451
|
Ergün S, Ulasli M, Igci YZ, Igci M, Kırkbes S, Borazan E, Balik A, Yumrutaş Ö, Camci C, Cakmak EA, Arslan A, Oztuzcu S. The association of the expression of miR-122-5p and its target ADAM10 with human breast cancer. Mol Biol Rep 2014; 42:497-505. [PMID: 25318895 DOI: 10.1007/s11033-014-3793-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/09/2014] [Indexed: 02/08/2023]
Abstract
MicroRNAs can regulate many biological functions. miR-122-5p has a tumor suppressor function through different molecular pathways. Also, our second hit, ADAM10, targeted by miR-122-5p, is a major determinant of HER2 shedding causing that trastuzumab cannot bind to HER2 receptors. Therefore, our analysis upon ADAM10 expression and miR-122-5p was a good point to understand molecular mechanism of breast cancer. In our study, we investigated the expression profiles of miR-122-5p and its target ADAM10 in 71 breast cancer patients. Immunohistochemical analysis of ER, PR and HER2 gene products was used to categorize tumors in patients. Expression data and immunohistochemical findings were evaluated to comment on the relationship between miR-122-5p and ADAM10. ADAM10 expression was higher in tumor than that of normal tissue but miR-122-5p expression was lower in tumor than that of normal tissue. The expression pattern in HER2+ patients was reverse of the overall result. It can be explained like that miR-122-5p expression increases especially in HER2+ cancer cell to suppress ADAM10 shedding activity on HER2 receptor. However, increase in expression of tumor suppressor miR-122-5p is not enough to inhibit ADAM10. All in all, we can think miR-122-5p as potential regulator of ADAM10 and trastuzumab resistance. Since if we increase miR-122-5p activity together with trastuzumab administration, then HER2+ breast cancer cells may overcome trastuzumab resistance by inhibiting ADAM10 shedding activity on HER2 receptors and increase the efficiency of trastuzumab.
Collapse
Affiliation(s)
- Sercan Ergün
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Şehitkamil, 27310, Gaziantep, Turkey,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
452
|
Zhang J, Shan WF, Jin TT, Wu GQ, Xiong XX, Jin HY, Zhu SM. Propofol exerts anti-hepatocellular carcinoma by microvesicle-mediated transfer of miR-142-3p from macrophage to cancer cells. J Transl Med 2014; 12:279. [PMID: 25292173 PMCID: PMC4198740 DOI: 10.1186/s12967-014-0279-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/23/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE We previously confirmed that propofol directly inhibited the viability, proliferation, and invasiveness of hepatocellular carcinoma cells in vitro. In this study, we investigated the mechanism underlying the anti-HCC effects of propofol. METHODS In vivo antitumor activity was investigated in tumor-bearing mice following an intraperitoneal injection of propofol, with or without clodrolip. The co-culture system was used to verify that miR-142-3p was transported from macrophages to HCC cells. A miR-142-3p inhibitor was used to down-regulate the expression of miR-142-3p. RESULTS Propofol drastically inhibited tumor growth in tomor-bearing mice through macrophage activation, and stimulated tumor-associated macrophages (TAMs) to secrete microvesicles (MVs), which delivered miR-142-3p to HCC cells, resulting in the inhibition of HCC cell invasion. In addition, MVs collected from the plasma of the tumor-bearing mice injected with propofol suppressed tumor growth. More importantly, down-regulation of the expression miR-142-3p reversed the effect of propofol on HCC cell migration. CONCLUSIONS This study reveals a novel role for propofol in the inhibition of HCC through MV-mediated transfer of miR-142-3p from macrophages to cancer cells in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sheng-mei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, People's Republic of China.
| |
Collapse
|
453
|
Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog 2014; 10:e1004424. [PMID: 25275643 PMCID: PMC4183590 DOI: 10.1371/journal.ppat.1004424] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022] Open
Abstract
Antibodies targeting receptor-mediated entry of HCV into hepatocytes confer limited therapeutic benefits. Evidence suggests that exosomes can transfer genetic materials between cells; however, their role in HCV infection remains obscure. Here, we show that exosomes isolated from sera of chronic HCV infected patients or supernatants of J6/JFH1-HCV-infected Huh7.5 cells contained HCV RNA. These exosomes could mediate viral receptor-independent transmission of HCV to hepatocytes. Negative sense HCV RNA, indicative of replication competent viral RNA, was present in exosomes of all HCV infected treatment non-responders and some treatment-naïve individuals. Remarkably, HCV RNA was associated with Ago2, HSP90 and miR-122 in exosomes isolated from HCV-infected individuals or HCV-infected Huh7.5 cell supernatants. Exosome-loading with a miR-122 inhibitor, or inhibition of HSP90, vacuolar H+-ATPases, and proton pumps, significantly suppressed exosome-mediated HCV transmission to naïve cells. Our findings provide mechanistic evidence for HCV transmission by blood-derived exosomes and highlight potential therapeutic strategies.
Collapse
Affiliation(s)
- Terence N. Bukong
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Fatemeh Momen-Heravi
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
454
|
CSF1-ETS2-induced microRNA in myeloid cells promote metastatic tumor growth. Oncogene 2014; 34:3651-61. [PMID: 25241894 PMCID: PMC4369473 DOI: 10.1038/onc.2014.294] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/15/2014] [Accepted: 08/04/2014] [Indexed: 01/02/2023]
Abstract
Metastasis of solid tumors is associated with poor prognosis and bleak survival rates. Tumor infiltrating myeloid cells (TIMs) are known to promote metastasis but the mechanisms underlying their collaboration with tumor cells remain unknown. Here we report an oncogenic role for microRNA in driving M2 reprogramming in TIMs, characterized by the acquisition of pro-tumor and pro-angiogenic properties. The expression of miR-21, miR-29a, miR-142-3p and miR-223 increased in myeloid cells during tumor progression in mouse models of breast cancer and melanoma metastasis. Further, we show that these miRs are regulated by the CSF1-ETS2 pathway in macrophages. A loss of function approach utilizing selective depletion of the microRNA processing enzyme Dicer in mature myeloid cells blocks angiogenesis and metastatic tumor growth. Ectopic expression of miR-21 and miR-29a promotes angiogenesis and tumor cell proliferation through the down-regulation of anti-angiogenic genes such as Col4a2, Spry1 and Timp3 whereas knockdown of the miRs impedes these processes. miR-21 and miR-29a are expressed in Csf1r+ myeloid cells associated with human metastatic breast cancer and levels of these miRs in CD115+ non-classical monocytes correlates with metastatic tumor burden in patients. Taken together, our results suggest that miR-21 and miR-29a are essential for the pro-tumor functions of myeloid cells and the CSF1-ETS2 pathway upstream of the miRs serves as an attractive therapeutic target for the inhibition of M2 remodeling of macrophages during malignancy. In addition, miR-21 and miR-29a in circulating myeloid cells may potentially serve as biomarkers to measure therapeutic efficacy of targeted therapies for CSF1 signaling.
Collapse
|
455
|
Braicu C, Tomuleasa C, Monroig P, Cucuianu A, Berindan-Neagoe I, Calin GA. Exosomes as divine messengers: are they the Hermes of modern molecular oncology? Cell Death Differ 2014; 22:34-45. [PMID: 25236394 DOI: 10.1038/cdd.2014.130] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/24/2014] [Accepted: 07/07/2014] [Indexed: 12/18/2022] Open
Abstract
Exosomes are cell-derived vesicles that convey key elements with the potential to modulate intercellular communication. They are known to be secreted from all types of cells, and are crucial messengers that can regulate cellular processes by 'trafficking' molecules from cells of one tissue to another. The exosomal content has been shown to be broad, composed of different types of cytokines, growth factors, proteins, or nucleic acids. Besides messenger RNA (mRNA) they can also contain noncoding transcripts such as microRNAs (miRNAs), which are small endogenous cellular regulators of protein expression. In diseases such as cancer, exosomes can facilitate tumor progression by altering their vesicular content and supplying the tumor niche with molecules that favor the progression of oncogenic processes such as proliferation, invasion and metastasis, or even drug resistance. The packaging of their molecular content is known to be tissue specific, a fact that makes them interesting tools in clinical diagnostics and ideal candidates for biomarkers. In the current report, we describe the main properties of exosomes and explain their involvement in processes such as cell differentiation and cell death. Furthermore, we emphasize the need of developing patient-targeted treatments by applying the conceptualization of exosomal-derived miRNA-based therapeutics.
