451
|
Farooq M, Jang YH, Kim EG, Park JR, Eom GH, Zhao DD, Kim KM. Evaluation of Amino Acid Profiles of Rice Genotypes under Different Salt Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1315. [PMID: 36987002 PMCID: PMC10058319 DOI: 10.3390/plants12061315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Amino acids are building blocks of proteins that are essential components of a wide range of metabolic pathways in plant species, including rice species. Previous studies only considered changes in the amino acid content of rice under NaCl stress. Here, we evaluated profiles of essential and non-essential amino acids in four rice genotype seedlings in the presence of three types of salts, namely NaCl, CaCl2, and MgCl2. Amino acid profiles in 14-day-old rice seedlings were determined. The total essential and non-essential amino acid contents in cultivar Cheongcheong were considerably increased upon NaCl and MgCl2 application, whereas total amino acids were increased upon NaCl, CaCl2, and MgCl2 application in the cultivar Nagdong. The total amino acid content was significantly lower in the salt-sensitive cultivar IR28 and salt-tolerant Pokkali under different salt stress conditions. Glycine was not detected in any of the rice genotypes. We observed that cultivars with the same origin respond similarly to each other under salinity stress conditions: cultivars Cheongcheong and Nagdong were found to show increased total amino acid content, whereas the content in foreign cultivars IR28 and Pokkali was found to decrease. Thus, our findings showed that the amino acid profile of each rice cultivar might depend on the origin, immune level, and genetic makeup of the respective cultivar.
Collapse
Affiliation(s)
- Muhammad Farooq
- Department of Applied Biosciences, Kyungpook National University, Deagu 641566, Republic of Korea
| | - Yoon-Hee Jang
- Department of Applied Biosciences, Kyungpook National University, Deagu 641566, Republic of Korea
| | - Eun-Gyeong Kim
- Department of Applied Biosciences, Kyungpook National University, Deagu 641566, Republic of Korea
| | - Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Gyu-Hyeon Eom
- Department of Applied Biosciences, Kyungpook National University, Deagu 641566, Republic of Korea
| | - Dan-Dan Zhao
- Department of Applied Biosciences, Kyungpook National University, Deagu 641566, Republic of Korea
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Deagu 641566, Republic of Korea
| |
Collapse
|
452
|
Qi M, Wang S, Li N, Li L, Zhang Y, Xue J, Wang J, Wu R, Lian N. Genome-wide analysis of TPX2 gene family in Populus trichocarpa and its specific response genes under various abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1159181. [PMID: 36993860 PMCID: PMC10040543 DOI: 10.3389/fpls.2023.1159181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Microtubules are essential for regulating cell morphogenesis, plant growth, and the response of plants to abiotic stresses. TPX2 proteins are the main players determining the spatiotemporally dynamic nature of the MTs. However, how TPX2 members respond to abiotic stresses in poplar remains largely unknown. Herein, 19 TPX2 family members were identified from the poplar genome and analyzed the structural characteristics as well as gene expression patterns. All TPX2 members had the conserved structural characteristics, but exhibited different expression profiles in different tissues, indicating their varying roles during plant growth. Additionally, several light, hormone, and abiotic stress responsive cis-acting regulatory elements were detected on the promoters of PtTPX2 genes. Furthermore, expression analysis in various tissues of Populus trichocarpa showed that the PtTPX2 genes responded differently to heat, drought and salt stress. In summary, these results provide a comprehensive analysis for the TPX2 gene family in poplar and an effective contribution to revealing the mechanisms of PtTPX2 in the regulatory network of abiotic stress.
Collapse
Affiliation(s)
- Meng Qi
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shengjie Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Na Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lingfeng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jingyi Xue
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jingyi Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Na Lian
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| |
Collapse
|
453
|
Dabravolski SA, Isayenkov SV. The regulation of plant cell wall organisation under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1118313. [PMID: 36968390 PMCID: PMC10036381 DOI: 10.3389/fpls.2023.1118313] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Plant cell wall biosynthesis is a complex and tightly regulated process. The composition and the structure of the cell wall should have a certain level of plasticity to ensure dynamic changes upon encountering environmental stresses or to fulfil the demand of the rapidly growing cells. The status of the cell wall is constantly monitored to facilitate optimal growth through the activation of appropriate stress response mechanisms. Salt stress can severely damage plant cell walls and disrupt the normal growth and development of plants, greatly reducing productivity and yield. Plants respond to salt stress and cope with the resulting damage by altering the synthesis and deposition of the main cell wall components to prevent water loss and decrease the transport of surplus ions into the plant. Such cell wall modifications affect biosynthesis and deposition of the main cell wall components: cellulose, pectins, hemicelluloses, lignin, and suberin. In this review, we highlight the roles of cell wall components in salt stress tolerance and the regulatory mechanisms underlying their maintenance under salt stress conditions.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Karmiel, Israel
| | - Stanislav V. Isayenkov
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, National Academy of Science (NAS) of Ukraine, Kyiv, Ukraine
| |
Collapse
|
454
|
Xiao S, Song W, Xing J, Su A, Zhao Y, Li C, Shi Z, Li Z, Wang S, Zhang R, Pei Y, Chen H, Zhao J. ORF355 confers enhanced salinity stress adaptability to S-type cytoplasmic male sterility maize by modulating the mitochondrial metabolic homeostasis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:656-673. [PMID: 36223073 DOI: 10.1111/jipb.13382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Moderate stimuli in mitochondria improve wide-ranging stress adaptability in animals, but whether mitochondria play similar roles in plants is largely unknown. Here, we report the enhanced stress adaptability of S-type cytoplasmic male sterility (CMS-S) maize and its association with mild expression of sterilizing gene ORF355. A CMS-S maize line exhibited superior growth potential and higher yield than those of the near-isogenic N-type line in saline fields. Moderate expression of ORF355 induced the accumulation of reactive oxygen species and activated the cellular antioxidative defense system. This adaptive response was mediated by elevation of the nicotinamide adenine dinucleotide concentration and associated metabolic homeostasis. Metabolome analysis revealed broad metabolic changes in CMS-S lines, even in the absence of salinity stress. Metabolic products associated with amino acid metabolism and galactose metabolism were substantially changed, which underpinned the alteration of the antioxidative defense system in CMS-S plants. The results reveal the ORF355-mediated superior stress adaptability in CMS-S maize and might provide an important route to developing salt-tolerant maize varieties.
Collapse
Affiliation(s)
- Senlin Xiao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wei Song
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jinfeng Xing
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Aiguo Su
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yanxin Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chunhui Li
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zi Shi
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zhiyong Li
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuai Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ruyang Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuanrong Pei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
455
|
Ju F, Sun L, Xiong C, Wang Z, Yu H, Pang J, Bai H, Zhao W, Zhou Z, Chen B. Weighted gene co-expression network analysis revealed the key pathways and hub genes of potassium regulating cotton root adaptation to salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1132877. [PMID: 36938049 PMCID: PMC10014550 DOI: 10.3389/fpls.2023.1132877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Soil salinization is one of the main abiotic stresses affecting cotton yield and planting area. Potassium application has been proven to be an important strategy to reduce salt damage in agricultural production. However, the mechanism of potassium regulating the salt adaptability of cotton has not been fully elucidated. In the present research, the appropriate potassium application rate for alleviating salt damage of cotton based on different K+/Na+ ratios we screened, and a gene co-expression network based on weighted gene co-expression network analysis (WGCNA) using the transcriptome data sets treated with CK (0 mM NaCl), S (150 mM NaCl), and SK8 (150 mM NaCl + 9.38 mM K2SO4) was constructed. In this study, four key modules that are highly related to potassium regulation of cotton salt tolerance were identified, and the mitogen-activated protein kinase (MAPK) signaling pathway, tricarboxylic acid (TCA) cycle and glutathione metabolism pathway were identified as the key biological processes and metabolic pathways for potassium to improve cotton root salt adaptability. In addition, 21 hub genes and 120 key candidate genes were identified in this study, suggesting that they may play an important role in the enhancement of salt adaptability of cotton by potassium. The key modules, key biological pathways and hub genes discovered in this study will provide a new understanding of the molecular mechanism of potassium enhancing salinity adaptability in cotton, and lay a theoretical foundation for the improvement and innovation of high-quality cotton germplasm.
Collapse
Affiliation(s)
- Feiyan Ju
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Liyuan Sun
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Cai Xiong
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Zhuo Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Huilian Yu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Jiali Pang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Hua Bai
- School of Agricultural Sciences, Northwest Missouri State University, Maryville, MO, United States
| | - Wengqing Zhao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Binglin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| |
Collapse
|
456
|
Fortini EA, Batista DS, Felipe SHS, Silva TD, Correia LNF, Farias LM, Faria DV, Pinto VB, Santa-Catarina C, Silveira V, De-la-Peña C, Castillo-Castro E, Otoni WC. Physiological, epigenetic, and proteomic responses in Pfaffia glomerata growth in vitro under salt stress and 5-azacytidine. PROTOPLASMA 2023; 260:467-482. [PMID: 35788779 DOI: 10.1007/s00709-022-01789-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Plants adjust their complex molecular, biochemical, and metabolic processes to overcome salt stress. Here, we investigated the proteomic and epigenetic alterations involved in the morphophysiological responses of Pfaffia glomerata, a medicinal plant, to salt stress and the demethylating agent 5-azacytidine (5-azaC). Moreover, we investigated how these changes affected the biosynthesis of 20-hydroxyecdysone (20-E), a pharmacologically important specialized metabolite. Plants were cultivated in vitro for 40 days in Murashige and Skoog medium supplemented with NaCl (50 mM), 5-azaC (25 μM), and NaCl + 5-azaC. Compared with the control (medium only), the treatments reduced growth, photosynthetic rates, and photosynthetic pigment content, with increase in sucrose, total amino acids, and proline contents, but a reduction in starch and protein. Comparative proteomic analysis revealed 282 common differentially accumulated proteins involved in 87 metabolic pathways, most of them related to amino acid and carbohydrate metabolism, and specialized metabolism. 5-azaC and NaCl + 5-azaC lowered global DNA methylation levels and 20-E content, suggesting that 20-E biosynthesis may be regulated by epigenetic mechanisms. Moreover, downregulation of a key protein in jasmonate biosynthesis indicates the fundamental role of this hormone in the 20-E biosynthesis. Taken together, our results highlight possible regulatory proteins and epigenetic changes related to salt stress tolerance and 20-E biosynthesis in P. glomerata, paving the way for future studies of the mechanisms involved in this regulation.
