451
|
Khalyfa A, Kheirandish-Gozal L, Gozal D. Circulating exosomes in obstructive sleep apnea as phenotypic biomarkers and mechanistic messengers of end-organ morbidity. Respir Physiol Neurobiol 2017; 256:143-156. [PMID: 28676332 DOI: 10.1016/j.resp.2017.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023]
Abstract
Obstructive sleep apnea (OSA), the most severe form of sleep disordered breathing, is characterized by intermittent hypoxia during sleep (IH), sleep fragmentation, and episodic hypercapnia. OSA is associated with increased risk for morbidity and mortality affecting cardiovascular, metabolic, and neurocognitive systems, and more recently with non-alcoholic fatty liver disease (NAFLD) and cancer-related deaths. Substantial variability in OSA outcomes suggests that genetically-determined and environmental and lifestyle factors affect the phenotypic susceptibility to OSA. Furthermore, OSA and obesity often co-exist and manifest activation of shared molecular end-organ injury mechanisms that if properly identified may represent potential therapeutic targets. A challenge in the development of non-invasive diagnostic assays in body fluids is the ability to identify clinically relevant biomarkers. Circulating extracellular vesicles (EVs) include a heterogeneous population of vesicular structures including exosomes, prostasomes, microvesicles (MVs), ectosomes and oncosomes, and are classified based on their size, shape and membrane surface composition. Of these, exosomes (30-100nm) are very small membrane vesicles derived from multi-vesicular bodies or from the plasma membrane and play important roles in mediating cell-cell communication via cargo that includes lipids, proteins, mRNAs, miRNAs and DNA. We have recently identified a unique cluster of exosomal miRNAs in both humans and rodents exposed to intermittent hypoxia as well as in patients with OSA with divergent morbid phenotypes. Here we summarize such recent findings, and will focus on exosomal miRNAs in both adult and children which mediate intercellular communication relevant to OSA and endothelial dysfunction, and their potential value as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA.
| | - Leila Kheirandish-Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
452
|
Leyns CEG, Holtzman DM. Glial contributions to neurodegeneration in tauopathies. Mol Neurodegener 2017; 12:50. [PMID: 28662669 PMCID: PMC5492997 DOI: 10.1186/s13024-017-0192-x] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023] Open
Abstract
Tauopathies are a broad set of neurodegenerative dementias characterized by aggregation of the tau protein into filamentous inclusions that can be found in neurons and glial cells. Activated microglia, astrocytes and elevated levels of proinflammatory molecules are also pathological hallmarks that are found in brain regions affected by tau pathology. There has been abundant research in recent years to understand the role of gliosis and neuroinflammation in neurodegenerative diseases, particularly in Alzheimer's disease (AD) which is the most common form of dementia. AD is a tauopathy characterized by both extracellular amyloid-β plaques in addition to intracellular neurofibrillary tangles and neuropil threads containing aggregated tau protein. Accumulating evidence suggests that neuroinflammation offers a possible mechanistic link between these pathologies. Additionally, there appears to be a role for neuroinflammation in aggravating tau pathology and neurodegeneration in tauopathies featuring tau deposits as the predominant pathological signature. In this review, we survey the literature regarding inflammatory mechanisms that may impact neurodegeneration in AD and related tauopathies. We consider a physical role for microglia in the spread of tau pathology as well as the non-cell autonomous effects of secreted proinflammatory cytokines, specifically interleukin 1 beta, interleukin 6, tumor necrosis factor alpha and complement proteins. These molecules appear to have direct effects on tau pathophysiology and overall neuronal health. They also indirectly impact neuronal homeostasis by altering glial function. We conclude by proposing a complex role for gliosis and neuroinflammation in accelerating the progression of AD and other tauopathies.
Collapse
Affiliation(s)
- Cheryl E. G. Leyns
- Department of Neurology, Washington University, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, Washington University, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| |
Collapse
|
453
|
Abstract
The release of membrane-bound vesicles from cells is being increasingly recognized as a mechanism of intercellular communication. Extracellular vesicles (EVs) or exosomes are produced by virus-infected cells and are thought to be involved in intercellular communication between infected and uninfected cells. Viruses, in particular oncogenic viruses and viruses that establish chronic infections, have been shown to modulate the production and content of EVs. Viral microRNAs, proteins and even entire virions can be incorporated into EVs, which can affect the immune recognition of viruses or modulate neighbouring cells. In this Review, we discuss the roles that EVs have during viral infection to either promote or restrict viral replication in target cells. We will also discuss our current understanding of the molecular mechanisms that underlie these roles, the potential consequences for the infected host and possible future diagnostic applications.
Collapse
|
454
|
Willis CM, Ménoret A, Jellison ER, Nicaise AM, Vella AT, Crocker SJ. A Refined Bead-Free Method to Identify Astrocytic Exosomes in Primary Glial Cultures and Blood Plasma. Front Neurosci 2017; 11:335. [PMID: 28663721 PMCID: PMC5471332 DOI: 10.3389/fnins.2017.00335] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/29/2017] [Indexed: 01/05/2023] Open
Abstract
Astrocytes are the most abundant glial cell type in the central nervous system (CNS) and are known to fulfill critical homeostatic functions. Dysfunction of activated astrocytes is also known to participate in the development of several neurological diseases. Astrocytes can be uniquely identified by expression of the intermediate filament protein glial acidic fibrillary protein (GFAP). Herein, we report on the development of a rigorous and sensitive methodology to identify GFAP+ exosomes in primary culture using flow cytometry. We then demonstrate that activated astrocytes release increased amounts of exosomes in response to treatment with interleukin-1β. Using this methodology, we report the identification of GFAP+ exosomes in blood and then use a mouse model of inflammatory demyelination, experimental autoimmune encephalomyelitis (EAE), to examine whether the abundance of GFAP+ exosomes in blood circulation changes during clinical illness. We find a detectable increase in the presence of GFAP+ exosomes in EAE mice when compared with non-EAE, control mice. Our data provide a novel perspective on the presence of GFAP in blood as it identifies exosomes as potential astrocyte-derived signals within blood. These data are complementary to previous clinical studies that reported elevated GFAP protein in blood samples from multiple sclerosis (MS) patients during a clinical relapse. These data also reveal the existence of a potential systemic role for astrocyte-derived exosomes in CNS conditions involving inflammation such as multiple sclerosis.
Collapse
Affiliation(s)
- Cory M Willis
- Departments of Neuroscience, University of Connecticut School of MedicineFarmington, CT, United States
| | - Antoine Ménoret
- Departments of Immunology, University of Connecticut School of MedicineFarmington, CT, United States
| | - Evan R Jellison
- Departments of Immunology, University of Connecticut School of MedicineFarmington, CT, United States
| | - Alexandra M Nicaise
- Departments of Neuroscience, University of Connecticut School of MedicineFarmington, CT, United States
| | - Anthony T Vella
- Departments of Immunology, University of Connecticut School of MedicineFarmington, CT, United States
| | - Stephen J Crocker
- Departments of Neuroscience, University of Connecticut School of MedicineFarmington, CT, United States
| |
Collapse
|
455
|
Pinto S, Cunha C, Barbosa M, Vaz AR, Brites D. Exosomes from NSC-34 Cells Transfected with hSOD1-G93A Are Enriched in miR-124 and Drive Alterations in Microglia Phenotype. Front Neurosci 2017; 11:273. [PMID: 28567000 PMCID: PMC5434170 DOI: 10.3389/fnins.2017.00273] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disorder affecting motor neurons (MNs). Evidences indicate that ALS is a non-cell autonomous disease in which glial cells participate in both disease onset and progression. Exosomal transfer of mutant copper-zinc superoxide dismutase 1 (mSOD1) from cell-to-cell was suggested to contribute to disease dissemination. Data from our group and others showed that exosomes from activated cells contain inflammatory-related microRNAs (inflamma-miRNAs) that recapitulate the donor cell. While glia-derived exosomes and their effects in neurons have been addressed by several studies, only a few investigated the influence of motor neuron (MN)-derived exosomes in other cell function, the aim of the present study. We assessed a set of inflamma-miRs in NSC-34 MN-like cells transfected with mutant SOD1(G93A) and extended the study into their derived exosomes (mSOD1 exosomes). Then, the effects produced by mSOD1 exosomes in the activation and polarization of the recipient N9 microglial cells were investigated. Exosomes in coculture with N9 microglia and NSC-34 cells [either transfected with either wild-type (wt) human SOD1 or mutant SOD1(G93A)] showed to be transferred into N9 cells. Increased miR-124 expression was found in mSOD1 NSC-34 cells and in their derived exosomes. Incubation of mSOD1 exosomes with N9 cells determined a sustained 50% reduction in the cell phagocytic ability. It also caused a persistent NF-kB activation and an acute generation of NO, MMP-2, and MMP-9 activation, as well as upregulation of IL-1β, TNF-α, MHC-II, and iNOS gene expression, suggestive of induced M1 polarization. Marked elevation of IL-10, Arginase 1, TREM2, RAGE, and TLR4 mRNA levels, together with increased miR-124, miR-146a, and miR-155, at 24 h incubation, suggest the switch to mixed M1 and M2 subpopulations in the exosome-treated N9 microglial cells. Exosomes from mSOD1 NSC-34 MNs also enhanced the number of senescent-like positive N9 cells. Data suggest that miR-124 is translocated from the mSOD1 MNs to exosomes, which determine early and late phenotypic alterations in the recipient N9-microglial cells. In conclusion, modulation of the inflammatory-associated miR-124, in mSOD1 NSC-34 MNs, with potential benefits in the cargo of their exosomes may reveal a promising therapeutic strategy in halting microglia activation and associated effects in MN degeneration.
