the infection cycle.
Collapse
Affiliation(s)
- Hai-Yan Lin
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Jia Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
471
|
Monk BC, Sagatova AA, Hosseini P, Ruma YN, Wilson RK, Keniya MV. Fungal Lanosterol 14α-demethylase: A target for next-generation antifungal design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140206. [PMID: 30851431 DOI: 10.1016/j.bbapap.2019.02.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
The cytochrome P450 enzyme lanosterol 14α-demethylase (LDM) is the target of the azole antifungals used widely in medicine and agriculture as prophylaxis or treatments of infections or diseases caused by fungal pathogens. These drugs and agrochemicals contain an imidazole, triazole or tetrazole substituent, with one of the nitrogens in the azole ring coordinating as the sixth axial ligand to the LDM heme iron. Structural studies show that this membrane bound enzyme contains a relatively rigid ligand binding pocket comprised of a deeply buried heme-containing active site together with a substrate entry channel and putative product exit channel that reach to the membrane. Within the ligand binding pocket the azole antifungals have additional affinity determining interactions with hydrophobic side-chains, the polypeptide backbone and via water-mediated hydrogen bond networks. This review will describe the tools that can be used to identify and characterise the next generation of antifungals targeting LDM, with the goal of obtaining highly potent broad-spectrum fungicides that will be able to avoid target and drug efflux mediated antifungal resistance.
Collapse
Affiliation(s)
- Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Alia A Sagatova
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Parham Hosseini
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Yasmeen N Ruma
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Rajni K Wilson
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Mikhail V Keniya
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
472
|
Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald J, Cardinali G, Houbraken J, Boekhout T, Crous P, Robert V, Verkley G. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 2019; 92:135-154. [PMID: 29955203 PMCID: PMC6020082 DOI: 10.1016/j.simyco.2018.05.001] [Citation(s) in RCA: 478] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Species identification lies at the heart of biodiversity studies that has in recent years favoured DNA-based approaches. Microbial Biological Resource Centres are a rich source for diverse and high-quality reference materials in microbiology, and yet the strains preserved in these biobanks have been exploited only on a limited scale to generate DNA barcodes. As part of a project funded in the Netherlands to barcode specimens of major national biobanks, sequences of two nuclear ribosomal genetic markers, the Internal Transcribed Spaces and 5.8S gene (ITS) and the D1/D2 domain of the 26S Large Subunit (LSU), were generated as DNA barcode data for ca. 100 000 fungal strains originally assigned to ca. 17 000 species in the CBS fungal biobank maintained at the Westerdijk Fungal Biodiversity Institute, Utrecht. Using more than 24 000 DNA barcode sequences of 12 000 ex-type and manually validated filamentous fungal strains of 7 300 accepted species, the optimal identity thresholds to discriminate filamentous fungal species were predicted as 99.6 % for ITS and 99.8 % for LSU. We showed that 17 % and 18 % of the species could not be discriminated by the ITS and LSU genetic markers, respectively. Among them, ∼8 % were indistinguishable using both genetic markers. ITS has been shown to outperform LSU in filamentous fungal species discrimination with a probability of correct identification of 82 % vs. 77.6 %, and a clustering quality value of 84 % vs. 77.7 %. At higher taxonomic classifications, LSU has been shown to have a better discriminatory power than ITS. With a clustering quality value of 80 %, LSU outperformed ITS in identifying filamentous fungi at the ordinal level. At the generic level, the clustering quality values produced by both genetic markers were low, indicating the necessity for taxonomic revisions at genus level and, likely, for applying more conserved genetic markers or even whole genomes. The taxonomic thresholds predicted for filamentous fungal identification at the genus, family, order and class levels were 94.3 %, 88.5 %, 81.2 % and 80.9 % based on ITS barcodes, and 98.2 %, 96.2 %, 94.7 % and 92.7 % based on LSU barcodes. The DNA barcodes used in this study have been deposited to GenBank and will also be publicly available at the Westerdijk Institute's website as reference sequences for fungal identification, marking an unprecedented data release event in global fungal barcoding efforts to date.