Collapse
Affiliation(s)
- Evandro Alexandre Fortini
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - Diego Silva Batista
- Departamento de Agricultura, Universidade Federal da Paraíba, Campus III, Bananeiras, PB, 58220-000, Brazil
| | - Sérgio Heitor Sousa Felipe
- PPG em Agroecologia, Universidade Estadual do Maranhão, Av. Lourenço Vieira da Silva, s/nº, Cidade Universitária Paulo VI, São Luís, MA, Brazil
| | - Tatiane Dulcineia Silva
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - Ludmila Nayara Freitas Correia
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - Letícia Monteiro Farias
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Daniele Vidal Faria
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - Vitor Batista Pinto
- Laboratório de Biotecnologia (LBT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual (LBCT), CBB-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia (LBT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A. C. (CICY), 97205, Mérida, Yucatán, Mexico
| | - Eduardo Castillo-Castro
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A. C. (CICY), 97205, Mérida, Yucatán, Mexico
| | - Wagner Campos Otoni
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
457
|
Triticum aestivum: antioxidant gene profiling and morpho-physiological studies under salt stress. Mol Biol Rep 2023; 50:2569-2580. [PMID: 36626063 DOI: 10.1007/s11033-022-07990-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/28/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Soil salinity drastically reduced wheat growth and production in Pakistan. It is a need of an hour to identify the best suitable salt tolerance or resistant wheat varieties which shows good growth under salinity affected areas. In presented study, two wheat varieties Johar (salt tolerant) and Sarsabaz (salt sensitive) were examined under NaCl stress conditions. METHODS Antioxidant enzyme activities were investigated in 10-days old wheat seedlings under 200 mM NaCl stress in hydroponic conditions. To investigate the various growth parameters, antioxidant enzyme activities such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6) and ascorbate peroxidase (APX: EC 1.11.1.11) were monitored and studied. Besides this various growth parameters such as length of the roots, shoots, as well as Physiological parameters likes lipid peroxidation by malondialdehyde (MDA), hydrogen peroxide (H2O2), and proline contents and antioxidant enzyme activities were estimated. The effect of salinity was also observed on gene transcription level and eventually expression level. RESULTS Shoot and root length were decreased in Sarsabaz variety while it showed opposite trend in johar at 200 mM salt concentration. The concentration of proline showed a noticeable rise in salt dependency. Higher concentrations of Proline in Johar were observed as compared to Sarsabaz. SOD showed the increase in activity for antioxidant enzymes. Significant increase of SOD levels were observed in shoot tissues as compared to root tissues. The results indicated that the shoots were more susceptible to salt stress. Activity of APX showed similar affects in both varieties. The production of CAT enzyme in the shoot and root tissues of both varieties showed substantial growth under increased salt stress. Furthermore, NaCl stress has increased the expression of certain genes coding for antioxidant enzymes such as catalase, superoxide dismutase, and peroxidase. Maximum expression of all the antioxidant enzyme coding genes were observed in Johar (tolerant) at 48 h exposure to salt. In contrast the expression of the all mentioned genes in Sarsabaz variety were found maximum at early hours (24 h) and gradually decreased at 48 h. CONCLUSION The study showed that the selected salt tolerant wheat variety Johar is significantly resistant to 200 mM NaCl salt level as compared to Sarsabaz.
Collapse
|
458
|
Alternative Polyadenylation Is a Novel Strategy for the Regulation of Gene Expression in Response to Stresses in Plants. Int J Mol Sci 2023; 24:ijms24054727. [PMID: 36902157 PMCID: PMC10003127 DOI: 10.3390/ijms24054727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Precursor message RNA requires processing to generate mature RNA. Cleavage and polyadenylation at the 3'-end in the maturation of mRNA is one of key processing steps in eukaryotes. The polyadenylation (poly(A)) tail of mRNA is an essential feature that is required to mediate its nuclear export, stability, translation efficiency, and subcellular localization. Most genes have at least two mRNA isoforms via alternative splicing (AS) or alternative polyadenylation (APA), which increases the diversity of transcriptome and proteome. However, most previous studies have focused on the role of alternative splicing on the regulation of gene expression. In this review, we summarize the recent advances concerning APA in the regulation of gene expression and in response to stresses in plants. We also discuss the mechanisms for the regulation of APA for plants in the adaptation to stress responses, and suggest that APA is a novel strategy for the adaptation to environmental changes and response to stresses in plants.
Collapse
|
459
|
Yu S, He Z, Gao K, Zhou J, Lan X, Zhong C, Xie J. Dioscorea composita WRKY12 is involved in the regulation of salt tolerance by directly activating the promoter of AtRCI2A. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:746-758. [PMID: 36827956 DOI: 10.1016/j.plaphy.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/05/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Dioscorea composita (D. composita) is an important medicinal plant worldwide with high economic value. However, its large-scale cultivation was limited by soil salinization. Identification of genes and their mechanisms of action in response to salt stress are critically important. In the present study, we isolated a classical WRKY transcription factor from D. composita, namely DcWRKY12, and analyzed its function in salt tolerance. Expression pattern analysis showed DcWRKY12 is mainly expressed in roots and significantly induced by NaCl, polyethylene glycol-6000 (PEG-6000), and abscisic acid (ABA). Phenotypic and physiological analyses revealed that heterologous expression of DcWRKY12 enhanced salt and osmotic stress tolerance by increasing antioxidant enzyme activity, osmoregulatory substance content, maintaining relative water content and ion homeostasis, decreasing reactive oxygen species and malondialdehyde content. Correspondingly, the overexpression of DcWRKY12 modulated the expression of salt stress-responsive and ion transport-related genes. Dual luciferase assay and Y1H were further confirmed that DcWRKY12 activates the promoter of AtRCI2A through directly binding to the specific W-box cis-acting elements. These results suggest that DcWRKY12 is a positive regulator of salt tolerance in D. composita and has potential applications in salt stress.
Collapse
Affiliation(s)
- Shangjie Yu
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China
| | - Zhanxin He
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China
| | - Kaixiang Gao
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China
| | - Jianchan Zhou
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China
| | - Xin Lan
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China
| | - Chunmei Zhong
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China.
| | - Jun Xie
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China.
| |
Collapse
|
460
|
Zhang H, Liu S, Ren T, Niu M, Liu X, Liu C, Wang H, Yin W, Xia X. Crucial Abiotic Stress Regulatory Network of NF-Y Transcription Factor in Plants. Int J Mol Sci 2023; 24:ijms24054426. [PMID: 36901852 PMCID: PMC10002336 DOI: 10.3390/ijms24054426] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Nuclear Factor-Y (NF-Y), composed of three subunits NF-YA, NF-YB and NF-YC, exists in most of the eukaryotes and is relatively conservative in evolution. As compared to animals and fungi, the number of NF-Y subunits has significantly expanded in higher plants. The NF-Y complex regulates the expression of target genes by directly binding the promoter CCAAT box or by physical interaction and mediating the binding of a transcriptional activator or inhibitor. NF-Y plays an important role at various stages of plant growth and development, especially in response to stress, which attracted many researchers to explore. Herein, we have reviewed the structural characteristics and mechanism of function of NF-Y subunits, summarized the latest research on NF-Y involved in the response to abiotic stresses, including drought, salt, nutrient and temperature, and elaborated the critical role of NF-Y in these different abiotic stresses. Based on the summary above, we have prospected the potential research on NF-Y in response to plant abiotic stresses and discussed the difficulties that may be faced in order to provide a reference for the in-depth analysis of the function of NF-Y transcription factors and an in-depth study of plant responses to abiotic stress.
Collapse
Affiliation(s)
- Han Zhang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shujing Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tianmeng Ren
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengxue Niu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chao Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Houling Wang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weilun Yin
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (W.Y.); (X.X.)
| | - Xinli Xia
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (W.Y.); (X.X.)
| |
Collapse
|
461
|
Expression Profile of Selected Genes Involved in Na+ Homeostasis and In Silico miRNA Identification in Medicago sativa and Medicago arborea under Salinity Stress. STRESSES 2023. [DOI: 10.3390/stresses3010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The accumulation of ions due to increased salinity in the soil is one of the major abiotic stressors of cultivated plants that negatively affect their productivity. The model plant, Medicago truncatula, is the only Medicago species that has been extensively studied, whereas research into increased salinity adaptation of two important forage legumes, M. sativa and M. arborea, has been limited. In the present study, the expression of six genes, namely SOS1, SOS3, NHX2, AKT, AVP and HKT1 was monitored to investigate the manner in which sodium ions are blocked and transferred to the various plant parts. In addition, in silico miRNA analysis was performed to identify miRNAs that possibly control the expression of the genes studied. The following treatments were applied: (1) salt stress, with initial treatment of 50 mM NaCl and gradual acclimatization every 10 days, (2) salt shock, with continuous application of 100 mM NaCl concentration and (3) no application of NaCl. Results showed that M. arborea appeared to overexpress and activate all available mechanisms of resistance in conditions of increased salinity, while M. sativa acted in a more targeted way, overexpressing the HKT1 and AKT genes that contribute to the accumulation of sodium ions, particularly in the root. Regarding miRNA in silico analysis, five miRNAs with significant complementarity to putative target genes, AKT1, AVP and SOS3 were identified and served as a first step in investigating miRNA regulatory networks. Further miRNA expression studies will validate these results. Our findings contribute to the understanding of the molecular mechanisms underlying salt-responsiveness in Medicago and could be used in the future for generating salt-tolerant genotypes in crop improvement programs.
Collapse
|
462
|
Mukarram M, Khan MMA, Kurjak D, Lux A, Corpas FJ. Silicon nanoparticles (SiNPs) restore photosynthesis and essential oil content by upgrading enzymatic antioxidant metabolism in lemongrass ( Cymbopogon flexuosus) under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1116769. [PMID: 36875580 PMCID: PMC9981966 DOI: 10.3389/fpls.2023.1116769] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Lemongrass (Cymbopogon flexuosus) has great relevance considering the substantial commercial potential of its essential oil. Nevertheless, the increasing soil salinity poses an imminent threat to lemongrass cultivation given its moderate salt-sensitivity. For this, we used silicon nanoparticles (SiNPs) to stimulate salt tolerance in lemongrass considering SiNPs special relevance to stress settings. Five foliar sprays of SiNPs 150 mg L-1 were applied weekly to NaCl 160 and 240 mM-stressed plants. The data indicated that SiNPs minimised oxidative stress markers (lipid peroxidation, H2O2 content) while triggering a general activation of growth, photosynthetic performance, enzymatic antioxidant system including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and osmolyte proline (PRO). SiNPs amplified stomatal conductance and photosynthetic CO2 assimilation rate by about 24% and 21% in NaCl 160 mM-stressed plants. Associated benefits contributed to pronounced plant phenotype over their stressed counterparts, as we found. Foliar SiNPs sprays assuaged plant height by 30% and 64%, dry weight by 31% and 59%, and leaf area by 31% and 50% under NaCl 160 and 240 mM concentrations, respectively. SiNPs relieved enzymatic antioxidants (SOD, CAT, POD) and osmolyte (PRO) in lemongrass plants stressed with NaCl 160 mM (9%, 11%, 9%, and 12%, respectively) and NaCl 240 mM (13%, 18%, 15%, and 23%, respectively). The same treatment supported the oil biosynthesis improving essential oil content by 22% and 44% during 160 and 240 mM salt stress, respectively. We found SiNPs can completely overcome NaCl 160 mM stress while significantly palliating NaCl 240 mM stress. Thus, we propose that SiNPs can be a useful biotechnological tool to palliate salinity stress in lemongrass and related crops.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Francisco J. Corpas
- Department of Stress, Development and Signaling in Plants, Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
463
|
Ahmad E, Sharma SK, Kashyap AS, Manzar N, Sahu PK, Singh UB, Singh HV, Sharma PK. Evaluation of Osmotolerant Potential of Halomonas sulfidaeris MV-19 Isolated from a Mud Volcano. Curr Microbiol 2023; 80:102. [PMID: 36773109 DOI: 10.1007/s00284-023-03202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023]
Abstract
Salinity is one of the major challenges for cultivation of crops in a sustainable way because it severely affects plant growth and yield. Keeping this challenge in view, in the current study, a salt-tolerant Halomonas MV-19 was isolated from an extreme niche of mud volcano of Andaman Nicobar Island, India and identified on the basis of standard morphological, biochemical, and physiological tests and identified as Halomonas sulfidaeris strain MV-19 by 16S rRNA gene sequencing. The bacterium can grow on nutrient agar and nutrient broth supplemented with 3.5 M (≥ 20%) sodium chloride (NaCl). Sugar utilization assay revealed that H. sulfidaeris MV-19 utilizes only three sugars (dextrose, fructose, and mannose) from among twenty four tested sugars. The best growth of H. sulfidaeris MV-19 was observed in nutrient broth supplemented with 8% NaCl. When the broth was supplemented with dextrose, fructose, and mannose, the H. sulfidaeris MV-19 grew maximally in nutrient broth supplemented with 8% NaCl and 5% fructose. This strain produced exopolysaccharides (EPS) in nutrient broth supplemented with 8% NaCl and sugars (dextrose, fructose, and mannose). The EPS production was increased by 350% (three and half time) after addition of 5% fructose in nutrient broth compare with the EPS production in nutrient broth without supplemented with sugars. H. sulfidaeris MV-19 strain can produce EPS, which can help aggregate soil particle and reduced osmotic potential in soil, thus, be useful in alleviation of salinity stress in different crops cultivated in saline soils. The findings of the current investigation are expected to contribute towards effective abiotic stress management.