Collapse
Affiliation(s)
- Sara Pinto
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Carolina Cunha
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Marta Barbosa
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Ana R Vaz
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Dora Brites
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
456
|
Heusermann W, Hean J, Trojer D, Steib E, von Bueren S, Graff-Meyer A, Genoud C, Martin K, Pizzato N, Voshol J, Morrissey DV, Andaloussi SEL, Wood MJ, Meisner-Kober NC. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol 2017; 213:173-84. [PMID: 27114500 PMCID: PMC5084269 DOI: 10.1083/jcb.201506084] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 03/09/2016] [Indexed: 12/19/2022] Open
Abstract
Exosomes are nanovesicles released by virtually all cells, which act as intercellular messengers by transfer of protein, lipid, and RNA cargo. Their quantitative efficiency, routes of cell uptake, and subcellular fate within recipient cells remain elusive. We quantitatively characterize exosome cell uptake, which saturates with dose and time and reaches near 100% transduction efficiency at picomolar concentrations. Highly reminiscent of pathogenic bacteria and viruses, exosomes are recruited as single vesicles to the cell body by surfing on filopodia as well as filopodia grabbing and pulling motions to reach endocytic hot spots at the filopodial base. After internalization, exosomes shuttle within endocytic vesicles to scan the endoplasmic reticulum before being sorted into the lysosome as their final intracellular destination. Our data quantify and explain the efficiency of exosome internalization by recipient cells, establish a new parallel between exosome and virus host cell interaction, and suggest unanticipated routes of subcellular cargo delivery.
Collapse
Affiliation(s)
- Wolf Heusermann
- Novartis Institutes for Biomedical Research, CH-4000 Basel, Switzerland
| | - Justin Hean
- Novartis Institutes for Biomedical Research, CH-4000 Basel, Switzerland Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, England, UK
| | - Dominic Trojer
- Novartis Institutes for Biomedical Research, CH-4000 Basel, Switzerland
| | - Emmanuelle Steib
- Novartis Institutes for Biomedical Research, CH-4000 Basel, Switzerland
| | - Stefan von Bueren
- Novartis Institutes for Biomedical Research, CH-4000 Basel, Switzerland
| | | | - Christel Genoud
- Friedrich-Miescher Institute for Biomedical Research, CH-4000 Basel, Switzerland
| | - Katrin Martin
- Department of Biomedicine, University of Basel, CH-4058 Basel, Switzerland
| | - Nicolas Pizzato
- Novartis Institutes for Biomedical Research, CH-4000 Basel, Switzerland
| | - Johannes Voshol
- Novartis Institutes for Biomedical Research, CH-4000 Basel, Switzerland
| | | | - Samir E L Andaloussi
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, England, UK Department of Laboratory Medicine, Karolinska Institutet, SE-141 86 Huddinge, Sweden
| | - Matthew J Wood
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, England, UK
| | | |
Collapse
|
457
|
Liu S, Hossinger A, Göbbels S, Vorberg IM. Prions on the run: How extracellular vesicles serve as delivery vehicles for self-templating protein aggregates. Prion 2017; 11:98-112. [PMID: 28402718 PMCID: PMC5399892 DOI: 10.1080/19336896.2017.1306162] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are actively secreted, membrane-bound communication vehicles that exchange biomolecules between cells. EVs also serve as dissemination vehicles for pathogens, including prions, proteinaceous infectious agents that cause transmissible spongiform encephalopathies (TSEs) in mammals. Increasing evidence accumulates that diverse protein aggregates associated with common neurodegenerative diseases are packaged into EVs as well. Vesicle-mediated intercellular transmission of protein aggregates can induce aggregation of homotypic proteins in acceptor cells and might thereby contribute to disease progression. Our knowledge of how protein aggregates are sorted into EVs and how these vesicles adhere to and fuse with target cells is limited. Here we review how TSE prions exploit EVs for intercellular transmission and compare this to the transmission behavior of self-templating cytosolic protein aggregates derived from the yeast prion domain Sup 35 NM. Artificial NM prions are non-toxic to mammalian cell cultures and do not cause loss-of-function phenotypes. Importantly, NM particles are also secreted in association with exosomes that horizontally transmit the prion phenotype to naive bystander cells, a process that can be monitored with high accuracy by automated high throughput confocal microscopy. The high abundance of mammalian proteins with amino acid stretches compositionally similar to yeast prion domains makes the NM cell model an attractive model to study self-templating and dissemination properties of proteins with prion-like domains in the mammalian context.
Collapse
Affiliation(s)
- Shu Liu
- a German Center for Neurodegenerative Diseases (DZNE e.V.) , Bonn , Germany
| | - André Hossinger
- a German Center for Neurodegenerative Diseases (DZNE e.V.) , Bonn , Germany
| | - Sarah Göbbels
- a German Center for Neurodegenerative Diseases (DZNE e.V.) , Bonn , Germany
| | - Ina M Vorberg
- a German Center for Neurodegenerative Diseases (DZNE e.V.) , Bonn , Germany.,b Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany
| |
Collapse
|
458
|
Yuyama K, Igarashi Y. Exosomes as Carriers of Alzheimer's Amyloid-ß. Front Neurosci 2017; 11:229. [PMID: 28487629 PMCID: PMC5403946 DOI: 10.3389/fnins.2017.00229] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
The intracerebral level of the aggregation-prone peptide, amyloid-ß (Aß), is constantly maintained by multiple clearance mechanisms, including several degradation enzymes, and brain efflux. Disruption of the clearance machinery and the resultant Aß accumulation gives rise to neurotoxic assemblies, leading to the pathogenesis of Alzheimer's disease (AD). In addition to the classic mechanisms of Aß clearance, the protein may be processed by secreted vesicles, although this possibility has not been extensively investigated. We showed that neuronal exosomes, a subtype of extracellular nanovesicles, enwrap, or trap Aß and transport it into microglia for degradation. Here, we review Aß sequestration and elimination by exosomes, and discuss how this clearance machinery might contribute to AD pathogenesis and how it might be exploited for effective AD therapy.
Collapse
Affiliation(s)
- Kohei Yuyama
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, Hokkaido UniversitySapporo, Japan
| | - Yasuyuki Igarashi
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, Hokkaido UniversitySapporo, Japan
| |
Collapse
|
459
|
Pariset E, Agache V, Millet A. Extracellular Vesicles: Isolation Methods. ACTA ACUST UNITED AC 2017; 1:e1700040. [DOI: 10.1002/adbi.201700040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/24/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Eloise Pariset
- CEA; LETI; MINATEC Campus 38054 Grenoble France
- Université Grenoble-Alpes; 38000 Grenoble France
| | - Vincent Agache
- CEA; LETI; MINATEC Campus 38054 Grenoble France
- Université Grenoble-Alpes; 38000 Grenoble France
| | - Arnaud Millet
- ATIP/Avenir Team “Mechanobiology, Immunity and Cancer”; Inserm U1205, Brain-Tech Lab 38054 Grenoble France
- Université Grenoble-Alpes; 38000 Grenoble France
| |
Collapse
|
460
|
Da Silva-Candal A, Argibay B, Iglesias-Rey R, Vargas Z, Vieites-Prado A, López-Arias E, Rodríguez-Castro E, López-Dequidt I, Rodríguez-Yáñez M, Piñeiro Y, Sobrino T, Campos F, Rivas J, Castillo J. Vectorized nanodelivery systems for ischemic stroke: a concept and a need. J Nanobiotechnology 2017; 15:30. [PMID: 28399863 PMCID: PMC5387212 DOI: 10.1186/s12951-017-0264-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
Neurological diseases of diverse aetiologies have significant effects on the quality of life of patients. The limited self-repairing capacity of the brain is considered to be the origin of the irreversible and progressive nature of many neurological diseases. Therefore, neuroprotection is an important goal shared by many clinical neurologists and neuroscientists. In this review, we discuss the main obstacles that have prevented the implementation of experimental neuroprotective strategies in humans and propose alternative avenues for the use of neuroprotection as a feasible therapeutic approach. Special attention is devoted to nanotechnology, which is a new approach for developing highly specific and localized biomedical solutions for the study of the multiple mechanisms involved in stroke. Nanotechnology is contributing to personalized neuroprotection by allowing us to identify mechanisms, determine optimal therapeutic windows, and protect patients from brain damage. In summary, multiple aspects of these new players in biomedicine should be considered in future in vivo and in vitro studies with the aim of improving their applicability to clinical studies.
Collapse
Affiliation(s)
- Andrés Da Silva-Candal
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Bárbara Argibay
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Zulema Vargas
- Nanomag Laboratory, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15782, Santiago de Compostela, Spain
| | - Alba Vieites-Prado
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Esteban López-Arias
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Emilio Rodríguez-Castro
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Iria López-Dequidt
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Yolanda Piñeiro
- Nanomag Laboratory, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15782, Santiago de Compostela, Spain
| | - Tomás Sobrino
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Francisco Campos
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - José Rivas
- Nanomag Laboratory, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15782, Santiago de Compostela, Spain.
