451
|
Popelka H, Yocum C. Probing the N-terminal sequence of spinach PsbO: evidence that essential threonine residues bind to different functional sites in eukaryotic photosystem II. PHOTOSYNTHESIS RESEARCH 2012; 112:117-128. [PMID: 22614952 DOI: 10.1007/s11120-012-9745-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/03/2012] [Indexed: 06/01/2023]
Abstract
The N-terminal ¹E-⁶L domain of the manganese-stabilizing protein (PsbO) from spinach prevents non-specific binding of the subunit to photosystem II (PSII) and deletions of the ¹E-⁷T or ¹E-¹⁵T sequences from the PsbO N-terminus reduce or impair, respectively, functional binding of PsbO to PSII (Popelkova et al., Biochemistry 42:6193-6200, 2003). The work presented here provides deeper insights into the interaction of PsbO with PSII. The data show that a single mutation, ¹⁵T → A in mature PsbO from spinach reduces the stoichiometry of its functional binding from two to one subunit per PSII and decreases reconstitution of activity to about 45 % of the wild-type control. Replacement of the ¹E-⁶L domain with ⁶M in the T15A PsbO mutant has no additional negative effect on recovery of O₂ evolution activity, but it significantly weakens both functional and nonspecific binding of the truncated mutant to PSII. These results suggest that the ¹⁵T side-chain by itself is essential for binding of one of two PsbO subunits to eukaryotic PSII and that specific PSII-binding sites for PsbO are distinguishable; one PSII-binding site does not require PsbO-¹⁵T and probably interacts with the other N-terminal domain of PsbO. Identity of the latter domain is revealed by a requirement for the presence of the ¹E-⁶L sequence that is shown here to be necessary for high-affinity binding of PsbO to PSII. When combined with previous results, the data presented here lead to a more detailed model for PsbO binding in eukaryotic PSII.
Collapse
Affiliation(s)
- Hana Popelka
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048, USA.
| | | |
Collapse
|
452
|
Krech K, Ruf S, Masduki FF, Thiele W, Bednarczyk D, Albus CA, Tiller N, Hasse C, Schöttler MA, Bock R. The plastid genome-encoded Ycf4 protein functions as a nonessential assembly factor for photosystem I in higher plants. PLANT PHYSIOLOGY 2012; 159:579-91. [PMID: 22517411 PMCID: PMC3375926 DOI: 10.1104/pp.112.196642] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/17/2012] [Indexed: 05/18/2023]
Abstract
Photosystem biogenesis in the thylakoid membrane is a highly complicated process that requires the coordinated assembly of nucleus-encoded and chloroplast-encoded protein subunits as well as the insertion of hundreds of cofactors, such as chromophores (chlorophylls, carotenoids) and iron-sulfur clusters. The molecular details of the assembly process and the identity and functions of the auxiliary factors involved in it are only poorly understood. In this work, we have characterized the chloroplast genome-encoded ycf4 (for hypothetical chloroplast reading frame no. 4) gene, previously shown to encode a protein involved in photosystem I (PSI) biogenesis in the unicellular green alga Chlamydomonas reinhardtii. Using stable transformation of the chloroplast genome, we have generated ycf4 knockout plants in the higher plant tobacco (Nicotiana tabacum). Although these mutants are severely affected in their photosynthetic performance, they are capable of photoautotrophic growth, demonstrating that, different from Chlamydomonas, the ycf4 gene product is not essential for photosynthesis. We further show that ycf4 knockout plants are specifically deficient in PSI accumulation. Unaltered expression of plastid-encoded PSI genes and biochemical analyses suggest a posttranslational action of the Ycf4 protein in the PSI assembly process. With increasing leaf age, the contents of Ycf4 and Y3IP1, another auxiliary factor involved in PSI assembly, decrease strongly, whereas PSI contents remain constant, suggesting that PSI is highly stable and that its biogenesis is restricted to young leaves.
Collapse
Affiliation(s)
- Katharina Krech
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| | - Fifi F. Masduki
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| | | | - Christin A. Albus
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| | - Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| | - Claudia Hasse
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| | - Mark A. Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany
| |
Collapse
|
453
|
Dorrell RG, Howe CJ. What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J Cell Sci 2012; 125:1865-75. [PMID: 22547565 DOI: 10.1242/jcs.102285] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Earth is populated by an extraordinary diversity of photosynthetic eukaryotes. Many eukaryotic lineages contain chloroplasts, obtained through the endosymbiosis of a wide range of photosynthetic prokaryotes or eukaryotes, and a wide variety of otherwise non-photosynthetic species form transient associations with photosynthetic symbionts. Chloroplast lineages are likely to be derived from pre-existing transient symbioses, but it is as yet poorly understood what steps are required for the establishment of permanent chloroplasts from photosynthetic symbionts. In the past decade, several species that contain relatively recently acquired chloroplasts, such as the rhizarian Paulinella chromatophora, and non-photosynthetic taxa that maintain photosynthetic symbionts, such as the sacoglossan sea slug Elysia, the ciliate Myrionecta rubra and the dinoflagellate Dinophysis, have emerged as potential model organisms in the study of chloroplast establishment. In this Commentary, we compare recent molecular insights into the maintenance of chloroplasts and photosynthetic symbionts from these lineages, and others that might represent the early stages of chloroplast establishment. We emphasise the importance in the establishment of chloroplasts of gene transfer events that minimise oxidative stress acting on the symbiont. We conclude by assessing whether chloroplast establishment is facilitated in some lineages by a mosaic of genes, derived from multiple symbiotic associations, encoded in the host nucleus.
Collapse
Affiliation(s)
- Richard G Dorrell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| | | |
Collapse
|
454
|
Commet A, Boswell N, Yocum CF, Popelka H. pH optimum of the photosystem II H₂O oxidation reaction: effects of PsbO, the manganese-stabilizing protein, Cl- retention, and deprotonation of a component required for O₂ evolution activity. Biochemistry 2012; 51:3808-18. [PMID: 22512418 DOI: 10.1021/bi201678m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxide ion inhibits Photosystem II (PSII) activity by extracting Cl(-) from its binding site in the O(2)-evolving complex (OEC) under continuous illumination [Critchley, C., et al. (1982) Biochim. Biophys. Acta 682, 436]. The experiments reported here examine whether two subunits of PsbO, the manganese-stabilizing protein, bound to eukaryotic PSII play a role in protecting the OEC against OH(-) inhibition. The data show that the PSII binding properties of PsbO affect the pH optimum for O(2) evolution activity as well as the Cl(-) affinity of the OEC that decreases with an increasing pH. These results suggest that PsbO functions as a barrier against inhibition of the OEC by OH(-). Through facilitation of efficient retention of Cl(-) in PSII [Popelkova, H., et al. (2008) Biochemistry 47, 12593], PsbO influences the ability of Cl(-) to resist OH(-)-induced release from its site in the OEC. Preventing inhibition by OH(-) allows for normal (short) lifetimes of the S(2) and S(3) states in darkness [Roose, J. L., et al. (2011) Biochemistry 50, 5988] and for maximal steady-state activity by PSII. The data presented here indicate that activation of H(2)O oxidation occurs with a pK(a) of ∼6.5, which could be a function of deprotonation of one or more amino acid residues that reside near the OEC active site on the D1 and CP43 intrinsic subunits of the PSII reaction center.