Collapse
Affiliation(s)
- C Braicu
- Research Center for Functional Genomics and Translational Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - C Tomuleasa
- 1] Research Center for Functional Genomics and Translational Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania [2] Department of Hematology, 'Ion Chiricuta' Oncology Institute, Cluj-Napoca, Romania
| | - P Monroig
- 1] Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - A Cucuianu
- 1] Department of Hematology, 'Ion Chiricuta' Oncology Institute, Cluj-Napoca, Romania [2] Department of Hematology, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - I Berindan-Neagoe
- 1] Research Center for Functional Genomics and Translational Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania [2] Department of Immunology, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania [3] Department of Functional Genomics and Experimental Pathology, 'Ion Chiricuta' Oncology Institute, Cluj-Napoca, Romania
| | - G A Calin
- 1] Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
456
|
Ashby J, Flack K, Jimenez LA, Duan Y, Khatib AK, Somlo G, Wang SE, Cui X, Zhong W. Distribution profiling of circulating microRNAs in serum. Anal Chem 2014; 86:9343-9. [PMID: 25191694 DOI: 10.1021/ac5028929] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circulating microRNAs (miRNAs) are potential biomarkers useful in cancer diagnosis. They have been found to be bound to various carriers like proteins, lipoprotein particles, and exosomes. It is likely that only miRNAs in particular carriers, but not the overall quantity, are directly related to cancer development. Herein, we developed a method for rapid separation of different miRNA carriers in serum using asymmetrical flow field flow fractionation (AF4). Sera from two healthy individuals (control) or from two cancer patients (case) were fractionated. Six fractions enriching different types of miRNA carriers, such as the lipoprotein particles and exosomes, were collected. The quantities of eight selected miRNAs in each fraction were obtained by RT-qPCR to yield their distribution profiles among the carriers. Larger changes in miRNA quantity between the control and the case were detected in the fractionated results compared to the sum values. Statistical analysis on the distribution profiles also proved that, the quantities of 4 miRNAs within particular fractions showed significant difference between the controls and the cases. On the contrary, if the overall quantity of the miRNA was subject to the same statistical analysis, only 2 miRNAs exhibited significant difference. Moreover, principle component analysis revealed good separation between the controls and the cases with the fractionated miRNA amounts. All in all, we have demonstrated that, our method enables comprehensive screening of the distribution of circulating miRNAs in the carriers. The obtained distribution profile enlarges the miRNA expression difference between healthy individuals and cancer patients, facilitating the discovery of specific miRNA biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- Jonathan Ashby
- Department of Chemistry; ‡Program in Biomedical Sciences; §Department of Statistics, University of California, Riverside , Riverside, California 92521, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
457
|
Berindan-Neagoe I, Monroig PDC, Pasculli B, Calin GA. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin 2014; 64:311-36. [PMID: 25104502 PMCID: PMC4461198 DOI: 10.3322/caac.21244] [Citation(s) in RCA: 390] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023] Open
Abstract
The interplay between abnormalities in genes coding for proteins and noncoding microRNAs (miRNAs) has been among the most exciting yet unexpected discoveries in oncology over the last decade. The complexity of this network has redefined cancer research as miRNAs, produced from what was once considered "genomic trash," have shown to be crucial for cancer initiation, progression, and dissemination. Naturally occurring miRNAs are very short transcripts that never produce a protein or amino acid chain, but act by regulating protein expression during cellular processes such as growth, development, and differentiation at the transcriptional, posttranscriptional, and/or translational level. In this review article, miRNAs are presented as ubiquitous players involved in all cancer hallmarks. The authors also describe the most used methods to detect their expression, which have revealed the identity of hundreds of miRNAs dysregulated in cancer cells or tumor microenvironment cells. Furthermore, the role of miRNAs as hormones and as reliable cancer biomarkers and predictors of treatment response is discussed. Along with this, the authors explore current strategies in designing miRNA-targeting therapeutics, as well as the associated challenges that research envisions to overcome. Finally, a new wave in molecular oncology translational research is introduced: the study of long noncoding RNAs.
Collapse
Affiliation(s)
- Ioana Berindan-Neagoe
- Department of Functional Genomics, The Oncology Institute, Research Center for Functional Genomics, Biomedicine and Translational Medicine, Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | | | | |
Collapse
|
458
|
Abstract
The study of a class of small non-coding RNA molecules, named microRNAs (miRNAs), has advanced our understanding of many of the fundamental processes of cancer biology and the molecular mechanisms underlying tumor initiation and progression. MiRNA research has become more and more attractive as evidence is emerging that miRNAs likely play important regulatory roles virtually in all essential bioprocesses. Looking at this field over the past decade it becomes evident that our understanding of miRNAs remains rather incomplete. As research continues to reveal the mechanisms underlying cancer therapy efficacy, it is clear that miRNAs contribute to responses to drug therapy and are themselves modified by drug therapy. One important area for miRNA research is to understand the functions of miRNAs and the relevant signaling pathways in the initiation, progression and drug-resistance of tumors to be able to design novel, effective targeted therapeutics that directly target pathologically essential miRNAs and/or their target genes. Another area of increasing importance is the use of miRNA signatures in the diagnosis and prognosis of various types of cancers. As the study of non-coding RNAs is increasingly more popular and important, it is without doubt that the next several years of miRNA research will provide more fascinating results.
Collapse
|
459
|
Bleckmann A, Leha A, Artmann S, Menck K, Salinas-Riester G, Binder C, Pukrop T, Beissbarth T, Klemm F. Integrated miRNA and mRNA profiling of tumor-educated macrophages identifies prognostic subgroups in estrogen receptor-positive breast cancer. Mol Oncol 2014; 9:155-66. [PMID: 25205039 PMCID: PMC5528681 DOI: 10.1016/j.molonc.2014.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/27/2014] [Accepted: 07/29/2014] [Indexed: 12/21/2022] Open
Abstract
Introduction Various studies have identified aberrantly expressed miRNAs in breast cancer and demonstrated an association between distinct miRNAs and malignant progression as well as metastasis. Even though tumor‐associated macrophages (TAM) are known mediators of these processes, little is known regarding their miRNA expression upon education by malignant cells in vivo. Methods We profiled miRNA and mRNA expression of in vitro tumor‐educated macrophages (TEM) by indirectly co‐culturing with estrogen‐receptor‐positive (ER+) MCF‐7 breast cancer cells. The prognostic power of the resulting miRNA list was investigated in primary breast cancer datasets and compared to other signatures. Furthermore, miRNA expression levels were correlated to mRNA expression of macrophage markers and the impact on prognosis was assessed. Results Through the evaluation of the group effects between differentially‐expressed miRNAs and their target mRNAs in TEM, the power of detecting regulated miRNAs was greatly increased. The resulting list of 96 miRNAs predicts disease‐free survival (DFS) in external datasets of ER+ breast cancer patients and performs well in comparison with other miRNA signatures. Clustering with the predefined miRNA list revealed a significant difference in survival between the two resulting patient groups. Furthermore, an optimized miRNA list, based on correlations with macrophages markers, proved even more capable at identifying patient clusters significantly differing in DFS. Conclusions In vitro profiling of TEM and subsequent bioinformatic verification identified miRNAs with a high prognostic power for DFS when transferred into the clinical setting of primary breast cancer. The resulting miRNAs not only verify previously established findings but also lead to new prognostic markers. Furthermore, our data suggest that TAM contribute to the total miRNA expression profile of ER + breast cancers. miRNA and mRNA were measured in macrophages exposed to ER + breast cancer cells. Regulated miRNAs were detected by analyzing group effects of mRNA targets. The resulting miRNA list has good prognostic value for DFS in ER + breast cancer. Correlation of miRNAs to macrophage markers improved identification of clusters differing in DFS.
Collapse
Affiliation(s)
- Annalen Bleckmann
- Dept. of Hematology/Oncology, University Medical Center Göttingen, 37099 Göttingen, Germany; Dept. of Medical Statistics, University Medical Center Göttingen, 37099 Göttingen, Germany.
| | - Andreas Leha
- Dept. of Medical Statistics, University Medical Center Göttingen, 37099 Göttingen, Germany.
| | - Stephan Artmann
- Dept. of Medical Statistics, University Medical Center Göttingen, 37099 Göttingen, Germany.
| | - Kerstin Menck
- Dept. of Hematology/Oncology, University Medical Center Göttingen, 37099 Göttingen, Germany.
| | - Gabriela Salinas-Riester
- Dept. of Developmental Biochemistry, University Medical Center Göttingen, 37099 Göttingen, Germany.
| | - Claudia Binder
- Dept. of Hematology/Oncology, University Medical Center Göttingen, 37099 Göttingen, Germany.
| | - Tobias Pukrop
- Dept. of Hematology/Oncology, University Medical Center Göttingen, 37099 Göttingen, Germany.
| | - Tim Beissbarth
- Dept. of Medical Statistics, University Medical Center Göttingen, 37099 Göttingen, Germany.
| | - Florian Klemm
- Dept. of Hematology/Oncology, University Medical Center Göttingen, 37099 Göttingen, Germany.
| |
Collapse
|
460
|
Shen J, Hu Q, Schrauder M, Yan L, Wang D, Medico L, Guo Y, Yao S, Zhu Q, Liu B, Qin M, Beckmann MW, Fasching PA, Strick R, Johnson CS, Ambrosone CB, Zhao H, Liu S. Circulating miR-148b and miR-133a as biomarkers for breast cancer detection. Oncotarget 2014; 5:5284-94. [PMID: 25051376 PMCID: PMC4170614 DOI: 10.18632/oncotarget.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/26/2014] [Indexed: 12/14/2022] Open
Abstract
Circulating microRNAs have drawn a great deal of attention as promising novel biomarkers for breast cancer. However, to date, the results are mixed. Here, we performed a three-stage microRNA analysis using plasma samples from breast cancer patients and healthy controls, with efforts taken to address several pitfalls in detection techniques and study design observed in previous studies. In the discovery phase with 122 Caucasian study subjects, we identified 43 microRNAs differentially expressed between breast cancer cases and healthy controls. When those microRNAs were compared with published data from other studies, we identified three microRNAs, including miR-148b, miR-133a and miR-409-3p, whose plasma levels were significantly higher in breast cancer cases than healthy controls and were also significant in previous independent studies. In the validation phase with 50 breast cancer cases and 50 healthy controls, we validated the associations with breast cancer detection for miR-148b and miR-133a (P = 1.5×10-6 and 1.3×10-10, respectively). In the in-vitro study phase, we found that both miR-148b and miR-133a were secreted from breast cancer cell lines, showing their secretory potential and possible tumor origin. Thus, our data suggest that both miR-148b and miR-133a have potential use as biomarkers for breast cancer detection.