Collapse
Affiliation(s)
- D. Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - M. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - M. de Vries
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - T. Gehrmann
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - B. Stielow
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - U. Eberhardt
- Staatliches Museum f. Naturkunde Stuttgart, Abt. Botanik, Rosenstein 1, D-70191 Stuttgart, Germany
| | - A. Al-Hatmi
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - G. Cardinali
- University of Perugia, Dept. of Pharmaceutical Sciences, Via Borgo 20 Giugno 74, I 06121 Perugia, Italy
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - G.J.M. Verkley
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
473
|
Sanitá Lima M, Coutinho de Lucas R, Lima N, Polizeli MDLTDM, Santos C. Fungal Community Ecology Using MALDI-TOF MS Demands Curated Mass Spectral Databases. Front Microbiol 2019; 10:315. [PMID: 30873137 PMCID: PMC6401475 DOI: 10.3389/fmicb.2019.00315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Matheus Sanitá Lima
- Department of Biology, University of Western Ontario, London, ON, Canada.,Biology Department, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rosymar Coutinho de Lucas
- Biology Department, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Nelson Lima
- CEB - Biological Engineering Centre, University of Minho, Braga, Portugal
| | | | - Cledir Santos
- Department of Chemical Science and Natural Resources, BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
474
|
Aspergillus nidulans in the post-genomic era: a top-model filamentous fungus for the study of signaling and homeostasis mechanisms. Int Microbiol 2019; 23:5-22. [DOI: 10.1007/s10123-019-00064-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
|
475
|
Hassett BT, Borrego EJ, Vonnahme TR, Rämä T, Kolomiets MV, Gradinger R. Arctic marine fungi: biomass, functional genes, and putative ecological roles. ISME JOURNAL 2019; 13:1484-1496. [PMID: 30745572 DOI: 10.1038/s41396-019-0368-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/06/2019] [Accepted: 01/22/2019] [Indexed: 01/07/2023]
Abstract
Recent molecular evidence suggests a global distribution of marine fungi; however, the ecological relevance and corresponding biological contributions of fungi to marine ecosystems remains largely unknown. We assessed fungal biomass from the open Arctic Ocean by applying novel biomass conversion factors from cultured isolates to environmental sterol and CARD-FISH data. We found an average of 16.54 nmol m-3 of ergosterol in sea ice and seawater, which corresponds to 1.74 mg C m-3 (444.56 mg C m-2 in seawater). Using Chytridiomycota-specific probes, we observed free-living and particulate-attached cells that averaged 34.07 µg C m-3 in sea ice and seawater (11.66 mg C m-2 in seawater). Summed CARD-FISH and ergosterol values approximate 1.77 mg C m-3 in sea ice and seawater (456.23 mg C m-2 in seawater), which is similar to biomass estimates of other marine taxa generally considered integral to marine food webs and ecosystem processes. Using the GeoChip microarray, we detected evidence for fungal viruses within the Partitiviridae in sediment, as well as fungal genes involved in the degradation of biomass and the assimilation of nitrate. To bridge our observations of fungi on particulate and the detection of degradative genes, we germinated fungal conidia in zooplankton fecal pellets and germinated fungal conidia after 8 months incubation in sterile seawater. Ultimately, these data suggest that fungi could be as important in oceanic ecosystems as they are in freshwater environments.
Collapse
Affiliation(s)
- B T Hassett
- UiT Norges arktiske universitet, BFE, NFH bygget, Framstredet 6, 9019, Tromsø, Norway.
| | - E J Borrego
- Texas A&M University, 435 Nagle Street, 2132 TAMU, College Station, TX, 77833, USA
| | - T R Vonnahme
- UiT Norges arktiske universitet, BFE, NFH bygget, Framstredet 6, 9019, Tromsø, Norway
| | - T Rämä
- UiT Norges arktiske universitet, BFE, NFH bygget, Framstredet 6, 9019, Tromsø, Norway
| | - M V Kolomiets
- Texas A&M University, 435 Nagle Street, 2132 TAMU, College Station, TX, 77833, USA
| | - R Gradinger
- UiT Norges arktiske universitet, BFE, NFH bygget, Framstredet 6, 9019, Tromsø, Norway
| |
Collapse
|
476
|
Wutkowska M, Vader A, Mundra S, Cooper EJ, Eidesen PB. Dead or Alive; or Does It Really Matter? Level of Congruency Between Trophic Modes in Total and Active Fungal Communities in High Arctic Soil. Front Microbiol 2019; 9:3243. [PMID: 30671045 PMCID: PMC6333106 DOI: 10.3389/fmicb.2018.03243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/13/2018] [Indexed: 11/15/2022] Open
Abstract
Describing dynamics of belowground organisms, such as fungi, can be challenging. Results of studies based on environmental DNA (eDNA) may be biased as the template does not discriminate between metabolically active cells and dead biomass. We analyzed ribosomal DNA (rDNA) and ribosomal RNA (rRNA) coextracted from 48 soil samples collected from a manipulated snow depth experiment in two distinct vegetation types in Svalbard, in the High Arctic. Our main goal was to compare if the rDNA and rRNA metabarcoding templates produced congruent results that would lead to consistent ecological interpretation. Data derived from both rDNA and rRNA clustered according to vegetation types. Different sets of environmental variables explained the community composition based on the metabarcoding template. rDNA and rRNA-derived community composition of symbiotrophs and saprotrophs, unlike pathotrophs, clustered together in a similar way as when the community composition was analyzed using all OTUs in the study. Mean OTU richness was higher for rRNA, especially in symbiotrophs. The metabarcoding template was more important than vegetation type in explaining differences in richness. The proportion of symbiotrophic, saprotrophic and functionally unassigned reads differed between rDNA and rRNA, but showed similar trends. There was no evidence for increased snow depth influence on fungal community composition or richness. Our findings suggest that template choice may be especially important for estimating biodiversity, such as richness and relative abundances, especially in Helotiales and Agaricales, but not for inferring community composition. Differences in study results originating from rDNA or rRNA may directly impact the ecological conclusions of one’s study, which could potentially lead to false conclusions on the dynamics of microbial communities in a rapidly changing Arctic.