Collapse
Affiliation(s)
- Ees Ahmad
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Sushil K Sharma
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur, Chhattisgarh, 493 225, India
| | - Abhijeet S Kashyap
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Nazia Manzar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Pramod K Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Udai B Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Harsh V Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Pawan K Sharma
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India.
| |
Collapse
|
464
|
Physiological and Transcriptional Responses of Apocynum venetum to Salt Stress at the Seed Germination Stage. Int J Mol Sci 2023; 24:ijms24043623. [PMID: 36835035 PMCID: PMC9966927 DOI: 10.3390/ijms24043623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Apocynum venetum is a semi-shrubby perennial herb that not only prevents saline-alkaline land degradation but also produces leaves for medicinal uses. Although physiological changes during the seed germination of A. venetum in response to salt stress have been studied, the adaptive mechanism to salt conditions is still limited. Here, the physiological and transcriptional changes during seed germination under different NaCl treatments (0-300 mmol/L) were examined. The results showed that the seed germination rate was promoted at low NaCl concentrations (0-50 mmol/L) and inhibited with increased concentrations (100-300 mmol/L); the activity of antioxidant enzymes exhibited a significant increase from 0 (CK) to 150 mmol/L NaCl and a significant decrease from 150 to 300 mmol/L; and the content of osmolytes exhibited a significant increase with increased concentrations, while the protein content peaked at 100 mmol/L NaCl and then significantly decreased. A total of 1967 differentially expressed genes (DEGs) were generated during seed germination at 300 mmol/L NaCl versus (vs.) CK, with 1487 characterized genes (1293 up-regulated, UR; 194 down-regulated, DR) classified into 11 categories, including salt stress (29), stress response (146), primary metabolism (287), cell morphogenesis (156), transcription factor (TFs, 62), bio-signaling (173), transport (144), photosynthesis and energy (125), secondary metabolism (58), polynucleotide metabolism (21), and translation (286). The relative expression levels (RELs) of selected genes directly involved in salt stress and seed germination were observed to be consistent with the changes in antioxidant enzyme activities and osmolyte contents. These findings will provide useful references to improve seed germination and reveal the adaptive mechanism of A. venetum to saline-alkaline soils.
Collapse
|
465
|
Salinity-Induced Cytosolic Alkaline Shifts in Arabidopsis Roots Require the SOS Pathway. Int J Mol Sci 2023; 24:ijms24043549. [PMID: 36834961 PMCID: PMC9960406 DOI: 10.3390/ijms24043549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Plants have evolved elaborate mechanisms to sense, respond to and overcome the detrimental effects of high soil salinity. The role of calcium transients in salinity stress signaling is well established, but the physiological significance of concurrent salinity-induced changes in cytosolic pH remains largely undefined. Here, we analyzed the response of Arabidopsis roots expressing the genetically encoded ratiometric pH-sensor pHGFP fused to marker proteins for the recruitment of the sensor to the cytosolic side of the tonoplast (pHGFP-VTI11) and the plasma membrane (pHGFP-LTI6b). Salinity elicited a rapid alkalinization of cytosolic pH (pHcyt) in the meristematic and elongation zone of wild-type roots. The pH-shift near the plasma membrane preceded that at the tonoplast. In pH-maps transversal to the root axis, the epidermis and cortex had cells with a more alkaline pHcyt relative to cells in the stele in control conditions. Conversely, seedlings treated with 100 mM NaCl exhibited an increased pHcyt in cells of the vasculature relative to the external layers of the root, and this response occurred in both reporter lines. These pHcyt changes were substantially reduced in mutant roots lacking a functional SOS3/CBL4 protein, suggesting that the operation of the SOS pathway mediated the dynamics of pHcyt in response to salinity.
Collapse
|
466
|
Dong J, Li X, Ma Y, Yang J, Chen J, Yang W, Zhou L, Wang J, Yang T, Zhang S, Zhao J, Liu Q, Zhou L, Zhu X, Liu B. Overexpression of OsGF14C enhances salinity tolerance but reduces blast resistance in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1098855. [PMID: 36844058 PMCID: PMC9950408 DOI: 10.3389/fpls.2023.1098855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
High-salinity and blast disease are two major stresses that cause dramatic yield loss in rice production. GF14 (14-3-3) genes have been reported to play important role in biotic and abiotic stresses in plants. However, the roles of OsGF14C remain unknown. To understand the functions and regulatory mechanisms of OsGF14C in regulating salinity tolerance and blast resistance in rice, we have conducted OsGF14C-overexpressing transgenic experiments in the present study. Our results showed that overexpression of OsGF14C enhanced salinity tolerance but reduced blast resistance in rice. The enhanced salinity tolerance is related to the reduction of methylglyoxal and Na+ uptake instead of exclusion or compartmentation and the negative role of OsGF14C in blast resistance is associated with the suppression of OsGF14E, OsGF14F and PR genes. Our results together with the results from the previous studies suggest that the lipoxygenase gene LOX2 which is regulated by OsGF14C may play roles in coordinating salinity tolerance and blast resistance in rice. The current study for the first time revealed the possible roles of OsGF14C in regulating salinity tolerance and blast resistance in rice, and laid down a foundation for further functional study and crosstalk regulation between salinity and blast resistance in rice.
Collapse
Affiliation(s)
- Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Xuezhong Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Engineering, Zhongkai, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Jianyuan Yang
- Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - TiFeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Lingyan Zhou
- College of Agriculture and Biology, Zhongkai University of Engineering, Zhongkai, China
| | - Xiaoyuan Zhu
- Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| |
Collapse
|
467
|
Banik S, Dutta D. Membrane Proteins in Plant Salinity Stress Perception, Sensing, and Response. J Membr Biol 2023; 256:109-124. [PMID: 36757456 DOI: 10.1007/s00232-023-00279-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Plants have several mechanisms to endure salinity stress. The degree of salt tolerance varies significantly among different terrestrial crops. Proteins at the plant's cell wall and membrane mediate different physiological roles owing to their critical positioning between two distinct environments. A specific membrane protein is responsible for a single type of activity, such as a specific group of ion transport or a similar group of small molecule binding to exert multiple cellular effects. During salinity stress in plants, membrane protein functions: ion homeostasis, signal transduction, redox homeostasis, and solute transport are essential for stress perception, signaling, and recovery. Therefore, comprehensive knowledge about plant membrane proteins is essential to modulate crop salinity tolerance. This review gives a detailed overview of the membrane proteins involved in plant salinity stress highlighting the recent findings. Also, it discusses the role of solute transporters, accessory polypeptides, and proteins in salinity tolerance. Finally, some aspects of membrane proteins are discussed with potential applications to developing salt tolerance in crops.
Collapse
Affiliation(s)
- Sanhita Banik
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Debajyoti Dutta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
468
|
Emerging Roles of Salicylic Acid in Plant Saline Stress Tolerance. Int J Mol Sci 2023; 24:ijms24043388. [PMID: 36834798 PMCID: PMC9961897 DOI: 10.3390/ijms24043388] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
One of the most important phytohormones is salicylic acid (SA), which is essential for the regulation of plant growth, development, ripening, and defense responses. The role of SA in plant-pathogen interactions has attracted a lot of attention. Aside from defense responses, SA is also important in responding to abiotic stimuli. It has been proposed to have great potential for improving the stress resistance of major agricultural crops. On the other hand, SA utilization is dependent on the dosage of the applied SA, the technique of application, and the status of the plants (e.g., developmental stage and acclimation). Here, we reviewed the impact of SA on saline stress responses and the associated molecular pathways, as well as recent studies toward understanding the hubs and crosstalk between SA-induced tolerances to biotic and saline stress. We propose that elucidating the mechanism of the SA-specific response to various stresses, as well as SA-induced rhizosphere-specific microbiome modeling, may provide more insights and support in coping with plant saline stress.
Collapse
|
469
|
Anwar A, Zhang S, Wang L, He L, Gao J. BrCYP71A15 Negatively Regulates Hg Stress Tolerance by Modulating Cell Wall Biosynthesis in Yeast. PLANTS (BASEL, SWITZERLAND) 2023; 12:723. [PMID: 36840071 PMCID: PMC9966778 DOI: 10.3390/plants12040723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Over the past two decades, heavy metal pollution has been a common problem worldwide, greatly threatening crop production. As one of the metal pollutants, Mercury (Hg) causes damage to plant cells and reduces cellular and biochemical activities. In this study, we identified a novel cytochrome P450 family gene, BrCYP71A15, which was involved in Hg stress response in yeast. In Chinese cabbage, the BrCYP71A15 gene was located on chromosome A01, which was highly expressed in roots. Additionally, the expression level of BrCYP71A15 was induced by different heavy metal stresses, and the BrCYP71A15 protein exhibited a strong interaction with other proteins. Overexpression of BrCYP71A15 in yeast cells showed no response to a number of heavy metal stresses (Cu, Al, Co, Cd) in yeast but showed high sensitivity to Hg stress; the cells grew slower than those carrying the empty vector (EV). Moreover, upon Hg stress, the growth of the BrCYP71A15-overexpressing cells increased over time, and Hg accumulation in yeast cells was enhanced by two-fold compared with the control. Additionally, BrCYP71A15 was translocated into the nucleus under Hg stress. The expression level of cell wall biosynthesis genes was significantly influenced by Hg stress in the BrCYP71A15-overexpressing cells. These findings suggested that BrCYP71A15 might participate in HG stress tolerance. Our results provide a fundamental basis for further genome editing research and a novel approach to decrease Hg accumulation in vegetable crops and reduce environmental risks to human health through the food chain.