Collapse
Affiliation(s)
- Jie Shen
- Department of Epidemiology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qiang Hu
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, P.R.China
| | - Michael Schrauder
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Dan Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Leonardo Medico
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Yuqing Guo
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Qianqian Zhu
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Biao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Maochun Qin
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Reiner Strick
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Candace S. Johnson
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Hua Zhao
- Department of Epidemiology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
461
|
Salido-Guadarrama I, Romero-Cordoba S, Peralta-Zaragoza O, Hidalgo-Miranda A, Rodríguez-Dorantes M. MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. Onco Targets Ther 2014; 7:1327-38. [PMID: 25092989 PMCID: PMC4114916 DOI: 10.2147/ott.s61562] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer-cell communication is an important and complex process, achieved through a diversity of mechanisms that allows tumor cells to mold and influence their environment. In recent years, evidence has accumulated indicating that cells communicate via the release and delivery of microRNAs (miRNAs) packed into tumor-released (TR) exosomes. Understanding the role and mode of action of miRNAs from TR exosomes is of paramount importance in the field of cancer biomarker discovery and for the development of new biomedical applications for cancer therapeutics. In this review, we focus on miRNAs secreted via TR exosomes, which by acting in a paracrine or endocrine manner, facilitate a diversity of signaling mechanisms between cancer cells. We address their contribution as signaling molecules, to the establishment, maintenance, and enhancement of the tumor microenvironment and the metastatic niche in cancer. Finally, we address the potential role of these molecules as biomarkers in cancer diagnosis and prognosis and their impact as a biomedical tool in cancer therapeutics.
Collapse
Affiliation(s)
| | - Sandra Romero-Cordoba
- Oncogenomics Laboratory, National Institute of Genomics Medicine, Mexico City, Mexico
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infectious Diseases, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | | | | |
Collapse
|
462
|
Natasha G, Gundogan B, Tan A, Farhatnia Y, Wu W, Rajadas J, Seifalian AM. Exosomes as Immunotheranostic Nanoparticles. Clin Ther 2014; 36:820-9. [DOI: 10.1016/j.clinthera.2014.04.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 11/25/2022]
|
463
|
Christodoulatos GS, Dalamaga M. Micro-RNAs as clinical biomarkers and therapeutic targets in breast cancer: Quo vadis? World J Clin Oncol 2014; 5:71-81. [PMID: 24829853 PMCID: PMC4014798 DOI: 10.5306/wjco.v5.i2.71] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/23/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the most frequent type of non skin cancer among women and a major leading cause of cancer-related deaths in Western countries. It is substantial to discover novel biomarkers with diagnostic, prognostic or predictive usefulness as well as therapeutic value for BC. Micro-RNAs (miRNAs) belong to a novel class of endogenous interfering RNAs that play a crucial role in post transcriptional gene silencing through mRNA targeting and, thus, are involved in many biological processes encompassing apoptosis, cell-cycle control, cell proliferation, DNA repair, immunity, metabolism, stress, aging, etc. MiRNAs exert their action mainly in a tumor suppressive or oncogenic manner. The specific aberrant expression patterns of miRNAs in BC that are detected with the use of high-throughput technologies reflect their key role in cancer initiation, progression, migration, invasion and metastasis. The detection of circulating extracellular miRNAs in plasma of BC patients may provide novel, non-invasive biomarkers in favor of BC diagnosis and prognosis and, at the same time, accumulating evidence has underscored the possible contribution of miRNAs as valuable biomarkers to predict response to chemotherapy or radiotherapy. Data from in vitro and in vivo studies on BC have revealed promising therapeutic approaches via miRNA delivery and miRNA inhibition. The purpose of this review is to explore the ontological role of miRNAs in BC etiopathogenesis as well as to highlight their potential, not only as non-invasive circulating biomarkers with diagnostic and prognostic significance, but also as treatment response predictors and therapeutic targets aiding BC management.
Collapse
|
464
|
Basu S, Bhattacharyya SN. Insulin-like growth factor-1 prevents miR-122 production in neighbouring cells to curtail its intercellular transfer to ensure proliferation of human hepatoma cells. Nucleic Acids Res 2014; 42:7170-85. [PMID: 24813441 PMCID: PMC4066773 DOI: 10.1093/nar/gku346] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
miRNAs are 20-22 nt long post-transcriptional regulators in metazoan cells that repress protein expression from their target mRNAs. These tiny regulatory RNAs follow tissue and cell-type specific expression pattern, aberrations of which are associated with various diseases. miR-122 is a liver-specific anti-proliferative miRNA that, we found, can be transferred via exosomes between human hepatoma cells, Huh7 and HepG2, grown in co-culture. Exosomal miR-122, expressed and released by Huh7 cells and taken by miR-122 deficient HepG2 cells, was found to be effective in repression of target mRNAs and to reduce growth and proliferation of recipient HepG2 cells. Interestingly, in a reciprocal process, HepG2 secretes Insulin-like Growth Factor 1 (IGF1) that decreases miR-122 expression in Huh7 cells. Our observations suggest existence of a reciprocal interaction between two different hepatic cells with distinct miR-122 expression profiles. This interaction is mediated via intercellular exosome-mediated miR-122 transfer and countered by a reciprocal IGF1-dependent anti-miR-122 signal. According to our data, human hepatoma cells use IGF1 to prevent intercellular exosomal transfer of miR-122 to ensure its own proliferation by preventing expression of growth retarding miR-122 in neighbouring cells.
Collapse
Affiliation(s)
- Sudarshana Basu
- RNA Biology Research Laboratory, Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
465
|
Ye J, Wu D, Wu P, Chen Z, Huang J. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumour Biol 2014; 35:3945-3951. [PMID: 24420150 DOI: 10.1007/s13277-013-1561-x] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/16/2013] [Indexed: 12/14/2022] Open
Abstract
Despite recent progresses in tumor therapy and increased knowledge in tumor biology, tumor remains a common and lethal disease worldwide. Cancer stem cells (CSCs) are a subset of cancer cells with a stem cell-like ability, which may drive tumor growth and recurrence and are resistant to many current anticancer treatments. Solid tumors are regarded as "organs" which are comprised of cancer cells and the tumor stroma. The tumor microenvironment makes up the stroma of the tumor, which occupies the majority of the tumor mass, including the extracellular matrix (ECM), mesenchymal stem cells (MSCs), endothelial cells, immune cells, and, what is more, networks of cytokines and growth factors. The microenvironment or niche surrounding CSCs largely governs their cellular fate. Recent work has revealed that the microenvironment supports CSC self-renewal and simultaneously serves as a physical barrier to drug delivery. The tumor microenvironment plays pivotal roles in each stage of tumor development. Knowledge about the interactions of CSCs with their microenvironment would seem to be of most importance for developing new treatment strategies.
Collapse
Affiliation(s)
- Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | | | | | | | | |
Collapse
|
466
|
Extracellular RNA mediates and marks cancer progression. Semin Cancer Biol 2014; 28:14-23. [PMID: 24783980 DOI: 10.1016/j.semcancer.2014.04.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/24/2014] [Accepted: 04/16/2014] [Indexed: 12/17/2022]
Abstract
Different types of RNAs identified thus far represent a diverse group of macromolecules that are involved in the regulation of different biological processes. RNA is generally thought to be localized primarily in the nucleus and cytoplasm; however, some types of RNA have been detected in the extracellular milieu. These extracellular RNA (exRNA) molecules are protected from degradation and it is now widely accepted that extracellular vesicles and ribonucleoprotein particles serve as transport vehicles for exRNA among cells. The functional consequence of this transfer of genetic information probably encompasses a broad range of normal developmental and physiologic processes in many organisms. This review will focus on the role of exRNA communication in cancer. We will focus on different types of RNA species identified and characterized within tumor-derived extracellular vesicles. Further, we will describe the role of exRNAs in cancer progression, as well as their potential for use as diagnostic biomarkers and therapeutic tools for monitoring and treating cancer, respectively.
Collapse
|
467
|
Malekzadeh A, Teunissen C. Recent progress in omics-driven analysis of MS to unravel pathological mechanisms. Expert Rev Neurother 2014; 13:1001-16. [PMID: 24053344 DOI: 10.1586/14737175.2013.835602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At present, the pathophysiology and specific biological markers reflecting pathology of multiple sclerosis (MS) remain undetermined. The risk of developing MS is considered to depend on genetic susceptibility and environmental factors. The interaction of environmental factors with epigenetic mechanisms could affect the transcriptional level and therefore also the translational level. In the last decade, growing amount of hypothesis-free 'omics' studies have shed light on the potential MS mechanisms and raised potential biomarker targets. To understand MS pathophysiology and discover a subset of biomarkers, it is becoming essential to take a step forward and integrate the findings of the different fields of 'omics' into a systems biology network. In this review, we will discuss the recent findings of the genomic, transcriptomic and proteomic fields for MS and aim to make a unifying model.
Collapse
Affiliation(s)
- Arjan Malekzadeh
- Department of Clinical Chemistry, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
468
|
Vader P, Breakefield XO, Wood MJA. Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med 2014; 20:385-93. [PMID: 24703619 DOI: 10.1016/j.molmed.2014.03.002] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, are released by almost all cell types, including tumour cells. Through transfer of their molecular contents, EVs are capable of altering the function of recipient cells. Increasing evidence suggests a key role for EV mediated intercellular communication in a variety of cellular processes involved in tumour development and progression, including immune suppression, angiogenesis, and metastasis. Aspects of EV biogenesis or function are therefore increasingly being considered as targets for anticancer therapy. Here, we summarise the current knowledge on the contributions of EVs to cancer pathogenesis and discuss novel therapeutic strategies to target EVs to prevent tumour growth and spread.