Collapse
Affiliation(s)
- Magdalena Wutkowska
- Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway.,Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Anna Vader
- Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway
| | - Sunil Mundra
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Elisabeth J Cooper
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Pernille B Eidesen
- Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway
| |
Collapse
|
477
|
Moose RA, Schigel D, Kirby LJ, Shumskaya M. Dead wood fungi in North America: an insight into research and conservation potential. NATURE CONSERVATION 2019. [DOI: 10.3897/natureconservation.32.30875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Saproxylic fungi act as keystone species in forest ecosystems because they colonise and decompose dead wood, facilitating colonisation by later species. Here, we review the importance of intact forest ecosystems to dead wood fungi, as well as trends in their diversity research and challenges in conservation. Saproxylic communities are sensitive to transition from virgin forests to managed ecosystems, since the latter often results in reduced tree diversity and the removal of their natural habitat dead wood. The impact of dead wood management can be quite significant since many saproxylic fungi are host-specific. The significance of citizen science and educational programmes for saproxylic mycology is discussed with the emphasis on the North American region. We intend to raise the awareness of the role that dead wood fungi play in forest health in order to support development of corresponding conservational programmes.
Collapse
|
478
|
Hovhannisyan H, Gabaldón T. Transcriptome Sequencing Approaches to Elucidate Host-Microbe Interactions in Opportunistic Human Fungal Pathogens. Curr Top Microbiol Immunol 2019; 422:193-235. [PMID: 30128828 DOI: 10.1007/82_2018_122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Infections caused by opportunistic human fungal pathogens are a source of increasing medical concern, due to their growing incidence, the emergence of novel pathogenic species, and the lack of effective diagnostics tools. Fungal pathogens are phylogenetically diverse, and their virulence mechanisms can differ widely across species. Despite extensive efforts, the molecular bases of virulence in pathogenic fungi and their interactions with the human host remain poorly understood for most species. In this context, next-generation sequencing approaches hold the promise of helping to close this knowledge gap. In particular, high-throughput transcriptome sequencing (RNA-Seq) enables monitoring the transcriptional profile of both host and microbes to elucidate their interactions and discover molecular mechanisms of virulence and host defense. Here, we provide an overview of transcriptome sequencing techniques and approaches, and survey their application in studying the interplay between humans and fungal pathogens. Finally, we discuss novel RNA-Seq approaches in studying host-pathogen interactions and their potential role in advancing the clinical diagnostics of fungal infections.
Collapse
Affiliation(s)
- Hrant Hovhannisyan
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
479
|
Linnakoski R, Forbes KM. Pathogens-The Hidden Face of Forest Invasions by Wood-Boring Insect Pests. FRONTIERS IN PLANT SCIENCE 2019; 10:90. [PMID: 30804966 PMCID: PMC6378281 DOI: 10.3389/fpls.2019.00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/21/2019] [Indexed: 05/05/2023]
Affiliation(s)
- Riikka Linnakoski
- Natural Resources Institute Finland (Luke), Helsinki, Finland
- *Correspondence: Riikka Linnakoski
| | | |
Collapse
|
480
|
Overview of the Mycorrhizal Fungi in South America. Fungal Biol 2019. [DOI: 10.1007/978-3-030-15228-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
481
|
Maxwell CS, Mattox K, Turissini DA, Teixeira MM, Barker BM, Matute DR. Gene exchange between two divergent species of the fungal human pathogen, Coccidioides. Evolution 2019; 73:42-58. [PMID: 30414183 PMCID: PMC6430640 DOI: 10.1111/evo.13643] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Abstract
The fungal genus Coccidioides is composed of two species, Coccidioides immitis and Coccidioides posadasii. These two species are the causal agents of coccidioidomycosis, a pulmonary disease also known as valley fever. The two species are thought to have shared genetic material due to gene exchange in spite of their long divergence. To quantify the magnitude of shared ancestry between them, we analyzed the genomes of a population sample from each species. Next, we inferred what is the expected size of shared haplotypes that might be inherited from the last common ancestor of the two species and find a cutoff to find what haplotypes have conclusively been exchanged between species. Finally, we precisely identified the breakpoints of the haplotypes that have crossed the species boundary and measure the allele frequency of each introgression in this sample. We find that introgressions are not uniformly distributed across the genome. Most, but not all, of the introgressions segregate at low frequency. Our results show that divergent species can share alleles, that species boundaries can be porous, and highlight the need for a systematic exploration of gene exchange in fungal species.