Collapse
|
470
|
Cristofano F, El-Nakhel C, Colla G, Cardarelli M, Pii Y, Lucini L, Rouphael Y. Modulation of Morpho-Physiological and Metabolic Profiles of Lettuce Subjected to Salt Stress and Treated with Two Vegetal-Derived Biostimulants. PLANTS (BASEL, SWITZERLAND) 2023; 12:709. [PMID: 36840057 PMCID: PMC9964113 DOI: 10.3390/plants12040709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Salinity in water and soil is a critical issue for food production. Using biostimulants provides an effective strategy to protect crops from salinity-derived yield losses. The research supports the effectiveness of protein hydrolysate (PH) biostimulants based on their source material. A greenhouse experiment was performed on lettuce plants under control (0 mM NaCl) and high salinity conditions (30 mM NaCl) using the Trainer (T) and Vegamin (V) PH biostimulants. The recorded data included yield parameters, mineral contents, auxiliary pigments, and polyphenolics. The plant sample material was further analyzed to uncover the unique metabolomic trace of the two biostimulants. The results showed an increased yield (8.9/4.6%, T/V) and higher photosynthetic performance (14%) compared to control and salinity treatments. Increased yield in salinity condition by T compared to V was deemed significant due to the positive modulation in stress-protecting molecules having an oxidative stress relief effect such as lutein (39.9% 0 × T vs. 30 × V), β-carotene (23.4% vs. V overall), and flavonoids (27.7% vs. V). The effects of PH biostimulants on the physio-chemical and metabolic performance of lettuce plants are formulation dependent. However, they increased plant growth under stress conditions, which can prove profitable.
Collapse
Affiliation(s)
- Francesco Cristofano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen/Bolzano, 39100 Bolzano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Catholic University of the Sacred Heart, 29122 Piacenza, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
471
|
Sun X, Zheng HX, Li S, Gao Y, Dang Y, Chen Z, Wu F, Wang X, Xie Q, Sui N. MicroRNAs balance growth and salt stress responses in sweet sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:677-697. [PMID: 36534087 DOI: 10.1111/tpj.16065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Salt stress is one of the major causes of reduced crop production, limiting agricultural development globally. Plants have evolved with complex systems to maintain the balance between growth and stress responses, where signaling pathways such as hormone signaling play key roles. Recent studies revealed that hormones are modulated by microRNAs (miRNAs). Previously, two sweet sorghum (Sorghum bicolor) inbred lines with different salt tolerance were identified: the salt-tolerant M-81E and the salt-sensitive Roma. The levels of endogenous hormones in M-81E and Roma varied differently under salt stress, showing a different balance between growth and stress responses. miRNA and degradome sequencing showed that the expression of many upstream transcription factors regulating signal transduction and hormone-responsive genes was directly induced by differentially expressed miRNAs, whose levels were very different between the two sweet sorghum lines. Furthermore, the effects of representative miRNAs on salt tolerance in sorghum were verified through a transformation system mediated by Agrobacterium rhizogenes. Also, miR-6225-5p reduced the level of Ca2+ in the miR-6225-5p-overexpressing line by inhibiting the expression of the Ca2+ uptake gene SbGLR3.1 in the root epidermis and affected salt tolerance in sorghum. This study provides evidence for miRNA-mediated growth and stress responses in sweet sorghum.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Fenghui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
472
|
Yan K, Cui J, Zhi Y, Su H, Yu S, Zhou S. Deciphering salt tolerance in tetraploid honeysuckle (Lonicera japonica Thunb.) from ion homeostasis, water balance and antioxidant defense. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:266-274. [PMID: 36652848 DOI: 10.1016/j.plaphy.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Polyploid plants are usually salt tolerant, but the underlying mechanisms remain fragmental. This study aimed to dissect salt resistance of tetraploid honeysuckle (Lonicera japonica Thunb.) from ion balance, osmotic adjustment and antioxidant defense by contrasting with its autodiploid through pot experiments. Less salt-induced reduction in leaf and root biomass confirmed higher tolerance in tetraploid honeysuckle, and moreover, its greater stability of photosynthetic apparatus was verified by mild influence on delayed chlorophyll fluorescence transients. Compared with the diploid, greater root Na+ exclusion helped alleviate salt-induced decrease in leaf K+/Na+ for maintaining ion balance in tetraploid honeysuckle, and relied on Na+/H+ antiporter activity, because their difference of root Na+ exclusion disappeared after applying a specific inhibitor of Na+/H+ antiporter. Lower reduction in leaf relative water content suggested higher tolerance to osmotic pressure in tetraploid honeysuckle under salt stress, which hardly resulted from osmotic adjustment given the similar decrease extent of leaf osmotic potential with that in the diploid. In contrast to significant elevated leaf lipid peroxidation and superoxide dismutase and ascorbate peroxidase activities in the diploid, no obvious changes in them suggested that tetraploid honeysuckle never suffered salt-induced oxidative stress. According to more accumulated leaf chlorogenic acid and phenolics and greater elevated leaf phenylalanine ammonia-lyase activity and transcription, leaf phenolic synthesis was enhanced greater in tetraploid honeysuckle upon salt stress, which might serve to prevent oxidative threat by consuming reducing power. In conclusion, polyploidy enhanced salt tolerance in honeysuckle by maintaining ion homeostasis and water balance and preventing oxidative stress.
Collapse
Affiliation(s)
- Kun Yan
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Jinxin Cui
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yibo Zhi
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Hongyan Su
- School of Agriculture, Ludong University, Yantai, 264025, China; The Institute of Ecological Garden, Ludong University, Yantai, 264025, China.
| | - Shunyang Yu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, 264003, China
| | - Shiwei Zhou
- School of Agriculture, Ludong University, Yantai, 264025, China
| |
Collapse
|
473
|
Singh D, Debnath P, Sane AP, Sane VA. Tomato (Solanum lycopersicum) WRKY23 enhances salt and osmotic stress tolerance by modulating the ethylene and auxin pathways in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:330-340. [PMID: 36669348 DOI: 10.1016/j.plaphy.2023.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Osmotic stress is one of the biggest problems in agriculture, which adversely affects crop productivity. Plants adopt several strategies to overcome osmotic stresses that include transcriptional reprogramming and activation of stress responses mediated by different transcription factors and phytohormones. We have identified a WRKY transcription factor from tomato, SlWRKY23, which is induced by mannitol and NaCl treatment. Over-expression of SlWRKY23 in transgenic Arabidopsis enhances osmotic stress tolerance to mannitol and NaCl and affects root growth and lateral root number. Transgenic Arabidopsis over-expressing SlWRKY23 showed reduced electrolyte leakage and higher relative water content than Col-0 plants upon mannitol and NaCl treatment. These lines also showed better membrane integrity with lower MDA content and higher proline content than Col-0. Responses to mannitol were governed by auxin as treatment with TIBA (auxin transport inhibitor) negatively affected the osmotic tolerance in transgenic lines by inhibiting lateral root growth. Similarly, responses to NaCl were controlled by ethylene as treatment with AgNO3 (ethylene perception inhibitor) inhibited the stress response to NaCl by suppressing primary and lateral root growth. The study shows that SlWRKY23, a osmotic stress inducible gene in tomato, imparts tolerance to mannitol and NaCl stress through interaction of the auxin and ethylene pathways.
Collapse
Affiliation(s)
- Deepika Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Pratima Debnath
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vidhu A Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
474
|
Lopez AJ, Narvaez-Ortiz HY, Rincon-Benavides MA, Pulido DC, Fuentes Suarez LE, Zimmermann BH. New Insights into rice pyrimidine catabolic enzymes. FRONTIERS IN PLANT SCIENCE 2023; 14:1079778. [PMID: 36818891 PMCID: PMC9930899 DOI: 10.3389/fpls.2023.1079778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Rice is a primary global food source, and its production is affected by abiotic stress, caused by climate change and other factors. Recently, the pyrimidine reductive catabolic pathway, catalyzed by dihydropyrimidine dehydrogenase (DHPD), dihydropyrimidinase (DHP) and β-ureidopropionase (β-UP), has emerged as a potential participant in the abiotic stress response of rice. METHODS The rice enzymes were produced as recombinant proteins, and two were kinetically characterized. Rice dihydroorotate dehydrogenase (DHODH), an enzyme of pyrimidine biosynthesis often confused with DHPD, was also characterized. Salt-sensitive and salt-resistant rice seedlings were subjected to salt stress (24 h) and metabolites in leaves were determined by mass spectrometry. RESULTS The OsDHPD sequence was homologous to the C-terminal half of mammalian DHPD, conserving FMN and uracil binding sites, but lacked sites for Fe/S clusters, FAD, and NADPH. OsDHPD, truncated to eliminate the chloroplast targeting peptide, was soluble, but inactive. Database searches for polypeptides homologous to the N-terminal half of mammalian DHPD, that could act as co-reductants, were unsuccessful. OsDHODH exhibited kinetic parameters similar to those of other plant DHODHs. OsDHP, truncated to remove a signal sequence, exhibited a kcat/Km = 3.6 x 103 s-1M-1. Osb-UP exhibited a kcat/Km = 1.8 x 104 s-1M-1. Short-term salt exposure caused insignificant differences in the levels of the ureide intermediates dihydrouracil and ureidopropionate in leaves of salt-sensitive and salt-resistant plants. Allantoin, a ureide metabolite of purine catabolism, was found to be significantly higher in the resistant cultivar compared to one of the sensitive cultivars. DISCUSSION OsDHP, the first plant enzyme to be characterized, showed low kinetic efficiency, but its activity may have been affected by truncation. Osb-UP exhibited kinetic parameters in the range of enzymes of secondary metabolism. Levels of two pathway metabolites were similar in sensitive and resistant cultivars and appeared to be unaffected by short-term salt exposure."
Collapse
|
475
|
Wang Y, Zhang N, Wu A, Lv Z, Li Y. Effect of benomyl-mediated mycorrhizal association on the salinity tolerance of male and monoecious mulberry clones. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:67-76. [PMID: 36603450 DOI: 10.1016/j.plaphy.2022.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Mulberry is an economically important crop for sericulture in China. Mulberry plantations are shifting inland, where they face high salinity. Arbuscular mycorrhizal fungi (AMF) reportedly enhance mulberry's tolerance to salinity. Here, we assessed if additional adaptive advantages against salinity are provided by sex differences beyond those provided by mycorrhizal symbiosis. In a pot experiment, male and monoecious plants were exposed to three salinity regimes (0, 50, and 200 mM NaCl) and two mycorrhiza-suppressed conditions (with or without benomyl application) for more than 16 months. We noticed that salinity alone significantly decreased the mycorrhizal colonization rate, salinity tolerance, K+ concentrations, and the ionic ratios of all plants. Mycorrhizal association mildly ameliorated the salt-induced detrimental effects, especially for monoecious plants, and sex-specific responses were observed. Meanwhile, both sexes had adopted different strategies to enhance their salinity resistance. Briefly, mycorrhizal monoecious plants exhibited a higher net photosynthetic rate and lower translocation of Na+ from root to shoot compared with mycorrhizal males under saline conditions. Their salt tolerance was probably due to the Ca2+/Na+ in roots. In comparison, male plants exhibited lower Na+ acquisition, more Na+ translocated from root to shoot, higher root biomass allocation, and higher N concentrations under harsh saline conditions, and their salt tolerance was mainly related to the K+/Na+ in their shoots. In conclusion, our results highlight that AMF could be a promising candidate for improving plant performance under highest salinity, especially for monoecious plants. Cultivators must be mindful of applying fungicides, such as benomyl, in saline areas.