Collapse
Affiliation(s)
- Pieter Vader
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Xandra O Breakefield
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA 2129, USA
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| |
Collapse
|
469
|
Meiliana A, Wijaya A. MicroRNAs in Lipid Metabolism and Atherosclerosis. INDONESIAN BIOMEDICAL JOURNAL 2014. [DOI: 10.18585/inabj.v6i1.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND: MicroRNAs (miRNA) are mediators of post-transcriptional gene expression that likely regulate most biological pathways and networks. The study of miRNAs is a rapidly emerging field; recent findings have revealed a significant role for miRNAs in atherosclerosis and lipoprotein metabolism.CONTENT: Results from recent studies demonstrated a role for miRNAs in endothelial integrity, macrophage inflammatory response to oxidized low-density lipoprotein, vascular smooth muscle cell proliferation and cholesterol synthesis. These mechanisms are all vital to the initiation and proliferation of atherosclerosis and cardiovascular disease. The importance of miRNAs has recently been recognized in cardiovascular sciences and miRNAs will likely become an integral part of our fundamental comprehension of atherosclerosis and lipoprotein metabolism. The extensive impact of miRNA mediated gene regulation and the relative ease of in vivo applicable modifications highlight the enormous potential of miRNA-based therapeutics in cardiovascular diseases.SUMMARY: miRNA studies in the field of lipid metabolism and atherosclerosis are in their infancy, and thus there is tremendous opportunity for discovery in this understudied area. The ability to target miRNAs in vivo through delivery of miRNA-mimics to enhance miRNA function, or antimiRNAs which inhibit miRNAs, has opened new avenues for the development of therapeutics for dyslipidemias and atherosclerosis, offers a unique approach to treating disease by modulating entire biological pathways. These exciting findings support the development of miRNA antagonists as potential therapeutics for the treatment of dyslipidaemia, atherosclerosis and related metabolic diseases.KEYWORDS: atherosclerosis, lipoprotein, HDL, miRNA
Collapse
|
470
|
Shah MY, Calin GA. MicroRNAs as therapeutic targets in human cancers. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:537-48. [PMID: 24687772 DOI: 10.1002/wrna.1229] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved, small, regulatory RNAs that negatively regulate gene expression. Extensive research in the last decade has implicated miRNAs as master regulators of cellular processes with essential role in cancer initiation, progression, and metastasis, making them promising therapeutic tools for cancer management. In this article, we will briefly review the structure, biogenesis, functions, and mechanism of action of these miRNAs, followed by a detailed analysis of the therapeutic potential of these miRNAs. We will focus on the strategies presently used for miRNA therapy; discuss their use and drawbacks; and the challenges and future directions for the development of miRNA-based therapy for human cancers.
Collapse
Affiliation(s)
- Maitri Y Shah
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
471
|
Pan S, Yang X, Jia Y, Li R, Zhao R. Microvesicle-shuttled miR-130b reduces fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-g expression. J Cell Physiol 2014; 229:631-9. [PMID: 24311275 DOI: 10.1002/jcp.24486] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/23/2013] [Accepted: 10/02/2013] [Indexed: 12/20/2022]
Abstract
Obesity is a worldwide epidemic, and a risk factor for cardiovascular disease and type 2 diabetes. Consequently, the development of safe and effective anti-obesity drugs is an area of ongoing clinical interest. MicroRNAs play a vital role in anti-obesity by inhibiting the expression of genes involved in adipogenesis and lipogenesis. However, the clinical application of miRNAs has been limited by a lack of appropriate delivery systems. The discovery of microvesicles (MVs) has shed new light on the search for more efficient drug transport tools. In a previous study, we demonstrated that miRNA-130b suppressed fat deposition by inhibiting PPAR-g expression. In order to demonstrate whether miRNA-130b can be packaged into MVs and function as an endogenous form of miRNA-130b in recipient cells, we transfected HeLa-229 cells with plasmid to overexpress miRNA-130b. This enabled HeLa-229 cells to selectively package miRNA-130b into MVs and actively secrete the miRNA-130b enriched MVs into the culture media. We further verified that MVs enriched with miRNA-130b contain elevated concentrations of Argonaute 2 and heat shock protein 90a which are known to protect the circulating miRNAs from degradation. Exposure of primary cultured porcine adipocytes to purified, miRNA-130b-enriched MVs resulted in a significant down-regulation of PPAR-g expression which was associated with reduced adipogenesis and lipogenesis. Taken together, our results suggest that MVs may provide an effective transport systems for the deliver of miRNAs for therapeutic use. We also showed that MV-shuttled miRNA-130b inhibited adipogenesis and lipogenesis, and reduced fat deposition in recipient adipocytes by targeting PPAR-g.
Collapse
|
472
|
Taïbi F, Metzinger-Le Meuth V, Massy ZA, Metzinger L. miR-223: An inflammatory oncomiR enters the cardiovascular field. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1001-9. [PMID: 24657505 DOI: 10.1016/j.bbadis.2014.03.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/05/2014] [Accepted: 03/09/2014] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs of 18-22 nucleotides in length that regulate post-transcriptional expression by base-pairing with target mRNAs. It is now clearly established that miRNAs are involved in most of the cell's physiopathological processes (including carcinogenesis and metabolic disorders). This review focuses on miR-223, which was first described as a modulator of hematopoietic lineage differentiation. We outline the role of miR-223 deregulation in several types of cancers and highlight its inclusion in a newly identified and fast-growing family of miRNAs called oncomiRs. We then look at miR-223's emerging role in inflammatory and metabolic disorders, with a particular focus on muscle diseases, type II diabetes, atherosclerosis and vascular calcification. miR-223 is one of the growing number of RNA biomarkers of various human metabolic diseases and is thus of special interest to both researchers and clinicians in the cardiovascular field.
Collapse
Affiliation(s)
- Fatiha Taïbi
- INSERM U1088, University of Picardie Jules Verne, 1 Rue des Louvels, F-80037 Amiens, France
| | - Valérie Metzinger-Le Meuth
- INSERM U1088, University of Picardie Jules Verne, 1 Rue des Louvels, F-80037 Amiens, France; Université Paris 13, UFR SMBH, 74 rue Marcel Cachin, F-93017 Bobigny, France
| | - Ziad A Massy
- INSERM U1088, University of Picardie Jules Verne, 1 Rue des Louvels, F-80037 Amiens, France; Division of Nephrology, Ambroise Paré Hospital, Paris UVSQ University, 09 avenue Charles de Gaulle, 92100 Boulogne-Billancourt, France
| | - Laurent Metzinger
- INSERM U1088, University of Picardie Jules Verne, 1 Rue des Louvels, F-80037 Amiens, France; Centre De Biologie Humaine (CBH), Amiens University Hospital, Avenue René Laennec, F-80054 Amiens, France.
| |
Collapse
|
473
|
Rosenbluth EM, Shelton DN, Wells LM, Sparks AET, Van Voorhis BJ. Human embryos secrete microRNAs into culture media--a potential biomarker for implantation. Fertil Steril 2014; 101:1493-500. [PMID: 24786747 DOI: 10.1016/j.fertnstert.2014.01.058] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 01/16/2014] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To determine whether human blastocysts secrete microRNA (miRNAs) into culture media and whether these reflect embryonic ploidy status and can predict in vitro fertilization (IVF) outcomes. DESIGN Experimental study of human embryos and IVF culture media. SETTING Academic IVF program. PATIENT(S) 91 donated, cryopreserved embryos that developed into 28 tested blastocysts, from 13 couples who had previously completed IVF cycles. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Relative miRNA expression in IVF culture media. RESULT(S) Blastocysts were assessed by chromosomal comparative genomic hybridization analysis, and the culture media from 55 single-embryo transfer cycles was tested for miRNA expression using an array-based quantitative real-time polymerase chain reaction analysis. The expression of the identified miRNA was correlated with pregnancy outcomes. Ten miRNA were identified in the culture media; two were specific to spent media (miR-191 and miR-372), and one was only present in media before the embryos had been cultured (miR-645). MicroRNA-191 was more highly concentrated in media from aneuploid embryos, and miR-191, miR-372, and miR-645 were more highly concentrated in media from failed IVF/non-intracytoplasmic sperm injection cycles. Additionally, miRNA were found to be more highly concentrated in ICSI and day-5 media samples when compared with regularly inseminated and day-4 samples, respectively. CONCLUSION(S) MicroRNA can be detected in IVF culture media. Some of these miRNA are differentially expressed according to the fertilization method, chromosomal status, and pregnancy outcome, which makes them potential biomarkers for predicting IVF success.
Collapse
Affiliation(s)
- Evan M Rosenbluth
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Dawne N Shelton
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Lindsay M Wells
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Amy E T Sparks
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Bradley J Van Voorhis
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa.
| |
Collapse
|
474
|
Thuma F, Zöller M. Outsmart tumor exosomes to steal the cancer initiating cell its niche. Semin Cancer Biol 2014; 28:39-50. [PMID: 24631836 DOI: 10.1016/j.semcancer.2014.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 02/22/2014] [Indexed: 12/14/2022]
Abstract
Exosomes are small vesicles that derive from endosomes and are delivered by many cells, including tumor cells that are a particular rich source of exosomes. Exosomes are suggested to be the most potent intercellular communicators. Being recovered in all body fluids, they can communicate with neighboring as well as distant cells. The latter was first described for dendritic cell exosomes that can initiate T cell activation. However, tumor exosomes (TEX) may impede this crosstalk. Besides with hematopoietic cells, TEX communicate with the tumor cell itself, but also with host stroma cells and endothelial cells. This crosstalk received much attention as there is strong evidence that TEX account for angiogenesis and premetastatic niche formation, which may proceed directly via binding and uptake of TEX by cells in the premetastatic organ or indirectly via TEX being taken up by hematopoietic progenitors in the bone marrow (BM), which mature toward lineages with immunosuppressive features or are forced toward premature release from the BM and homing into premetastatic organs. Knowing these deleterious activities of TEX, it becomes demanding to search for modes of therapeutic interference. I here introduce our hypothesis that metastasis formation may be hampered by tailored exosomes that outsmart TEX. The essential prerequisites are an in depth knowledge on TEX binding, uptake, binding-initiated signal transduction and uptake-promoted target cell reprogramming.