Collapse
Affiliation(s)
- Colin S Maxwell
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Kathleen Mattox
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - David A Turissini
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Marcus M Teixeira
- Núcleo de Medicina Tropical, Faculdade de Medicina, University of Brasília, Brasília, Brazil
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
482
|
Ramadan MM, Asran-Amal, Almoammar H, Abd-Elsalam KA. Microbially Synthesized Biomagnetic Nanomaterials. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019:49-75. [DOI: 10.1007/978-3-030-16439-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
483
|
Diversity, Ecology, and Significance of Fungal Endophytes. REFERENCE SERIES IN PHYTOCHEMISTRY 2019. [DOI: 10.1007/978-3-319-90484-9_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
484
|
Peña-Venegas CP, Vasco-Palacios AM. Endo- and Ectomycorrhizas in Tropical Ecosystems of Colombia. Fungal Biol 2019. [DOI: 10.1007/978-3-030-15228-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
485
|
Koch B, Traven A. Mitochondrial Control of Fungal Cell Walls: Models and Relevance in Fungal Pathogens. Curr Top Microbiol Immunol 2019; 425:277-296. [PMID: 31807895 DOI: 10.1007/82_2019_183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proper structure and function of the fungal cell wall are controlled by metabolic processes, as well as an interplay between a range of cellular organelles. Somewhat surprisingly, mitochondrial function has been shown to be important for proper cell wall biogenesis and integrity. Mitochondria also play a role in the susceptibility of fungi to cell wall-targeting drugs. This is true in a range of fungal species, including important human fungal pathogens. The biochemical mechanisms that explain the roles of mitochondria in cell wall biology have remained elusive, but studies to date strongly support the idea that mitochondrial control over cellular lipid homeostasis is at the core of these processes. Excitingly, recent evidence suggests that the mitochondria-lipid linkages drive resistance to the echinocandin drug caspofungin, a clinically important therapeutic that targets cell wall biosynthesis. Here, we review the state of affairs in mitochondria-fungal cell wall research and propose models that could be tested in future studies. Elucidating the mechanisms that drive fungal cell wall integrity through mitochondrial functions holds promise for developing new strategies to combat fungal infections, including the possibility to potentiate the effects of antifungal drugs and curb drug resistance.
Collapse
Affiliation(s)
- Barbara Koch
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia.,Protein, Science and Engineering, Callaghan Innovation, Christchurch, 8140, New Zealand
| | - Ana Traven
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia.
| |
Collapse
|
486
|
Lin Z, Phadke S, Lu Z, Beyhan S, Aziz MHA, Reilly C, Schmidt EW. Onydecalins, Fungal Polyketides with Anti- Histoplasma and Anti-TRP Activity. JOURNAL OF NATURAL PRODUCTS 2018; 81:2605-2611. [PMID: 30507122 PMCID: PMC6474802 DOI: 10.1021/acs.jnatprod.7b01067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report an unusual 3-substituted pyridine polyketide, onydecalin A (1), which was obtained along with 2 as a major constituent from the fungus Aioliomyces pyridodomos (order: Onygenales) following a two-month fermentation. Feeding studies demonstrated that the pyridine subunit originates via an unprecedented biosynthetic process in comparison to other polyketide-linked pyridines or derivatives such as pyridones. The slow growth of the fungus led us to perform a one-year fermentation, leading to production of compounds 2-4 as the major constituents. These compounds showed modest but selective inhibition against a variety of transient receptor potential channels, as well as against the human pathogenic fungus Histoplasma capsulatum.