Collapse
Affiliation(s)
- Alan Commet
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
455
|
Shevela D, Eaton-Rye JJ, Shen JR, Govindjee. Photosystem II and the unique role of bicarbonate: a historical perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1134-51. [PMID: 22521596 DOI: 10.1016/j.bbabio.2012.04.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 12/11/2022]
Abstract
In photosynthesis, cyanobacteria, algae and plants fix carbon dioxide (CO(2)) into carbohydrates; this is necessary to support life on Earth. Over 50 years ago, Otto Heinrich Warburg discovered a unique stimulatory role of CO(2) in the Hill reaction (i.e., O(2) evolution accompanied by reduction of an artificial electron acceptor), which, obviously, does not include any carbon fixation pathway; Warburg used this discovery to support his idea that O(2) in photosynthesis originates in CO(2). During the 1960s, a large number of researchers attempted to decipher this unique phenomenon, with limited success. In the 1970s, Alan Stemler, in Govindjee's lab, perfected methods to get highly reproducible results, and observed, among other things, that the turnover of Photosystem II (PSII) was stimulated by bicarbonate ions (hydrogen carbonate): the effect would be on the donor or the acceptor, or both sides of PSII. In 1975, Thomas Wydrzynski, also in Govindjee's lab, discovered that there was a definite bicarbonate effect on the electron acceptor (the plastoquinone) side of PSII. The most recent 1.9Å crystal structure of PSII, unequivocally shows HCO(3)(-) bound to the non-heme iron that sits in-between the bound primary quinone electron acceptor, Q(A), and the secondary quinone electron acceptor Q(B). In this review, we focus on the historical development of our understanding of this unique bicarbonate effect on the electron acceptor side of PSII, and its mechanism as obtained by biochemical, biophysical and molecular biological approaches in many laboratories around the World. We suggest an atomic level model in which HCO(3)(-)/CO(3)(2-) plays a key role in the protonation of the reduced Q(B). In addition, we make comments on the role of bicarbonate on the donor side of PSII, as has been extensively studied in the labs of Alan Stemler (USA) and Vyacheslav Klimov (Russia). We end this review by discussing the uniqueness of bicarbonate's role in oxygenic photosynthesis and its role in the evolutionary development of O(2)-evolving PSII. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Dmitriy Shevela
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway.
| | | | | | | |
Collapse
|
456
|
Abstract
Biological redox machines require efficient transfer of electrons and holes for function. Reactions involving multiple tunneling steps, termed "hopping," often promote charge separation within and between proteins that is essential for energy storage and conversion. Here we show how semiclassical electron transfer theory can be extended to include hopping reactions: graphical representations (called hopping maps) of the dependence of calculated two-step reaction rate constants on driving force are employed to account for flow in a rhenium-labeled azurin mutant as well as in two structurally characterized redox enzymes, DNA photolyase and MauG. Analysis of the 35 Å radical propagation in ribonucleotide reductases using hopping maps shows that all tyrosines and tryptophans on the radical pathway likely are involved in function. We suggest that hopping maps can facilitate the design and construction of artificial photosynthetic systems for the production of fuels and other chemicals.
Collapse
Affiliation(s)
- Jeffrey J Warren
- Beckman Institute, California Institute of Technology, Mail Code 139-74, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
457
|
A hydrogen-bonding network plays a catalytic role in photosynthetic oxygen evolution. Proc Natl Acad Sci U S A 2012; 109:6112-7. [PMID: 22474345 DOI: 10.1073/pnas.1200093109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In photosystem II, oxygen evolution occurs by the accumulation of photo-induced oxidizing equivalents at the oxygen-evolving complex (OEC). The sequentially oxidized states are called the S(0)-S(4) states, and the dark stable state is S(1). Hydrogen bonds to water form a network around the OEC; this network is predicted to involve multiple peptide carbonyl groups. In this work, we tested the idea that a network of hydrogen bonded water molecules plays a catalytic role in water oxidation. As probes, we used OEC peptide carbonyl frequencies, the substrate-based inhibitor, ammonia, and the sugar, trehalose. Reaction-induced FT-IR spectroscopy was used to describe the protein dynamics associated with the S(1) to S(2) transition. A shift in an amide CO vibrational frequency (1664 (S(1)) to 1653 (S(2)) cm(-1)) was observed, consistent with an increase in hydrogen bond strength when the OEC is oxidized. Treatment with ammonia/ammonium altered these CO vibrational frequencies. The ammonia-induced spectral changes are attributed to alterations in hydrogen bonding, when ammonia/ammonium is incorporated into the OEC hydrogen bond network. The ammonia-induced changes in CO frequency were reversed or blocked when trehalose was substituted for sucrose. This trehalose effect is attributed to a displacement of ammonia molecules from the hydrogen bond network. These results imply that ammonia, and by extension water, participate in a catalytically essential hydrogen bond network, which involves OEC peptide CO groups. Comparison to the ammonia transporter, AmtB, reveals structural similarities with the bound water network in the OEC.
Collapse
|
458
|
Collins AM, Liberton M, Jones HD, Garcia OF, Pakrasi HB, Timlin JA. Photosynthetic pigment localization and thylakoid membrane morphology are altered in Synechocystis 6803 phycobilisome mutants. PLANT PHYSIOLOGY 2012; 158:1600-9. [PMID: 22331410 PMCID: PMC3320172 DOI: 10.1104/pp.111.192849] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/09/2012] [Indexed: 05/03/2023]
Abstract
Cyanobacteria are oxygenic photosynthetic prokaryotes that are the progenitors of the chloroplasts of algae and plants. These organisms harvest light using large membrane-extrinsic phycobilisome antenna in addition to membrane-bound chlorophyll-containing proteins. Similar to eukaryotic photosynthetic organisms, cyanobacteria possess thylakoid membranes that house photosystem (PS) I and PSII, which drive the oxidation of water and the reduction of NADP+, respectively. While thylakoid morphology has been studied in some strains of cyanobacteria, the global distribution of PSI and PSII within the thylakoid membrane and the corresponding location of the light-harvesting phycobilisomes are not known in detail, and such information is required to understand the functioning of cyanobacterial photosynthesis on a larger scale. Here, we have addressed this question using a combination of electron microscopy and hyperspectral confocal fluorescence microscopy in wild-type Synechocystis species PCC 6803 and a series of mutants in which phycobilisomes are progressively truncated. We show that as the phycobilisome antenna is diminished, large-scale changes in thylakoid morphology are observed, accompanied by increased physical segregation of the two photosystems. Finally, we quantified the emission intensities originating from the two photosystems in vivo on a per cell basis to show that the PSI:PSII ratio is progressively decreased in the mutants. This results from both an increase in the amount of photosystem II and a decrease in the photosystem I concentration. We propose that these changes are an adaptive strategy that allows cells to balance the light absorption capabilities of photosystems I and II under light-limiting conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jerilyn A. Timlin
- Department of Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (A.M.C., H.D.T.J., O.F.G., J.A.T); and Department of Biology, Washington University, St. Louis, Missouri 63130 (M.L., H.B.P.)