Collapse
Affiliation(s)
- Florian Thuma
- Department of Tumor Cell Biology, University Hospital of Surgery and German Cancer Research Center, Heidelberg, Germany
| | - Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery and German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
475
|
Burns G, Brooks K, Wildung M, Navakanitworakul R, Christenson LK, Spencer TE. Extracellular vesicles in luminal fluid of the ovine uterus. PLoS One 2014; 9:e90913. [PMID: 24614226 PMCID: PMC3948691 DOI: 10.1371/journal.pone.0090913] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/05/2014] [Indexed: 01/15/2023] Open
Abstract
Microvesicles and exosomes are nanoparticles released from cells and can contain small RNAs, mRNA and proteins that affect cells at distant sites. In sheep, endogenous beta retroviruses (enJSRVs) are expressed in the endometrial epithelia of the uterus and can be transferred to the conceptus trophectoderm. One potential mechanism of enJSRVs transfer from the uterus to the conceptus is via exosomes/microvesicles. Therefore, studies were conducted to evaluate exosomes in the uterine luminal fluid (ULF) of sheep. Exosomes/microvesicles (hereafter referred to as extracellular vesicles) were isolated from the ULF of day 14 cyclic and pregnant ewes using ExoQuick-TC. Transmission electron microscopy and nanoparticle tracking analysis found the isolates contained vesicles that ranged from 50 to 200 nm in diameter. The isolated extracellular vesicles were positive for two common markers of exosomes (CD63 and HSP70) by Western blot analysis. Proteins in the extracellular vesicles were determined by mass spectrometry and Western blot analysis. Extracellular vesicle RNA was analyzed for small RNAs by sequencing and enJSRVs RNA by RT-PCR. The ULF extracellular vesicles contained a large number of small RNAs and miRNAs including 81 conserved mature miRNAs. Cyclic and pregnant ULF extracellular vesicles contained enJSRVs env and gag RNAs that could be delivered to heterologous cells in vitro. These studies support the hypothesis that ULF extracellular vesicles can deliver enJSRVs RNA to the conceptus, which is important as enJSRVs regulate conceptus trophectoderm development. Importantly, these studies support the idea that extracellular vesicles containing select miRNAs, RNAs and proteins are present in the ULF and likely have a biological role in conceptus-endometrial interactions important for the establishment and maintenance of pregnancy.
Collapse
Affiliation(s)
- Gregory Burns
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Kelsey Brooks
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Mark Wildung
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - Raphatphorn Navakanitworakul
- Department of Molecular and Integrative Physiology, University of Kansas Medical School, Kansas City, Kansas, United States of America
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical School, Kansas City, Kansas, United States of America
| | - Thomas E Spencer
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
476
|
Bouyssou JMC, Manier S, Huynh D, Issa S, Roccaro AM, Ghobrial IM. Regulation of microRNAs in cancer metastasis. Biochim Biophys Acta Rev Cancer 2014; 1845:255-65. [PMID: 24569228 DOI: 10.1016/j.bbcan.2014.02.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/15/2014] [Accepted: 02/12/2014] [Indexed: 12/13/2022]
Abstract
Metastasis is a phenomenon of crucial importance in defining prognosis in patients with cancer and is often responsible for cancer-related mortality. It is known that several steps are necessary for clonal cells to disseminate from their primary tumor site and colonize distant tissues, thus originating metastatic lesions. Therefore, investigating the molecular actors regulating this process may provide helpful insights in the development of efficient therapeutic responses. Recent evidences have indicated the role of microRNAs (miRNAs) in modulating the metastatic process in solid tumors. miRNAs are small regulatory non-coding RNAs that bind to specific target mRNAs, leading to translational repression. miRNAs are known to act as negative regulators of gene expression and are involved in the regulation of biological processes, including cell growth, differentiation and apoptosis, both in physiological conditions and during diseases, such as tumors. In the specific field of tumorigenesis, miRNAs play an important role in mediating oncogenesis and favoring tumor progression, as a result of their ability to modulate epithelial-to-mesenchymal transition (EMT) and other series of events facilitating the formation of metastasis. The role of miRNAs in cancer development has been widely studied and has helped elucidate events such as the change in expression of oncogenes, tumor-suppressors and cancer-related proteins. This review focuses on the mechanisms underlying the role of miRNAs as part of the metastatic process.
Collapse
Affiliation(s)
- Juliette M C Bouyssou
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA; Ecole de Biologie Industrielle, 32 Boulevard du port, 95094 Cergy-Pontoise cedex, France
| | - Salomon Manier
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA
| | - Daisy Huynh
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA
| | - Samar Issa
- Ecole de Biologie Industrielle, 32 Boulevard du port, 95094 Cergy-Pontoise cedex, France
| | - Aldo M Roccaro
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA
| | - Irene M Ghobrial
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA.
| |
Collapse
|
477
|
New considerations in the preparation of nucleic acid-loaded extracellular vesicles. Ther Deliv 2014; 5:105-7. [DOI: 10.4155/tde.13.142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
478
|
Microvesicles secreted from human multiple myeloma cells promote angiogenesis. Acta Pharmacol Sin 2014; 35:230-8. [PMID: 24374814 DOI: 10.1038/aps.2013.141] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/03/2013] [Indexed: 12/21/2022]
Abstract
AIM To investigate whether human multiple myeloma (MM) cells secrete microvesicles (MVs) and whether the MVs secreted from MM cells (MM-MVs) promote angiogenesis. METHODS RPMI8226 human MM cells and EA.hy926 human umbilical vein cells were used. MVs isolated from RPMI8226 cells were characterized under laser confocal microscopy, electron microscopy and with flow cytometry. The fusion of MM-MVs and EA.hy926 cells was studied under confocal microscopy, and the transfer of CD138 to EA.hy926 cells was demonstrated with flow cytometry. The proliferation, invasion and tube formation of EA.hy926 cells in vitro were evaluated using MTT, transwell migration and tube formation assays, respectively. The vasculization of EA.hy926 cells in vivo was studied using Matrigel plug assay. The expression of IL-6 and VEGF was analyzed with PCR and ELISA. RESULTS MM-MVs from the RPMI 8226 cells had the characteristic cup-shape with diameter of 100-1000 nm. Most of the MM-MVs expressed phosphatidylserine and the myeloma cell marker CD138, confirming that they were derived from myeloma cells. After added to EA.hy926 cells, the MM-MVs transferred CD138 to the endothelial cells and significantly stimulated the endothelial cells to proliferate, invade, secrete IL-6 and VEGF, two key angiogenic factors of myeloma, and form tubes in vitro and in vivo. CONCLUSION Our results confirm the presence of MVs in MM cells and support the idea that MM-MVs are newfound mediators for myeloma angiogenesis and may serve as a therapeutic target to treat MM.
Collapse
|
479
|
McDermott AM, Miller N, Wall D, Martyn LM, Ball G, Sweeney KJ, Kerin MJ. Identification and validation of oncologic miRNA biomarkers for luminal A-like breast cancer. PLoS One 2014; 9:e87032. [PMID: 24498016 PMCID: PMC3909065 DOI: 10.1371/journal.pone.0087032] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 12/04/2013] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Breast cancer is a common disease with distinct tumor subtypes phenotypically characterized by ER and HER2/neu receptor status. MiRNAs play regulatory roles in tumor initiation and progression, and altered miRNA expression has been demonstrated in a variety of cancer states presenting the potential for exploitation as cancer biomarkers. Blood provides an excellent medium for biomarker discovery. This study investigated systemic miRNAs differentially expressed in Luminal A-like (ER+PR+HER2/neu-) breast cancer and their effectiveness as oncologic biomarkers in the clinical setting. METHODS Blood samples were prospectively collected from patients with Luminal A-like breast cancer (n = 54) and controls (n = 56). RNA was extracted, reverse transcribed and subjected to microarray analysis (n = 10 Luminal A-like; n = 10 Control). Differentially expressed miRNAs were identified by artificial neural network (ANN) data-mining algorithms. Expression of specific miRNAs was validated by RQ-PCR (n = 44 Luminal A; n = 46 Control) and potential relationships between circulating miRNA levels and clinicopathological features of breast cancer were investigated. RESULTS Microarray analysis identified 76 differentially expressed miRNAs. ANN revealed 10 miRNAs for further analysis (miR-19b, miR-29a, miR-93, miR-181a, miR-182, miR-223, miR-301a, miR-423-5p, miR-486-5 and miR-652). The biomarker potential of 4 miRNAs (miR-29a, miR-181a, miR-223 and miR-652) was confirmed by RQ-PCR, with significantly reduced expression in blood of women with Luminal A-like breast tumors compared to healthy controls (p = 0.001, 0.004, 0.009 and 0.004 respectively). Binary logistic regression confirmed that combination of 3 of these miRNAs (miR-29a, miR-181a and miR-652) could reliably differentiate between cancers and controls with an AUC of 0.80. CONCLUSION This study provides insight into the underlying molecular portrait of Luminal A-like breast cancer subtype. From an initial 76 miRNAs, 4 were validated with altered expression in the blood of women with Luminal A-like breast cancer. The expression profiles of these 3 miRNAs, in combination with mammography, has potential to facilitate accurate subtype-specific breast tumor detection.