Collapse
Affiliation(s)
- Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112
| | - Sujal Phadke
- Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037
| | - Zhenyu Lu
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84112
| | - Sinem Beyhan
- Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037
| | - May H. Abdel Aziz
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84112
| | - Chris Reilly
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84112
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
487
|
Snyder AB, Biango-Daniels MN, Hodge KT, Worobo RW. Nature Abhors a Vacuum: Highly Diverse Mechanisms Enable Spoilage Fungi to Disperse, Survive, and Propagate in Commercially Processed and Preserved Foods. Compr Rev Food Sci Food Saf 2018; 18:286-304. [DOI: 10.1111/1541-4337.12403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Abigail B. Snyder
- the Dept. of Extension; The Ohio State Univ.; 1680 Madison Ave. Wooster OH 44691 USA
| | - Megan N. Biango-Daniels
- the Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science; Cornell Univ.; Ithaca NY 14850 USA
| | - Kathie T. Hodge
- the Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science; Cornell Univ.; Ithaca NY 14850 USA
| | - Randy W. Worobo
- the Dept. of Food Science; Cornell Univ.; 411 Tower Rd. Ithaca NY 14850 USA
| |
Collapse
|
488
|
Savidov N, Gloriozova TA, Poroikov VV, Dembitsky VM. Highly oxygenated isoprenoid lipids derived from fungi and fungal endophytes: Origin and biological activities. Steroids 2018; 140:114-124. [PMID: 30326211 DOI: 10.1016/j.steroids.2018.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/19/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
This mini review is devoted to highly oxygenated isoprenoid lipids (HOIL) that are produced by fungi and fungal endophytes from various ecological niches, both terrestrial and aquatic. Steroids were distributed as from edible cultivated fungi, as well as fungi collected in forests. Fungal endophytes were generally isolated from plants and cultured to obtain sufficient biomass. Marine fungi were obtained from marine brown and red algae and marine invertebrates such as sponges, corals, worms, crustacea or from marine sediments. HOIL isolated from the terrestrial ecosystem have the pharmacological potential on anti-hypercholesterolemic, anti-neoplastic, anti-eczematic and anti-inflammatory activity estimated with a confidence of 84-90%. HOIL that produced by marine fungal species are predicted as having anti-inflammatory and anti-hypercholesterolemic activity with a confidence of 82-91%. In addition, they may have potential acetylcholinesterase and cell adhesion molecule inhibitors estimated with a confidence of 86-88%.
Collapse
Affiliation(s)
- Nick Savidov
- Centre for Applied Research and Innovation, Lethbridge College, 3000 College Drive South, Lethbridge AB T1K 1L6, Canada
| | | | | | - Valery M Dembitsky
- Centre for Applied Research and Innovation, Lethbridge College, 3000 College Drive South, Lethbridge AB T1K 1L6, Canada; N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation; National Scientific Center of Marine Biology, Vladivostok 690041, Russian Federation.
| |
Collapse
|
489
|
Hyde KD, Norphanphoun C, Chen J, Dissanayake AJ, Doilom M, Hongsanan S, Jayawardena RS, Jeewon R, Perera RH, Thongbai B, Wanasinghe DN, Wisitrassameewong K, Tibpromma S, Stadler M. Thailand’s amazing diversity: up to 96% of fungi in northern Thailand may be novel. FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0415-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
490
|
Banos S, Lentendu G, Kopf A, Wubet T, Glöckner FO, Reich M. A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiol 2018; 18:190. [PMID: 30458701 PMCID: PMC6247509 DOI: 10.1186/s12866-018-1331-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several fungi-specific primers target the 18S rRNA gene sequence, one of the prominent markers for fungal classification. The design of most primers goes back to the last decades. Since then, the number of sequences in public databases increased leading to the discovery of new fungal groups and changes in fungal taxonomy. However, no reevaluation of primers was carried out and relevant information on most primers is missing. With this study, we aimed to develop an 18S rRNA gene sequence primer toolkit allowing an easy selection of the best primer pair appropriate for different sequencing platforms, research aims (biodiversity assessment versus isolate classification) and target groups. RESULTS We performed an intensive literature research, reshuffled existing primers into new pairs, designed new Illumina-primers, and annealing blocking oligonucleotides. A final number of 439 primer pairs were subjected to in silico PCRs. Best primer pairs were selected and experimentally tested. The most promising primer pair with a small amplicon size, nu-SSU-1333-5'/nu-SSU-1647-3' (FF390/FR-1), was successful in describing fungal communities by Illumina sequencing. Results were confirmed by a simultaneous metagenomics and eukaryote-specific primer approach. Co-amplification occurred in all sample types but was effectively reduced by blocking oligonucleotides. CONCLUSIONS The compiled data revealed the presence of an enormous diversity of fungal 18S rRNA gene primer pairs in terms of fungal coverage, phylum spectrum and co-amplification. Therefore, the primer pair has to be carefully selected to fulfill the requirements of the individual research projects. The presented primer toolkit offers comprehensive lists of 164 primers, 439 primer combinations, 4 blocking oligonucleotides, and top primer pairs holding all relevant information including primer's characteristics and performance to facilitate primer pair selection.