| |
Collapse
|
459
|
Sjöholm J, Styring S, Havelius KGV, Ho FM. Visible light induction of an electron paramagnetic resonance split signal in Photosystem II in the S(2) state reveals the importance of charges in the oxygen-evolving center during catalysis: a unifying model. Biochemistry 2012; 51:2054-64. [PMID: 22352968 DOI: 10.1021/bi2015794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryogenic illumination of Photosystem II (PSII) can lead to the trapping of the metastable radical Y(Z)(•), the radical form of the redox-active tyrosine residue D1-Tyr161 (known as Y(Z)). Magnetic interaction between this radical and the CaMn(4) cluster of PSII gives rise to so-called split electron paramagnetic resonance (EPR) signals with characteristics that are dependent on the S state. We report here the observation and characterization of a split EPR signal that can be directly induced from PSII centers in the S(2) state through visible light illumination at 10 K. We further show that the induction of this split signal takes place via a Mn-centered mechanism, in the same way as when using near-infrared light illumination [Koulougliotis, D., et al. (2003) Biochemistry 42, 3045-3053]. On the basis of interpretations of these results, and in combination with literature data for other split signals induced under a variety of conditions (temperature and light quality), we propose a unified model for the mechanisms of split signal induction across the four S states (S(0), S(1), S(2), and S(3)). At the heart of this model is the stability or instability of the Y(Z)(•)(D1-His190)(+) pair that would be formed during cryogenic oxidation of Y(Z). Furthermore, the model is closely related to the sequence of transfers of protons and electrons from the CaMn(4) cluster during the S cycle and further demonstrates the utility of the split signals in probing the immediate environment of the oxygen-evolving center in PSII.
Collapse
Affiliation(s)
- Johannes Sjöholm
- Photochemistry and Molecular Science, Department of Chemistry, Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | | | | | | |
Collapse
|
460
|
Zienkiewicz M, Ferenc A, Wasilewska W, Romanowska E. High light stimulates Deg1-dependent cleavage of the minor LHCII antenna proteins CP26 and CP29 and the PsbS protein in Arabidopsis thaliana. PLANTA 2012; 235:279-288. [PMID: 21877139 DOI: 10.1007/s00425-011-1505-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
The chloroplast Deg1 protein performs proteolytic cleavage of the photodamaged D1 protein of the photosystem II (PSII) reaction center, PSII extrinsic subunit PsbO and the soluble electron carrier plastocyanin. Using biochemical, immunological and mass spectrometry approaches we showed that the heterogeneously expressed Deg1 protease from Arabidopsis thaliana can be responsible for the degradation of the monomeric light-harvesting complex antenna subunits of PSII (LHCII), CP26 and CP29, as well as PSII-associated PsbS (CP22/NPQ4) protein. The results may indicate that cytochrome b (6) protein and two previously unknown thylakoid proteins, Ptac16 and an 18.3-kDa protein, may be the substrates for Deg1. The interaction of Deg1 with the PsbS protein and the minor LHCII subunits implies its involvement in the regulation of both excess energy dissipation and state transition adaptation processes.
Collapse
Affiliation(s)
- Maksymilian Zienkiewicz
- Department of Molecular Plant Physiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | |
Collapse
|
461
|
Jensen K, Jensen PE, Møller BL. Light-driven chemical synthesis. TRENDS IN PLANT SCIENCE 2012; 17:60-63. [PMID: 22306522 DOI: 10.1016/j.tplants.2011.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/12/2011] [Accepted: 12/16/2011] [Indexed: 05/31/2023]
Abstract
Depletion of the fossil fuel reserves of the Earth has prompted research into sources of renewable and sustainable energy, and feedstock for the chemical and pharmaceutical industries to support the transition towards a bio-based society. Photosynthesis efficiently captures solar energy, but its subsequent conversion into chemical energy in the form of biomass is limited to a final output in the 1-4% range. Re-routing of photosynthetic electron transport and reducing power directly into desired biosynthetic pathways offers a new avenue for sustainable production of high-value products.
Collapse
Affiliation(s)
- Kenneth Jensen
- Plant Biochemistry Laboratory, Center for Synthetic Biology and VKR Research Center 'Pro-Active Plants', University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| | | | | |
Collapse
|
462
|
Ye JW, Gong ZY, Chen CG, Mi HL, Chen GY. A mutation of OSOTP 51 leads to impairment of photosystem I complex assembly and serious photo-damage in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:87-98. [PMID: 22353560 DOI: 10.1111/j.1744-7909.2012.01094.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gene expression in chloroplasts is regulated by many nuclear-encoded proteins. In this study, we isolated a rice (Oryza sativa subsp. japonica) mutant osotp51 with significant reduction in photosystem I (PSI). The osotp51 is extremely sensitive to light and accumulates a higher level of reactive oxygen species. Its leaves are almost albino when grown at 40 μmol photons/m(2) per s. However, grown at 4 μmol photons/m(2) per s, osotp51 has a similar phenotype to the wild-type. 77K chlorophyll fluorescence analysis showed a blue shift in the highest peak emission from PSI in osotp51. In addition, the level of PSI and PSII dimer is dramatically reduced in osotp51. OSOTP 51 encodes a pentatricopeptide repeats protein, homologous to organelle transcript processing 51 in Arabidopsis. Loss-of-function OSOTP51 affects intron splicing of a number of plastid genes, particularly the ycf3 coding a protein involved in the assembly of PSI complex. OSOTP51 is functionally conserved in higher plants. The mutation of osotp51 indirectly leads to a widespread change in the structure and functions of PSI, results in severe photoinhibition, and finally dies, even when grown under very low light intensity.
