451
|
Ming T, Lei J, Peng Y, Wang M, Liang Y, Tang S, Tao Q, Wang M, Tang X, He Z, Liu X, Xu H. Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis. Phytother Res 2024; 38:3954-3972. [PMID: 38837315 DOI: 10.1002/ptr.8258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/07/2024]
Abstract
Driven by iron-dependent lipid peroxidation, ferroptosis is regulated by p53 and solute carrier family 7 member 11 (SLC7A11)/glutathione/glutathione peroxidase 4 (GPX4) axis in colorectal cancer (CRC). This study aimed to investigate the influence of curcumin (CUR) on ferroptosis in CRC. The efficacies of CUR on the malignant phenotype of CRC cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, wound healing, and clonogenic assays. The effects of CUR on ferroptosis of CRC cells were evaluated by transmission electron microscopy, lactate dehydrogenase release assay, Fe2+ staining, and analyses of reactive oxygen species, lipid peroxide, malondialdehyde, and glutathione levels. CUR's targets in ferroptosis were predicted by network pharmacological study and molecular docking. With SW620 xenograft tumors, the efficacy of CUR on CRC was investigated, and the effects of CUR on ferroptosis were assessed by detection of Fe2+, malondialdehyde, and glutathione levels. The effects of CUR on expressions of p53, SLC7A11, and GPX4 in CRC cells and tumors were analyzed by quantitative reverse transcription-polymerase chain reaction, western blotting, and immunohistochemistry. CUR suppressed the proliferation, migration, and clonogenesis of CRC cells and xenograft tumor growth by causing ferroptosis, with enhanced lactate dehydrogenase release and Fe2+, reactive oxygen species, lipid peroxide, and malondialdehyde levels, but attenuated glutathione level in CRC. In silico study indicated that CUR may bind p53, SLC7A11, and GPX4, consolidated by that CUR heightened p53 but attenuated SLC7A11 and GPX4 mRNA and protein levels in CRC. CUR may exert an inhibitory effect on CRC by inducing ferroptosis via regulation of p53 and SLC7A11/glutathione/GPX4 axis.
Collapse
Affiliation(s)
- Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiarong Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minmin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanjing Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Muqing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomeng Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziyu He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
452
|
Gao R, Wang J, Huang J, Wang T, Guo L, Liu W, Guan J, Liang D, Meng Q, Pan H. FSP1-mediated ferroptosis in cancer: from mechanisms to therapeutic applications. Apoptosis 2024; 29:1019-1037. [PMID: 38615304 DOI: 10.1007/s10495-024-01966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Ferroptosis is a new discovered regulated cell death triggered by the ferrous ion (Fe2+)-dependent accumulation of lipid peroxides associated with cancer and many other diseases. The mechanism of ferroptosis includes oxidation systems (such as enzymatic oxidation and free radical oxidation) and antioxidant systems (such as GSH/GPX4, CoQ10/FSP1, BH4/GCH1 and VKORC1L1/VK). Among them, ferroptosis suppressor protein 1 (FSP1), as a crucial regulatory factor in the antioxidant system, has shown a crucial role in ferroptosis. FSP1 has been well validated to ferroptosis in three ways, and a variety of intracellular factors and drug molecules can alleviate ferroptosis via FSP1, which has been demonstrated to alter the sensitivity and effectiveness of cancer therapies, including chemotherapy, radiotherapy, targeted therapy and immunotherapy. This review aims to provide important frameworks that, bring the regulation of FSP1 mediated ferroptosis into cancer therapies on the basis of existing studies.
Collapse
Affiliation(s)
- Ran Gao
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinge Wang
- School of Public Health, Harbin Medical University, Harbin, China
| | - Jingjing Huang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingfeng Guo
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenlu Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialu Guan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Desen Liang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qinghui Meng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huayang Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
453
|
Abstract
Cellular quality control systems sense and mediate homeostatic responses to prevent the buildup of aberrant macromolecules, which arise from errors during biosynthesis, damage by environmental insults, or imbalances in enzymatic and metabolic activity. Lipids are structurally diverse macromolecules that have many important cellular functions, ranging from structural roles in membranes to functions as signaling and energy-storage molecules. As with other macromolecules, lipids can be damaged (e.g., oxidized), and cells require quality control systems to ensure that nonfunctional and potentially toxic lipids do not accumulate. Ferroptosis is a form of cell death that results from the failure of lipid quality control and the consequent accumulation of oxidatively damaged phospholipids. In this review, we describe a framework for lipid quality control, using ferroptosis as an illustrative example to highlight concepts related to lipid damage, membrane remodeling, and suppression or detoxification of lipid damage via preemptive and damage-repair lipid quality control pathways.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA;
| | - Mike Lange
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, California, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA
| |
Collapse
|
454
|