Collapse
Affiliation(s)
- Stefanos Banos
- Molecular Ecology, Institute of Ecology, FB02, University of Bremen, Leobener Str. 2, 28359, Bremen, Germany
| | - Guillaume Lentendu
- Department of Soil Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ, Halle-Saale, Germany.,Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Anna Kopf
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ, Halle-Saale, Germany.,Present address: Department of Community Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ, Halle-Saale, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Frank Oliver Glöckner
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
| | - Marlis Reich
- Molecular Ecology, Institute of Ecology, FB02, University of Bremen, Leobener Str. 2, 28359, Bremen, Germany.
| |
Collapse
|
491
|
Andrew C, Diez J, James TY, Kauserud H. Fungarium specimens: a largely untapped source in global change biology and beyond. Philos Trans R Soc Lond B Biol Sci 2018; 374:20170392. [PMID: 30455210 PMCID: PMC6282084 DOI: 10.1098/rstb.2017.0392] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2018] [Indexed: 11/12/2022] Open
Abstract
For several hundred years, millions of fungal sporocarps have been collected and deposited in worldwide collections (fungaria) to support fungal taxonomy. Owing to large-scale digitization programs, metadata associated with the records are now becoming publicly available, including information on taxonomy, sampling location, collection date and habitat/substrate information. This metadata, as well as data extracted from the physical fungarium specimens themselves, such as DNA sequences and biochemical characteristics, provide a rich source of information not only for taxonomy but also for other lines of biological inquiry. Here, we highlight and discuss how this information can be used to investigate emerging topics in fungal global change biology and beyond. Fungarium data are a prime source of knowledge on fungal distributions and richness patterns, and for assessing red-listed and invasive species. Information on collection dates has been used to investigate shifts in fungal distributions as well as phenology of sporocarp emergence in response to climate change. In addition to providing material for taxonomy and systematics, DNA sequences derived from the physical specimens provide information about fungal demography, dispersal patterns, and are emerging as a source of genomic data. As DNA analysis technologies develop further, the importance of fungarium specimens as easily accessible sources of information will likely continue to grow.This article is part of the theme issue 'Biological collections for understanding biodiversity in the Anthropocene'.
Collapse
Affiliation(s)
- Carrie Andrew
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Jeffrey Diez
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|
492
|
Nawaz A, Purahong W, Lehmann R, Herrmann M, Totsche KU, Küsel K, Wubet T, Buscot F. First insights into the living groundwater mycobiome of the terrestrial biogeosphere. WATER RESEARCH 2018; 145:50-61. [PMID: 30118976 DOI: 10.1016/j.watres.2018.07.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/02/2018] [Accepted: 07/27/2018] [Indexed: 05/15/2023]
Abstract
Although fungi play important roles in biogeochemical cycling in aquatic ecosystems and have received a great deal of attention, much remains unknown about the living fractions of fungal communities in aquifers of the terrestrial subsurface in terms of diversity, community dynamics, functional roles, the impact of environmental factors and presence of fungal pathogens. Here we address this gap in knowledge by using RNA-based high throughput pair-end illumina sequencing analysis of fungal internal transcribed spacer (ITS) gene markers, to target the living fractions of groundwater fungal communities from fractured alternating carbonate-/siliciclastic-rock aquifers of the Hainich Critical Zone Exploratory. The probed levels of the hillslope multi-storey aquifer system differ primarily in their oxygen and nitrogen content due to their different connections to the surface. We discovered highly diverse living fungal communities (384 Operational Taxonomic Units, OTUs) with different taxonomic affiliations and ecological functions. The observed fungal communities primarily belonged to three phyla: Ascomycota, Basidiomycota and Chytridiomycota. Perceived dynamics in the composition of living fungal communities were significantly shaped by the concentration of ammonium in the moderately agriculturally impacted aquifer system. Apart from fungal saprotrophs, we also detected living plant and animal pathogens for the first time in this aquifer system. This work also demonstrates that the RNA-based high throughput pair-end illumina sequencing method can be used in future for water quality monitoring in terms of living fungal load and subsequent risk assessments. In general, this study contributes towards the growing knowledge of aquatic fungi in terrestrial subsurface biogeosphere.
Collapse
Affiliation(s)
- Ali Nawaz
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Halle (Saale), Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Halle (Saale), Germany; Department of Biology, University of Leipzig, Leipzig, Germany.