Collapse
Affiliation(s)
- Jian-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
463
|
Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J. Photosynthetic control of electron transport and the regulation of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1637-61. [PMID: 22371324 DOI: 10.1093/jxb/ers013] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The term 'photosynthetic control' describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these mechanisms serve to optimize light use efficiency, while at high irradiances they operate to dissipate excess excitation energy as heat. Similarly, the production of ATP and NADPH in ratios tailored to meet demand is finely tuned by a sophisticated series of controls that prevents the accumulation of high NAD(P)H/NAD(P) ratios and ATP/ADP ratios that would lead to potentially harmful over-reduction and inactivation of PET chain components. In recent years, photosynthetic control has also been extrapolated to the regulation of gene expression because mechanisms that are identical or similar to those that serve to regulate electron flow through the PET chain also coordinate the regulated expression of genes encoding photosynthetic proteins. This requires coordinated gene expression in the chloroplasts, mitochondria, and nuclei, involving complex networks of forward and retrograde signalling pathways. Photosynthetic control operates to control photosynthetic gene expression in response to environmental and metabolic changes. Mining literature data on transcriptome profiles of C(3) and C(4) leaves from plants grown under high atmospheric carbon dioxide (CO(2)) levels compared with those grown with ambient CO(2) reveals that the transition to higher photorespiratory conditions in C(3) plants enhances the expression of genes associated with cyclic electron flow pathways in Arabidopsis thaliana, consistent with the higher ATP requirement (relative to NADPH) of photorespiration.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
464
|
Mazor Y, Toporik H, Nelson N. Temperature-sensitive PSII and promiscuous PSI as a possible solution for sustainable photosynthetic hydrogen production. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1122-6. [PMID: 22269125 DOI: 10.1016/j.bbabio.2012.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/02/2012] [Accepted: 01/07/2012] [Indexed: 10/14/2022]
Abstract
Sustainable hydrogen production in cyanobacteria becomes feasible as a result of our recent studies of the structure of photosystem I encoding operon in a marine phage. We demonstrated that the fused PsaJF subunit from the phage, substituted for the two separate subunits in Synechocystis, enabled the mutated PSI to accept electrons from additional electron donors such as respiratory cytochromes. In this way, a type of photorespiration was created in which the cell consumes organic material through respiratory processes and PSI serves as a terminal electron acceptor, substituting for cytochrome oxidase. We designed a hydrogen-producing bioreactor in which this type of photorespiration could utilize the organic material of the cell as an electron source for H(2) production. We propose, in parallel, to engineer cyanobacterial and/or algal strains with a temperature-sensitive PSII and enhanced respiration rates to achieve efficient and sustainable hydrogen production. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Yuval Mazor
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
465
|
Simmel FC. DNA-based assembly lines and nanofactories. Curr Opin Biotechnol 2012; 23:516-21. [PMID: 22237015 DOI: 10.1016/j.copbio.2011.12.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
With the invention of the DNA origami technique, DNA self-assembly has reached a new level of sophistication. DNA can now be used to arrange molecules and other nanoscale components into almost arbitrary geometries-in two and even three dimensions and with nanometer precision. One exciting prospect is the realization of dynamic systems based on DNA, in which chemical reactions are precisely controlled by the spatial arrangement of components, ultimately resulting in nanoscale analogs of molecular assembly lines or 'nanofactories'. This review will discuss recent progress toward this goal, ranging from DNA-templated synthesis over artificial DNA-based enzyme cascades to first examples of 'molecular robots'.
Collapse
|
466
|
Magnuson A, Styring S. Molecular Chemistry for Solar Fuels: From Natural to Artificial Photosynthesis. Aust J Chem 2012. [DOI: 10.1071/ch12114] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The world needs new, environmentally friendly, and renewable fuels to exchange for fossil fuels. The fuel must be made from cheap, abundant, and renewable resources. The research area of solar fuels aims to meet this demand. This paper discusses why we need a solar fuel, and proposes solar energy as the major renewable energy source to feed from. The scientific field concerning artificial photosynthesis is expanding rapidly and most of the different scientific visions for solar fuels are briefly reviewed. Research strategies for the development of artificial photosynthesis to produce solar fuels are overviewed, with some critical concepts discussed in closer detail.
Collapse
|
467
|
|
468
|
Photosynthetic Responses of Plants to Excess Light: Mechanisms and Conditions for Photoinhibition, Excess Energy Dissipation and Repair. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
469
|
Barone V, Baiardi A, Biczysko M, Bloino J, Cappelli C, Lipparini F. Implementation and validation of a multi-purpose virtual spectrometer for large systems in complex environments. Phys Chem Chem Phys 2012; 14:12404-22. [DOI: 10.1039/c2cp41006k] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
470
|
Kopnov F, Cohen-Ofri I, Noy D. Electron Transport between Photosystem II and Photosystem I Encapsulated in Sol-Gel Glasses. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
471
|
The role of the individual Lhcas in photosystem I excitation energy trapping. Biophys J 2011; 101:745-54. [PMID: 21806943 DOI: 10.1016/j.bpj.2011.06.045] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 11/20/2022] Open
Abstract
In this work, we have investigated the role of the individual antenna complexes and of the low-energy forms in excitation energy transfer and trapping in Photosystem I of higher plants. To this aim, a series of Photosystem I (sub)complexes with different antenna size/composition/absorption have been studied by picosecond fluorescence spectroscopy. The data show that Lhca3 and Lhca4, which harbor the most red forms, have similar emission spectra (λ(max) = 715-720 nm) and transfer excitation energy to the core with a relative slow rate of ∼25/ns. Differently, the energy transfer from Lhca1 and Lhca2, the "blue" antenna complexes, occurs about four times faster. In contrast to what is often assumed, it is shown that energy transfer from the Lhca1/4 and the Lhca2/3 dimer to the core occurs on a faster timescale than energy equilibration within these dimers. Furthermore, it is shown that all four monomers contribute almost equally to the transfer to the core and that the red forms slow down the overall trapping rate by about two times. Combining all the data allows the construction of a comprehensive picture of the excitation-energy transfer routes and rates in Photosystem I.
Collapse
|
472
|
Popelkova H, Boswell N, Yocum C. Probing the topography of the photosystem II oxygen evolving complex: PsbO is required for efficient calcium protection of the manganese cluster against dark-inhibition by an artificial reductant. PHOTOSYNTHESIS RESEARCH 2011; 110:111-121. [PMID: 22042330 DOI: 10.1007/s11120-011-9703-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/17/2011] [Indexed: 05/31/2023]
Abstract
The photosystem II (PSII) manganese-stabilizing protein (PsbO) is known to be the essential PSII extrinsic subunit for stabilization and retention of the Mn and Cl(-) cofactors in the oxygen evolving complex (OEC) of PSII, but its function relative to Ca(2+) is less clear. To obtain a better insight into the relationship, if any, between PsbO and Ca(2+) binding in the OEC, samples with altered PsbO-PSII binding properties were probed for their potential to promote the ability of Ca(2+) to protect the Mn cluster against dark-inhibition by an exogenous artificial reductant, N,N-dimethylhydroxylamine. In the absence of the PsbP and PsbQ extrinsic subunits, Ca(2+) and its surrogates (Sr(2+), Cd(2+)) shield Mn atoms from inhibitory reduction (Kuntzleman et al., Phys Chem Chem Phys 6:4897, 2004). The results presented here show that PsbO exhibits a positive effect on Ca(2+) binding in the OEC by facilitating the ability of the metal to prevent inhibition of activity by the reductant. The data presented here suggest that PsbO may have a role in the formation of the OEC-associated Ca(2+) binding site by promoting the equilibrium between bound and free Ca(2+) that favors the bound metal.
Collapse
Affiliation(s)
- Hana Popelkova
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048, USA.
| | | | | |
Collapse
|
473
|
Boyle PM, Silver PA. Parts plus pipes: synthetic biology approaches to metabolic engineering. Metab Eng 2011; 14:223-32. [PMID: 22037345 DOI: 10.1016/j.ymben.2011.10.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 10/05/2011] [Accepted: 10/16/2011] [Indexed: 11/24/2022]
Abstract
Synthetic biologists combine modular biological "parts" to create higher-order devices. Metabolic engineers construct biological "pipes" by optimizing the microbial conversion of basic substrates to desired compounds. Many scientists work at the intersection of these two philosophies, employing synthetic devices to enhance metabolic engineering efforts. These integrated approaches promise to do more than simply improve product yields; they can expand the array of products that are tractable to produce biologically. In this review, we explore the application of synthetic biology techniques to next-generation metabolic engineering challenges, as well as the emerging engineering principles for biological design.