Collapse
Affiliation(s)
- Ailbhe M. McDermott
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Nicola Miller
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Deirdre Wall
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Lorcan M. Martyn
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Karl J. Sweeney
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Michael J. Kerin
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| |
Collapse
|
480
|
Charrier A, Chen R, Chen L, Kemper S, Hattori T, Takigawa M, Brigstock DR. Connective tissue growth factor (CCN2) and microRNA-21 are components of a positive feedback loop in pancreatic stellate cells (PSC) during chronic pancreatitis and are exported in PSC-derived exosomes. J Cell Commun Signal 2014; 8:147-56. [PMID: 24464300 DOI: 10.1007/s12079-014-0220-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/03/2014] [Indexed: 12/11/2022] Open
Abstract
Pancreatitis is an inflammatory condition of the pancreas which, in its chronic form, involves tissue destruction, exocrine and endocrine insufficiency, increased risk of pancreatic cancer, and an extensive fibrotic pathology which is due to unrelenting collagen deposition by pancreatic stellate cells (PSC). In response to noxious agents such as alcohol-excessive consumption of which is a major cause of pancreatitis in the West-normally quiescent PSC undergo a phenotypic and functional transition to activated myofibroblasts which produce and deposit collagen at high levels. This process is regulated by connective tissue growth factor (CCN2), expression of which is highly up-regulated in activated PSC. We show that CCN2 production by activated PSC is associated with enhanced expression of microRNA-21 (miR-21) which was detected at high levels in activated PSC in a murine model of alcoholic chronic pancreatitis. A positive feedback loop between CCN2 and miR-21 was identified that resulted in enhancement of their respective expression as well as that of collagen α1(I). Both miR-21 and CCN2 mRNA were present in PSC-derived exosomes, which were characterized as 50-150 nm CD9-positive nano-vesicles. Exosomes from CCN2-GFP- or miR-21-GFP-transfected PSC were taken up by other PSC cultures, as shown by direct fluorescence or qRT-PCR for GFP. Collectively these studies establish miR-21 and CCN2 as participants in a positive feedback loop during PSC activation and as components of the molecular payload in PSC-derived exosomes that can be delivered to other PSC. Thus interactions between cellular or exosomal miR-21 and CCN2 represent novel aspects of fibrogenic regulation in PSC. Summary Chronic injury in the pancreas is associated with fibrotic pathology which is driven in large part by CCN2-dependent collagen production in pancreatic stellate cells. This study shows that CCN2 up-regulation in PSC is associated with increased expression of miR-21 which, in turn, is able to stimulate CCN2 expression further via a positive feedback loop. Additionally miR-21 and CCN2 were identified in PSC-derived exosomes which effected their delivery to other PSC. The cellular and exosomal miR-21-CCN2 axis is a novel component in PSC fibrogenic signaling.
Collapse
Affiliation(s)
- Alyssa Charrier
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | | | | | | | | | | | | |
Collapse
|
481
|
Lee HD, Kim YH, Kim DS. Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking. Eur J Immunol 2014; 44:1156-69. [DOI: 10.1002/eji.201343660] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 11/08/2013] [Accepted: 12/09/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Hee Doo Lee
- Department of Biochemistry; College of Life Science and Biotechnology; Yonsei University; Seoul Korea
| | - Yeon Hyang Kim
- Department of Biochemistry; College of Life Science and Biotechnology; Yonsei University; Seoul Korea
| | - Doo-Sik Kim
- Department of Biochemistry; College of Life Science and Biotechnology; Yonsei University; Seoul Korea
| |
Collapse
|
482
|
Sozzi G, Boeri M, Rossi M, Verri C, Suatoni P, Bravi F, Roz L, Conte D, Grassi M, Sverzellati N, Marchiano A, Negri E, La Vecchia C, Pastorino U. Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J Clin Oncol 2014; 32:768-73. [PMID: 24419137 DOI: 10.1200/jco.2013.50.4357] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Recent screening trial results indicate that low-dose computed tomography (LDCT) reduces lung cancer mortality in high-risk patients. However, high false-positive rates, costs, and potential harms highlight the need for complementary biomarkers. The diagnostic performance of a noninvasive plasma microRNA signature classifier (MSC) was retrospectively evaluated in samples prospectively collected from smokers within the randomized Multicenter Italian Lung Detection (MILD) trial. PATIENTS AND METHODS Plasma samples from 939 participants, including 69 patients with lung cancer and 870 disease-free individuals (n = 652, LDCT arm; n = 287, observation arm) were analyzed by using a quantitative reverse transcriptase polymerase chain reaction-based assay for MSC. Diagnostic performance of MSC was evaluated in a blinded validation study that used prespecified risk groups. RESULTS The diagnostic performance of MSC for lung cancer detection was 87% for sensitivity and 81% for specificity across both arms, and 88% and 80%, respectively, in the LDCT arm. For all patients, MSC had a negative predictive value of 99% and 99.86% for detection and death as a result of disease, respectively. LDCT had sensitivity of 79% and specificity of 81% with a false-positive rate of 19.4%. Diagnostic performance of MSC was confirmed by time dependency analysis. Combination of both MSC and LDCT resulted in a five-fold reduction of LDCT false-positive rate to 3.7%. MSC risk groups were significantly associated with survival (χ1(2) = 49.53; P < .001). CONCLUSION This large validation study indicates that MSC has predictive, diagnostic, and prognostic value and could reduce the false-positive rate of LDCT, thus improving the efficacy of lung cancer screening.
Collapse
Affiliation(s)
- Gabriella Sozzi
- Gabriella Sozzi, Mattia Boeri, Carla Verri, Paola Suatoni, Luca Roz, Davide Conte, Michela Grassi, Tumor Genomics Unit; Ugo Pastorino, Thoracic Surgery Unit; Alfonso Marchiano, Radiology Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Nazionale dei Tumori; Marta Rossi, Francesca Bravi, Eva Negri, Carlo La Vecchia, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri"; Francesca Bravi and Carlo La Vecchia, University of Milan, Milan; and Nicola Sverzellati, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
483
|
Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2014; 12:847-65. [PMID: 24172333 DOI: 10.1038/nrd4140] [Citation(s) in RCA: 1146] [Impact Index Per Article: 104.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first cancer-targeted microRNA (miRNA) drug - MRX34, a liposome-based miR-34 mimic - entered Phase I clinical trials in patients with advanced hepatocellular carcinoma in April 2013, and miRNA therapeutics are attracting special attention from both academia and biotechnology companies. Although miRNAs are the most studied non-coding RNAs (ncRNAs) to date, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognized. Here, we summarize the roles of miRNAs and lncRNAs in cancer, with a focus on the recently identified novel mechanisms of action, and discuss the current strategies in designing ncRNA-targeting therapeutics, as well as the associated challenges.
Collapse
Affiliation(s)
- Hui Ling
- 1] Experimental Therapeutics and Leukemia Department, MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA. [2]
| | | | | |
Collapse
|
484
|
Pinatel EM, Orso F, Penna E, Cimino D, Elia AR, Circosta P, Dentelli P, Brizzi MF, Provero P, Taverna D. miR-223 is a coordinator of breast cancer progression as revealed by bioinformatics predictions. PLoS One 2014; 9:e84859. [PMID: 24400121 PMCID: PMC3882278 DOI: 10.1371/journal.pone.0084859] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 11/28/2013] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are single-stranded non-coding RNAs that simultaneously down-modulate the expression of multiple genes post-transcriptionally by binding to the 3'UTRs of target mRNAs. Here we used computational methods to predict microRNAs relevant in breast cancer progression. Specifically, we applied different microRNA target prediction algorithms to various groups of differentially expressed protein-coding genes obtained from four breast cancer datasets. Six potential candidates were identified, among them miR-223, previously described to be highly expressed in the tumor microenvironment and known to be actively transferred into breast cancer cells. To investigate the function of miR-223 in tumorigenesis and to define its molecular mechanism, we overexpressed miR-223 in breast cancer cells in a transient or stable manner. Alternatively we overexpressed miR-223 in mouse embryonic fibroblasts or HEK293 cells and used their conditioned medium to treat tumor cells. With both approaches, we obtained elevated levels of miR-223 in tumor cells and observed decreased migration, increased cell death in anoikis conditions and augmented sensitivity to chemotherapy but no effect on adhesion and proliferation. The analysis of miR-223 predicted targets revealed enrichment in cell death and survival-related genes and in pathways frequently altered in breast cancer. Among these genes, we showed that protein levels for STAT5A, ITGA3 and NRAS were modulated by miR-223. In addition, we proved that STAT5A is a direct miR-223 target and highlighted a possible correlation between miR-223 and STAT5A in migration and chemotherapy response. Our investigation revealed that a computational analysis of cancer gene expression datasets can be a relevant tool to identify microRNAs involved in cancer progression and that miR-223 has a prominent role in breast malignancy that could potentially be exploited therapeutically.
Collapse
Affiliation(s)
- Eva Maria Pinatel
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesca Orso
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Center for Molecular Systems Biology, University of Torino, Torino, Italy
| | - Elisa Penna
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Daniela Cimino
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Center for Molecular Systems Biology, University of Torino, Torino, Italy
| | - Angela Rita Elia
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
| | - Paola Circosta
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
| | | | | | - Paolo Provero
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Center for Molecular Systems Biology, University of Torino, Torino, Italy
- * E-mail:
| |
Collapse
|
485
|
Shi M, Xie D, Gaod Y, Xie K. Targeting miRNAs for pancreatic cancer therapy. Curr Pharm Des 2014; 20:5279-5286. [PMID: 24479803 PMCID: PMC4113604 DOI: 10.2174/1381612820666140128210443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/28/2014] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer-related deaths in the United States and has a median 5-year survival rate less than 5%. Although surgery offers the best chance for a cure for pancreatic cancer, less than 20% of patients are eligible for potentially curative resection, because in most cases, the cancer has already spread locally or to distant organs at diagnosis, precluding resection. MicroRNAs (miRNAs) are small noncoding, endogenous, single-stranded RNAs that are pivotal regulators of posttranscriptional gene expression. Extensive studies of miRNAs over the past several years have revealed that the expression of miRNAs is frequently deregulated in pancreatic cancer patients and that this deregulation contributes to the pathogenesis and aggressiveness of the disease. Currently, investigators are studying the use of miRNAs as diagnostic and/or prognostic biomarkers and therapeutic tools for pancreatic cancer. Rapid discovery of many miRNA targets and their relevant pathways has contributed to the development of miRNA-based therapeutics. In particular, the transcription factor Forkhead box M1 (FOXM1) is overexpressed in the majority of cancer patients, including those with pancreatic cancer. This overexpression is implicated to have a role in tumorigenesis, progression, and metastasis. This important role of FOXM1 affirms its usefulness in therapeutic interventions for pancreatic cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of miRNAs and FOXM1 in pancreatic cancer development and describe the roles of the miRNA-FOXM1 signaling pathway in pancreatic cancer initiation and progression. Additionally, we describe some of the technical challenges in the use of the miRNA-FOXM1 signaling pathway in pancreatic cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
486
|
Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, Kim YG, Jang JY, Kim CW. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 2013; 8:e84256. [PMID: 24391924 PMCID: PMC3877259 DOI: 10.1371/journal.pone.0084256] [Citation(s) in RCA: 483] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 11/13/2013] [Indexed: 12/15/2022] Open
Abstract
Exosomes are small membrane vesicles released by a variety of cell types. Exosomes contain genetic materials, such as mRNAs and microRNAs (miRNAs), implying that they may play a pivotal role in cell-to-cell communication. Mesenchymal stem cells (MSCs), which potentially differentiate into multiple cell types, can migrate to the tumor sites and have been reported to exert complex effects on tumor progression. To elucidate the role of MSCs within the tumor microenvironment, previous studies have suggested various mechanisms such as immune modulation and secreted factors of MSCs. However, the paracrine effects of MSC-derived exosomes on the tumor microenvironment remain to be explored. The hypothesis of this study was that MSC-derived exosomes might reprogram tumor behavior by transferring their molecular contents. To test this hypothesis, exosomes from MSCs were isolated and characterized. MSC-derived exosomes exhibited different protein and RNA profiles compared with their donor cells and these vesicles could be internalized by breast cancer cells. The results demonstrated that MSC-derived exosomes significantly down-regulated the expression of vascular endothelial growth factor (VEGF) in tumor cells, which lead to inhibition of angiogenesis in vitro and in vivo. Additionally, miR-16, a miRNA known to target VEGF, was enriched in MSC-derived exosomes and it was partially responsible for the anti-angiogenic effect of MSC-derived exosomes. The collective results suggest that MSC-derived exosomes may serve as a significant mediator of cell-to-cell communication within the tumor microenvironment and suppress angiogenesis by transferring anti-angiogenic molecules.