Díez-Sainz E, Milagro FI, Aranaz P, Riezu-Boj JI, Lorente-Cebrián S. MicroRNAs from edible plants reach the human gastrointestinal tract and may act as potential regulators of gene expression. J Physiol Biochem 2024; 80:655-670. [PMID: 38662188 PMCID: PMC11502557 DOI: 10.1007/s13105-024-01023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules that regulate gene expression at the post-transcriptional level. A cross-kingdom regulatory function has been unveiled for plant miRNAs (xenomiRs), which could shape inter-species interactions of plants with other organisms (bacteria and humans) and thus, be key functional molecules of plant-based food in mammals. However, discrepancies regarding the stability and bioavailability of dietary plant miRNAs on the host cast in doubt whether these molecules could have a significant impact on human physiology. The aim of the present study was to identify miRNAs in edible plants and determine their bioavailability on humans after an acute intake of plant-based products. It was found that plant food, including fruits, vegetables and greens, nuts, legumes, and cereals, contains a wide range of miRNAs. XenomiRs miR156e, miR159 and miR162 were detected in great abundance in edible plants and were present among many plant foods, and thus, they were selected as candidates to analyse their bioavailability in humans. These plant miRNAs resisted cooking processes (heat-treatments) and their relative presence increased in faeces after and acute intake of plant-based foods, although they were not detected in serum. Bioinformatic analysis revealed that these miRNAs could potentially target human and bacterial genes involved in processes such as cell signalling and metabolism. In conclusion, edible plants contain miRNAs, such as miR156e, miR159 and miR162, that could resist degradation during cooking and digestion and reach the distal segments of the gastrointestinal tract. Nevertheless, strategies should be developed to improve their absorption to potentially reach host tissues and organs and modulate human physiology.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Paula Aranaz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - José I Riezu-Boj
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - Silvia Lorente-Cebrián
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009, Saragossa, Spain
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013, Saragossa, Spain
- Aragón Health Research Institute (IIS-Aragon), 50009, Saragossa, Spain
| |
Collapse
|
455
|
Xia J, Fu B, Wang Z, Wen G, Gu Q, Chen D, Ren H. MVP enhances FGF21-induced ferroptosis in hepatocellular carcinoma by increasing lipid peroxidation through regulation of NOX4. Clin Transl Sci 2024; 17:e13910. [PMID: 39143889 PMCID: PMC11325046 DOI: 10.1111/cts.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Ferroptosis is a novel, iron-dependent regulatory cell death mainly caused by an imbalance between the production and degradation of intracellular reactive oxygen species (ROS). Recently, ferroptosis induction has been considered a potential therapeutic approach for hepatocellular carcinoma (HCC). Fibroblast growth factor 21 (FGF21) is a new modulator of ferroptosis; however, the regulatory role of FGF21 in HCC ferroptosis has not been investigated. In this study, we explored the role of FGF21 and its underlying molecular mechanism in the ferroptotic death of HCC cells. We identified Major vault protein (MVP) as a target of FGF21 and revealed that knockdown of MVP inhibited the lipid peroxidation levels of HCC cells by decreasing NADPH oxidase 4 (NOX4, a major source of ROS) transcription, thereby attenuating the effect of FGF21-mediated ferroptosis. On the other hand, MVP overexpression showed the opposite results. Mechanistically, MVP binds to IRF1 and thus interferes with the interaction between IRF1 and the YAP1 promoter, leading to an increase in NOX4 transcription. Importantly, forced expression of IRF1 or downregulation of YAP1 partially reversed the effect of MVP overexpression on HCC ferroptosis. Furthermore, the results in xenograft tumor models suggested that overexpression of MVP can efficiently increase the level of lipid peroxidation in vivo. Taken together, these results provide new insights into the regulatory mechanism of ferroptosis in HCC.
Collapse
Affiliation(s)
- Jinkun Xia
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical SchoolNanjing UniversityNanjingChina
| | - Boqi Fu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Zhe Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Gaolin Wen
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Quanshui Gu
- Department of Anesthesia SurgeryNanjing University Medical School Affiliated Nanjing Drum Tower HospitalNanjingChina
| | - Dayu Chen
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical SchoolNanjing UniversityNanjingChina
- Department of PharmacyNanjing University Medical School Affiliated Nanjing Drum Tower HospitalNanjingChina
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
456
|
Liu P, Shi C, Qiu L, Shang D, Lu Z, Tu Z, Liu H. Menin signaling and therapeutic targeting in breast cancer. Curr Probl Cancer 2024; 51:101118. [PMID: 38968834 DOI: 10.1016/j.currproblcancer.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
To date, mounting evidence have shown that patients with multiple endocrine neoplasia type 1 (MEN1) may face an increased risk for breast carcinogenesis. The product of the MEN1 gene, menin, was also indicated to be an important regulator in breast cancer signaling network. Menin directly interacts with MLL, EZH2, JunD, NF-κB, PPARγ, VDR, Smad3, β-catenin and ERα to modulate gene transcriptions leading to cell proliferation inhibition. Moreover, interaction of menin-FANCD2 contributes to the enhancement of BRCA1-mediated DNA repair mechanism. Ectopic expression of menin causes Bax-, Bak- and Caspase-8-dependent apoptosis. However, despite numbers of menin inhibitors were exploited in other cancers, data on the usage of menin inhibitors in breast cancer treatment remain limited. In this review, we focused on the menin associated signaling pathways and gene transcription regulations, with the aim of elucidating its molecular mechanisms and of guiding the development of novel menin targeted drugs in breast cancer therapy.