Collapse
Affiliation(s)
- Patrick M Boyle
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
474
|
Kopnov F, Cohen-Ofri I, Noy D. Electron Transport between Photosystem II and Photosystem I Encapsulated in Sol-Gel Glasses. Angew Chem Int Ed Engl 2011; 50:12347-50. [DOI: 10.1002/anie.201106293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/07/2011] [Indexed: 01/03/2023]
|
475
|
Bonin J, Robert M. Photoinduced Proton-Coupled Electron Transfers in Biorelevant Phenolic Systems. Photochem Photobiol 2011; 87:1190-203. [DOI: 10.1111/j.1751-1097.2011.00996.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
476
|
Zhang D, Zhou G, Liu B, Kong Y, Chen N, Qiu Q, Yin H, An J, Zhang F, Chen F. HCF243 encodes a chloroplast-localized protein involved in the D1 protein stability of the arabidopsis photosystem II complex. PLANT PHYSIOLOGY 2011; 157:608-19. [PMID: 21862668 PMCID: PMC3192558 DOI: 10.1104/pp.111.183301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/22/2011] [Indexed: 05/22/2023]
Abstract
Numerous auxiliary nuclear factors have been identified to be involved in the dynamics of the photosystem II (PSII) complex. In this study, we characterized the high chlorophyll fluorescence243 (hcf243) mutant of Arabidopsis (Arabidopsis thaliana), which shows higher chlorophyll fluorescence and is severely deficient in the accumulation of PSII supercomplexes compared with the wild type. The amount of core subunits was greatly decreased, while the outer antenna subunits and other subunits were hardly affected in hcf243. In vivo protein-labeling experiments indicated that the synthesis rate of both D1 and D2 proteins decreased severely in hcf243, whereas no change was found in the rate of other plastid-encoded proteins. Furthermore, the degradation rate of the PSII core subunit D1 protein is higher in hcf243 than in the wild type, and the assembly of PSII is retarded significantly in the hcf243 mutant. HCF243, a nuclear gene, encodes a chloroplast protein that interacts with the D1 protein. HCF243 homologs were identified in angiosperms with one or two copies but were not found in lower plants and prokaryotes. These results suggest that HCF243, which arose after the origin of the higher plants, may act as a cofactor to maintain the stability of D1 protein and to promote the subsequent assembly of the PSII complex.
Collapse
|
477
|
Horničáková M, Kohoutová J, Schlagnitweit J, Wohlschlager C, Ettrich R, Fiala R, Schoefberger W, Müller N. Backbone assignment and secondary structure of the PsbQ protein from photosystem II. BIOMOLECULAR NMR ASSIGNMENTS 2011; 5:169-175. [PMID: 21259076 DOI: 10.1007/s12104-011-9293-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/07/2011] [Indexed: 05/30/2023]
Abstract
PsbQ is one of the extrinsic proteins situated on the lumenal surface of photosystem II (PSII) in the higher plants and green algae. Its three-dimensional structure was determined by X-ray crystallography with exception of the residues 14-33. To obtain further details about its structure and potentially its dynamics, we approached the problem by NMR. In this paper we report (1)H, (15)N, and (13)C NMR assignments for the PsbQ protein. The very challenging oligo-proline stretches could be assigned using (13)C-detected NMR experiments that enabled the assignments of twelve out of the thirteen proline residues of PsbQ. The identification of PsbQ secondary structure elements on the basis of our NMR data was accomplished with the programs TALOS+, web server CS23D and CS-Rosetta. To obtain additional secondary structure information, three-bond H(N)-H(α) J-coupling constants and deviation of experimental (13)C(α) and (13)C(β) chemical shifts from random coil values were determined. The resulting "consensus" secondary structure of PsbQ compares very well with the resolved regions of the published X-ray crystallographic structure and gives a first estimate of the structure of the "missing link" (i.e. residues 14-33), which will serve as the basis for the further investigation of the structure, dynamics and interactions.
Collapse
Affiliation(s)
- Michaela Horničáková
- Institute of Organic Chemistry, Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
478
|
Sznee K, Dekker JP, Dame RT, van Roon H, Wuite GJL, Frese RN. Jumping mode atomic force microscopy on grana membranes from spinach. J Biol Chem 2011; 286:39164-71. [PMID: 21911498 DOI: 10.1074/jbc.m111.284844] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thylakoid membrane system is a complex membrane system that organizes and reorganizes itself to provide plants optimal chemical energy from sunlight under different and varying environmental conditions. Grana membranes are part of this system and contain the light-driven water-splitting enzyme Photosystem II (PSII) and light-harvesting antenna complexes. Here, we present a direct visualization of PSII complexes within grana membranes from spinach. By means of jumping mode atomic force microscopy in liquid, minimal forces were applied between the scanning tip and membrane or protein, allowing complexes to be imaged with high detail. We observed four different packing arrangements of PSII complexes, which occur primarily as dimers: co-linear crystalline rows, nanometric domains of straight or skewed rows, and disordered domains. Upon storing surface-adhered membranes at low temperature prior to imaging, large-scale reorganizations of supercomplexes between PSII and light-harvesting complex II could be induced. The highest resolution images show the existence of membrane domains without obvious topography extending beyond supercomplexes. These observations illustrate the possibility for diffusion of proteins and smaller molecules within these densely packed membranes.
Collapse
Affiliation(s)
- Kinga Sznee
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
479
|
Saito R, Yamamoto H, Makino A, Sugimoto T, Miyake C. Methylglyoxal functions as Hill oxidant and stimulates the photoreduction of O(2) at photosystem I: a symptom of plant diabetes. PLANT, CELL & ENVIRONMENT 2011; 34:1454-64. [PMID: 21535016 DOI: 10.1111/j.1365-3040.2011.02344.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We elucidated the metabolism of methylglyoxal (MG) in chloroplasts of higher plants. Spinach chloroplasts showed MG-dependent NADPH oxidation because of aldo-keto reductase (AKR) activity. K(m) for MG and V(max) of AKR activity were 6.5 mm and 3.3 µmol NADPH (mg Chl)(-1) h(-1) , respectively. Addition of MG to illuminated chloroplasts induced photochemical quenching (Qp) of Chl fluorescence, indicating that MG stimulated photosynthetic electron transport (PET). Furthermore, MG enhanced the light-dependent uptake of O(2) into chloroplasts. After illumination of chloroplasts, accumulation of H(2) O(2) was observed. K(m) for MG and V(max) of O(2) uptake were about 100 µm and 200 µmol O(2) (mg Chl)(-1) h(-1) , respectively. MG-dependent O(2) uptake was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). Under anaerobic conditions, the Qp of Chl fluorescence was suppressed. These results indicate that MG was reduced as a Hill oxidant by the photosystem I (PSI), and that O(2) was reduced to O(2) (-) by the reduced MG. In other words, MG produced in chloroplasts is preferentially reduced by PSI rather than through AKR. This triggers a type of oxidative stress that may be referred to as 'plant diabetes', because it ultimately originates from a common metabolite of the primary pathways of sugar anabolism and catabolism.