Collapse
Affiliation(s)
- Yanhong Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Naili Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Aiping Wu
- Ecology Department, College of Resources and Environment, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha, 410128, China
| | - Zhiqiang Lv
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
476
|
Silva VNB, da Silva TLC, Ferreira TMM, Neto JCR, Leão AP, de Aquino Ribeiro JA, Abdelnur PV, Valadares LF, de Sousa CAF, Júnior MTS. Multi-omics Analysis of Young Portulaca oleracea L. Plants' Responses to High NaCl Doses Reveals Insights into Pathways and Genes Responsive to Salinity Stress in this Halophyte Species. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:1-21. [PMID: 36947413 PMCID: PMC9883379 DOI: 10.1007/s43657-022-00061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Soil salinity is among the abiotic stressors that threaten agriculture the most, and purslane (Portulaca oleracea L.) is a dicot species adapted to inland salt desert and saline habitats that hyper accumulates salt and has high phytoremediation potential. Many researchers consider purslane a suitable model species to study the mechanisms of plant tolerance to drought and salt stresses. Here, a robust salinity stress protocol was developed and used to characterize the morphophysiological responses of young purslane plants to salinity stress; then, leaf tissue underwent characterization by distinct omics platforms to gain further insights into its response to very high salinity stress. The salinity stress protocol did generate different levels of stress by gradients of electrical conductivity at field capacity and water potential in the saturation extract of the substrate, and the morphological parameters indicated three distinct stress levels. As expected from a halophyte species, these plants remained alive under very high levels of salinity stress, showing salt crystal-like structures constituted mainly by Na+, Cl-, and K+ on and around closed stomata. A comprehensive and large-scale metabolome and transcriptome single and integrated analyses were then employed using leaf samples. The multi-omics integration (MOI) system analysis led to a data-set of 51 metabolic pathways with at least one enzyme and one metabolite differentially expressed due to salinity stress. These data sets (of genes and metabolites) are valuable for future studies aimed to deepen our knowledge on the mechanisms behind the high tolerance of this species to salinity stress. In conclusion, besides showing that this species applies salt exclusion already in young plants to support very high levels of salinity stress, the initial analysis of metabolites and transcripts data sets already give some insights into other salt tolerance mechanisms used by this species to support high levels of salinity stress. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00061-2.
Collapse
Affiliation(s)
- Vivianny Nayse Belo Silva
- Graduate Program of Plant Biotechnology, Federal University of Lavras, CP 3037, Lavras, MG 37200-000 Brazil
| | | | | | | | - André Pereira Leão
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF 70770‐901 Brazil
| | | | - Patrícia Verardi Abdelnur
- Institute of Chemistry, Federal University of Goiás, Campus Samambaia, Goiânia, GO 74690‐900 Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF 70770‐901 Brazil
| | | | | | - Manoel Teixeira Souza Júnior
- Graduate Program of Plant Biotechnology, Federal University of Lavras, CP 3037, Lavras, MG 37200-000 Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF 70770‐901 Brazil
| |
Collapse
|
477
|
Rao Y, Peng T, Xue S. Mechanisms of plant saline-alkaline tolerance. JOURNAL OF PLANT PHYSIOLOGY 2023; 281:153916. [PMID: 36645936 DOI: 10.1016/j.jplph.2023.153916] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Saline-alkaline soil affects crop growth and development, thereby suppressing the yields. Human activities and climate changes are putting arable land under the threat of saline-alkalization. To feed a growing global population in limited arable land, it is of great urgence to breed saline-alkaline tolerant crops to cope with food security. Plant salt-tolerance mechanisms have already been explored for decades. However, to date, the molecular mechanisms underlying plants responses to saline-alkaline stress have remained largely elusive. Here, we summarize recent advances in plant response to saline-alkaline stress and propose some points deserving of further exploration.
Collapse
Affiliation(s)
- Ying Rao
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Ting Peng
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Shaowu Xue
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
478
|
Song Q, Zhou M, Wang X, Brestic M, Liu Y, Yang X. RAP2.6 enhanced salt stress tolerance by reducing Na + accumulation and stabilizing the electron transport in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:134-143. [PMID: 36634508 DOI: 10.1016/j.plaphy.2023.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The transcription factors of the AP2/ERF family are involved in plant growth and development and responses to biotic and abiotic stresses. Here, we found RAP2.6, a transcription factor which belongs to the ERF subfamily, was responsive to salt stress in Arabidopsis. Under salt stress conditions, rap2.6 mutant seedlings were the sensitivity deficiency to salt stress which was reflected in higher germination rate and longer root length compared to the wild type. Also, the expressions of salt-related gene including SOS1, SOS2, SOS3, NHX1, NHX3, NHX5 and HKT1 in rap2.6 mutant seedlings were lower than the wild type under salt stress. rap2.6 mutant adult lacked salt stress tolerance based on the results of the phenotype, survival rates and ion leakage. Compared to wild type, rap2.6 mutant adult accumulated more Na+ in leaves and roots while the salt-related gene expressions were lower. In addition, the photosynthetic electron transport and PSII energy distribution in rap2.6 mutant plant leaves had been more seriously affected under salt stress conditions compared to the wild type. In summary, this study identified essential roles of RAP2.6 in regulating salt stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Min Zhou
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Xipan Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
479
|
Mostofa MG, Abdelrahman M, Rahman MM, Tran CD, Nguyen KH, Watanabe Y, Itouga M, Li W, Wang Z, Mochida K, Tran LSP. Karrikin Receptor KAI2 Coordinates Salt Tolerance Mechanisms in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 63:1927-1942. [PMID: 35997763 DOI: 10.1093/pcp/pcac121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/13/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Plants activate a myriad of signaling cascades to tailor adaptive responses under environmental stresses, such as salinity. While the roles of exogenous karrikins (KARs) in salt stress mitigation are well comprehended, genetic evidence of KAR signaling during salinity responses in plants remains unresolved. Here, we explore the functions of the possible KAR receptor KARRIKIN-INSENSITIVE2 (KAI2) in Arabidopsis thaliana tolerance to salt stress by investigating comparative responses of wild-type (WT) and kai2-mutant plants under a gradient of NaCl. Defects in KAI2 functions resulted in delayed and inhibited cotyledon opening in kai2 seeds compared with WT seeds, suggesting that KAI2 played an important role in enhancing seed germination under salinity. Salt-stressed kai2 plants displayed more phenotypic aberrations, biomass reduction, water loss and oxidative damage than WT plants. kai2 shoots accumulated significantly more Na+ and thus had a lower K+/Na+ ratio, than WT, indicating severe ion toxicity in salt-stressed kai2 plants. Accordingly, kai2 plants displayed a lower expression of genes associated with Na+ homeostasis, such as SALT OVERLY SENSITIVE (SOS) 1, SOS2, HIGH-AFFINITY POTASSIUM TRANSPORTER 1;1 (HKT1;1) and CATION-HYDROGEN EXCHANGER 1 (NHX1) than WT plants. WT plants maintained a better glutathione level, glutathione-related redox status and antioxidant enzyme activities relative to kai2 plants, implying KAI2's function in oxidative stress mitigation in response to salinity. kai2 shoots had lower expression levels of genes involved in the biosynthesis of strigolactones (SLs), salicylic acid and jasmonic acid and the signaling of abscisic acid and SLs than those of WT plants, indicating interactive functions of KAI2 signaling with other hormone signaling in modulating plant responses to salinity. Collectively, these results underpin the likely roles of KAI2 in the alleviation of salinity effects in plants by regulating several physiological and biochemical mechanisms involved in ionic and osmotic balance, oxidative stress tolerance and hormonal crosstalk.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Mostafa Abdelrahman
- Faculty of Science, Galala University, Suze, El Sokhna 43511, Egypt
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Md Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Cuong Duy Tran
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong St., Hanoi 100000, Vietnam
| | - Kien Huu Nguyen
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong St., Hanoi 100000, Vietnam
| | - Yasuko Watanabe
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Misao Itouga
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Beijing 130102, China
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Zhe Wang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 230-0045, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
480
|
Moreira MH, They NH, Rodrigues LR, Alvarenga-Lucius L, Pita-Barbosa A. Salty freshwater macrophytes: the effects of salinization in freshwaters upon non-halophyte aquatic plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159608. [PMID: 36280080 DOI: 10.1016/j.scitotenv.2022.159608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Salinization is a threat that affects aquatic ecosystems worldwide. As primary producers, freshwater macrophytes are of paramount importance in these ecosystems, however, information regarding the potential impacts of salinization upon these organisms is still scarce. In this review we provide a comprehensive and updated discussion of how freshwater macrophytes deal with salinity increase in freshwaters. We reviewed the salinity tolerance of widespread non-halophyte macrophytes through an overview of salinity tolerance mechanisms, their tolerance classification, and salinity effects at different levels of organization: from individuals to ecosystems. Thus, we demonstrated that widespread macrophytes that inhabit freshwaters display efficient salinity tolerance to salinity levels between 5 and 10 g L-1, and only a few species display tolerance to salinities higher than 10 g L-1. Widespread macrophytes demonstrated salinity tolerance of approximately 5 g L-1. Widespread macrophytes demonstrated salinity tolerance of approximately 5 g L-1. Emergent, floating and submerged species showed no significant difference in salinity tolerance. Salinity stress symptoms in freshwater macrophytes are somewhat similar to those of terrestrial plants and can show up even at slight salinity increases. Salinities higher than 1 g L-1 can negatively affect both physiology and diversity of non-halophyte macrophytes and cause long-term - and not well understood - changes in freshwater ecosystems. Salinization of freshwater ecosystems, among others threats, in combination with climate change, raise concerns about the future ecological status of freshwater ecosystems and the services they can provide.
Collapse
Affiliation(s)
- Mauricio Hoffmann Moreira
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Ng Haig They
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96203-900, Brazil; Departamento Interdisciplinar, Centro de Estudos Limnológicos, Costeiros e Marinhos, Campus Litoral Norte, Universidade Federal do Rio Grande do Sul, Imbé, RS 95625-000, Brazil
| | - Lúcia Ribeiro Rodrigues
- Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande Do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Luna Alvarenga-Lucius
- Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Rostock, A.-Einstein-Str. 3, Rostock D-18059, Germany
| | - Alice Pita-Barbosa
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil; Departamento Interdisciplinar, Centro de Estudos Limnológicos, Costeiros e Marinhos, Campus Litoral Norte, Universidade Federal do Rio Grande do Sul, Imbé, RS 95625-000, Brazil.
| |
Collapse
|
481
|
Disomic Substitution of 3D Chromosome with Its Homoeologue 3E in Tetraploid Thinopyrum elongatum Enhances Wheat Seedlings Tolerance to Salt Stress. Int J Mol Sci 2023; 24:ijms24021609. [PMID: 36675124 PMCID: PMC9863149 DOI: 10.3390/ijms24021609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The halophytic wild relatives within Triticeae might provide valuable sources of salt tolerance for wheat breeding, and attempts to use these sources of tolerance have been made for improving salt tolerance in wheat by distant hybridization. A novel wheat substitution line of K17-1078-3 was developed using common wheat varieties of Chuannong16 (CN16), Zhengmai9023 (ZM9023), and partial amphidiploid Trititrigia8801 (8801) as parents, and identified as the 3E(3D) substitution line. The substitution line was compared with their parents for salt tolerance in hydroponic culture to assess their growth. The results showed that less Na+ accumulation and lower Na+/K+ ratio in both shoots and roots were achieved in K17-1078-3 under salinity compared to its wheat parents. The root growth and development of K17-1078-3 was less responsive to salinity. When exposed to high salt treatment, K17-1078-3 had a higher photosynthesis rate, more efficient water use efficiency, and greater antioxidant capacity and stronger osmotic adjustment ability than its wheat parents. In conclusion, a variety of physiological responses and root system adaptations were involved in enhancing salt tolerance in K17-1078-3, which indicated that chromosome 3E possessed the salt tolerance locus. It is possible to increase substantially the salt tolerance of wheat by the introduction of chromosome 3E into wheat genetic background.