| | - José Castillo
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
461
|
Choi JL, Kao PF, Itriago E, Zhan Y, Kozubek JA, Hoss AG, Banigan MG, Vanderburg CR, Rezvani AH, Latourelle JC, Cabral H, Delalle I. miR-149 and miR-29c as candidates for bipolar disorder biomarkers. Am J Med Genet B Neuropsychiatr Genet 2017; 174:315-323. [PMID: 28190298 DOI: 10.1002/ajmg.b.32518] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 11/30/2016] [Indexed: 11/11/2022]
Abstract
Bipolar disorder (BD) is a common, recurring psychiatric illness with unknown pathogenesis. Recent studies suggest that microRNA (miRNA) levels in brains of BD patients are significantly altered, and these changes may offer insight into BD pathology or etiology. Previously, we observed significant alterations of miR-29c levels in extracellular vesicles (EVs) extracted from prefrontal cortex (Brodmann area 9, BA9) of BD patients. In this study, we show that EVs extracted from the anterior cingulate cortex (BA24), a crucial area for modulating emotional expression and affect, have increased levels of miR-149 in BD patients compared to controls. Because miR-149 has been shown to inhibit glial proliferation, increased miR-149 expression in BA24-derived EVs is consistent with the previously reported reduced glial cell numbers in BA24 of patients diagnosed with either familial BD or familial major depressive disorder. qPCR analysis of laser-microdissected neuronal and glial cells from BA24 cortical samples of BD patients verified that the glial, but not neuronal, population exhibits significantly increased miR-149 expression. Finally, we report altered expression of both miR-149 and miR-29c in EVs extracted from brains of Flinders Sensitive Line rats, a well-validated animal model exhibiting depressive-like behaviors and glial (astrocytic) dysfunction. These findings warrant future investigations into the potential of using EV miRNA signatures as biomarkers to further enhance the biological definition of BD. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jason L Choi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Patricia F Kao
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Elena Itriago
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Yougen Zhan
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - James A Kozubek
- Broad Institute, Cambridge, Boston, Massachusetts.,Brigham and Women's Hospital, Boston, Massachusetts
| | - Andrew G Hoss
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Meredith G Banigan
- Advanced Tissue Resource Center, Harvard NeuroDiscovery Center, Charlestown, Massachusetts
| | - Charles R Vanderburg
- Advanced Tissue Resource Center, Harvard NeuroDiscovery Center, Charlestown, Massachusetts
| | - Amir H Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Jeanne C Latourelle
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Howard Cabral
- Department of Biostatistics, Boston University School of Public Health and Boston University Clinical and Translational Science Institute, Boston, Massachusetts
| | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
462
|
Delenclos M, Trendafilova T, Mahesh D, Baine AM, Moussaud S, Yan IK, Patel T, McLean PJ. Investigation of Endocytic Pathways for the Internalization of Exosome-Associated Oligomeric Alpha-Synuclein. Front Neurosci 2017; 11:172. [PMID: 28424577 PMCID: PMC5371652 DOI: 10.3389/fnins.2017.00172] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/15/2017] [Indexed: 01/15/2023] Open
Abstract
Misfolding and aggregation of alpha-synuclein (αsyn) resulting in cytotoxicity is a hallmark of Parkinson's disease (PD) and related synucleinopathies. The recent body of evidence indicates that αsyn can be released from neuronal cells by nonconventional exocytosis involving extracellular vesicles (EVs) such as exosomes. The transfer of αsyn between cells has been proposed to be an important mechanism of disease propagation in PD. To date, exosome trafficking mechanisms, including release and cell-cell transmission, have not been fully described. To gain insight into the mechanisms involved, exosomes were purified from conditioned media of stable cells secreting αsyn oligomers. A novel bimolecular protein complementation assay was used to detect exosomes containing αsyn oligomers. Recipient cells were treated with exosomes containing αsyn oligomers or “free” non-exosome-associated αsyn oligomers and internalization was monitored. We demonstrate that cell-derived exosome-associated αsyn oligomers can be efficiently internalized by recipient cells. Interestingly exosome-free αsyn oligomers isolated from conditioned medium were not internalized but remained bound to the extracellular surface. To investigate the endocytic pathway(s) required for the exosome uptake different pharmacological inhibitors of caveolin-dependent, clathrin-dependent, and macropinocytosis pathways were utilized. Surprisingly, none of these pathways appear to play a significant role in the internalization of exosome-associated αsyn oligomers. Finally, the role of heparin sulfate proteoglycans (HSPGs) in exosome-associated αsyn internalization was investigated using genetic approach. Despite previous studies showing HSPGs can modulate internalization of fibrillar αsyn, genetic manipulations did not attenuate internalization of exosome-associated αsyn oligomers in our hands, suggesting that exosome-associated αsyn is internalized via an alternative endocytic pathway(s) that has yet to be elucidated.
Collapse
Affiliation(s)
| | | | - Divya Mahesh
- Department of Neuroscience, Mayo ClinicJacksonville, FL, USA
| | - Ann M Baine
- Department of Neuroscience, Mayo ClinicJacksonville, FL, USA
| | - Simon Moussaud
- Department of Neuroscience, Mayo ClinicJacksonville, FL, USA
| | - Irene K Yan
- Departments of Transplantation and Cancer Biology, Mayo ClinicJacksonville, FL, USA
| | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo ClinicJacksonville, FL, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo ClinicJacksonville, FL, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo ClinicJacksonville, FL, USA
| |
Collapse
|
463
|
Levy E. Exosomes in the Diseased Brain: First Insights from In vivo Studies. Front Neurosci 2017; 11:142. [PMID: 28386213 PMCID: PMC5362612 DOI: 10.3389/fnins.2017.00142] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/07/2017] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscale size vesicles secreted by cells and are important mediators of intercellular communication and genetic exchange. Exosomes, EVs generated in endosomal multivesicular bodies, have been the focus of numerous publications as they have emerged as clinically valuable markers of disease states. Exosomes have been mostly studied from conditioned culture media and body fluids, with the difficulty of isolating exosomes from tissues having delayed their study in vivo. The implementation of a method designed to isolate exosomes from tissues, however, has yielded the first insights into characteristics of exosomes in the brain. It has been observed that brain exosomes from murine models of neurodegenerative diseases and human postmortem brains tend to mirror the protein content of the cells of origin, and interestingly, they are enriched with toxic proteins. Whether this enrichment with neurotoxic proteins is beneficial by relieving neurons of accumulated toxic material or detrimental to the brain by propagating pathogenicity throughout the brain remains to be answered. Here is summarized the first group of studies describing exosomes isolated from brain, results that demonstrate that exosomes in vivo reflect complex multicellular pathogenic processes in neurodegenerative disorders and the brain's response to injury and damage.
Collapse
Affiliation(s)
- Efrat Levy
- Departments of Psychiatry, Biochemistry and Molecular Pharmacology, New York University Langone Medical CenterNew York, NY, USA; Center for Dementia Research, Nathan S. Kline Institute for Psychiatric ResearchOrangeburg, NY, USA
| |
Collapse
|
464
|
H Rashed M, Bayraktar E, K Helal G, Abd-Ellah MF, Amero P, Chavez-Reyes A, Rodriguez-Aguayo C. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int J Mol Sci 2017; 18:ijms18030538. [PMID: 28257101 PMCID: PMC5372554 DOI: 10.3390/ijms18030538] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Intercellular communication via cell-released vesicles is a very important process for both normal and tumor cells. Cell communication may involve exosomes, small vesicles of endocytic origin that are released by all types of cells and are found in abundance in body fluids, including blood, saliva, urine, and breast milk. Exosomes have been shown to carry lipids, proteins, mRNAs, non-coding RNAs, and even DNA out of cells. They are more than simply molecular garbage bins, however, in that the molecules they carry can be taken up by other cells. Thus, exosomes transfer biological information to neighboring cells and through this cell-to-cell communication are involved not only in physiological functions such as cell-to-cell communication, but also in the pathogenesis of some diseases, including tumors and neurodegenerative conditions. Our increasing understanding of why cells release exosomes and their role in intercellular communication has revealed the very complex and sophisticated contribution of exosomes to health and disease. The aim of this review is to reveal the emerging roles of exosomes in normal and pathological conditions and describe the controversial biological role of exosomes, as it is now understood, in carcinogenesis. We also summarize what is known about exosome biogenesis, composition, functions, and pathways and discuss the potential clinical applications of exosomes, especially as biomarkers and novel therapeutic agents.
Collapse
Affiliation(s)
- Mohammed H Rashed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The University of Al-Azhar, Cairo 11754, Egypt.
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Medical Biology, Faculty of Medicine, The University of Gaziantep, Gaziantep 27310, Turkey.
| | - Gouda K Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The University of Al-Azhar, Cairo 11754, Egypt.
| | - Mohamed F Abd-Ellah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The University of Al-Azhar, Cairo 11754, Egypt.
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Arturo Chavez-Reyes
- Centro de Investigación y Estudios Avanzados del IPN, Unidad Monterrey, Apodaca NL CP 66600, Mexico.
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
465
|
Jinesh GG, Kamat AM. Blebbishields and mitotic cells exhibit robust macropinocytosis. Biofactors 2017; 43:181-186. [PMID: 27671897 DOI: 10.1002/biof.1335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/07/2016] [Indexed: 01/14/2023]
Abstract
Cancer stem cells can survive and undergo transformation after apoptosis by initiating robust endocytosis. Endocytosis in-turn drives formation of serpentine filopodia, which promote construction of blebbishields from apoptotic bodies. However, the status and role of macropinocytosis in blebbishields is not known. Here, we show by scanning electron microscopy and by macropinocytosis assays that blebbishields exhibit robust macropinocytosis. Inhibiting dynamin-mediated endocytosis does not affect macropinocytosis in blebbishields or in mitotic cells. In addition, inhibiting macropinocytosis did not inhibit construction of blebbishields from apoptotic bodies. Thus, although apoptotic cancer stem cells exhibit robust macropinocytosis, macropinocytosis is not essential to generate blebbishields, although it may play other roles in blebbishield biology. © 2016 BioFactors, 43(2):181-186, 2017.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashish M Kamat
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
466
|
Potential Modes of Intercellular α-Synuclein Transmission. Int J Mol Sci 2017; 18:ijms18020469. [PMID: 28241427 PMCID: PMC5344001 DOI: 10.3390/ijms18020469] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
Intracellular aggregates of the α-synuclein protein result in cell loss and dysfunction in Parkinson’s disease and atypical Parkinsonism, such as multiple system atrophy and dementia with Lewy bodies. Each of these neurodegenerative conditions, known collectively as α-synucleinopathies, may be characterized by a different suite of molecular triggers that initiate pathogenesis. The mechanisms whereby α-synuclein aggregates mediate cytotoxicity also remain to be fully elucidated. However, recent studies have implicated the cell-to-cell spread of α-synuclein as the major mode of disease propagation between brain regions during disease progression. Here, we review the current evidence for different modes of α-synuclein cellular release, movement and uptake, including exocytosis, exosomes, tunneling nanotubes, glymphatic flow and endocytosis. A more detailed understanding of the major modes by which α-synuclein pathology spreads throughout the brain may provide new targets for therapies that halt the progression of disease.