Collapse
Affiliation(s)
- Peng Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Chaowen Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Lipeng Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ziwen Lu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
457
|
Zhang L, Guan L, Wang Y, Niu MM, Yan J. Discovery of a dual-target DYRK2 and HDAC8 inhibitor for the treatment of hepatocellular carcinoma. Biomed Pharmacother 2024; 177:116839. [PMID: 38889633 DOI: 10.1016/j.biopha.2024.116839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) and histone deacetylase 8 (HDAC8) have been shown to be associated with the development of several cancers. Here, we identified a dual-target DYRK2/HDAC8 inhibitor (DYC-1) through a combined virtual screening protocol. DYC-1 exhibited nanomolar inhibitory activity against both DYRK2 (IC50 = 5.27 ± 0.13 nM) and HDAC8 (IC50 = 8.06 ± 0.47 nM). Molecular dynamics simulations showed that DYC-1 had positive binding stability with DYRK2 and HDAC8. Importantly, the cytotoxicity assay indicated that DYC-1 exhibited superior antiproliferative activity against human liver cancer, especially SK-HEP-1 cells, and had no significant inhibition on normal liver cells. Moreover, DYC-1 showed a strong inhibitory effect on the growth of SK-HEP-1 xenograft tumors with no significant side effects. These data suggest that DYC-1 is a high-efficacy and low-toxic antitumor agent for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacy, Changzhi People's Hospital, Changzhi Medical College, Changzhi 046000, China.
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Yuting Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Jinhu Yan
- Department of Pain Treatment, Changzhi Hospital of Traditional Chinese Medicine, Changzhi 046000, China.
| |
Collapse
|
458
|
Elvira-Blázquez D, Fernández-Justel JM, Arcas A, Statello L, Goñi E, González J, Ricci B, Zaccara S, Raimondi I, Huarte M. YTHDC1 m 6A-dependent and m 6A-independent functions converge to preserve the DNA damage response. EMBO J 2024; 43:3494-3522. [PMID: 38951610 PMCID: PMC11329685 DOI: 10.1038/s44318-024-00153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Cells have evolved a robust and highly regulated DNA damage response to preserve their genomic integrity. Although increasing evidence highlights the relevance of RNA regulation, our understanding of its impact on a fully efficient DNA damage response remains limited. Here, through a targeted CRISPR-knockout screen, we identify RNA-binding proteins and modifiers that participate in the p53 response. Among the top hits, we find the m6A reader YTHDC1 as a master regulator of p53 expression. YTHDC1 binds to the transcription start sites of TP53 and other genes involved in the DNA damage response, promoting their transcriptional elongation. YTHDC1 deficiency also causes the retention of introns and therefore aberrant protein production of key DNA damage factors. While YTHDC1-mediated intron retention requires m6A, TP53 transcriptional pause-release is promoted by YTHDC1 independently of m6A. Depletion of YTHDC1 causes genomic instability and aberrant cancer cell proliferation mediated by genes regulated by YTHDC1. Our results uncover YTHDC1 as an orchestrator of the DNA damage response through distinct mechanisms of co-transcriptional mRNA regulation.
Collapse
Affiliation(s)
- Daniel Elvira-Blázquez
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - José Miguel Fernández-Justel
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Aida Arcas
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
- Clarivate, Barcelona, Spain
| | - Luisa Statello
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Goñi
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Jovanna González
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Benedetta Ricci
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sara Zaccara
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ivan Raimondi
- New York Genome Center, New York, NY, USA.
- Weill Cornell Medicine, New York, NY, USA.
| | - Maite Huarte
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
459
|
Pan B, Kang J, Zheng R, Wei C, Zhi Y. Molecular mechanism of ferroptosis and its application in the treatment of clear cell renal cell carcinoma. Pathol Res Pract 2024; 260:155324. [PMID: 38905897 DOI: 10.1016/j.prp.2024.155324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 06/23/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor of the urinary tract, the incidence of which is continuously increasing and affects human health worldwide. Despite advances in existing treatments, treatment outcomes still need to be improved due to higher rates of postoperative recurrence, chemotherapy resistance, etc.; thus, there is an urgent need for innovative therapeutic approaches. Ferroptosis is a recently found type of regulated cell death that is characterized primarily by the buildup of lipid peroxidation products and fatal reactive oxygen species created by iron metabolism, which plays a crucial role in tumor progression and therapy.With the molecular mechanisms associated with ferroptosis being increasingly studied and refined, triggering ferroptosis by regulators that target ferroptosis and ccRCC may be the key to developing potential therapeutic strategies for ccRCC. Therefore, ferroptosis is expected to be a new breakthrough in treating ccRCC. This paper examines the mechanism of ferroptosis, the regulatory mechanism of ferroptosis in ccRCC, and the potential application of ferroptosis in combination with other therapies for the treatment of ccRCC. The goal is to offer novel perspectives for the research and clinical application of ferroptosis in the treatment of ccRCC.