Collapse
|
482
|
Li L, Lv B, Zang K, Jiang Y, Wang C, Wang Y, Wang K, Zhao M, Chen P, Lei J, Wang Y, Zhang M. Genome-wide identification and systematic analysis of the HD-Zip gene family and its roles in response to pH in Panax ginseng Meyer. BMC PLANT BIOLOGY 2023; 23:30. [PMID: 36639779 PMCID: PMC9838044 DOI: 10.1186/s12870-023-04038-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ginseng, Panax ginseng Meyer, is a traditional herb that is immensely valuable both for human health and medicine and for medicinal plant research. The homeodomain leucine zipper (HD-Zip) gene family is a plant-specific transcription factor gene family indispensable in the regulation of plant growth and development and plant response to environmental stresses. RESULTS We identified 117 HD-Zip transcripts from the transcriptome of ginseng cv. Damaya that is widely grown in Jilin, China where approximately 60% of the world's ginseng is produced. These transcripts were positioned to 64 loci in the ginseng genome and the ginseng HD-Zip genes were designated as PgHDZ genes. Identification of 82 and 83 PgHDZ genes from the ginseng acc. IR826 and cv. ChP genomes, respectively, indicated that the PgHDZ gene family consists of approximately 80 PgHDZ genes. Phylogenetic analysis showed that the gene family originated after Angiosperm split from Gymnosperm and before Dicots split from Monocots. The gene family was classified into four subfamilies and has dramatically diverged not only in gene structure and functionality but also in expression characteristics. Nevertheless, co-expression network analysis showed that the activities of the genes in the family remain significantly correlated, suggesting their functional correlation. Five hub PgHDZ genes were identified that might have central functions in ginseng biological processes and four of them were shown to be actively involved in plant response to environmental pH stress in ginseng. CONCLUSIONS The PgHDZ gene family was identified from ginseng and analyzed systematically. Five potential hub genes were identified and four of them were shown to be involved in ginseng response to environmental pH stress. The results provide new insights into the characteristics, diversity, evolution, and functionality of the PgHDZ gene family in ginseng and lay a foundation for comprehensive research of the gene family in plants.
Collapse
Affiliation(s)
- Li Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Boxin Lv
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Kaiyou Zang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Chaofan Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yanfang Wang
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
483
|
Ji J, Zeng Y, Zhang S, Chen F, Hou X, Li Q. The miR169b/NFYA1 module from the halophyte Halostachys caspica endows salt and drought tolerance in Arabidopsis through multi-pathways. FRONTIERS IN PLANT SCIENCE 2023; 13:1026421. [PMID: 36726670 PMCID: PMC9886095 DOI: 10.3389/fpls.2022.1026421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/01/2022] [Indexed: 06/18/2023]
Abstract
Salt and drought are the major abiotic stress factors plaguing plant growth, development and crop yields. Certain abiotic-stress tolerant plants have developed special mechanisms for adapting to adverse environments in the long process of evolution. Elucidating the molecular mechanisms by which they can exert resistance to abiotic stresses is beneficial for breeding new cultivars to guide agricultural production. Halostachys caspica, a perennial halophyte belonging to Halostachys in Amaranthaceae, is extremely tolerant to harsh environments, which is commonly grown in the saline-alkali arid desert area of Northwest, China. However, the molecular mechanism of stress tolerance is unclear. Nuclear Factor Y-A (NFYA) is a transcription factor that regulates the expression of downstream genes in plant response to adverse environments. It has also been reported that some members of the NFYA family are the main targets of miR169 in plants. In this study, we mainly focused on exploring the functions and preliminary mechanism of the miR169b/NFYA1 module from H. caspica to abiotic stress. The main results showed that RLM-RACE technology validated that HcNFYA1 was targeted by HcmiR169b, qRT-PCR revealed that HcmiR169b was repressed and HcNFYA1 was induced in the H. caspica branches under various abiotic stress as well ABA treatment and Arabidopsis stable transformation platform with molecular methods was applied to elucidate that the HcmiR169b/HcNFYA1 module conferred the salt and drought tolerance to plants by enhancing ABA synthesis and ABA signal transduction pathways, maintaining ROS homeostasis and the stability of cell membrane. HcNFYA1 is expected to be a candidate gene to improve plant resistance to salt and drought stresses.
Collapse
Affiliation(s)
- Jieyun Ji
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, sChina
| | - Youling Zeng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, sChina
| | - Suwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, sChina
| | - Fangyuan Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, sChina
| | - Xianfei Hou
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Qiang Li
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
484
|
Chang W, Zhang Y, Ping Y, Li K, Qi DD, Song FQ. Label-free quantitative proteomics of arbuscular mycorrhizal Elaeagnus angustifolia seedlings provides insights into salt-stress tolerance mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 13:1098260. [PMID: 36704166 PMCID: PMC9873384 DOI: 10.3389/fpls.2022.1098260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Soil salinization has become one of the most serious environmental issues globally. Excessive accumulation of soluble salts will adversely affect the survival, growth, and reproduction of plants. Elaeagnus angustifolia L., commonly known as oleaster or Russian olive, has the characteristics of tolerance to drought and salt. Arbuscular mycorrhizal (AM) fungi are considered to be bio-ameliorator of saline soils that can enhance the salt tolerance of the host plants. However, there is little information on the root proteomics of AM plants under salt stress. METHODS In this study, a label-free quantitative proteomics method was employed to identify the differentially abundant proteins in AM E. angustifolia seedlings under salt stress. RESULTS The results showed that a total of 170 proteins were significantly differentially regulated in E.angustifolia seedlings after AMF inoculation under salt stress. Mycorrhizal symbiosis helps the host plant E. angustifolia to respond positively to salt stress and enhances its salt tolerance by regulating the activities of some key proteins related to amino acid metabolism, lipid metabolism, and glutathione metabolism in root tissues. CONCLUSION Aspartate aminotransferase, dehydratase-enolase-phosphatase 1 (DEP1), phospholipases D, diacylglycerol kinase, glycerol-3-phosphate O-acyltransferases, and gamma-glutamyl transpeptidases may play important roles in mitigating the detrimental effect of salt stress on mycorrhizal E. angustifolia . In conclusion, these findings provide new insights into the salt-stress tolerance mechanisms of AM E. angustifolia seedlings and also clarify the role of AM fungi in the molecular regulation network of E. angustifolia under salt stress.
Collapse
Affiliation(s)
- Wei Chang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
- Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jinin, China
| | - Yan Zhang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Yuan Ping
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Kun Li
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Dan-Dan Qi
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Fu-Qiang Song
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
- Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jinin, China
| |
Collapse
|
485
|
Xiao F, Zhou H. Plant salt response: Perception, signaling, and tolerance. FRONTIERS IN PLANT SCIENCE 2023; 13:1053699. [PMID: 36684765 PMCID: PMC9854262 DOI: 10.3389/fpls.2022.1053699] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/05/2022] [Indexed: 05/14/2023]
Abstract
Salt stress is one of the significant environmental stressors that severely affects plant growth and development. Plant responses to salt stress involve a series of biological mechanisms, including osmoregulation, redox and ionic homeostasis regulation, as well as hormone or light signaling-mediated growth adjustment, which are regulated by different functional components. Unraveling these adaptive mechanisms and identifying the critical genes involved in salt response and adaption are crucial for developing salt-tolerant cultivars. This review summarizes the current research progress in the regulatory networks for plant salt tolerance, highlighting the mechanisms of salt stress perception, signaling, and tolerance response. Finally, we also discuss the possible contribution of microbiota and nanobiotechnology to plant salt tolerance.
Collapse
Affiliation(s)
- Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
486
|
BREVIPEDICELLUS Positively Regulates Salt-Stress Tolerance in Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24021054. [PMID: 36674568 PMCID: PMC9866879 DOI: 10.3390/ijms24021054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Salt stress is one of the major environmental threats to plant growth and development. However, the mechanisms of plants responding to salt stress are not fully understood. Through genetic screening, we identified and characterized a salt-sensitive mutant, ses5 (sensitive to salt 5), in Arabidopsis thaliana. Positional cloning revealed that the decreased salt-tolerance of ses5 was caused by a mutation in the transcription factor BP (BREVIPEDICELLUS). BP regulates various developmental processes in plants. However, the biological function of BP in abiotic stress-signaling and tolerance are still not clear. Compared with wild-type plants, the bp mutant exhibited a much shorter primary-root and lower survival rate under salt treatment, while the BP overexpressors were more tolerant. Further analysis showed that BP could directly bind to the promoter of XTH7 (xyloglucan endotransglucosylase/hydrolase 7) and activate its expression. Resembling the bp mutant, the disruption of XTH7 gave rise to salt sensitivity. These results uncovered novel roles of BP in positively modulating salt-stress tolerance, and illustrated a putative working mechanism.
Collapse
|
487
|
Chen L, Duan L, Sun M, Yang Z, Li H, Hu K, Yang H, Liu L. Current trends and insights on EMS mutagenesis application to studies on plant abiotic stress tolerance and development. FRONTIERS IN PLANT SCIENCE 2023; 13:1052569. [PMID: 36684716 PMCID: PMC9846265 DOI: 10.3389/fpls.2022.1052569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Ethyl methanesulfonate (EMS)-induced mutagenesis is a powerful tool to generate genetic resource for identifying untapped genes and characterizing the function of genes to understand the molecular basis of important agronomic traits. This review focuses on application of contemporary EMS mutagenesis in the field of plant development and abiotic stress tolerance research, with particular focuses on reviewing the mutation types, mutagenesis site, mutagen concentration, mutagenesis duration, the identification and characterization of mutations responsible for altered stress tolerance responses. The application of EMS mutation breeding combined with genetic engineering in the future plant breeding and fundamental research was also discussed. The collective information in this review will provide good insight on how EMS mutagenesis is efficiently applied to improve abiotic stress tolerance of crops with the utilization of Next-generation sequencing (NGS) for mutation identification.