Collapse
Affiliation(s)
- Ryota Saito
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
480
|
Chen T, Ye R, Fan X, Li X, Lin Y. Identification of C4 photosynthesis metabolism and regulatory-associated genes in Eleocharis vivipara by SSH. PHOTOSYNTHESIS RESEARCH 2011; 108:157-170. [PMID: 21739352 DOI: 10.1007/s11120-011-9668-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Abstract
This is the first effort to investigate the candidate genes involved in kranz developmental regulation and C(4) metabolic fluxes in Eleocharis vivipara, which is a leafless freshwater amphibious plant and possesses a distinct culms anatomy structure and photosynthetic pattern in contrasting environments. A terrestrial specific SSH library was constructed to investigate the genes involved in kranz anatomy developmental regulation and C(4) metabolic fluxes. A total of 73 ESTs and 56 unigenes in 384 clones were identified by array hybridization and sequencing. In total, 50 unigenes had homologous genes in the databases of rice and Arabidopsis. The real-time quantitative PCR results showed that most of the genes were accumulated in terrestrial culms and ABA-induced culms. The C(4) marker genes were stably accumulated during the culms development process in terrestrial culms. With respect to C(3) culms, C(4) photosynthesis metabolism consumed much more transporters and translocators related to ion metabolism, organic acids and carbohydrate metabolism, phosphate metabolism, amino acids metabolism, and lipids metabolism. Additionally, ten regulatory genes including five transcription factors, four receptor-like proteins, and one BURP protein were identified. These regulatory genes, which co-accumulated with the culms developmental stages, may play important roles in culms structure developmental regulation, bundle sheath chloroplast maturation, and environmental response. These results shed new light on the C(4) metabolic fluxes, environmental response, and anatomy structure developmental regulation in E. vivipara.
Collapse
Affiliation(s)
- Taiyu Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | |
Collapse
|
481
|
Schöttler MA, Albus CA, Bock R. Photosystem I: its biogenesis and function in higher plants. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1452-61. [PMID: 21255865 DOI: 10.1016/j.jplph.2010.12.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 05/06/2023]
Abstract
Photosystem I (PSI), the plastocyanin-ferredoxin oxidoreductase of the photosynthetic electron transport chain, is one of the largest bioenergetic complexes known. It is composed of subunits encoded in both the chloroplast genome and the nuclear genome and thus, its assembly requires an intricate coordination of gene expression and intensive communication between the two compartments. In this review, we first briefly describe PSI structure and then focus on recent findings on the role of the two small chloroplast genome-encoded subunits PsaI and PsaJ in the stability and function of PSI in higher plants. We then address the sequence of PSI biogenesis, discuss the role of auxiliary proteins involved in cofactor insertion into the PSI apoproteins and in the establishment of protein-protein interactions during subunit assembly. Finally, we consider potential limiting steps of PSI biogenesis, and how they may contribute to the control of PSI accumulation.
Collapse
Affiliation(s)
- Mark Aurel Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany.
| | | | | |
Collapse
|
482
|
|
483
|
LAN JP, LI LY, JIA L, CAO YH, BAI H, CHEN H, LIU SN, WU L, LIU GZ. Expression Profiling of Chloroplast-encoded Proteins in Rice Leaves at Different Growth Stages*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
484
|
Cardona T, Sedoud A, Cox N, Rutherford AW. Charge separation in photosystem II: a comparative and evolutionary overview. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:26-43. [PMID: 21835158 DOI: 10.1016/j.bbabio.2011.07.012] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 10/17/2022]
Abstract
Our current understanding of the PSII reaction centre owes a great deal to comparisons to the simpler and better understood, purple bacterial reaction centre. Here we provide an overview of the similarities with a focus on charge separation and the electron acceptors. We go on to discuss some of the main differences between the two kinds of reaction centres that have been highlighted by the improving knowledge of PSII. We attempt to relate these differences to functional requirements of water splitting. Some are directly associated with that function, e.g. high oxidation potentials, while others are associated with regulation and protection against photodamage. The protective and regulatory functions are associated with the harsh chemistry performed during its normal function but also with requirements of the enzyme while it is undergoing assembly and repair. Key aspects of PSII reaction centre evolution are also addressed. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Tanai Cardona
- Institut de Biologie et Technologies de Saclay, URA 2096 CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
485
|
Araki K, Nagata K. Functional in vitro analysis of the ERO1 protein and protein-disulfide isomerase pathway. J Biol Chem 2011; 286:32705-12. [PMID: 21757736 DOI: 10.1074/jbc.m111.227181] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Oxidative protein folding in the endoplasmic reticulum is supported by efficient electron relays driven by enzymatic reactions centering on the ERO1-protein-disulfide isomerase (PDI) pathway. A controlled in vitro oxygen consumption assay was carried out to analyze the ERO1-PDI reaction. The results showed the pH-dependent oxidation of PDI by ERO1α. Among several possible disulfide bonds regulating ERO1α activity, Cys(94)-Cys(131) and Cys(99)-Cys(104) disulfide bonds are dominant regulators by excluding the involvement of the Cys(85)-Cys(391) disulfide in the regulation. The fine-tuned species specificity of the ERO1-PDI pathway was demonstrated by functional in vitro complementation assays using yeast and mammalian oxidoreductases. Finally, the results provide experimental evidence for the intramolecular electron transfer from the a domain to the a' domain within PDI during its oxidation by ERO1α.
Collapse
Affiliation(s)
- Kazutaka Araki
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | |
Collapse
|
486
|
Ye H, Daoud-El Baba M, Peng RW, Fussenegger M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 2011; 332:1565-8. [PMID: 21700876 DOI: 10.1126/science.1203535] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Synthetic biology has advanced the design of genetic devices that can be used to reprogram metabolic activities in mammalian cells. By functionally linking the signal transduction of melanopsin to the control circuit of the nuclear factor of activated T cells, we have designed a synthetic signaling cascade enabling light-inducible transgene expression in different cell lines grown in culture or bioreactors or implanted into mice. In animals harboring intraperitoneal hollow-fiber or subcutaneous implants containing light-inducible transgenic cells, the serum levels of the human glycoprotein secreted alkaline phosphatase could be remote-controlled with fiber optics or transdermally regulated through direct illumination. Light-controlled expression of the glucagon-like peptide 1 was able to attenuate glycemic excursions in type II diabetic mice. Synthetic light-pulse-transcription converters may have applications in therapeutics and protein expression technology.