Collapse
Affiliation(s)
- Beifen Pan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Kang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rongxin Zheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Cuiping Wei
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yong Zhi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
460
|
Fan J, Xue L, Lin H, Luo J. Depletion of NUAK2 blocks the stemness and angiogenesis and facilitates senescence of lung adenocarcinoma cells via enhancing ferroptosis. Cell Div 2024; 19:23. [PMID: 39068449 PMCID: PMC11283724 DOI: 10.1186/s13008-024-00128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND NUAK family kinase 2 (NUAK2) has been identified as an important mediator for tumor progression in multiple malignancies. Nevertheless, its role in lung adenocarcinoma (LUAD) remains unclear. METHODS Bioinformatic analysis was performed to assess the expression and prognosis of NUAK2 in patients with LUAD. The NUAK2 expression was measured in multiple LUAD cell lines, and the loss-of-function experiment was conducted. Cell proliferation ability was assessed using CCK-8 and colony formation assays. Spheroid formation, alkaline phosphatase (AP) staining, tube formation and SA-β-gal staining assays were performed to examine stemness, angiogenesis and senescence. Lipid peroxidase was assessed by TBARS production and lipid ROS. Western blot was used to detect critical proteins. In addition, A549 cells were treated with ferroptosis inhibitor ferrostatin-1 (Fer-1) for a rescue assay. Finally, A549 cells were subcutaneously injected into the right flank of mice to establish LUAD-bearing mouse model, and the tumor weight and size were detected. RESULTS NUAK2 was upregulated in patients with LUAD and LUAD cell lines. NUAK2 depletion inhibited cell viability, colonies, tumor spheres and decreased Oct4 and Nanog expression, confirming NUAK2 depletion inhibited proliferation and stemness of A549 cells. Meanwhile, NUAK2 depletion blocked angiogenesis via reducing formed tubes and VEGFR1/2 expression, and promoted senescence of A549 cells by elevating SA-β-gal-positive cells and p16, p21 and p53 expression. Moreover, NUAK2 depletion elevated lipid ROS, TBARS production and Fe2+ level, demonstrating that NUAK2 depletion could trigger ferroptosis in A549 cells. Furthermore, the rescue experiments revealed that the impacts of NUAK2 depletion on malignant behaviors in A549 cells were partly weakened by additional Fer-1 treatment. Finally, in vivo experiments demonstrated that NUAK2 knockdown greatly inhibited tumor growth in LUAD-bearing mice. CONCLUSION In summary, NUAK2 depletion impeded oncogenic phenotypes of A549 cells partly via triggering ferroptosis, suggesting NUAK2 as a novel target for treating LUAD.
Collapse
Affiliation(s)
- Jun Fan
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gulou District, Nanjing, 210000, Jiangsu, China
| | - Lei Xue
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gulou District, Nanjing, 210000, Jiangsu, China
| | - Haoran Lin
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gulou District, Nanjing, 210000, Jiangsu, China
| | - Jinhua Luo
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gulou District, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
461
|
Bieri S, Möller B, Amsler J. Ferroptosis in Arthritis: Driver of the Disease or Therapeutic Option? Int J Mol Sci 2024; 25:8212. [PMID: 39125782 PMCID: PMC11311315 DOI: 10.3390/ijms25158212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Ferroptosis is a form of iron-dependent regulated cell death caused by the accumulation of lipid peroxides. In this review, we summarize research on the impact of ferroptosis on disease models and isolated cells in various types of arthritis. While most studies have focused on rheumatoid arthritis (RA) and osteoarthritis (OA), there is limited research on spondylarthritis and crystal arthropathies. The effects of inducing or inhibiting ferroptosis on the disease strongly depend on the studied cell type. In the search for new therapeutic targets, inhibiting ferroptosis in chondrocytes might have promising effects for any type of arthritis. On the other hand, ferroptosis induction may also lead to a desired decrease of synovial fibroblasts in RA. Thus, ferroptosis research must consider the cell-type-specific effects on arthritis. Further investigation is needed to clarify these complexities.
Collapse
Affiliation(s)
- Shania Bieri
- Faculty of Medicine, University of Bern, 3012 Bern, Switzerland
| | - Burkhard Möller
- Department of Rheumatology and Immunology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Jennifer Amsler
- Department of Rheumatology and Immunology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
- Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
462
|
Yan S, Lu J, Chen B, Yuan L, Chen L, Ju L, Cai W, Wu J. The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment. Antioxidants (Basel) 2024; 13:897. [PMID: 39199143 PMCID: PMC11351715 DOI: 10.3390/antiox13080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring compound synthesized by mitochondria and widely distributed in both animal and plant tissues. It primarily influences cellular metabolism and oxidative stress networks through its antioxidant properties and is an important drug for treating metabolic diseases associated with oxidative damage. Nevertheless, research indicates that the mechanism by which ALA affects cancer cells is distinct from that observed in normal cells, exhibiting pro-oxidative properties. Therefore, this review aims to describe the main chemical and biological functions of ALA in the cancer environment, including its mechanisms and effects in tumor prevention and anticancer activity, as well as its role as an adjunctive drug in cancer therapy. We specifically focus on the interactions between ALA and various carcinogenic and anti-carcinogenic pathways and discuss ALA's pro-oxidative capabilities in the unique redox environment of cancer cells. Additionally, we elaborate on ALA's roles in nanomedicine, hypoxia-inducible factors, and cancer stem cell research, proposing hypotheses and potential explanations for currently unresolved issues.