Collapse
Affiliation(s)
- Liuzhu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Liu Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Minghui Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhuo Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Hongyu Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Keming Hu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Hong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
488
|
Gu S, Abid M, Bai D, Chen C, Sun L, Qi X, Zhong Y, Fang J. Transcriptome-Wide Identification and Functional Characterization of CIPK Gene Family Members in Actinidia valvata under Salt Stress. Int J Mol Sci 2023; 24:805. [PMID: 36614245 PMCID: PMC9821023 DOI: 10.3390/ijms24010805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
Fruit plants are severely constrained by salt stress in the soil due to their sessile nature. Ca2+ sensors, which are known as CBL-interacting protein kinases (CIPKs), transmit abiotic stress signals to plants. Therefore, it is imperative to investigate the molecular regulatory role of CIPKs underlying salt stress tolerance in kiwifruit. In the current study, we have identified 42 CIPK genes from Actinidia. valvata (A.valvata). All the AvCIPKs were divided into four different phylogenetic groups. Moreover, these genes showed different conserved motifs. The expression pattern analysis showed that AvCIPK11 was specifically highly expressed under salt stress. The overexpression of AvCIPK11 in 'Hongyang' (a salt sensitive commercial cultivar from Actinidia chinensis) enhanced salt tolerance by maintaining K+/Na+ homeostasis in the leaf and positively improving the activity of POD. In addition, the salt-related genes AcCBL1 and AcNHX1 had higher expression in overexpression lines. Collectively, our study suggested that AvCIPK11 is involved in the positive regulation of salt tolerance in kiwifruit.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunpeng Zhong
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jinbao Fang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
489
|
Colin L, Ruhnow F, Zhu JK, Zhao C, Zhao Y, Persson S. The cell biology of primary cell walls during salt stress. THE PLANT CELL 2023; 35:201-217. [PMID: 36149287 PMCID: PMC9806596 DOI: 10.1093/plcell/koac292] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Salt stress simultaneously causes ionic toxicity, osmotic stress, and oxidative stress, which directly impact plant growth and development. Plants have developed numerous strategies to adapt to saline environments. Whereas some of these strategies have been investigated and exploited for crop improvement, much remains to be understood, including how salt stress is perceived by plants and how plants coordinate effective responses to the stress. It is, however, clear that the plant cell wall is the first contact point between external salt and the plant. In this context, significant advances in our understanding of halotropism, cell wall synthesis, and integrity surveillance, as well as salt-related cytoskeletal rearrangements, have been achieved. Indeed, molecular mechanisms underpinning some of these processes have recently been elucidated. In this review, we aim to provide insights into how plants respond and adapt to salt stress, with a special focus on primary cell wall biology in the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Leia Colin
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Felix Ruhnow
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Jian-Kang Zhu
- School of Life Sciences, Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | |
Collapse
|
490
|
Park HJ, Gámez-Arjona FM, Lindahl M, Aman R, Villalta I, Cha JY, Carranco R, Lim CJ, García E, Bressan RA, Lee SY, Valverde F, Sánchez-Rodríguez C, Pardo JM, Kim WY, Quintero FJ, Yun DJ. S-acylated and nucleus-localized SALT OVERLY SENSITIVE3/CALCINEURIN B-LIKE4 stabilizes GIGANTEA to regulate Arabidopsis flowering time under salt stress. THE PLANT CELL 2023; 35:298-317. [PMID: 36135824 PMCID: PMC9806564 DOI: 10.1093/plcell/koac289] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/16/2022] [Indexed: 05/15/2023]
Abstract
The precise timing of flowering in adverse environments is critical for plants to secure reproductive success. We report a mechanism in Arabidopsis (Arabidopsis thaliana) controlling the time of flowering by which the S-acylation-dependent nuclear import of the protein SALT OVERLY SENSITIVE3/CALCINEURIN B-LIKE4 (SOS3/CBL4), a Ca2+-signaling intermediary in the plant response to salinity, results in the selective stabilization of the flowering time regulator GIGANTEA inside the nucleus under salt stress, while degradation of GIGANTEA in the cytosol releases the protein kinase SOS2 to achieve salt tolerance. S-acylation of SOS3 was critical for its nuclear localization and the promotion of flowering, but partly dispensable for salt tolerance. SOS3 interacted with the photoperiodic flowering components GIGANTEA and FLAVIN-BINDING, KELCH REPEAT, F-BOX1 and participated in the transcriptional complex that regulates CONSTANS to sustain the transcription of CO and FLOWERING LOCUS T under salinity. Thus, the SOS3 protein acts as a Ca2+- and S-acylation-dependent versatile regulator that fine-tunes flowering time in a saline environment through the shared spatial separation and selective stabilization of GIGANTEA, thereby connecting two signaling networks to co-regulate the stress response and the time of flowering.
Collapse
Affiliation(s)
| | | | - Marika Lindahl
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville 41092, Spain
| | - Rashid Aman
- Division of Applied Life Science (BK21plus Program), Research Institute of Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, South Korea
| | - Irene Villalta
- Institut de Recherche sur la Biologie de l’Insecte, Université de Tours, 37200 Tours, France
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21plus Program), Research Institute of Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, South Korea
| | - Raul Carranco
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville 41092, Spain
| | - Chae Jin Lim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, South Korea
| | - Elena García
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville 41092, Spain
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21plus Program), Research Institute of Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, South Korea
| | - Federico Valverde
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville 41092, Spain
| | | | - Jose M Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville 41092, Spain
| | - Woe-Yeon Kim
- Author for correspondence: (D.-J.Y.); (F.J.Q.); (W.-Y.K.)
| | | | - Dae-Jin Yun
- Author for correspondence: (D.-J.Y.); (F.J.Q.); (W.-Y.K.)
| |
Collapse
|
491
|
Zheng H, Gao Y, Sui Y, Dang Y, Wu F, Wang X, Zhang F, Du X, Sui N. R2R3 MYB transcription factor SbMYBHv33 negatively regulates sorghum biomass accumulation and salt tolerance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:5. [PMID: 36656365 DOI: 10.1007/s00122-023-04292-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
SbMYBHv33 negatively regulated biomass accumulation and salt tolerance in sorghum and Arabidopsis by regulating reactive oxygen species accumulation and ion levels. Salt stress is one of the main types of environmental stress leading to a reduction in crop yield worldwide. Plants have also evolved a variety of corresponding regulatory pathways to resist environmental stress damage. This study aimed to identify a SbMYBHv33 transcription factor that downregulates in salt, drought, and abscisic acid (ABA) in the salt-tolerant inbred line sorghum M-81E. The findings revealed that overexpression of SbMYBHv33 in sorghum significantly reduced sorghum biomass accumulation at the seedling stage and also salinity tolerance. Meanwhile, a heterologous transformation of Arabidopsis with SbMYBHv33 produced a similar phenotype. The loss of function of the Arabidopsis homolog of SbMYBHv33 resulted in longer roots and increased salt tolerance. Under normal conditions, SbMYBHV33 overexpression promoted the expression of ABA pathway genes in sorghum and inhibited growth. Under salt stress conditions, the gene expression of SbMYBHV33 decreased in the overexpressed lines, and the promotion of these genes in the ABA pathway was attenuated. This might be an important reason for the difference in growth and stress resistance between SbMYBHv33-overexpressed sorghum and ectopic expression Arabidopsis. Hence, SbMYBHv33 is an important component of sorghum growth and development and the regulation of salt stress response, and it could negatively regulate salt tolerance and biomass accumulation in sorghum.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Fenghui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Fangning Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
492
|
Xu J, Yang C, Ji S, Ma H, Lin J, Li H, Chen S, Xu H, Zhong M. Heterologous expression of MirMAN enhances root development and salt tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1118548. [PMID: 37123825 PMCID: PMC10145921 DOI: 10.3389/fpls.2023.1118548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Introduction β-Mannanase is a plant cell wall remodeling enzyme involved in the breakdown of hemicellulose and plays an important role in growth by hydrolyzing the mannan-like polysaccharide, but its function in adaptation to salt stress has been less studied. Methods Based on cloned the mannanase (MAN) gene from Mirabilis jalapa L., the study was carried out by heterologously expressing the gene in Arabidopsis thaliana, and then observing the plant phenotypes and measuring relevant physiological and biochemical indicators under 150 mM salt treatment. Results and discussion The results indicate that MirMAN is a protein with a glycohydrolase-specific structural domain located in the cell wall. We first found that MirMAN reduced the susceptibility of transgenic Arabidopsis thaliana to high salt stress and increased the survival rate of plants by 38%. This was corroborated by the following significant changes, including the reduction in reactive oxygen species (ROS) levels, increase in antioxidant enzyme activity, accumulation of soluble sugars and increase of the expression level of RD29 in transgenic plants. We also found thatthe heterologous expression of MirMAN promoted root growth mainly by elongating the primary roots and increasing the density of lateral roots. Meanwhile, the expression of ARF7, ARF19, LBD16 and LBD29 was up-regulated in the transgenic plants, and the concentration of IAA in the roots was increased. Those results indicate that MirMAN is involved in the initiation of lateral root primordia in transgenic plants through the IAA-ARF signalling pathway. In conclusion, MirMAN improves plant salt tolerance not only by regulating ROS homeostasis, but also by promoting the development of lateral roots. Reflecting the potential of the MirMAN to promote root plastic development in adaptation to salt stress adversity.
Collapse
Affiliation(s)
- Juanjuan Xu
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Caiyu Yang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shangyao Ji
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hui Ma
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jingwei Lin
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hui Li
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shuisen Chen
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hai Xu
- Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Rice Research Institute, Shenyang Agricultural University, Shenyang, Liaoning, China
- *Correspondence: Ming Zhong, ; Hai Xu,
| | - Ming Zhong
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- *Correspondence: Ming Zhong, ; Hai Xu,
| |
Collapse
|
493
|
Zhang M, Li Y, Liang X, Lu M, Lai J, Song W, Jiang C. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:97-108. [PMID: 36114820 PMCID: PMC9829394 DOI: 10.1111/pbi.13927] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/11/2022] [Indexed: 05/31/2023]
Abstract
The sodium cation (Na+ ) is the predominant cation with deleterious effects on crops in salt-affected agricultural areas. Salt tolerance of crop can be improved by increasing shoot Na+ exclusion. Therefore, it is crucial to identify and use genetic variants of various crops that promote shoot Na+ exclusion. Here, we show that a HKT1 family gene ZmNC3 (Zea mays L. Na+ Content 3; designated ZmHKT1;2) confers natural variability in shoot-Na+ accumulation and salt tolerance in maize. ZmHKT1;2 encodes a Na+ -preferential transporter localized in the plasma membrane, which mediates shoot Na+ exclusion, likely by withdrawing Na+ from the root xylem flow. A naturally occurring nonsynonymous SNP (SNP947-G) increases the Na+ transport activity of ZmHKT1;2, promoting shoot Na+ exclusion and salt tolerance in maize. SNP947-G first occurred in the wild grass teosinte (at a allele frequency of 43%) and has become a minor allele in the maize population (allele frequency 6.1%), suggesting that SNP947-G is derived from teosinte and that the genomic region flanking SNP947 likely has undergone selection during domestication or post-domestication dispersal of maize. Moreover, we demonstrate that introgression of the SNP947-G ZmHKT1;2 allele into elite maize germplasms reduces shoot Na+ content by up to 80% and promotes salt tolerance. Taken together, ZmNC3/ZmHKT1;2 was identified as an important QTL promoting shoot Na+ exclusion, and its favourable allele provides an effective tool for developing salt-tolerant maize varieties.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yidan Li
- Agro‐Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchunChina
| | - Xiaoyan Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Minhui Lu
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Jinsheng Lai
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
- Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Weibin Song
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
- Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
494
|
Yang T, Tian M, Gao T, Wang C, Wang X, Chen C, Yang W. Genome-wide transcriptomic analysis identifies candidate genes involved in jasmonic acid-mediated salt tolerance of alfalfa. PeerJ 2023; 11:e15324. [PMID: 37168537 PMCID: PMC10166079 DOI: 10.7717/peerj.15324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Soil salinity imposes a major threat to plant growth and agricultural productivity. Despite being one of the most common fodder crops in saline locations, alfalfa is vulnerable to salt stress. Jasmonic acid (JA) is a phytohormone that influences plant response to abiotic stimuli such as salt stress. However, key genes and pathways by which JA-mediated salt tolerance of alfalfa are little known. A comprehensive transcriptome analysis was performed to elucidate the underlying molecular mechanisms of JA-mediated salt tolerance. The transcripts regulated by salt (S) compared to control (C) and JA+salt (JS) compared to C were investigated. Venn diagram and expression pattern of DEGs indicated that JS further altered a series of genes expression regulated by salt treatment, implying the roles of JA in priming salt tolerance. Enrichment analysis revealed that DEGs exclusively regulated by JS treatment belonged to primary or secondary metabolism, respiratory electron transport chain, and oxidative stress resistance. Alternatively, splicing (AS) was induced by salt alone or JA combined treatment, with skipped exon (SE) events predominately. DEGs undergo exon skipping involving some enriched items mentioned above and transcription factors. Finally, the gene expressions were validated using quantitative polymerase chain reaction (qPCR), which produced results that agreed with the sequencing results. Taken together, these findings suggest that JA modulates the expression of genes related to energy supply and antioxidant capacity at both the transcriptional and post-transcriptional levels, possibly through the involvement of transcription factors and AS events.