Collapse
Affiliation(s)
- Haifeng Ye
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | | | | | | |
Collapse
|
487
|
Allakhverdiev SI. Recent progress in the studies of structure and function of photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:1-8. [DOI: 10.1016/j.jphotobiol.2011.03.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
488
|
Cramer WA, Hasan SS, Yamashita E. The Q cycle of cytochrome bc complexes: a structure perspective. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:788-802. [PMID: 21352799 PMCID: PMC3101715 DOI: 10.1016/j.bbabio.2011.02.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/08/2011] [Accepted: 02/13/2011] [Indexed: 12/01/2022]
Abstract
Aspects of the crystal structures of the hetero-oligomeric cytochrome bc(1) and b(6)f ("bc") complexes relevant to their electron/proton transfer function and the associated redox reactions of the lipophilic quinones are discussed. Differences between the b(6)f and bc(1) complexes are emphasized. The cytochrome bc(1) and b(6)f dimeric complexes diverge in structure from a core of subunits that coordinate redox groups consisting of two bis-histidine coordinated hemes, a heme b(n) and b(p) on the electrochemically negative (n) and positive (p) sides of the complex, the high potential [2Fe-2S] cluster and c-type heme at the p-side aqueous interface and aqueous phase, respectively, and quinone/quinol binding sites on the n- and p-sides of the complex. The bc(1) and b(6)f complexes diverge in subunit composition and structure away from this core. b(6)f Also contains additional prosthetic groups including a c-type heme c(n) on the n-side, and a chlorophyll a and β-carotene. Common structure aspects; functions of the symmetric dimer. (I) Quinone exchange with the bilayer. An inter-monomer protein-free cavity of approximately 30Å along the membrane normal×25Å (central inter-monomer distance)×15Å (depth in the center), is common to both bc(1) and b(6)f complexes, providing a niche in which the lipophilic quinone/quinol (Q/QH(2)) can be exchanged with the membrane bilayer. (II) Electron transfer. The dimeric structure and the proximity of the two hemes b(p) on the electrochemically positive side of the complex in the two monomer units allow the possibility of two alternate routes of electron transfer across the complex from heme b(p) to b(n): intra-monomer and inter-monomer involving electron cross-over between the two hemes b(p). A structure-based summary of inter-heme distances in seven bc complexes, representing mitochondrial, chromatophore, cyanobacterial, and algal sources, indicates that, based on the distance parameter, the intra-monomer pathway would be favored kinetically. (III) Separation of quinone binding sites. A consequence of the dimer structure and the position of the Q/QH(2) binding sites is that the p-side QH(2) oxidation and n-side Q reduction sites are each well separated. Therefore, in the event of an overlap in residence time by QH(2) or Q molecules at the two oxidation or reduction sites, their spatial separation would result in minimal steric interference between extended Q or QH(2) isoprenoid chains. (IV) Trans-membrane QH(2)/Q transfer. (i) n/p-side QH(2)/Q transfer may be hindered by lipid acyl chains; (ii) the shorter less hindered inter-monomer pathway across the complex would not pass through the center of the cavity, as inferred from the n-side antimycin site on one monomer and the p-side stigmatellin site on the other residing on the same surface of the complex. (V) Narrow p-side portal for QH(2)/Q passage. The [2Fe-2S] cluster that serves as oxidant, and whose histidine ligand serves as a H(+) acceptor in the oxidation of QH(2), is connected to the inter-monomer cavity by a narrow extended portal, which is also occupied in the b(6)f complex by the 20 carbon phytyl chain of the bound chlorophyll.
Collapse
Affiliation(s)
- William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
489
|
Barry BA. Proton coupled electron transfer and redox active tyrosines in Photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2011; 104:60-71. [PMID: 21419640 PMCID: PMC3164834 DOI: 10.1016/j.jphotobiol.2011.01.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/25/2011] [Accepted: 01/31/2011] [Indexed: 11/30/2022]
Abstract
In this article, progress in understanding proton coupled electron transfer (PCET) in Photosystem II is reviewed. Changes in acidity/basicity may accompany oxidation/reduction reactions in biological catalysis. Alterations in the proton transfer pathway can then be used to alter the rates of the electron transfer reactions. Studies of the bioenergetic complexes have played a central role in advancing our understanding of PCET. Because oxidation of the tyrosine results in deprotonation of the phenolic oxygen, redox active tyrosines are involved in PCET reactions in several enzymes. This review focuses on PCET involving the redox active tyrosines in Photosystem II. Photosystem II catalyzes the light-driven oxidation of water and reduction of plastoquinone. Photosystem II provides a paradigm for the study of redox active tyrosines, because this photosynthetic reaction center contains two tyrosines with different roles in catalysis. The tyrosines, YZ and YD, exhibit differences in kinetics and midpoint potentials, and these differences may be due to noncovalent interactions with the protein environment. Here, studies of YD and YZ and relevant model compounds are described.
Collapse
Affiliation(s)
- Bridgette A Barry
- School of Chemistry and Biochemistry and The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
490
|
Croce R, van Amerongen H. Light-harvesting and structural organization of Photosystem II: From individual complexes to thylakoid membrane. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:142-53. [DOI: 10.1016/j.jphotobiol.2011.02.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
|
491
|
Popelkova H, Yocum CF. PsbO, the manganese-stabilizing protein: Analysis of the structure–function relations that provide insights into its role in photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:179-90. [DOI: 10.1016/j.jphotobiol.2011.01.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 01/07/2023]
|
492
|
Remmerie N, De Vijlder T, Laukens K, Dang TH, Lemière F, Mertens I, Valkenborg D, Blust R, Witters E. Next generation functional proteomics in non-model plants: A survey on techniques and applications for the analysis of protein complexes and post-translational modifications. PHYTOCHEMISTRY 2011; 72:1192-218. [PMID: 21345472 DOI: 10.1016/j.phytochem.2011.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/21/2010] [Accepted: 01/03/2011] [Indexed: 05/11/2023]
Abstract
The congruent development of computational technology, bioinformatics and analytical instrumentation makes proteomics ready for the next leap. Present-day state of the art proteomics grew from a descriptive method towards a full stake holder in systems biology. High throughput and genome wide studies are now made at the functional level. These include quantitative aspects, functional aspects with respect to protein interactions as well as post translational modifications and advanced computational methods that aid in predicting protein function and mapping these functionalities across the species border. In this review an overview is given of the current status of these aspects in plant studies with special attention to non-genomic model plants.
Collapse
Affiliation(s)
- Noor Remmerie
- Center for Proteomics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
493
|
Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. PLANT MOLECULAR BIOLOGY 2011; 76:273-97. [PMID: 21424877 PMCID: PMC3104136 DOI: 10.1007/s11103-011-9762-4] [Citation(s) in RCA: 903] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 02/19/2011] [Indexed: 05/18/2023]
Abstract
This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable.