Collapse
Affiliation(s)
- Jong-Kuen Lee
- Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sae-Ra Park
- Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Bong-Kwang Jung
- Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon-Kyung Jeon
- Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Yeong-Shin Lee
- Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Min-Kyoung Kim
- Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Yong-Goo Kim
- Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji-Young Jang
- Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Chul-Woo Kim
- Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
487
|
Garzetti L, Menon R, Finardi A, Bergami A, Sica A, Martino G, Comi G, Verderio C, Farina C, Furlan R. Activated macrophages release microvesicles containing polarized M1 or M2 mRNAs. J Leukoc Biol 2013; 95:817-825. [DOI: 10.1189/jlb.0913485] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 12/20/2022] Open
|
488
|
Mao Y, Keller ET, Garfield DH, Shen K, Wang J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 2013; 32:303-15. [PMID: 23114846 DOI: 10.1007/s10555-012-9415-3] [Citation(s) in RCA: 517] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a systemic disease encompassing multiple components of both tumor cells themselves and host stromal cells. It is now clear that stromal cells in the tumor microenvironment play an important role in cancer development. Molecular events through which reactive stromal cells affect cancer cells can be defined so that biomarkers and therapeutic targets can be identified. Cancer-associated fibroblasts (CAFs) make up the bulk of cancer stroma and affect the tumor microenvironment such that they promote cancer initiation, angiogenesis, invasion, and metastasis. In breast cancer, CAFs not only promote tumor progression but also induce therapeutic resistance. Accordingly, targeting CAFs provides a novel way to control tumors with therapeutic resistance. This review summarizes the current understandings of tumor stroma in breast cancer with a particular emphasis on the role of CAFs and the therapeutic implications of CAFs. In addition, the effects of other stromal components such as endothelial cells, macrophages, and adipocytes in breast cancer are also discussed. Finally, we describe the biologic markers to categorize patients into a specific and confirmed subtype for personalized treatment.
Collapse
Affiliation(s)
- Yan Mao
- Shanghai Ruijin Hospital, Comprehensive Breast Health Center, Shanghai, China
| | | | | | | | | |
Collapse
|
489
|
Abstract
Trafficking of biological material across membranes is an evolutionary conserved mechanism and is part of any normal cell homeostasis. Such transport is composed of active, passive, export through microparticles, and vesicular transport (exosomes) that collectively maintain proper compartmentalization of important micro- and macromolecules. In pathological states, such as cancer, aberrant activity of the export machinery results in expulsion of a number of key proteins and microRNAs resulting in their misexpression. Exosome-mediated expulsion of intracellular drugs could be another barrier in the proper action of most of the commonly used therapeutics, targeted agents, and their intracellular metabolites. Over the last decade, a number of studies have revealed that exosomes cross-talk and/or influence major tumor-related pathways, such as hypoxia-driven epithelial-to-mesenchymal transition, cancer stemness, angiogenesis, and metastasis involving many cell types within the tumor microenvironment. Emerging evidence suggests that exosome-secreted proteins can also propel fibroblast growth, resulting in desmoplastic reaction, a major barrier in effective cancer drug delivery. This comprehensive review highlights the advancements in the understanding of the biology of exosomes secretions and the consequence on cancer drug resistance. We propose that the successful combination of cancer treatments to tackle exosome-mediated drug resistance requires an interdisciplinary understanding of these cellular exclusion mechanisms, and how secreted biomolecules are involved in cellular cross-talk within the tumor microenvironment.
Collapse
Affiliation(s)
- Asfar S. Azmi
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Bin Bao
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Fazlul H. Sarkar
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| |
Collapse
|
490
|
Canfrán-Duque A, Pastor Ó, Quintana-Portillo R, Lerma M, de la Peña G, Martín-Hidalgo A, Fernández-Hernando C, Lasunción MA, Busto R. Curcumin promotes exosomes/microvesicles secretion that attenuates lysosomal cholesterol traffic impairment. Mol Nutr Food Res 2013; 58:687-97. [DOI: 10.1002/mnfr.201300350] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/10/2013] [Accepted: 09/20/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Alberto Canfrán-Duque
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
| | - Óscar Pastor
- Servicio de Bioquímica-Clínica; Hospital Universitario Ramón y Cajal; IRyCIS; Madrid Spain
| | - Rocío Quintana-Portillo
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
| | - Milagros Lerma
- Servicio de Bioquímica-Clínica; Hospital Universitario Ramón y Cajal; IRyCIS; Madrid Spain
| | - Gema de la Peña
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
| | - Antonia Martín-Hidalgo
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn); ISCIII; Spain
| | - Carlos Fernández-Hernando
- Marc and Ruti Bell Vascular Biology and Disease Program; Leon H. Charney Division of Cardiology; Departments of Medicine and Cell Biology; New York University School of Medicine; New York NY USA
| | - Miguel A. Lasunción
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn); ISCIII; Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn); ISCIII; Spain
| |
Collapse
|
491
|
MicroRNAs delivered by extracellular vesicles: an emerging resistance mechanism for breast cancer. Tumour Biol 2013; 35:2883-92. [DOI: 10.1007/s13277-013-1417-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/12/2013] [Indexed: 12/30/2022] Open
|
492
|
Liang H, Gong F, Zhang S, Zhang CY, Zen K, Chen X. The origin, function, and diagnostic potential of extracellular microRNAs in human body fluids. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:285-300. [DOI: 10.1002/wrna.1208] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/26/2013] [Accepted: 10/29/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Hongwei Liang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences; Nanjing University; Nanjing China
| | - Fei Gong
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences; Nanjing University; Nanjing China
| | - Suyang Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences; Nanjing University; Nanjing China
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences; Nanjing University; Nanjing China
| | - Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences; Nanjing University; Nanjing China
| | - Xi Chen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences; Nanjing University; Nanjing China
| |
Collapse
|
493
|
Hua L, Li L, Zhou P. Identifying breast cancer subtype related miRNAs from two constructed miRNAs interaction networks in silico method. BIOMED RESEARCH INTERNATIONAL 2013; 2013:798912. [PMID: 24350289 PMCID: PMC3853436 DOI: 10.1155/2013/798912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/29/2013] [Accepted: 10/04/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND It has been known that microRNAs (miRNAs) regulate the expression of multiple proteins and therefore are likely to emerge as more effective targets of selective therapeutic modalities for breast cancer. Although recent lines of evidence have approved that miRNAs are associated with the most common molecular breast cancer subtypes, the studies to breast cancer subtypes have not been well characterized. OBJECTIVES In this study, we propose a silico method to identify breast cancer subtype related miRNAs based on two constructed miRNAs interaction networks using miRNA-mRNA dual expression profiling data arising from the same samples. METHODS Firstly, we used a new mutual information estimation method to construct two miRNAs interaction networks based on miRNA-mRNA dual expression profiling data. Secondly, we compared and analyzed the topological properties of these two networks. Finally, miRNAs showing the outstanding topological properties in both of the two networks were identified. Results. Further functional analysis and literature evidence confirm that the identified potential breast cancer subtype related miRNAs are essential to unraveling their biological function. CONCLUSIONS This study provides a new silico method to predict candidate miRNAs of breast cancer subtype from a system biology level and can help exploit for functional studies of important breast cancer subtype related miRNAs.