Collapse
|
467
|
Abstract
Virtually all cells in the organism secrete extracellular vesicles (EVs), a heterogeneous population of lipid bilayer membrane-enclosed vesicles that transport and deliver payloads of proteins and nucleic acids to recipient cells, thus playing central roles in cell-cell communications. Exosomes, nanosized EVs of endosomal origin, regulate many pathophysiological processes including immune responses and inflammation, tumour growth, and infection. Healthy subjects and patients with different diseases release exosomes with different RNA and protein contents into the circulation, which can be measured as biomarkers. The discovery of exosomes as natural carriers of functional small RNA and proteins has raised great interest in the drug delivery field, as it may be possible to harness these vesicles for therapeutic delivery of miRNA, siRNA, mRNA, lncRNA, peptides, and synthetic drugs. However, systemically delivered exosomes accumulate in liver, kidney, and spleen. Targeted exosomes can be obtained by displaying targeting molecules, such as peptides or antibody fragments recognizing target antigens, on the outer surface of exosomes. Display of glycosylphosphatidylinositol (GPI)-anchored nanobodies on EVs is a novel technique that enables EV display of a variety of proteins including antibodies, reporter proteins, and signaling molecules. However, naturally secreted exosomes show limited pharmaceutical acceptability. Engineered exosome mimetics that incorporate desirable components of natural exosomes into synthetic liposomes or nanoparticles, and are assembled using controllable procedures may be more acceptable pharmaceutically. In this communication, we review the current understanding of physiological and pathophysiological roles of exosomes, their potential applications as diagnostic markers, and current efforts to develop improved exosome-based drug delivery systems.
Collapse
Affiliation(s)
- Lucio Barile
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Swiss Institute for Regenerative Medicine (SIRM), Taverne, Switzerland.
| | - Giuseppe Vassalli
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Swiss Institute for Regenerative Medicine (SIRM), Taverne, Switzerland; Dept. of Cardiology, University of Lausanne Medical Hospital (CHUV), Lausanne, Switzerland.
| |
Collapse
|
468
|
Abstract
Membrane vesicles released in the extracellular space are composed of a lipid bilayer enclosing soluble cytosolic material and nuclear components. Extracellular vesicles include apoptotic bodies, exosomes, and microvesicles (also known previously as microparticles). Originating from different subcellular compartments, the role of extracellular vesicles as regulators of transfer of biological information, acting locally and remotely, is now acknowledged. Circulating vesicles released from platelets, erythrocytes, leukocytes, and endothelial cells contain potential valuable biological information for biomarker discovery in primary and secondary prevention of coronary artery disease. Extracellular vesicles also accumulate in human atherosclerotic plaques, where they affect major biological pathways, including inflammation, proliferation, thrombosis, calcification, and vasoactive responses. Extracellular vesicles also recapitulate the beneficial effect of stem cells to treat cardiac consequences of acute myocardial infarction, and now emerge as an attractive alternative to cell therapy, opening new avenues to vectorize biological information to target tissues. Although interest in microvesicles in the cardiovascular field emerged about 2 decades ago, that for extracellular vesicles, in particular exosomes, started to unfold a decade ago, opening new research and therapeutic avenues. This Review summarizes current knowledge on the role of extracellular vesicles in coronary artery disease, and their emerging potential as biomarkers and therapeutic agents.
Collapse
|
469
|
Meyer K, Kaspar BK. Glia-neuron interactions in neurological diseases: Testing non-cell autonomy in a dish. Brain Res 2017; 1656:27-39. [PMID: 26778174 PMCID: PMC4939136 DOI: 10.1016/j.brainres.2015.12.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/30/2022]
Abstract
For the past century, research on neurological disorders has largely focused on the most prominently affected cell types - the neurons. However, with increasing knowledge of the diverse physiological functions of glial cells, their impact on these diseases has become more evident. Thus, many conditions appear to have more complex origins than initially thought. Since neurological pathologies are often sporadic with unknown etiology, animal models are difficult to create and might only reflect a small portion of patients in which a mutation in a gene has been identified. Therefore, reliable in vitro systems to studying these disorders are urgently needed. They might be a pre-requisite for improving our understanding of the disease mechanisms as well as for the development of potential new therapies. In this review, we will briefly summarize the function of different glial cell types in the healthy central nervous system (CNS) and outline their implication in the development or progression of neurological conditions. We will then describe different types of culture systems to model non-cell autonomous interactions in vitro and evaluate advantages and disadvantages. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
Affiliation(s)
- Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Brian K Kaspar
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
470
|
Zheng T, Pu J, Chen Y, Mao Y, Guo Z, Pan H, Zhang L, Zhang H, Sun B, Zhang B. Plasma Exosomes Spread and Cluster Around β-Amyloid Plaques in an Animal Model of Alzheimer's Disease. Front Aging Neurosci 2017; 9:12. [PMID: 28203202 PMCID: PMC5285341 DOI: 10.3389/fnagi.2017.00012] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
Exosomes, a type of extracellular vesicle, have been shown to be involved in many disorders, including Alzheimer’s disease (AD). Exosomes may contribute to the spread of misfolded proteins such as amyloid-β (Aβ) and α-synuclein. However, the specific diffusion process of exosomes and their final destination in brain are still unclear. In the present study, we isolated exosomes from peripheral plasma and injected them into the hippocampus of an AD mouse model, and investigated exosome diffusion. We found that injected exosomes can spread from the dentate gyrus (DG) to other regions of hippocampus and to the cortex. Exosomes targeted microglia preferentially; this phenomenon is stable and is not affected by age. In AD mice, microglia take up lower levels of exosomes. More interestingly, plasma exosomes cluster around the Aβ plaques and are engulfed by activated microglia nearby. Our data indicate that exosomes can diffuse throughout the brain and may play a role in the dynamics of amyloid deposition in AD through microglia.
Collapse
Affiliation(s)
- Tingting Zheng
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| | - Yanfang Mao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| | - Zhangyu Guo
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| | - Hongyu Pan
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine Hangzhou, China
| | - Ling Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine Hangzhou, China
| | - Heng Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine Hangzhou, China
| | - Binggui Sun
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, China
| |
Collapse
|
471
|
Soria FN, Pampliega O, Bourdenx M, Meissner WG, Bezard E, Dehay B. Exosomes, an Unmasked Culprit in Neurodegenerative Diseases. Front Neurosci 2017; 11:26. [PMID: 28197068 PMCID: PMC5281572 DOI: 10.3389/fnins.2017.00026] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/16/2017] [Indexed: 12/31/2022] Open
Abstract
Exosomes are extracellular nanovesicles (30–100 nm) generated from endosomal membranes and known to be released by all cell lineages of the Central Nervous System (CNS). They constitute important vesicles for the secretion and transport of multilevel information, including signaling, toxic, and regulatory molecules. Initially thought to have a function merely in waste disposal, the involvement of exosomes in neuronal development, maintenance, and regeneration through its paracrine and endocrine signaling functions has drawn particular attention in recent years. These vesicles, being involved in the clearance and cell-to-cell spreading of toxic molecules, have been naturally implicated in aging, and in several neurodegenerative diseases associated with pathological conversion of proteins, as well as in the transport of other disease-associated molecules, such as nucleic acids or pro-inflammatory cytokines. Our understanding of such unique form of communication may provide not only answers about (patho)physiological processes in the brain, but can also offer means to exploit these vesicles as vehicles for the delivery of biologically relevant molecules or as tools to monitor brain diseases in a non-invasive way. A promising field in expansion, the study of exosomes and related extracellular vesicles has just commenced to unveil their potential as therapeutic tools for brain disorders as well as biomarkers of disease state.
Collapse
Affiliation(s)
- Federico N Soria
- Institut des Maladies Neurodégénératives, UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique (CNRS), Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| | - Olatz Pampliega
- Institut des Maladies Neurodégénératives, UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique (CNRS), Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| | - Mathieu Bourdenx
- Institut des Maladies Neurodégénératives, UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique (CNRS), Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| | - Wassilios G Meissner
- Institut des Maladies Neurodégénératives, UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique (CNRS), Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| | - Erwan Bezard
- Institut des Maladies Neurodégénératives, UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique (CNRS), Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| | - Benjamin Dehay
- Institut des Maladies Neurodégénératives, UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique (CNRS), Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| |
Collapse
|
472
|
Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases 2017; 9:95-106. [PMID: 28135905 PMCID: PMC5902209 DOI: 10.1080/21541248.2016.1264352] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the last two decades, extracellular vesicle-mediated communication between cells has become a major field in cell biology. However, the function of extracellular vesicles is far from clear, especially due to the disparity of released vesicles by cells. Basically, one must consider vesicles budding from the cell plasma membrane (ectosomes) and vesicles released upon fusion of an endosomal multivesicular compartment (exosomes). Moreover, even for exosomes, we report and discuss here the possibility that different routes regulated by specific Rab GTPases might produce exosomes having various biologic functions.
Collapse
Affiliation(s)
- Lionel Blanc
- a Laboratory of Developmental Erythropoiesis, The Feinstein Institute for Medical Research Hofstra Northwell School of Medicine , Manhasset , NY , USA
| | - Michel Vidal
- b UMR 5235, CNRS, Université Montpellier , cc107, Montpellier , France
| |
Collapse
|
473
|
Armstrong JPK, Holme MN, Stevens MM. Re-Engineering Extracellular Vesicles as Smart Nanoscale Therapeutics. ACS NANO 2017; 11:69-83. [PMID: 28068069 PMCID: PMC5604727 DOI: 10.1021/acsnano.6b07607] [Citation(s) in RCA: 452] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the past decade, extracellular vesicles (EVs) have emerged as a key cell-free strategy for the treatment of a range of pathologies, including cancer, myocardial infarction, and inflammatory diseases. Indeed, the field is rapidly transitioning from promising in vitro reports toward in vivo animal models and early clinical studies. These investigations exploit the high physicochemical stability and biocompatibility of EVs as well as their innate capacity to communicate with cells via signal transduction and membrane fusion. This review focuses on methods in which EVs can be chemically or biologically modified to broaden, alter, or enhance their therapeutic capability. We examine two broad strategies, which have been used to introduce a wide range of nanoparticles, reporter systems, targeting peptides, pharmaceutics, and functional RNA molecules. First, we explore how EVs can be modified by manipulating their parent cells, either through genetic or metabolic engineering or by introducing exogenous material that is subsequently incorporated into secreted EVs. Second, we consider how EVs can be directly functionalized using strategies such as hydrophobic insertion, covalent surface chemistry, and membrane permeabilization. We discuss the historical context of each specific technology, present prominent examples, and evaluate the complexities, potential pitfalls, and opportunities presented by different re-engineering strategies.