Collapse
Affiliation(s)
- Shuai Yan
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Jiajie Lu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Bingqing Chen
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Liuxia Yuan
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Lin Chen
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Linglin Ju
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Weihua Cai
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| | - Jinzhu Wu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| |
Collapse
|
463
|
Wang Z, Tang R, Wang H, Li X, Liu Z, Li W, Peng G, Zhou H. Bioinformatics analysis of the role of lysosome-related genes in breast cancer. Comput Methods Biomech Biomed Engin 2024:1-20. [PMID: 39054687 DOI: 10.1080/10255842.2024.2379936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
This study aimed to investigate the roles of lysosome-related genes in BC prognosis and immunity. Transcriptome data from TCGA and MSigDB, along with lysosome-related gene sets, underwent NMF cluster analysis, resulting in two subtypes. Using lasso regression and univariate/multivariate Cox regression analysis, an 11-gene signature was successfully identified and verified. High- and low-risk populations were dominated by HR+ sample types. There were differences in pathway enrichment, immune cell infiltration, and immune scores. Sensitive drugs targeting model genes were screened using GDSC and CCLE. This study constructed a reliable prognostic model with lysosome-related genes, providing valuable insights for BC clinical immunotherapy.
Collapse
Affiliation(s)
- Zhongming Wang
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Ruiyao Tang
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Huazhong Wang
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Xizhang Li
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Zhenbang Liu
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Wenjie Li
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Gui Peng
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Huaiying Zhou
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| |
Collapse
|
464
|
Nishizawa H, Matsumoto M, Yamanaka M, Irikura R, Nakajima K, Tada K, Nakayama Y, Konishi M, Itoh N, Funayama R, Nakayama K, Igarashi K. BACH1 inhibits senescence, obesity, and short lifespan by ferroptotic FGF21 secretion. Cell Rep 2024; 43:114403. [PMID: 38943639 DOI: 10.1016/j.celrep.2024.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/14/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by iron-dependent lipid peroxidation. A model cell system is constructed to induce ferroptosis by re-expressing the transcription factor BACH1, a potent ferroptosis inducer, in immortalized mouse embryonic fibroblasts (iMEFs). The transfer of the culture supernatant from ferroptotic iMEFs activates the proliferation of hepatoma cells and other fibroblasts and suppresses cellular senescence-like features. The BACH1-dependent secretion of the longevity factor FGF21 is increased in ferroptotic iMEFs. The anti-senescent effects of the culture supernatant from these iMEFs are abrogated by Fgf21 knockout. BACH1 activates the transcription of Fgf21 by promoting ferroptotic stress and increases FGF21 protein expression by suppressing its autophagic degradation through transcriptional Sqstm1 and Lamp2 repression. The BACH1-induced ferroptotic FGF21 secretion suppresses obesity in high-fat diet-fed mice and the short lifespan of progeria mice. The inhibition of these aging-related phenotypes can be physiologically significant regarding ferroptosis.
Collapse
Affiliation(s)
- Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Mie Yamanaka
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Gladstone Institute of Neurological Disease, Gladstone Institute, San Francisco, CA 94158, USA
| | - Riko Irikura
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kazuma Nakajima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Keisuke Tada
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yoshiaki Nakayama
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Morichika Konishi
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Ryo Funayama
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Keiko Nakayama
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
465
|
Aloisi M, Grifoni D, Zarivi O, Colafarina S, Morciano P, Poma AMG. Plastic Fly: What Drosophila melanogaster Can Tell Us about the Biological Effects and the Carcinogenic Potential of Nanopolystyrene. Int J Mol Sci 2024; 25:7965. [PMID: 39063206 PMCID: PMC11277132 DOI: 10.3390/ijms25147965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Today, plastic pollution is one of the biggest threats to the environment and public health. In the tissues of exposed species, micro- and nano-fragments accumulate, leading to genotoxicity, altered metabolism, and decreased lifespan. A model to investigate the genotoxic and tumor-promoting potential of nanoplastics (NPs) is Drosophila melanogaster. Here we tested polystyrene, which is commonly used in food packaging, is not well recycled, and makes up at least 30% of landfills. In order to investigate the biological effects and carcinogenic potential of 100 µm polystyrene nanoparticles (PSNPs), we raised Oregon [R] wild-type flies on contaminated food. After prolonged exposure, fluorescent PSNPs accumulated in the gut and fat bodies. Furthermore, PSNP-fed flies showed considerable alterations in weight, developmental time, and lifespan, as well as a compromised ability to recover from starvation. Additionally, we noticed a decrease in motor activity in DNAlig4 mutants fed with PSNPs, which are known to be susceptible to dietary stressors. A qPCR molecular investigation of the larval intestines revealed a markedly elevated expression of the genes drice and p53, suggesting a response to cell damage. Lastly, we used warts-defective mutants to assess the carcinogenic potential of PSNPs and discovered that exposed flies had more aberrant masses than untreated ones. In summary, our findings support the notion that ingested nanopolystyrene triggers metabolic and genetic modifications in the exposed organisms, eventually delaying development and accelerating death and disease.