| | - Witoon Purahong
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Halle (Saale), Germany
| | - Robert Lehmann
- Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Martina Herrmann
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743, Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Kai Uwe Totsche
- Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743, Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Tesfaye Wubet
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Halle (Saale), Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - François Buscot
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
493
|
Wurzbacher C, Larsson E, Bengtsson-Palme J, Van den Wyngaert S, Svantesson S, Kristiansson E, Kagami M, Nilsson RH. Introducing ribosomal tandem repeat barcoding for fungi. Mol Ecol Resour 2018; 19:118-127. [PMID: 30240145 DOI: 10.1111/1755-0998.12944] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/29/2018] [Accepted: 09/07/2018] [Indexed: 01/19/2023]
Abstract
Sequence comparison and analysis of the various ribosomal genetic markers are the dominant molecular methods for identification and description of fungi. However, new environmental fungal lineages known only from DNA data reveal significant gaps in our sampling of the fungal kingdom in terms of both taxonomy and marker coverage in the reference sequence databases. To facilitate the integration of reference data from all of the ribosomal markers, we present three sets of general primers that allow for amplification of the complete ribosomal operon from the ribosomal tandem repeats. The primers cover all ribosomal markers: ETS, SSU, ITS1, 5.8S, ITS2, LSU and IGS. We coupled these primers successfully with third-generation sequencing (PacBio and Nanopore sequencing) to showcase our approach on authentic fungal herbarium specimens (Basidiomycota), aquatic chytrids (Chytridiomycota) and a poorly understood lineage of early diverging fungi (Nephridiophagidae). In particular, we were able to generate high-quality reference data with Nanopore sequencing in a high-throughput manner, showing that the generation of reference data can be achieved on a regular desktop computer without the involvement of any large-scale sequencing facility. The quality of the Nanopore generated sequences was 99.85%, which is comparable with the 99.78% accuracy described for Sanger sequencing. With this work, we hope to stimulate the generation of a new comprehensive standard of ribosomal reference data with the ultimate aim to close the huge gaps in our reference datasets.
Collapse
Affiliation(s)
- Christian Wurzbacher
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.,Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany.,Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| | - Ellen Larsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| | - Johan Bengtsson-Palme
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | | | - Sten Svantesson
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| | - Maiko Kagami
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin, Stechlin, Germany.,Department of Environmental Science, Faculty of Science, Toho University, Funabashi, Japan.,Graduate School of Environment and Information Sciences, Yokohama National University, Hodogayaku, Yokohama, Japan
| | - R Henrik Nilsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| |
Collapse
|
494
|
Strategies for Engineering Natural Product Biosynthesis in Fungi. Trends Biotechnol 2018; 37:416-427. [PMID: 30316556 DOI: 10.1016/j.tibtech.2018.09.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 01/22/2023]
Abstract
Fungi are a prolific source of bioactive compounds, some of which have been developed as essential medicines and life-enhancing drugs. Genome sequencing has revealed that fungi have the potential to produce considerably more natural products (NPs) than are typically observed in the laboratory. Recently, there have been significant advances in the identification, understanding, and engineering of fungal biosynthetic gene clusters (BGCs). This review briefly describes examples of the engineering of fungal NP biosynthesis at the global, pathway, and enzyme level using in vivo and in vitro approaches and refers to the range and scale of heterologous expression systems available, developments in combinatorial biosynthesis, progress in understanding how fungal BGCs are regulated, and the applications of these novel biosynthetic enzymes as biocatalysts.
Collapse
|
495
|
Linnakoski R, Reshamwala D, Veteli P, Cortina-Escribano M, Vanhanen H, Marjomäki V. Antiviral Agents From Fungi: Diversity, Mechanisms and Potential Applications. Front Microbiol 2018; 9:2325. [PMID: 30333807 PMCID: PMC6176074 DOI: 10.3389/fmicb.2018.02325] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/11/2018] [Indexed: 01/14/2023] Open
Abstract
Viral infections are amongst the most common diseases affecting people worldwide. New viruses emerge all the time and presently we have limited number of vaccines and only few antivirals to combat viral diseases. Fungi represent a vast source of bioactive molecules, which could potentially be used as antivirals in the future. Here, we have summarized the current knowledge of fungi as producers of antiviral compounds and discuss their potential applications. In particular, we have investigated how the antiviral action has been assessed and what is known about the molecular mechanisms and actual targets. Furthermore, we highlight the importance of accurate fungal species identification on antiviral and other natural products studies.