Collapse
Affiliation(s)
- Susann Wicke
- Department of Biogeography and Botanical Garden, University of Vienna, Rennweg 14, 1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
494
|
Dreaden TM, Chen J, Rexroth S, Barry BA. N-formylkynurenine as a marker of high light stress in photosynthesis. J Biol Chem 2011; 286:22632-41. [PMID: 21527632 PMCID: PMC3121407 DOI: 10.1074/jbc.m110.212928] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/28/2011] [Indexed: 11/06/2022] Open
Abstract
Photosystem II (PSII) is the membrane protein complex that catalyzes the photo-induced oxidation of water at a manganese-calcium active site. Light-dependent damage and repair occur in PSII under conditions of high light stress. The core reaction center complex is composed of the D1, D2, CP43, and CP47 intrinsic polypeptides. In this study, a new chromophore formed from the oxidative post-translational modification of tryptophan is identified in the CP43 subunit. Tandem mass spectrometry peptide sequencing is consistent with the oxidation of the CP43 tryptophan side chain, Trp-365, to produce N-formylkynurenine (NFK). Characterization with ultraviolet visible absorption and ultraviolet resonance Raman spectroscopy supports this assignment. An optical assay suggests that the yield of NFK increases 2-fold (2.2 ± 0.5) under high light illumination. A concomitant 2.4 ± 0.5-fold decrease is observed in the steady-state rate of oxygen evolution under the high light conditions. NFK is the product formed from reaction of tryptophan with singlet oxygen, which can be produced under high light stress in PSII. Reactive oxygen species reactions lead to oxidative damage of the reaction center, D1 protein turnover, and inhibition of electron transfer. Our results are consistent with a role for the CP43 NFK modification in photoinhibition.
Collapse
Affiliation(s)
- Tina M. Dreaden
- From the School of Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Jun Chen
- From the School of Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Sascha Rexroth
- From the School of Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Bridgette A. Barry
- From the School of Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
495
|
Roose JL, Yocum CF, Popelkova H. Binding Stoichiometry and Affinity of the Manganese-Stabilizing Protein Affects Redox Reactions on the Oxidizing Side of Photosystem II. Biochemistry 2011; 50:5988-98. [DOI: 10.1021/bi2008068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johnna L. Roose
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | | |
Collapse
|
496
|
Hanf R, Fey S, Dietzek B, Schmitt M, Reinbothe C, Reinbothe S, Hermann G, Popp J. Protein-induced excited-state dynamics of protochlorophyllide. J Phys Chem A 2011; 115:7873-81. [PMID: 21678944 DOI: 10.1021/jp2035899] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The light-driven NADPH:protochlorophyllide oxidoreductase (POR) is a key enzyme of chlorophyll biosynthesis in angiosperms. POR's unique requirement for light to become catalytically active makes the enzyme an attractive model to study the dynamics of enzymatic reactions in real time. Here, we use picosecond time-resolved fluorescence and femtosecond pump-probe spectroscopy to examine the influence of the protein environment on the excited-state dynamics of the substrate, protochlorophyllide (PChlide), in the enzyme/substrate (PChlide/POR) and pseudoternary complex including the nucleotide cofactor NADP(+) (PChlide/NADP(+)/ POR). In comparison with the excited-state processes of unbound PChlide, the lifetime of the thermally equilibrated S(1) excited state is lengthened from 3.4 to 4.4 and 5.4 ns in the PChlide/POR and PChlide/NADP(+)/POR complex, whereas the nonradiative rates are decreased by ∼30 and 40%, respectively. This effect is most likely due to the reduced probability of nonradiative decay into the triplet excited state, thus keeping the risk of photosensitized side reactions in the enzyme low. Further, the initial reaction path involves the formation of an intramolecular charge-transfer state (S(ICT)) as an intermediate product. From a strong blue shift in the excited-state absorption, it is concluded that the S(ICT) state is stabilized by local interactions with specific protein sites in the catalytic pocket. The possible relevance of this result for the catalytic reaction in the enzyme POR is discussed.
Collapse
Affiliation(s)
- Robert Hanf
- Institute for Physical Chemistry and Abbe Centre of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, D-07743 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
497
|
Wientjes E, van Stokkum IHM, van Amerongen H, Croce R. Excitation-energy transfer dynamics of higher plant photosystem I light-harvesting complexes. Biophys J 2011; 100:1372-80. [PMID: 21354411 DOI: 10.1016/j.bpj.2011.01.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/19/2011] [Indexed: 11/15/2022] Open
Abstract
Photosystem I (PSI) plays a major role in the light reactions of photosynthesis. In higher plants, PSI is composed of a core complex and four outer antennas that are assembled as two dimers, Lhca1/4 and Lhca2/3. Time-resolved fluorescence measurements on the isolated dimers show very similar kinetics. The intermonomer transfer processes are resolved using target analysis. They occur at rates similar to those observed in transfer to the PSI core, suggesting competition between the two transfer pathways. It appears that each dimer is adopting various conformations that correspond to different lifetimes and emission spectra. A special feature of the Lhca complexes is the presence of an absorption band at low energy, originating from an excitonic state of a chlorophyll dimer, mixed with a charge-transfer state. These low-energy bands have high oscillator strengths and they are superradiant in both Lhca1/4 and Lhca2/3. This challenges the view that the low-energy charge-transfer state always functions as a quencher in plant Lhc's and it also challenges previous interpretations of PSI kinetics. The very similar properties of the low-energy states of both dimers indicate that the organization of the involved chlorophylls should also be similar, in disagreement with the available structural data.
Collapse
Affiliation(s)
- Emilie Wientjes
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
498
|
Mukherjee D, May M, Khomami B. Detergent–protein interactions in aqueous buffer suspensions of Photosystem I (PS I). J Colloid Interface Sci 2011; 358:477-84. [DOI: 10.1016/j.jcis.2011.03.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 11/27/2022]
|
499
|
The roles of chloroplast proteases in the biogenesis and maintenance of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:239-46. [PMID: 21645493 DOI: 10.1016/j.bbabio.2011.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 05/03/2011] [Accepted: 05/17/2011] [Indexed: 12/28/2022]
Abstract
Photosystem II (PSII) catalyzes one of the key reactions of photosynthesis, the light-driven conversion of water into oxygen. Although the structure and function of PSII have been well documented, our understanding of the biogenesis and maintenance of PSII protein complexes is still limited. A considerable number of auxiliary and regulatory proteins have been identified to be involved in the regulation of this process. The carboxy-terminal processing protease CtpA, the serine-type protease DegP and the ATP-dependent thylakoid-bound metalloprotease FtsH are critical for the biogenesis and maintenance of PSII. Here, we summarize and discuss the structural and functional aspects of these chloroplast proteases in these processes. This article is part of a Special Issue entitled: SI: Photosystem II.
Collapse
|
500
|
Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci U S A 2011; 108:9396-401. [PMID: 21606330 DOI: 10.1073/pnas.1103659108] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic water splitting, coupled to hydrogenase-catalyzed hydrogen production, is considered a promising clean, renewable source of energy. It is widely accepted that the oxygen sensitivity of hydrogen production, combined with competition between hydrogenases and NADPH-dependent carbon dioxide fixation are the main limitations for its commercialization. Here we provide evidence that, under the anaerobic conditions that support hydrogen production, there is a significant loss of photosynthetic electrons toward NADPH production in vitro. To elucidate the basis for competition, we bioengineered a ferredoxin-hydrogenase fusion and characterized hydrogen production kinetics in the presence of Fd, ferredoxin:NADP(+)-oxidoreductase (FNR), and NADP(+). Replacing the hydrogenase with a ferredoxin-hydrogenase fusion switched the bias of electron transfer from FNR to hydrogenase and resulted in an increased rate of hydrogen photoproduction. These results suggest a new direction for improvement of biohydrogen production and a means to further resolve the mechanisms that control partitioning of photosynthetic electron transport.
Collapse
|