Collapse
Affiliation(s)
- Massimo Aloisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Daniela Grifoni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Patrizia Morciano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
- INFN Laboratori Nazionali del Gran Sasso, Assergi, 67100 L’Aquila, Italy
| | - Anna Maria Giuseppina Poma
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| |
Collapse
|
466
|
Xiao H, Jiang N, Zhang H, Wang S, Pi Q, Chen H, He X, Luo W, Lu Y, Deng Y, Zhong Z. Inhibitors of APE1 redox and ATM synergistically sensitize osteosarcoma cells to ionizing radiation by inducing ferroptosis. Int Immunopharmacol 2024; 139:112672. [PMID: 39032469 DOI: 10.1016/j.intimp.2024.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
The resistance of osteosarcoma (OS) to ionizing radiation (IR) is an obstacle for effective patient treatment. Apurinic/apyrimidinic endonuclease-reduction/oxidation factor 1 (APE1/Ref-1) is a multifunctional protein with DNA repair and reduction/oxidation (redox) activities. We previously revealed the role of APE1 in OS radioresistance; however, whether the redox activity of APE1 is involved in OS radioresistance is unclear. APE1 regulates the activation of ataxia-telangiectasia mutated (ATM), an initiator of DNA damage response that mediates radioresistance in other cancers. The role of APE1 redox activity and ATM activation in OS radioresistance is unknown. Our study revealed that IR increased APE1 expression and ATM activation in OS cells, and APE1 directly regulated ATM activation by its redox activity. The combined use of an APE1 redox inhibitor and ATM inhibitor effectively sensitized OS cells to IR in vitro and in vivo. Mechanistically, the increased radiosensitization of OS cells by the combined use of the two inhibitors was mediated by increased ferroptosis. Co-treatment with the two inhibitors significantly decreased expression of the common targeted transcription factor P53 compared with single inhibitor treatment. Collectively, APE1 redox activity, ATM activation and their crosstalk play important roles in the resistance of OS to irradiation. Synergetic inhibition of APE1 redox activity and ATM activation sensitized OS cells to IR by inducing ferroptosis, which provides a promising strategy for OS radiotherapy.
Collapse
Affiliation(s)
- Hanxi Xiao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China; Department of Clinical Hematology, College of Pharmacy, Army Medical University, Chongqing 400038, China; Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Nan Jiang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hongbin Zhang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shuai Wang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qin Pi
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Huawei Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xuan He
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Luo
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yonghui Lu
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing 400038, China.
| | - Youcai Deng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China; Department of Clinical Hematology, College of Pharmacy, Army Medical University, Chongqing 400038, China.
| | - Zhaoyang Zhong
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China; Department of Oncology, The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| |
Collapse
|
467
|
He S, Luo C, Shi F, Zhou J, Shang L. The Emerging Role of Ferroptosis in EBV-Associated Cancer: Implications for Cancer Therapy. BIOLOGY 2024; 13:543. [PMID: 39056735 PMCID: PMC11274159 DOI: 10.3390/biology13070543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Ferroptosis is a novel and iron-dependent form of programmed cell death, which has been implicated in the pathogenesis of various human cancers. EBV is a well-recognized oncogenic virus that controls multiple signaling pathways within the host cell, including ferroptosis signaling. Recent studies show that inducing ferroptosis could be an efficient therapeutic strategy for EBV-associated tumors. This review will firstly describe the mechanism of ferroptosis, then summarize EBV infection and EBV-associated tumors, as well as the crosstalk between EBV infection and the ferroptosis signaling pathway, and finally discuss the role and potential application of ferroptosis-related reagents in EBV-associated tumors.
Collapse
Affiliation(s)
- Shan He
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Cheng Luo
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jianhua Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
| |
Collapse
|
468
|
Zhang J, Zhang S, Liu M, Yang Z, Huang R. Research Progress on Ferroptosis and Nanotechnology-Based Treatment in Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:347-358. [PMID: 39050766 PMCID: PMC11268712 DOI: 10.2147/bctt.s475199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In recent years, more and more researches on cell death mode in breast cancer, including apoptosis, ferroptosis, etc. Ferroptosisis a regulated form of cell death characterized by iron-dependent accumulation of lipid peroxidation to lethal levels, and numerous studies have shown that ferroptosis is closely associated with tumor cells. Breast cancer is one of the malignant tumors with the highest incidence in women, and TNBC accounts for about 15-20% of all types of breast cancer. Due to the poor prognosis, strong aggressiveness, high drug resistance and lack of molecular targeting characteristics of TNBC, the treatment of TNBC faces many difficulties and great challenges. A large number of studies have shown that ferroptosis plays an important role in the occurrence and development of TNBC, tumor diagnosis, treatment and prognosis, among which the main mechanisms inducing ferroptosis include oxidative stress pathway, iron metabolism pathway and lipid metabolism pathway. Since TNBC is highly sensitive to oxidative stress pathways, intracellular GSH reduces reactive oxygen species under the action of GSH peroxidase (GPX), and when intracellular lipid peroxidase (LPO) accumulates to a certain level, ferroptosis will be induced, thus achieving the purpose of killing TNBC cells. In addition, lipid metabolism is highly consistent with the high lipid level of TNBC tumor cells. As a new therapeutic method, nanotechnology has added security to the treatment of cancer with its high safety and excellent biocompatibility. Therefore, the combination of nanotechnology with iron-based radiotherapy, chemotherapy, targeting and immunization has great research value for the treatment of TNBC In addition, the novel idea of treating TNBC with ethnopharmacology combined with ferroptosis is also involved. This article reviews the mechanism of ferroptosis and the recent research on the treatment prospects of TNBC based on ferroptosis and nanotechnology, hoping to provide references for the treatment of diseases based on ferroptosis.