Collapse
Affiliation(s)
- James PK Armstrong
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College, London, U.K. SW7 2AZ
| | - Margaret N Holme
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College, London, U.K. SW7 2AZ
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College, London, U.K. SW7 2AZ
| |
Collapse
|
474
|
Jung JH, Fu X, Yang PC. Exosomes Generated From iPSC-Derivatives: New Direction for Stem Cell Therapy in Human Heart Diseases. Circ Res 2017; 120:407-417. [PMID: 28104773 PMCID: PMC5260934 DOI: 10.1161/circresaha.116.309307] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in modern society. The adult heart innately lacks the capacity to repair and regenerate the damaged myocardium from ischemic injury. Limited understanding of cardiac tissue repair process hampers the development of effective therapeutic solutions to treat CVD such as ischemic cardiomyopathy. In recent years, rapid emergence of induced pluripotent stem cells (iPSC) and iPSC-derived cardiomyocytes presents a valuable opportunity to replenish the functional cells to the heart. The therapeutic effects of iPSC-derived cells have been investigated in many preclinical studies. However, the underlying mechanisms of iPSC-derived cell therapy are still unclear, and limited engraftment of iPSC-derived cardiomyocytes is well known. One facet of their mechanism is the paracrine effect of the transplanted cells. Microvesicles such as exosomes secreted from the iPSC-derived cardiomyocytes exert protective effects by transferring the endogenous molecules to salvage the injured neighboring cells by regulating apoptosis, inflammation, fibrosis, and angiogenesis. In this review, we will focus on the current advances in the exosomes from iPSC derivatives and discuss their therapeutic potential in the treatment of CVD.
Collapse
Affiliation(s)
- Ji-Hye Jung
- From the Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA
| | - Xuebin Fu
- From the Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA
| | - Phillip C Yang
- From the Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA.
| |
Collapse
|
475
|
French KC, Antonyak MA, Cerione RA. Extracellular vesicle docking at the cellular port: Extracellular vesicle binding and uptake. Semin Cell Dev Biol 2017; 67:48-55. [PMID: 28104520 DOI: 10.1016/j.semcdb.2017.01.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/22/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs), lipid bilayer-enclosed structures that contain a variety of biological molecules shed by cells, are increasingly becoming appreciated as a major form of cell-to-cell communication. Indeed, EVs have been shown to play important roles in several physiological processes, as well as diseases such as cancer. EVs dock on to the surfaces of recipient cells where they transmit signals from the cell surface and/or transfer their contents into cells to elicit functional responses. EV docking and uptake by cells represent critical, but poorly understood processes. Here, we focus on the mechanisms by which EVs dock and transfer their contents to cells. Moreover, we highlight how these findings may provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Kinsley C French
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14850, United States
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14850, United States
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14850, United States.
| |
Collapse
|
476
|
Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy. Int J Mol Sci 2017; 18:ijms18010162. [PMID: 28098821 PMCID: PMC5297795 DOI: 10.3390/ijms18010162] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 12/18/2022] Open
Abstract
Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.
Collapse
|
477
|
The release and trans-synaptic transmission of Tau via exosomes. Mol Neurodegener 2017; 12:5. [PMID: 28086931 PMCID: PMC5237256 DOI: 10.1186/s13024-016-0143-y] [Citation(s) in RCA: 488] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023] Open
Abstract
Background Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages (“Braak stages”). The mechanisms and agents underlying the progression of Tau pathology are a matter of debate. Emerging evidence indicates that the propagation of Tau pathology may be due to the transmission of Tau protein, but the underlying pathways and Tau species are not well understood. In this study we investigated the question of Tau spreading via small extracellular vesicles called exosomes. Methods Exosomes from different sources were analyzed by biochemical methods and electron microscopy (EM) and cryo-EM. Microfluidic devices that allow the culture of cell populations in different compartments were used to investigate the spreading of Tau. Results We show that Tau protein is released by cultured primary neurons or by N2a cells overexpressing different Tau constructs via exosomes. Neuron-derived exosomal Tau is hypo-phosphorylated, compared with cytosolic Tau. Depolarization of neurons promotes release of Tau-containing exosomes, highlighting the importance of neuronal activity. Using microfluidic devices we show that exosomes mediate trans-neuronal transfer of Tau depending on synaptic connectivity. Tau spreading is achieved by direct transmission of exosomes between neurons. In organotypic hippocampal slices, Tau-containing exosomes in conditioned medium are taken up by neurons and microglia, not astrocytes. In N2a cells, Tau assemblies are released via exosomes. They can induce inclusions of other Tau molecules in N2a cells expressing mutant human Tau. We also studied exosomes from cerebrospinal fluid in AD and control subjects containing monomeric and oligomeric Tau. Split-luciferase complementation reveals that exosomes from CSF can promote Tau aggregation in cultured cells. Conclusion Our study demonstrates that exosomes contribute to trans-synaptic Tau transmission, and thus offer new approches to control the spreading of pathology in AD and other tauopathies. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0143-y) contains supplementary material, which is available to authorized users.
Collapse
|
478
|
Choi D, Lee TH, Spinelli C, Chennakrishnaiah S, D'Asti E, Rak J. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation. Semin Cell Dev Biol 2017; 67:11-22. [PMID: 28077296 DOI: 10.1016/j.semcdb.2017.01.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022]
Abstract
Pathogenesis of human cancers bridges intracellular oncogenic driver events and their impact on intercellular communication. Among multiple mediators of this 'pathological connectivity' the role of extracellular vesicles (EVs) and their subsets (exosomes, ectosomes, oncosomes) is of particular interest for several reasons. The release of EVs from cancer cells represents a unique mechanism of regulated expulsion of bioactive molecules, a process that also mediates cell-to-cell transfer of lipids, proteins, and nucleic acids. Biological effects of these processes have been implicated in several aspects of cancer-related pathology, including tumour growth, invasion, angiogenesis, metastasis, immunity and thrombosis. Notably, the emerging evidence suggests that oncogenic mutations may impact several aspects of EV-mediated cell-cell communication including: (i) EV release rate and protein content; (ii) molecular composition of cancer EVs; (iii) the inclusion of oncogenic and mutant macromolecules in the EV cargo; (iv) EV-mediated release of genomic DNA; (v) deregulation of mechanisms responsible for EV biogenesis (vesiculome) and (vi) mechanisms of EV uptake by cancer cells. Intriguingly, EV-mediated intercellular transfer of mutant and oncogenic molecules between subpopulations of cancer cells, their indolent counterparts and stroma may exert profound biological effects that often resemble (but are not tantamount to) oncogenic transformation, including changes in cell growth, clonogenicity and angiogenic phenotype, or cause cell stress and death. However, several biological barriers likely curtail a permanent horizontal transformation of normal cells through EV-mediated mechanisms. The ongoing analysis and targeting of EV-mediated intercellular communication pathways can be viewed as a new therapeutic paradigm in cancer, while the analysis of oncogenic cargo contained in EVs released from cancer cells into biofluids is being developed for clinical use as a biomarker and companion diagnostics. Indeed, studies are underway to further explore the multiple links between molecular causality in cancer and various aspects of cellular vesiculation.
Collapse
Affiliation(s)
- Dongsic Choi
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Tae Hoon Lee
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Cristiana Spinelli
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Shilpa Chennakrishnaiah
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Esterina D'Asti
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Janusz Rak
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
479
|
Gourlay J, Morokoff A, Luwor R, Zhu HJ, Kaye A, Stylli S. The emergent role of exosomes in glioma. J Clin Neurosci 2017; 35:13-23. [DOI: 10.1016/j.jocn.2016.09.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/26/2016] [Indexed: 01/08/2023]
|
480
|
The Multifaceted Functions of Exosomes in Health and Disease: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 998:3-19. [PMID: 28936729 DOI: 10.1007/978-981-10-4397-0_1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exosomes are extracellular vesicles of 50-150 nm in diameter secreted by basically all cell types. They mediate micro-communication among cells, tissues, and organs under both healthy and disease conditions by virtue of their ability to deliver macromolecules to target cells. Research on exosomes is a rapidly growing field, however many aspects of their biogenesis and functions still await a complete clarification. In our review we summarize most recent findings regarding biogenesis, structure, and functions of exosomes. In addition, an overview regarding the role of exosomes in both infectious and non-infectious diseases is provided. Finally, the use of exosomes as biomarkers and delivery tools for therapeutic molecules is addressed. Considering the body of literature data, exosomes have to be considered key components of the intercellular communication in both health and disease.
Collapse
|
481
|
Huang-Doran I, Zhang CY, Vidal-Puig A. Extracellular Vesicles: Novel Mediators of Cell Communication In Metabolic Disease. Trends Endocrinol Metab 2017; 28:3-18. [PMID: 27810172 DOI: 10.1016/j.tem.2016.10.003] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/16/2016] [Accepted: 10/03/2016] [Indexed: 12/27/2022]
Abstract
Metabolic homeostasis emerges from the complex, multidirectional crosstalk between key metabolic tissues including adipose tissue, liver, and skeletal muscle. This crosstalk, traditionally mediated by hormones and metabolites, becomes dysregulated in human diseases such as obesity and diabetes. Extracellular vesicles (EVs; including exosomes) are circulating, cell-derived nanoparticles containing proteins and nucleic acids that interact with and modify local and distant cellular targets. Accumulating evidence, reviewed herein, supports a role for extracellular vesicles in obesity-associated metabolic disturbance, particularly the local and systemic inflammation characteristic of adipose and hepatic stress. As the practical and conceptual challenges facing the field are tackled, this emerging and versatile mode of intercellular communication may afford valuable insights and therapeutic opportunities in combatting these major threats to modern human health.