Collapse
Affiliation(s)
- Lin Hua
- Biomedical Engineering Institute of Capital Medical University, Beijing 100069, China
| | - Lin Li
- Biomedical Engineering Institute of Capital Medical University, Beijing 100069, China
| | - Ping Zhou
- Biomedical Engineering Institute of Capital Medical University, Beijing 100069, China
| |
Collapse
|
494
|
Zöller M. Pancreatic cancer diagnosis by free and exosomal miRNA. World J Gastrointest Pathophysiol 2013; 4:74-90. [PMID: 24340225 PMCID: PMC3858795 DOI: 10.4291/wjgp.v4.i4.74] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 08/01/2013] [Accepted: 09/18/2013] [Indexed: 02/06/2023] Open
Abstract
Patients with pancreatic adenocarcinoma (PaCa) have a dismal prognosis. This is in part due to late diagnosis prohibiting surgical intervention, which provides the only curative option as PaCa are mostly chemo- and radiation resistance. Hope is raised on a reliable non-invasive/minimally invasive diagnosis that is still missing. Recently two diagnostic options are discussed, serum MicroRNA (miRNA) and serum exosomes. Serum miRNA can be free or vesicle-, particularly, exosomes-enclosed. This review will provide an overview on the current state of the diagnostic trials on free serum miRNA and proceed with an introduction of exosomes that use as a diagnostic tool in serum and other body fluids has not received sufficient attention, although serum exosome miRNA in combination with protein marker expression likely will increase the diagnostic and prognostic power. By their crosstalk with host cells, which includes binding-initiated signal transduction, as well as reprogramming target cells via the transfer of proteins, mRNA and miRNA exosomes are suggested to become a most powerful therapeutics. I will discuss which hurdles have still to be taken as well as the different modalities, which can be envisaged to make therapeutic use of exosomes. PaCa are known to most intensely crosstalk with the host as apparent by desmoplasia and frequent paraneoplastic syndromes. Thus, there is hope that the therapeutic application of exosomes brings about a major breakthrough.
Collapse
|
495
|
Kinet V, Halkein J, Dirkx E, Windt LJD. Cardiovascular extracellular microRNAs: emerging diagnostic markers and mechanisms of cell-to-cell RNA communication. Front Genet 2013; 4:214. [PMID: 24273550 PMCID: PMC3824095 DOI: 10.3389/fgene.2013.00214] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/04/2013] [Indexed: 02/03/2023] Open
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality in Western societies. It is now well established that microRNAs (miRNAs) are determinant regulators in various medical conditions including cardiovascular diseases. The recent discovery that miRNAs, while associated with different carriers, can be exported out of the cell, has triggered a renewed interest to analyze the potential to use extracellular miRNAs as tools for diagnostic and therapeutic studies. Circulating miRNAs in biological fluids present a technological advantage compared to current diagnostic tools by virtue of their remarkable stability and relative ease of detection rendering them ideal tools for non-invasive and rapid diagnosis. Extracellular miRNAs also represent a novel form of inter-cellular communication by transferring genetic information from a donor cell to a recipient cell. This review briefly summarizes recent insights in the origin, function and diagnostic potential of extracellular miRNAs by focusing on a select number of cardiovascular diseases.
Collapse
Affiliation(s)
- Virginie Kinet
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases, Maastricht University Maastricht, Netherlands
| | | | | | | |
Collapse
|
496
|
Salomon C, Kobayashi M, Ashman K, Sobrevia L, Mitchell MD, Rice GE. Hypoxia-induced changes in the bioactivity of cytotrophoblast-derived exosomes. PLoS One 2013; 8:e79636. [PMID: 24244532 PMCID: PMC3823597 DOI: 10.1371/journal.pone.0079636] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/04/2013] [Indexed: 01/09/2023] Open
Abstract
Migration of extravillous trophoblasts (EVT) into decidua and myometrium is a critical process in the conversion of maternal spiral arterioles and establishing placenta perfusion. EVT migration is affected by cell-to-cell communication and oxygen tension. While the release of exosomes from placental cells has been identified as a significant pathway in materno-fetal communication, the role of placental-derived exosomes in placentation has yet to be established. The aim of this study was to establish the effect of oxygen tension on the release and bioactivity of cytotrophoblast (CT)-derived exosomes on EVT invasion and proliferation. CT were isolated from first trimester fetal tissue (n = 12) using a trypsin-deoxyribonuclease-dispase/Percoll method. CT were cultured under 8%, 3% or 1% O2 for 48 h. Exosomes from CT-conditioned media were isolated by differential and buoyant density centrifugation. The effect of oxygen tension on exosome release (µg exosomal protein/10(6)cells/48 h) and bioactivity were established. HTR-8/SVneo (EVT) were used as target cells to establish the effect (bioactivity) of exosomes on invasion and proliferation as assessed by real-time, live-cell imaging (Incucyte™). The release and bioactivity of CT-derived exosomes were inversely correlated with oxygen tension (p<0.001). Under low oxygen tensions (i.e. 1% O2), CT-derived exosomes promoted EVT invasion and proliferation. Proteomic analysis of exosomes identified oxygen-dependent changes in protein content. We propose that in response to changes in oxygen tension, CTs modify the bioactivity of exosomes, thereby, regulating EVT phenotype. Exosomal induction of EVT migration may represent a normal process of placentation and/or an adaptive response to placental hypoxia.
Collapse
Affiliation(s)
- Carlos Salomon
- Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Brisbane, Australia
- * E-mail:
| | - Miharu Kobayashi
- Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Keith Ashman
- Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Luis Sobrevia
- Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Brisbane, Australia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Murray D. Mitchell
- Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Gregory E. Rice
- Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Brisbane, Australia
| |
Collapse
|
497
|
Lopes-Rodrigues V, Seca H, Sousa D, Sousa E, Lima RT, Vasconcelos MH. The network of P-glycoprotein and microRNAs interactions. Int J Cancer 2013; 135:253-63. [PMID: 24122334 DOI: 10.1002/ijc.28500] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/13/2013] [Indexed: 12/21/2022]
Abstract
Overexpression of P-glycoprotein (P-gp) contributes to the multidrug resistance (MDR) phenotype found in many cancer cells. P-gp has been identified as a promising molecular target, although attempts to find successful therapies to counteract its function as a drug efflux pump have largely failed to date. Apart from its role in drug efflux, P-gp may have other cellular functions such as being involved in apoptosis, and is found in various locations in the cell. Its expression is highly regulated, namely by microRNAs (miRNAs or miRs). In addition, P-gp may regulate the expression of miRs in the cell. Furthermore, both P-gp and miRs may be found in microvesicles or exosomes and may be transported to neighboring, drug-sensitive cells. Here, we review this current issue together with recent evidence of this network of interactions between P-gp and miRs.
Collapse
Affiliation(s)
- Vanessa Lopes-Rodrigues
- Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology of the University of Porto, IPATIMUP, Porto, Portugal; Center of Medicinal Chemistry of the University of Porto, CEQUIMED-UP, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, ICBAS-UP, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
498
|
Zhang Y, Yang P, Wang XF. Microenvironmental regulation of cancer metastasis by miRNAs. Trends Cell Biol 2013; 24:153-60. [PMID: 24125906 DOI: 10.1016/j.tcb.2013.09.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/19/2022]
Abstract
miRNAs are a class of small, non-coding RNAs that regulate cancer progression, especially the processes of invasion and metastasis. Although earlier studies in metastasis primarily focused on the impact that miRNAs have on the intrinsic properties of cancer cells, recent reports reveal that miRNAs also shape interactions between cancer cells and their associated stroma. In this review, we discuss current known mechanisms by which miRNAs execute their microenvironmental regulation of cancer metastasis, including regulating expression of cell membrane-bound and secreted proteins or directly transmitting mature miRNAs between different cell types. The significance of miRNA-mediated tumor-stroma interactions in regulating metastasis suggests that miRNAs may be a potential therapeutic target.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pengyuan Yang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
499
|
Shi M, Cui J, Xie K. Signaling of miRNAs-FOXM1 in cancer and potential targeted therapy. Curr Drug Targets 2013; 14:1192-1202. [PMID: 23834153 PMCID: PMC4081534 DOI: 10.2174/13894501113149990192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022]
Abstract
The transcription factor Forkhead box protein M1 (FOXM1) is overexpressed in the majority of cancer patients. This overexpression is implicated to play a role in the pathogenesis, progression, and metastasis of cancer. This important role of FOXM1 demonstrates its significance to cancer therapy. MicroRNAs (miRNAs) are small noncoding, endogenous, single-stranded RNAs that are pivotal posttranscriptional gene expression regulators. MiRNAs aberrantly expressed in cancer cells have important roles in tumorigenesis and progression. Currently, miRNAs are being studied as diagnostic and prognostic biomarkers and therapeutic tools for cancer. The rapid discovery of many target miRNAs and their relevant pathways has contributed to the development of miRNA-based therapeutics for cancer. In this review, we summarize the latest and most significant findings on FOXM1 and miRNA involvement in cancer development and describe the role/roles of miRNA/FOXM1 signaling pathways in cancer initiation and progression. Targeting FOXM1 via regulation of miRNA expression may have a role in cancer treatment, although the miRNA delivery method remains the key challenge to the establishment of this novel therapy.
Collapse
Affiliation(s)
- Min Shi
- Department of Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital, Shanghai, People's Republic of China
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiujie Cui
- Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, People's Republic of China
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
500
|
Abstract
Expression of the microRNA miR-223 is deregulated during influenza or hepatitis B infection and in inflammatory bowel disease, type 2 diabetes, leukaemia and lymphoma. Although this may also be the result of the disease per se, increasing evidence suggests a role for miR-223 in limiting inflammation to prevent collateral damage during infection and in preventing oncogenic myeloid transformation. Validated targets for miR-223 that have effects on inflammation and infection include granzyme B, IKKα, Roquin and STAT3. With regard to cancer, validated targets include C/EBPβ, E2F1, FOXO1 and NFI-A. The effect of miR-223 on these targets has been documented individually; however, it is more likely that miR-223 affects multiple targets simultaneously for key processes where the microRNA is important. Such processes include haematopoietic cell differentiation, particularly towards the granulocyte lineage (where miR-223 is abundant) and as cells progress down the myeloid lineage (where miR-223 expression decreases). NF-κB and the NLRP3 inflammasome are important inflammatory mechanisms that are dampened by miR-223 in these cell types. The miRNA can also directly target viruses such as HIV, leading to synergistic effects during infection. Here we review the recent studies of miR-223 function to show how it modulates inflammation, infection and cancer development.
Collapse
Affiliation(s)
- M Haneklaus
- Inflammation Research Group and Immunology Research Centre, School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | | | | | | |
Collapse
|