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Medical College of Yan’an University, Yan ‘an, People’s Republic of China
| | - Shengjun Zhang
- Department of General Surgery, Affiliated Hospital of Yan ‘an University, Yan ‘an, People’s Republic of China
| | - Minli Liu
- Department of Medical College of Yan’an University, Yan ‘an, People’s Republic of China
| | - Zhe Yang
- Department of Medical College of Yan’an University, Yan ‘an, People’s Republic of China
| | - Rong Huang
- Department of Medical College of Yan’an University, Yan ‘an, People’s Republic of China
| |
Collapse
|
469
|
Aati S, Aati HY, El-Shamy S, Khanfar MA, A.Naeim MA, Hamed AA, Rateb ME, Hassan HM, Aboseada MA. Green synthesized extracts/Au complex of Phyllospongia lamellosa: Unrevealing the anti-cancer and anti-bacterial potentialities, supported by metabolomics and molecular modeling. Heliyon 2024; 10:e34000. [PMID: 39071630 PMCID: PMC11283168 DOI: 10.1016/j.heliyon.2024.e34000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/02/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
The anti-cancer and anti-bacterial potential of the Red Sea sponge Phyllospongia lamellosa in its bulk (crude extracts) and gold nanostructure (loaded on gold nanaoparticles) were investigated. Metabolomics analysis was conducted, and subsequently, molecular modeling studies were conducted to explore and anticipate the P. lamellosa secondary metabolites and their potential target for their various bioactivities. The chloroformic extract (CE) and ethyl acetate extract (EE) of the P. lamellosa predicted to include bioactive lipophilic and moderately polar metabolites, respectively, were used to synthesize gold nanoparticles (AuNPs). The prepared AuNPs were characterized through transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV-vis spectrophotometric analyses. The cytotoxic activities were tested against MCF-7, MDB-231, and MCF-10A. Moreover, the anti-bacterial, antifungal, and anti-biofilm activity were assessed. Definite classes of metabolites were identified in CE (terpenoids) and EE (brominated phenyl ethers and sulfated fatty amides). Molecular modeling involving docking and molecular dynamics identified Protein-tyrosine phosphatase 1B (PTP1B) as a potential target for the anti-cancer activities of terpenoids. Moreover, CE exhibited the most powerful activity against breast cancer cell lines, matching our molecular modeling study. On the other hand, only EE was demonstrated to possess powerful anti-bacterial and anti-biofilm activity against Escherichia coli. In conclusion, depending on their bioactive metabolites, P. lamellosa-derived extracts, after being loaded on AuNPs, could be considered anti-cancer, anti-bacterial, and anti-biofilm bioactive products. Future work should be completed to produce drug leads.
Collapse
Affiliation(s)
- Sultan Aati
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Sherine El-Shamy
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mohammad A. Khanfar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman, 11942, Jordan
| | | | - Ahmed A. Hamed
- National Research Centre, Microbial Chemistry Department, 33 El-Buhouth Street, Dokki, Giza, 12622, Egypt
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, Scotland, UK
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Mahmoud A. Aboseada
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
470
|
Peng L, Zhao Y, Tan J, Hou J, Jin X, Liu DX, Huang B, Lu J. PRMT1 promotes Warburg effect by regulating the PKM2/PKM1 ratio in non-small cell lung cancer. Cell Death Dis 2024; 15:504. [PMID: 39009589 PMCID: PMC11251085 DOI: 10.1038/s41419-024-06898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Abnormal epigenetic modifications are involved in the regulation of Warburg effect in tumor cells. Protein arginine methyltransferases (PRMTs) mediate arginine methylation and have critical functions in cellular responses. PRMTs are deregulated in a variety of cancers, but their precise roles in Warburg effect in cancer is largely unknown. Experiments from the current study showed that PRMT1 was highly expressed under conditions of glucose sufficiency. PRMT1 induced an increase in the PKM2/PKM1 ratio through upregulation of PTBP1, in turn, promoting aerobic glycolysis in non-small cell lung cancer (NSCLC). The PRMT1 level in p53-deficient and p53-mutated NSCLC remained relatively unchanged while the expression was reduced in p53 wild-type NSCLC under conditions of glucose insufficiency. Notably, p53 activation under glucose-deficient conditions could suppress USP7 and further accelerate the polyubiquitin-dependent degradation of PRMT1. Melatonin, a hormone that inhibits glucose intake, markedly suppressed cell proliferation of p53 wild-type NSCLC, while a combination of melatonin and the USP7 inhibitor P5091 enhanced the anticancer activity in p53-deficient NSCLC. Our collective findings support a role of PRMT1 in the regulation of Warburg effect in NSCLC. Moreover, combination treatment with melatonin and the USP7 inhibitor showed good efficacy, providing a rationale for the development of PRMT1-based therapy to improve p53-deficient NSCLC outcomes.