Collapse
Affiliation(s)
- Isabel Huang-Doran
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046 China
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
482
|
Withrow J, Murphy C, Liu Y, Hunter M, Fulzele S, Hamrick MW. Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 2016; 18:286. [PMID: 27906035 PMCID: PMC5134070 DOI: 10.1186/s13075-016-1178-8] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are both debilitating diseases that cause significant morbidity in the US population. Extracellular vesicles (EVs), including exosomes and microvesicles, are now recognized to play important roles in cell-to-cell communication by transporting various proteins, microRNAs (miRNAs), and mRNAs. EV-derived proteins and miRNAs impact cell viability and cell differentiation, and are likely to play a prominent role in the pathophysiology of both OA and RA. Some of the processes by which these membrane-bound vesicles can alter joint tissue include extracellular matrix degradation, cell-to-cell communication, modulation of inflammation, angiogenesis, and antigen presentation. For example, EVs from IL-1β-stimulated fibroblast-like synoviocytes have been shown to induce osteoarthritic changes in chondrocytes. RA models have shown that EVs stimulated with inflammatory cytokines are capable of inducing apoptosis resistance in T cells, presenting antigen to T cells, and causing extracellular damage with matrix-degrading enzymes. EVs derived from rheumatoid models have also been shown to induce secretion of COX-2 and stimulate angiogenesis. Additionally, there is evidence that synovium-derived EVs may be promising biomarkers of disease in both OA and RA. The characterization of EVs in the joint space has also opened up the possibility for delivery of small molecules. This article reviews current knowledge on the role of EVs in both RA and OA, and their potential role as therapeutic targets for modulation of these debilitating diseases.
Collapse
Affiliation(s)
- Joseph Withrow
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - Cameron Murphy
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - Monte Hunter
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - Sadanand Fulzele
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - Mark W Hamrick
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA.
| |
Collapse
|
483
|
Solé-Domènech S, Cruz DL, Capetillo-Zarate E, Maxfield FR. The endocytic pathway in microglia during health, aging and Alzheimer's disease. Ageing Res Rev 2016; 32:89-103. [PMID: 27421577 DOI: 10.1016/j.arr.2016.07.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 12/14/2022]
Abstract
Microglia, the main phagocytes of the central nervous system (CNS), are involved in the surveillance and maintenance of nervous tissue. During normal tissue homeostasis, microglia migrates within the CNS, phagocytose dead cells and tissue debris, and modulate synapse pruning and spine formation via controlled phagocytosis. In the event of an invasion by a foreign body, microglia are able to phagocytose the invading pathogen and process it proteolytically for antigen presentation. Internalized substrates are incorporated and sorted within the endocytic pathway and thereafter transported via complex vesicular routes. When targeted for degradation, substrates are delivered to acidic late endosomes and lysosomes. In these, the enzymatic degradation relies on pH and enzyme content. Endocytosis, sorting, transport, compartment acidification and degradation are regulated by complex signaling mechanisms, and these may be altered during aging and pathology. In this review, we discuss the endocytic pathway in microglia, with insight into the mechanisms controlling lysosomal biogenesis and pH regulation. We also discuss microglial lysosome function associated with Alzheimer's disease (AD) and the mechanisms of amyloid-beta (Aβ) internalization and degradation. Finally, we explore some therapies currently being investigated to treat AD and their effects on microglial response to Aβ, with insight in those involving enhancement of lysosomal function.
Collapse
|
484
|
Emerging roles of extracellular vesicles in neurodegenerative disorders: focus on HIV-associated neurological complications. Cell Death Dis 2016; 7:e2481. [PMID: 27882942 PMCID: PMC5260908 DOI: 10.1038/cddis.2016.336] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/22/2022]
Abstract
Exosomes are membrane-enriched extracellular vesicles with a proposed diameter in the range of 30-100 nm. They are released during both normal homeostasis as well as under pathological conditions by most cell types. In recent years, there has been robust interest in the study of these vesicles as conduits for the delivery of information between cells in both analogous as well as disparate tissues. Their ability to transport specialized cargo including signaling mediators, proteins, messenger RNA and miRNAs characterizes these vesicles as primary facilitators of cell-to-cell communication and regulation. Exosomes have also been demonstrated to have important roles in the field of cancer biology and metastasis. More recently, their role in several neurodegenerative disorders has been gaining increased momentum as these particles have been shown to promote the spread of toxic factors such as amyloid beta and prions, adding further validity to their role as important regulators of disease pathogenesis. This review briefly summarizes current findings and thoughts on exosome biology in the context of neurodegenerative disorders and the manipulation of these particles for the development of potential therapeutic strategies.
Collapse
|
485
|
Yagi Y, Ohkubo T, Kawaji H, Machida A, Miyata H, Goda S, Roy S, Hayashizaki Y, Suzuki H, Yokota T. Next-generation sequencing-based small RNA profiling of cerebrospinal fluid exosomes. Neurosci Lett 2016; 636:48-57. [PMID: 27780738 DOI: 10.1016/j.neulet.2016.10.042] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/06/2016] [Accepted: 10/21/2016] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs), particularly those found in human body fluids, have been suggested as potential biomarkers. Among various body fluids, the cerebrospinal fluid (CSF) shows promise as a profiling target for diagnosis and monitoring of neurological diseases. However, relevant genome-scale studies are limited and no studies have profiled exosomal miRNAs in CSF. Therefore, we conducted a next-generation sequencing-based genome-wide survey of small RNAs in the exosomal and non-exosomal (supernatant) fractions of healthy human CSF as well as serum in each donor. We observed miRNA enrichment in the exosomal fractions relative to the supernatant fractions of both CSF and serum. We also observed substantial differences in exosomal miRNA profiles between CSF and serum. Half of the reported brain miRNAs were found in CSF exosomal fractions. In particular, miR-1911-5p, specifically expressed in brain tissue, was detected in CSF but not in serum, as confirmed by digital PCR in three additional donors. Our data suggest that the brain is a major source of CSF exosomal miRNAs. Here we provide the important evidence that exosomal miRNAs in CSF may reflect brain pathophysiology.
Collapse
Affiliation(s)
- Yohsuke Yagi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Takuya Ohkubo
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Hideya Kawaji
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; RIKEN Advanced Center for Computing and Communication, Preventive medicine and applied genomics unit, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; RIKEN Omics Science Center, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Akira Machida
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Haruka Miyata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Saori Goda
- RIKEN Omics Science Center, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Sugata Roy
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; RIKEN Omics Science Center, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshihide Hayashizaki
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN Omics Science Center, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Harukazu Suzuki
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; RIKEN Omics Science Center, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan.
| |
Collapse
|
486
|
Reclusa P, Sirera R, Araujo A, Giallombardo M, Valentino A, Sorber L, Bazo IG, Pauwels P, Rolfo C. Exosomes genetic cargo in lung cancer: a truly Pandora's box. Transl Lung Cancer Res 2016; 5:483-491. [PMID: 27826529 DOI: 10.21037/tlcr.2016.10.06] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung cancer is a highly lethal disease. Targeted therapies have been developed in last years, however survival rates are not improving due to the delay in the diagnosis, making biomarkers one of the most interesting fields of study in cancer. Liquid biopsy has raised as an alternative to tissue biopsy due to improvements in analytical techniques for circulating tumor cells (CTCs), cell free DNA and exosomes. Among all, exosomes have raised as one of the most promising tools to understand the tumor due to their stability in the blood and their similarity to the cells of origin. In the last years, different alterations have been described inside the exosomes derived from non-small cell lung cancer (NSCLC) cells mirroring the processes inside these tumoral cells, such as EGFR mutation, translocations or microRNA (miRNA) deregulation. All these studies have opened the window to a new world of possibilities in the study of tumor biomarkers.
Collapse
Affiliation(s)
- Pablo Reclusa
- Phase I- Early Clinical trials Unit, Oncology Department & Center for Oncological Research (CORE) Antwerp University Hospital, Antwerp, Belgium
| | - Rafael Sirera
- Department of Biotechnology, Politechnic University of Valencia Hospitality Centre of Oporto, Valencia, Spain
| | - Antonio Araujo
- Department of Medical Oncology, Centro Hospitalar do Porto, Porto, Portugal
| | - Marco Giallombardo
- Phase I- Early Clinical trials Unit, Oncology Department & Center for Oncological Research (CORE) Antwerp University Hospital, Antwerp, Belgium
| | - Anna Valentino
- Phase I- Early Clinical trials Unit, Oncology Department & Center for Oncological Research (CORE) Antwerp University Hospital, Antwerp, Belgium
| | - Laure Sorber
- Molecular Pathology Unit, Antwerp University Hospital & Center for Oncological Research (CORE) Antwerp University Hospital, Antwerp, Belgium
| | - Ignacio Gil Bazo
- Department of Medical Oncology, University of Navarra, Pamplona, Spain
| | - Patrick Pauwels
- Molecular Pathology Unit, Antwerp University Hospital & Center for Oncological Research (CORE) Antwerp University Hospital, Antwerp, Belgium
| | - Christian Rolfo
- Phase I- Early Clinical trials Unit, Oncology Department & Center for Oncological Research (CORE) Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
487
|
Multitasking Microglia and Alzheimer's Disease: Diversity, Tools and Therapeutic Targets. J Mol Neurosci 2016; 60:390-404. [PMID: 27660215 DOI: 10.1007/s12031-016-0825-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 08/17/2016] [Indexed: 01/08/2023]
Abstract
Given the importance of microglia to inflammatory, phagocytic and synaptic modulatory processes, their function is vital in physiological and pathological brain. The impairment of microglia in Alzheimer's disease has been demonstrated on genetic, epigenetic, transcriptional and functional levels using unbiased systems level approaches. Recent studies have highlighted the immense phenotypic diversity of microglia, including the ability to adopt distinct and dynamic phenotypes in ageing and disease. We review the origins and functions of healthy microglia and the established and emerging models and techniques available for their study. Furthermore, we highlight recent advances on the role, heterogeneity and dysfunction of microglia in Alzheimer's disease and discuss the potential for therapeutic interventions targeting microglia. Microglia-selective molecular fingerprints will guide detailed functional analysis of microglial subsets and may aid in the development of therapies specifically targeting microglia.