Collapse
Affiliation(s)
- Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Mei Tian
- Institute of Horticultural Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Chuan Wang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Xiaochun Wang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Caijin Chen
- Branch Institute of Guyuan, Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, Ningxia, China
| | - Weidi Yang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| |
Collapse
|
495
|
Hatamipoor S, Shabani L, Farhadian S. Supportive effect of naringenin on NaCl-induced toxicity in Carthamus tinctorius seedlings. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:889-899. [PMID: 36062912 DOI: 10.1080/15226514.2022.2117790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the present study, we used exogenous naringenin (0.5 mM) pretreatment before the stress (25 mM NaCl) on the growth and tolerance of safflower seedlings under non-salinity conditions and salinity conditions. Our results showed that salinity treatment significantly declined the biomass, leaf relative water content, chlorophyll content, K+ content, and K+/Na+ ratio by 28%, 28%, 12%, 36%, and 56%, respectively, as compared to untreated control. The results obtained in the present study showed the beneficial effects of the pretreatment of naringenin in safflower seedlings under non-salinity conditions concerning increasing plant biomass, total phenolic compound, radical scavenging activity (RSA), soluble sugar content, proline, glutathione, enzymatic antioxidants, and K+ content. Nevertheless, naringenin pretreated plants showed a clear increment in the values of biomass, RSA, total phenolic compound, and catalase enzyme activity parameters under salinity stress. Salinity stress caused ionic phytotoxicity and oxidative stress by enhancing Na+ content, H2O2 accumulation, malondialdehyde (MDA), and antioxidants. However, naringenin alleviated salt-induced oxidative stress by decreasing H2O2 and MDA content in the leaves and improving the catalase activity in treated plants. Generally, it could be concluded pretreatment of naringenin before stress could partly diminish NaCl-caused oxidative stress in safflower seedlings, probably due to improvement in enzymatic and non-enzymatic antioxidants and reduced cell membrane damage.
Collapse
Affiliation(s)
- Shahab Hatamipoor
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Leila Shabani
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
496
|
Yuan Y, Zu M, Zuo J, Li R, Yang L, Tao J. Chaetomium globosum D5 confers salinity tolerance on Paeonia lactiflora Pall. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153878. [PMID: 36493668 DOI: 10.1016/j.jplph.2022.153878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Plants will interact with beneficial endophytic fungi to increase resistance under environmental stress. Among these stresses, salt stress poses one of the major threats to plant growth worldwide. We have studied the response mechanism of Chaetomium globosum D5, a salt-tolerant fungus isolated from the roots of Paeonia lactiflora under salt stress, and its mechanism of action in helping P. lactiflora alleviate salt stress. In our study, high levels of salt inhibit growth, whereas low levels promote the growth of C. globosum D5, which resists salt stress by forming dense hyphae and producing more pigments, soluble proteins, and antioxidants. Under salt stress, growth and photosynthesis of P. lactiflora are inhibited, and they are subjected to osmotic stress, oxidative stress, and ionic stress. C. globosum D5 could help P. lactiflora promote growth and photosynthesis by increasing the uptake of nitrogen and phosphorus and increasing the accumulation of the carbon and photosynthetic pigments, help P. lactiflora alleviate osmotic stress by increasing the accumulation of proline, help P. lactiflora alleviate ion stress by reducing Na+ and increasing K+/Na+, Ca2+/Na+ and Mg2+/Na + ratios in P. lactiflora roots and leaves. In summary, joint action between P. lactiflora and C. globosum D5 is responsible for mitigating damage caused by P. lactiflora under salt stress. We first investigate the interaction between the fungus and P. lactiflora under salt stress, providing a theoretical basis for further investigations into the mechanisms of P. lactiflora's response to salt stress and its promotion in coastal areas.
Collapse
Affiliation(s)
- Yingdan Yuan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Mengting Zu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Jiajia Zuo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Runze Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Liping Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Jun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
497
|
Identification of potassium transport proteins in algae and determination of their role under salt and saline-alkaline stress. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
498
|
Feng C, Gao H, Zhou Y, Jing Y, Li S, Yan Z, Xu K, Zhou F, Zhang W, Yang X, Hussain MA, Li H. Unfolding molecular switches for salt stress resilience in soybean: recent advances and prospects for salt-tolerant smart plant production. FRONTIERS IN PLANT SCIENCE 2023; 14:1162014. [PMID: 37152141 PMCID: PMC10154572 DOI: 10.3389/fpls.2023.1162014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
The increasing sodium salts (NaCl, NaHCO3, NaSO4 etc.) in agricultural soil is a serious global concern for sustainable agricultural production and food security. Soybean is an important food crop, and their cultivation is severely challenged by high salt concentration in soils. Classical transgenic and innovative breeding technologies are immediately needed to engineer salt tolerant soybean plants. Additionally, unfolding the molecular switches and the key components of the soybean salt tolerance network are crucial for soybean salt tolerance improvement. Here we review our understandings of the core salt stress response mechanism in soybean. Recent findings described that salt stress sensing, signalling, ionic homeostasis (Na+/K+) and osmotic stress adjustment might be important in regulating the soybean salinity stress response. We also evaluated the importance of antiporters and transporters such as Arabidopsis K+ Transporter 1 (AKT1) potassium channel and the impact of epigenetic modification on soybean salt tolerance. We also review key phytohormones, and osmo-protectants and their role in salt tolerance in soybean. In addition, we discuss the progress of omics technologies for identifying salt stress responsive molecular switches and their targeted engineering for salt tolerance in soybean. This review summarizes recent progress in soybean salt stress functional genomics and way forward for molecular breeding for developing salt-tolerant soybean plant.
Collapse
Affiliation(s)
- Chen Feng
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Hongtao Gao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yonggang Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yan Jing
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Senquan Li
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhao Yan
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Keheng Xu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Fangxue Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Wenping Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xinquan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Muhammad Azhar Hussain
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Muhammad Azhar Hussain, ; Haiyan Li,
| | - Haiyan Li
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Muhammad Azhar Hussain, ; Haiyan Li,
| |
Collapse
|
499
|
Liu L, Wei X, Yang Z, Yuan F, Han G, Guo J, Wang B. SbCASP-LP1C1 improves salt exclusion by enhancing the root apoplastic barrier. PLANT MOLECULAR BIOLOGY 2023; 111:73-88. [PMID: 36372837 DOI: 10.1007/s11103-022-01312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Sweet sorghum [Sorghum bicolor (L.) Moench], a C4 crop with high biomass and strong resistance to multiple stresses, can grow and reproduce in saline-alkaline soil and is an ideal raw material for biofuels. Under high-salinity conditions, sweet sorghum shows extensive salt exclusion. However, the specific molecular mechanism of the apoplastic barrier in salt exclusion is unknown. In this study, SbCASP-LP1C1 (a CASP-like protein1C1) was localized in the plasma membrane of sweet sorghum root endodermal cells, and its function was further studied by heterologous expression in Arabidopsis (35 S:SbCASP-LP1C1-GFP). When germinated and grown on 50 mM NaCl, the SbCASP-LP1C1-expressing lines had longer roots and a higher salinity threshold compared with wild-type (Col-0) plant and the casp-lp T-DNA insertion mutant in Arabidopsis. The 35 S:SbCASP-LP1C1-GFP lines also suffered less oxidative damage as determined by DAB and NBT staining, and the expression levels of several antioxidant genes were higher in these lines. Moreover, the stele of 35 S:SbCASP-LP1C1-GFP lines was less permeable to propidium iodide, and these plants contained less Na+ in their shoots and roots compared to wild type and casp-lp. In the 35 S:SbCASP-LP1C1-GFP lines, the expression levels of two Casparian strip synthesis genes, MYB36 and ESB1, were increased. These results indicate that SbCASP-LP1C1 may be involved in the polymerization of lignin monomers in the Casparian strip of sweet sorghum, thereby regulating salt tolerance. These results provide a theoretical basis to understand the role of plant roots in salt exclusion and a means by which to improve the salt tolerance of crops.
Collapse
Affiliation(s)
- Lili Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Xiaocen Wei
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, Shandong, China
| | - Zhen Yang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, 250306, Shandong, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China.
| |
Collapse
|
500
|
Zhu J, Zhou H, Fan Y, Guo Y, Zhang M, Shabala S, Zhao C, Lv C, Guo B, Wang F, Zhou M, Xu R. HvNCX, a prime candidate gene for the novel qualitative locus qS7.1 associated with salinity tolerance in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:9. [PMID: 36656369 PMCID: PMC9852152 DOI: 10.1007/s00122-023-04267-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
A major QTL (qS7.1) for salinity damage score and Na+ exclusion was identified on chromosome 7H from a barley population derived from a cross between a cultivated variety and a wild accession. qS7.1 was fine-mapped to a 2.46 Mb physical interval and HvNCX encoding a sodium/calcium exchanger is most likely the candidate gene. Soil salinity is one of the major abiotic stresses affecting crop yield. Developing salinity-tolerant varieties is critical for minimizing economic penalties caused by salinity and providing solutions for global food security. Many genes/QTL for salt tolerance have been reported in barley, but only a few of them have been cloned. In this study, a total of 163 doubled haploid lines from a cross between a cultivated barley variety Franklin and a wild barley accession TAM407227 were used to map QTL for salinity tolerance. Four significant QTL were identified for salinity damage scores. One (qS2.1) was located on 2H, determining 7.5% of the phenotypic variation. Two (qS5.1 and qS5.2) were located on 5H, determining 5.3-11.7% of the phenotypic variation. The most significant QTL was found on 7H, explaining 27.8% of the phenotypic variation. Two QTL for Na+ content in leaves under salinity stress were detected on chromosomes 1H (qNa1.1) and 7H(qNa7.1). qS7.1 was fine-mapped to a 2.46 Mb physical interval using F4 recombinant inbred lines. This region contains 23 high-confidence genes, with HvNCX which encodes a sodium/calcium exchanger being most likely the candidate gene. HvNCX was highly induced by salinity stress and showed a greater expression level in the sensitive parent. Multiple nucleotide substitutions and deletions/insertions in the promoter sequence of HvNCX were found between the two parents. cDNA sequencing of the HvNCX revealed that the difference between the two parents is conferred by a single Ala77/Pro77 amino acid substitution, which is located on the transmembrane domain. These findings open new prospects for improving salinity tolerance in barley by targeting a previously unexplored trait.
Collapse
Affiliation(s)
- Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Hui Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Yun Fan
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Yu Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia.
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|