Collapse
Affiliation(s)
| | - Dhanik Reshamwala
- Division of Cell and Molecular Biology, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Pyry Veteli
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | | | - Henri Vanhanen
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Varpu Marjomäki
- Division of Cell and Molecular Biology, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
496
|
Abarenkov K, Somervuo P, Nilsson RH, Kirk PM, Huotari T, Abrego N, Ovaskainen O. Protax-fungi: a web-based tool for probabilistic taxonomic placement of fungal internal transcribed spacer sequences. THE NEW PHYTOLOGIST 2018; 220:517-525. [PMID: 30035303 DOI: 10.1111/nph.15301] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Incompleteness of reference sequence databases and unresolved taxonomic relationships complicates taxonomic placement of fungal sequences. We developed Protax-fungi, a general tool for taxonomic placement of fungal internal transcribed spacer (ITS) sequences, and implemented it into the PlutoF platform of the UNITE database for molecular identification of fungi. With empirical data on root- and wood-associated fungi, Protax-fungi reliably identified (with at least 90% identification probability) the majority of sequences to the order level but only around one-fifth of them to the species level, reflecting the current limited coverage of the databases. Protax-fungi outperformed the Sintax and Rdb classifiers in terms of increased accuracy and decreased calibration error when applied to data on mock communities representing species groups with poor sequence database coverage. We applied Protax-fungi to examine the internal consistencies of the Index Fungorum and UNITE databases. This revealed inconsistencies in the taxonomy database as well as mislabelling and sequence quality problems in the reference database. The according improvements were implemented in both databases. Protax-fungi provides a robust tool for performing statistically reliable identifications of fungi in spite of the incompleteness of extant reference sequence databases and unresolved taxonomic relationships.
Collapse
Affiliation(s)
- Kessy Abarenkov
- Natural History Museum, University of Tartu, Vanemuise 46, Tartu, 51014, Estonia
| | - Panu Somervuo
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65, Helsinki, FI-00014, Finland
| | - R Henrik Nilsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
| | - Paul M Kirk
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Tea Huotari
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, Helsinki, FI-00014, Finland
| | - Nerea Abrego
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, Helsinki, FI-00014, Finland
| | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65, Helsinki, FI-00014, Finland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| |
Collapse
|
497
|
|
498
|
Use of Organic Wastes and Industrial By-Products to Produce Filamentous Fungi with Potential as Aqua-Feed Ingredients. SUSTAINABILITY 2018. [DOI: 10.3390/su10093296] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Organic-rich waste and industrial by-product streams, generated in enormous amounts on a daily basis, contain substantial amounts of nutrients that are worthy of recovery. Biological conversion of organic-waste streams using filamentous fungi is a promising approach to convert nutrients into value-added bioproducts, such as fungal biomass. High-protein fungal biomass contains different kinds and levels of amino acids, fatty acids, immunostimulants, antioxidants, pigments, etc., which make it a potential choice for application in animal feed supplementation. Considering the challenges long faced by the aquaculture industry in fishmeal production due to the increasing prices and environmental concerns, the aquaculture industry is forced to provide alternative protein-rich sources to replace conventional fishmeal. In this review, the possibilities of utilization of filamentous fungi biomass cultivated on organic-rich waste streams, as an alternative nutrient source in fish feed, were thoroughly reviewed.
Collapse
|
499
|
Ghosh PN, Fisher MC, Bates KA. Diagnosing Emerging Fungal Threats: A One Health Perspective. Front Genet 2018; 9:376. [PMID: 30254662 PMCID: PMC6141620 DOI: 10.3389/fgene.2018.00376] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/24/2018] [Indexed: 11/17/2022] Open
Abstract
Emerging fungal pathogens are a growing threat to global health, ecosystems, food security, and the world economy. Over the last century, environmental change and globalized transport, twinned with the increasing application of antifungal chemical drugs have led to increases in outbreaks of fungal diseases with sometimes catastrophic effects. In order to tackle contemporary epidemics and predemic threats, there is a pressing need for a unified approach in identification and monitoring of fungal pathogens. In this paper, we discuss current high throughput technologies, as well as new platforms capable of combining diverse data types to inform practical epidemiological strategies with a focus on emerging fungal pathogens of wildlife.
Collapse
Affiliation(s)
- Pria N. Ghosh
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Matthew C. Fisher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Kieran A. Bates
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| |
Collapse
|
500
|
Humbal C, Gautam S, Trivedi U. A review on recent progress in observations, and health effects of bioaerosols. ENVIRONMENT INTERNATIONAL 2018; 118:189-193. [PMID: 29885589 DOI: 10.1016/j.envint.2018.05.053] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 05/21/2023]
Abstract
Bioaerosol is a particulate mixture of solid and semi-solid matter combined with biotic matter like pollens, microbes and their fragments. The present review stresses on a cumulative understanding of sources, components, quantification and distribution of bioaerosols with respect to size, and its significant impacts on human health. The present review will be instrumental in devising strategies to understand and manage bioaerosols and reducing their human exposure and associated health hazards. The present review aims explore the relationship between particle and associated biological agents responsible for behaviours like dispersal, total potential health hazards and toxicology level during exposure to bioaerosol.
Collapse
Affiliation(s)
- Charmi Humbal
- Department of Environmental Science and Engineering, Marwadi University, Rajkot 360003, India
| | - Sneha Gautam
- Department of Environmental Science and Engineering, Marwadi University, Rajkot 360003, India.
| | - Ujwalkumar Trivedi
- Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, India
| |
Collapse
|