Collapse
|
488
|
Erny D, Hrabě de Angelis AL, Prinz M. Communicating systems in the body: how microbiota and microglia cooperate. Immunology 2016; 150:7-15. [PMID: 27392533 DOI: 10.1111/imm.12645] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
Microglia are tissue macrophages of the central nervous system (CNS). Their key tasks are immune surveillance as well as responding to infections or other pathological states such as neurological diseases or injury. In recent years it has been discovered that microglia are additionally crucial for the maintenance of brain homeostasis during development and adulthood by adjusting the neuronal network and phagocytosing neuronal debris. Microglia persist in the CNS throughout the life of the organism and self-renew without engraftment of bone-marrow-derived cells. Until recently it remained unknown what controls their maturation and activation under homeostatic conditions. In this review we discuss new aspects of the interaction between host microbiota and brain function with special focus on the brain-resident innate immune cells, the microglia.
Collapse
Affiliation(s)
- Daniel Erny
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
489
|
Zhang Z, Chopp M. Neural Stem Cells and Ischemic Brain. J Stroke 2016; 18:267-272. [PMID: 27488979 PMCID: PMC5066435 DOI: 10.5853/jos.2016.00206] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 01/19/2023] Open
Abstract
Stroke activates neural stem cells in the ventricular-subventricular zone (V/SVZ) of the lateral ventricle, which increases neuroblasts and oligodendrocyte progenitor cells (OPCs). Within the ischemic brain, neural stem cells, neuroblasts and OPCs appear to actively communicate with cerebral endothelial cells and other brain parenchymal cells to mediate ischemic brain repair; however, stroke-induced neurogenesis unlikely plays any significant roles in neuronal replacement. In this mini-review, we will discuss recent findings how intercellular communications between stroke-induced neurogenesis and oligodendrogenesis and brain parenchymal cells could potentially facilitate brain repair processes.
Collapse
Affiliation(s)
| | - Michael Chopp
- Henry Ford Hospital, Michigan, United States.,Department of Physics, Oakland University, Rochester, Michigan, United States
| |
Collapse
|
490
|
Marin-Argany M, Lin Y, Misra P, Williams A, Wall JS, Howell KG, Elsbernd LR, McClure M, Ramirez-Alvarado M. Cell Damage in Light Chain Amyloidosis: FIBRIL INTERNALIZATION, TOXICITY AND CELL-MEDIATED SEEDING. J Biol Chem 2016; 291:19813-25. [PMID: 27462073 DOI: 10.1074/jbc.m116.736736] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Indexed: 02/04/2023] Open
Abstract
Light chain (AL) amyloidosis is an incurable human disease characterized by the misfolding, aggregation, and systemic deposition of amyloid composed of immunoglobulin light chains (LC). This work describes our studies on potential mechanisms of AL cytotoxicity. We have studied the internalization of AL soluble proteins and amyloid fibrils into human AC16 cardiomyocytes by using real time live cell image analysis. Our results show how external amyloid aggregates rapidly surround the cells and act as a recruitment point for soluble protein, triggering the amyloid fibril elongation. Soluble protein and external aggregates are internalized into AC16 cells via macropinocytosis. AL amyloid fibrils are shown to be highly cytotoxic at low concentrations. Additionally, caspase assays revealed soluble protein induces apoptosis, demonstrating different cytotoxic mechanisms between soluble protein and amyloid aggregates. This study emphasizes the complex immunoglobulin light chain-cell interactions that result in fibril internalization, protein recruitment, and cytotoxicity that may occur in AL amyloidosis.
Collapse
Affiliation(s)
| | - Yi Lin
- the Division of Hematology, the Human Cell Therapy Lab, Division of Transfusion Medicine
| | - Pinaki Misra
- From the Departments of Biochemistry and Molecular Biology and
| | - Angela Williams
- the Departments of Medicine and Radiology, the University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920
| | - Jonathan S Wall
- the Departments of Medicine and Radiology, the University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920
| | - Kyle G Howell
- the Department of Microscopy and the Cell Analysis Core Facility, and
| | | | - Megan McClure
- the Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 and
| | | |
Collapse
|
491
|
Sagar G, Sah RP, Javeed N, Dutta SK, Smyrk TC, Lau JS, Giorgadze N, Tchkonia T, Kirkland J, Chari ST, Mukhopadhyay D. Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut 2016; 65:1165-74. [PMID: 26061593 PMCID: PMC5323066 DOI: 10.1136/gutjnl-2014-308350] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 04/03/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES New-onset diabetes and concomitant weight loss occurring several months before the clinical presentation of pancreatic cancer (PC) appear to be paraneoplastic phenomena caused by tumour-secreted products. Our recent findings have shown exosomal adrenomedullin (AM) is important in development of diabetes in PC. Adipose tissue lipolysis might explain early onset weight loss in PC. We hypothesise that lipolysis-inducing cargo is carried in exosomes shed by PC and is responsible for the paraneoplastic effects. Therefore, in this study we investigate if exosomes secreted by PC induce lipolysis in adipocytes and explore the role of AM in PC-exosomes as the mediator of this lipolysis. DESIGN Exosomes from patient-derived cell lines and from plasma of patients with PC and non-PC controls were isolated and characterised. Differentiated murine (3T3-L1) and human adipocytes were exposed to these exosomes to study lipolysis. Glycerol assay and western blotting were used to study lipolysis. Duolink Assay was used to study AM and adrenomedullin receptor (ADMR) interaction in adipocytes treated with exosomes. RESULTS In murine and human adipocytes, we found that both AM and PC-exosomes promoted lipolysis, which was abrogated by ADMR blockade. AM interacted with its receptor on the adipocytes, activated p38 and extracellular signal-regulated (ERK1/2) mitogen-activated protein kinases and promoted lipolysis by phosphorylating hormone-sensitive lipase. PKH67-labelled PC-exosomes were readily internalised into adipocytes and involved both caveolin and macropinocytosis as possible mechanisms for endocytosis. CONCLUSIONS PC-secreted exosomes induce lipolysis in subcutaneous adipose tissue; exosomal AM is a candidate mediator of this effect.
Collapse
Affiliation(s)
- Gunisha Sagar
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester
| | - Raghuwansh P. Sah
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester
| | - Naureen Javeed
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester
| | - Shamit K Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester
| | - Thomas C Smyrk
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester
| | - Julie S Lau
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester
| | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester MN, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester MN, USA
| | - James Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester MN, USA
| | - Suresh T Chari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester MN, USA
| | | |
Collapse
|
492
|
Singh S, Moirangthem RD, Vaidya A, Jalnapurkar S, Limaye L, Kale V. AKT Signaling Prevailing in Mesenchymal Stromal Cells Modulates the Functionality of Hematopoietic Stem Cells via Intercellular Communication. Stem Cells 2016; 34:2354-67. [DOI: 10.1002/stem.2409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/28/2016] [Accepted: 04/18/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Shweta Singh
- Stem Cell Lab, National Centre for Cell Science, Stem Cell Lab; Ganeshkhind Pune 411007 India
| | | | - Anuradha Vaidya
- Stem Cell Lab, National Centre for Cell Science, Stem Cell Lab; Ganeshkhind Pune 411007 India
- Stem Cell Lab, Symbiosis School of Biomedical Sciences, Symbiosis International University; Symbiosis Knowledge Village Lavale Pune 412 115 India
| | - Sapana Jalnapurkar
- Stem Cell Lab, National Centre for Cell Science, Stem Cell Lab; Ganeshkhind Pune 411007 India
| | - Lalita Limaye
- Stem Cell Lab, National Centre for Cell Science, Stem Cell Lab; Ganeshkhind Pune 411007 India
| | - Vaijayanti Kale
- Stem Cell Lab, National Centre for Cell Science, Stem Cell Lab; Ganeshkhind Pune 411007 India
| |
Collapse
|
493
|
Abstract
Functional neural competence and integrity require interactive exchanges among sensory and motor neurons, interneurons and glial cells. Recent studies have attributed some of the tasks needed for these exchanges to extracellular vesicles (such as exosomes and microvesicles), which are most prominently involved in shuttling reciprocal signals between myelinating glia and neurons, thus promoting neuronal survival, the immune response mediated by microglia, and synapse assembly and plasticity. Such vesicles have also been identified as important factors in the spread of neurodegenerative disorders and brain cancer. These extracellular vesicle functions add a previously unrecognized level of complexity to transcellular interactions within the nervous system.
Collapse
|
494
|
van Dongen HM, Masoumi N, Witwer KW, Pegtel DM. Extracellular Vesicles Exploit Viral Entry Routes for Cargo Delivery. Microbiol Mol Biol Rev 2016; 80:369-86. [PMID: 26935137 PMCID: PMC4867369 DOI: 10.1128/mmbr.00063-15] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as crucial mediators of intercellular communication, being involved in a wide array of key biological processes. Eukaryotic cells, and also bacteria, actively release heterogeneous subtypes of EVs into the extracellular space, where their contents reflect their (sub)cellular origin and the physiologic state of the parent cell. Within the past 20 years, presumed subtypes of EVs have been given a rather confusing diversity of names, including exosomes, microvesicles, ectosomes, microparticles, virosomes, virus-like particles, and oncosomes, and these names are variously defined by biogenesis, physical characteristics, or function. The latter category, functions, in particular the transmission of biological signals between cells in vivo and how EVs control biological processes, has garnered much interest. EVs have pathophysiological properties in cancer, neurodegenerative disorders, infectious disease, and cardiovascular disease, highlighting possibilities not only for minimally invasive diagnostic applications but also for therapeutic interventions, like macromolecular drug delivery. Yet, in order to pursue therapies involving EVs and delivering their cargo, a better grasp of EV targeting is needed. Here, we review recent progress in understanding the molecular mechanisms underpinning EV uptake by receptor-ligand interactions with recipient cells, highlighting once again the overlap of EVs and viruses. Despite their highly heterogeneous nature, EVs require common viral entry pathways, and an unanticipated specificity for cargo delivery is being revealed. We discuss the challenges ahead in delineating specific roles for EV-associated ligands and cellular receptors.
Collapse
Affiliation(s)
- Helena M van Dongen
- Department of Pathology, Exosomes Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Niala Masoumi
- Department of Pathology, Exosomes Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Michiel Pegtel
- Department of Pathology, Exosomes Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
495
|
Dando SJ, Naranjo Golborne C, Chinnery HR, Ruitenberg MJ, McMenamin PG. A case of mistaken identity: CD11c-eYFP(+) cells in the normal mouse brain parenchyma and neural retina display the phenotype of microglia, not dendritic cells. Glia 2016; 64:1331-49. [PMID: 27189804 DOI: 10.1002/glia.23005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Under steady-state conditions the central nervous system (CNS) is traditionally thought to be devoid of antigen presenting cells; however, putative dendritic cells (DCs) expressing enhanced yellow fluorescent protein (eYFP) are present in the retina and brain parenchyma of CD11c-eYFP mice. We previously showed that these mice carry the Crb1(rd8) mutation, which causes retinal dystrophic lesions; therefore we hypothesized that the presence of CD11c-eYFP(+) cells within the CNS may be due to pathology associated with the Crb1(rd8) mutation. We generated CD11c-eYFP Crb1(wt/wt) mice and compared the distribution and immunophenotype of CD11c-eYFP(+) cells in CD11c-eYFP mice with and without the Crb1(rd8) mutation. The number and distribution of CD11c-eYFP(+) cells in the CNS was similar between CD11c-eYFP Crb1(wt/wt) and CD11c-eYFP Crb1(rd8/rd8) mice. CD11c-eYFP(+) cells were distributed throughout the inner retina, and clustered in brain regions that receive input from the external environment or lack a blood-brain barrier. CD11c-eYFP(+) cells within the retina and cerebral cortex of CD11c-eYFP Crb1(wt/wt) mice expressed CD11b, F4/80, CD115 and Iba-1, but not DC or antigen presentation markers, whereas CD11c-eYFP(+) cells within the choroid plexus and pia mater expressed CD11c, I-A/I-E, CD80, CD86, CD103, DEC205, CD8α and CD135. The immunophenotype of CD11c-eYFP(+) cells and microglia within the CNS was similar between CD11c-eYFP Crb1(wt/wt) and CD11c-eYFP Crb1(rd8/rd8) mice; however, CD11c and I-A/I-E expression was significantly increased in CD11c-eYFP Crb1(rd8/rd8) mice. This study demonstrates that the overwhelming majority of CNS CD11c-eYFP(+) cells do not display the phenotype of DCs or their precursors and are most likely a subpopulation of microglia. GLIA 2016. GLIA 2016;64:1331-1349.
Collapse
Affiliation(s)
- Samantha J Dando
- Department of Anatomy and Developmental Biology and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Cecilia Naranjo Golborne
- Department of Anatomy and Developmental Biology and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, the University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Paul G McMenamin
- Department of Anatomy and Developmental Biology and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
496
|
Krämer-Albers EM, Hill AF. Extracellular vesicles: interneural shuttles of complex messages. Curr Opin Neurobiol 2016; 39:101-7. [PMID: 27183381 DOI: 10.1016/j.conb.2016.04.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
Abstract
A core function of neural cells is the exchange and integration of information. Extracellular vesicles such as exosomes and microvesicles recently entered the scene of neuroscience as novel vehicles transmitting complex signals between neural cells. Carrying a defined but mixed cargo of biomolecules, extracellular vesicles possess versatile biological activities with the ability to profoundly modulate the molecular configuration and behaviour of target cells. Extracellular vesicles are suggested to carry out functions during neural development and maintenance, they appear to spread neuropathology and furthermore, convey neuroprotection and regeneration. Understanding the molecular mechanisms of this sophisticated cellular crosstalk will fundamentally improve our insight in complex intercellular processes in the healthy and diseased nervous system.
Collapse
Affiliation(s)
- Eva-Maria Krämer-Albers
- Molecular Cell Biology and Focus Program Translational Neurosciences, Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
497
|
Ferretti MT, Merlini M, Späni C, Gericke C, Schweizer N, Enzmann G, Engelhardt B, Kulic L, Suter T, Nitsch RM. T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer's disease-like cerebral amyloidosis. Brain Behav Immun 2016; 54:211-225. [PMID: 26872418 DOI: 10.1016/j.bbi.2016.02.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/26/2016] [Accepted: 02/09/2016] [Indexed: 11/18/2022] Open
Abstract
Cerebral beta-amyloidosis, one of the pathological hallmarks of Alzheimer's disease (AD), elicits a well-characterised, microglia-mediated local innate immune response. In contrast, it is not clear whether cells of the adaptive immune system, in particular T-cells, react to cerebral amyloidosis in AD. Even though parenchymal T-cells have been described in post-mortem brains of AD patients, it is not known whether infiltrating T-cells are specifically recruited to the extracellular deposits of beta-amyloid, and whether they are locally activated into proliferating, effector cells upon interaction with antigen-presenting cells (APCs). To address these issues we have analysed by confocal microscopy and flow-cytometry the localisation and activation status of both T-cells and APCs in transgenic (tg) mice models of AD-like cerebral amyloidosis. Increased numbers of infiltrating T-cells were found in amyloid-burdened brain regions of tg mice, with concomitant up-regulation of endothelial adhesion molecules ICAM-1 and VCAM-1, compared to non-tg littermates. The infiltrating T-cells in tg brains did not co-localise with amyloid plaques, produced less interferon-gamma than those in controls and did not proliferate locally. Bona-fide dendritic cells were virtually absent from the brain parenchyma of both non-tg and tg mice, and APCs from tg brains showed an immature phenotype, with accumulation of MHC-II in intracellular compartments. These results indicate that cerebral amyloidosis promotes T-cell infiltration but interferes with local antigen presentation and T-cell activation. The inability of the brain immune surveillance to orchestrate a protective immune response to amyloid-beta peptide might contribute to the accumulation of amyloid in the progression of the disease.
Collapse
Affiliation(s)
- M T Ferretti
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Wagistrasse 12, 8952, Switzerland.
| | - M Merlini
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Wagistrasse 12, 8952, Switzerland
| | - C Späni
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Wagistrasse 12, 8952, Switzerland
| | - C Gericke
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Wagistrasse 12, 8952, Switzerland
| | - N Schweizer
- Neurology, Neuroimmunology and Multiple Sclerosis Research, University Hospital Zurich, Sternwartstrasse 14, 8006 Zurich, Switzerland
| | - G Enzmann
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - B Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - L Kulic
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Wagistrasse 12, 8952, Switzerland
| | - T Suter
- Neurology, Neuroimmunology and Multiple Sclerosis Research, University Hospital Zurich, Sternwartstrasse 14, 8006 Zurich, Switzerland
| | - R M Nitsch
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Wagistrasse 12, 8952, Switzerland
| |
Collapse
|
498
|
Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche. Stem Cells Int 2016; 2016:5736059. [PMID: 27195011 PMCID: PMC4853949 DOI: 10.1155/2016/5736059] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/27/2016] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer's Disease, Parkinson's Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have been explored. Stem cells, as well as most cells, release extracellular vesicles such as exosomes, which are nanovesicles able to target specific cell types and thus to modify their function by delivering proteins, lipids, and nucleic acids. Exosomes have recently been tested in vivo and in vitro as therapeutic conveyors for the treatment of diseases. As such, they could be engineered to target specific populations of cells within the CNS. Considering the fact that many degenerative brain diseases have an impact on adult neurogenesis, we discuss how the modulation of the adult neurogenic niches may be a therapeutic target of stem cell-derived exosomes. These novel approaches should be examined in cellular and animal models to provide better, more effective, and specific therapeutic tools in the future.
Collapse
|
499
|
Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol 2016; 36:301-12. [PMID: 27053351 DOI: 10.1007/s10571-016-0366-z] [Citation(s) in RCA: 1206] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles are a heterogeneous group of membrane-limited vesicles loaded with various proteins, lipids, and nucleic acids. Release of extracellular vesicles from its cell of origin occurs either through the outward budding of the plasma membrane or through the inward budding of the endosomal membrane, resulting in the formation of multivesicular bodies, which release vesicles upon fusion with the plasma membrane. The release of vesicles can facilitate intercellular communication by contact with or by internalization of contents, either by fusion with the plasma membrane or by endocytosis into "recipient" cells. Although the interest in extracellular vesicle research is increasing, there are still no real standards in place to separate or classify the different types of vesicles. This review provides an introduction into this expanding and complex field of research focusing on the biogenesis, nucleic acid cargo loading, content, release, and uptake of extracellular vesicles.
Collapse
Affiliation(s)
- Erik R Abels
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA. .,Department of Neurosurgery, Neuro-Oncology Research Group, VU University Medical Center, 1007MB, Amsterdam, The Netherlands.
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
500
|
Zappulli V, Friis KP, Fitzpatrick Z, Maguire CA, Breakefield XO. Extracellular vesicles and intercellular communication within the nervous system. J Clin Invest 2016; 126:1198-207. [PMID: 27035811 DOI: 10.1172/jci81134] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs, including exosomes) are implicated in many aspects of nervous system development and function, including regulation of synaptic communication, synaptic strength, and nerve regeneration. They mediate the transfer of packets of information in the form of nonsecreted proteins and DNA/RNA protected within a membrane compartment. EVs are essential for the packaging and transport of many cell-fate proteins during development as well as many neurotoxic misfolded proteins during pathogenesis. This form of communication provides another dimension of cellular crosstalk, with the ability to assemble a "kit" of directional instructions made up of different molecular entities and address it to specific recipient cells. This multidimensional form of communication has special significance in the nervous system. How EVs help to orchestrate the wiring of the brain while allowing for plasticity associated with learning and memory and contribute to regeneration and degeneration are all under investigation. Because they carry specific disease-related RNAs and proteins, practical applications of EVs include potential uses as biomarkers and therapeutics. This Review describes our current understanding of EVs and serves as a springboard for future advances, which may reveal new important mechanisms by which EVs in coordinate brain and body function and dysfunction.
Collapse
|