Collapse
Affiliation(s)
- Lu Peng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yujiao Zhao
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jiang Tan
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jingyao Hou
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Xin Jin
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Dong-Xu Liu
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Baiqu Huang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
471
|
Xiao Y, Liang Z, Qiao J, Zhu Z, Liu B, Tian Y. BRD7 facilitates ferroptosis via modulating clusterin promoter hypermethylation and suppressing AMPK signaling in diabetes-induced testicular damage. Mol Med 2024; 30:100. [PMID: 38992588 PMCID: PMC11241864 DOI: 10.1186/s10020-024-00868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM)-induced testicular damage is associated with sexual dysfunction and male infertility in DM patients. However, the pathogenesis of DM-induced testicular damage remains largely undefined. METHODS A streptozotocin (STZ)-induced diabetic model and high glucose (HG)-treated in vitro diabetic model were established. The histological changes of testes were assessed by H&E staining. Serum testosterone, iron, MDA and GSH levels were detected using commercial kits. Cell viability and lipid peroxidation was monitored by MTT assay and BODIPY 581/591 C11 staining, respectively. qRT-PCR, immunohistochemistry (IHC) or Western blotting were employed to detect the levels of BRD7, Clusterin, EZH2 and AMPK signaling molecules. The associations among BRD7, EZH2 and DNMT3a were detected by co-IP, and the transcriptional regulation of Clusterin was monitored by methylation-specific PCR (MSP) and ChIP assay. RESULTS Ferroptosis was associated with DM-induced testicular damage in STZ mice and HG-treated GC-1spg cells, and this was accompanied with the upregulation of BRD7. Knockdown of BRD7 suppressed HG-induced ferroptosis, as well as HG-induced Clusterin promoter methylation and HG-inactivated AMPK signaling in GC-1spg cells. Mechanistical studies revealed that BRD7 directly bound to EZH2 and regulated Clusterin promoter methylation via recruiting DNMT3a. Knockdown of Clusterin or inactivation of AMPK signaling reverses BRD7 silencing-suppressed ferroptosis in GC-1spg cells. In vivo findings showed that lack of BRD7 protected against diabetes-induced testicular damage and ferroptosis via increasing Clusterin expression and activating AMPK signaling. CONCLUSION BRD7 suppressed Clusterin expression via modulating Clusterin promoter hypermethylation in an EZH2 dependent manner, thereby suppressing AMPK signaling to facilitate ferroptosis and induce diabetes-associated testicular damage.
Collapse
Affiliation(s)
- Yuehai Xiao
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Clinical Medical College of Guizhou Medical University, No.28 Guiyi Street, Yunyan District, Guiyang, Guizhou Province, 550004, China
| | - Zongjian Liang
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Clinical Medical College of Guizhou Medical University, No.28 Guiyi Street, Yunyan District, Guiyang, Guizhou Province, 550004, China
| | - Jun Qiao
- Department of Urology, School of Nursing, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Zhiqiang Zhu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Clinical Medical College of Guizhou Medical University, No.28 Guiyi Street, Yunyan District, Guiyang, Guizhou Province, 550004, China
| | - Bei Liu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Clinical Medical College of Guizhou Medical University, No.28 Guiyi Street, Yunyan District, Guiyang, Guizhou Province, 550004, China
| | - Yuan Tian
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Clinical Medical College of Guizhou Medical University, No.28 Guiyi Street, Yunyan District, Guiyang, Guizhou Province, 550004, China.
| |
Collapse
|
472
|
Liu Z, Zhang L, Chen Y. Epigenomic, cistromic, and transcriptomic profiling of primary kidney tubular cells. J Biol Methods 2024; 11:e99010015. [PMID: 39323486 PMCID: PMC11423943 DOI: 10.14440/jbm.2024.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 09/27/2024] Open
Abstract
Spatiotemporal regulation of gene expression is essential for maintaining cellular homeostasis throughout kidney development and disease progression. Transcription factors (TFs) and epigenetic modifications play pivotal roles in controlling gene expression. Profiling chromatin modifications across the genome, along with the distribution and target regulation by TFs in specific kidney cell types, is crucial for understanding the dynamic changes in gene expression. Here, we presented a comprehensive workflow for epigenomic, cistromic, and transcriptomic analyses of primary kidney tubular cells. Specifically, our methodologies included the isolation of primary kidney tubular epithelial cells, RNA extraction, assay for transposase-accessible chromatin using sequencing, ultra-low-input micrococcal nuclease-based native chromatin immunoprecipitation, cleavage under targets and release using nuclease, and subsequent bioinformatic analysis. This protocol provides a methodological framework for investigating the roles of TFs and epigenetic modifications in kidney development and diseases.
Collapse
Affiliation(s)
- Zhiheng Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300211, China
| | - Lirong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yupeng Chen
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300211, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
473
|
Wei J, Wang M, Wu Y. A disulfidptosis-related lncRNAs cluster to forecast the prognosis and immune landscapes of ovarian cancer. Front Genet 2024; 15:1397011. [PMID: 39045330 PMCID: PMC11263023 DOI: 10.3389/fgene.2024.1397011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Objective Disulfidptosis is a newly recognized form of regulated cell death that has been linked to cancer progression and prognosis. Despite this association, the prognostic significance, immunological characteristics and treatment response of disulfidptosis-related lncRNAs (DRLs) in ovarian cancer have not yet been elucidated. Methods The lncRNA data and clinical information for ovarian cancer and normal samples were obtained from the UCSC XENA. Differential expression analysis and Pearson analysis were utilized to identify core DRLs, followed by LASSO algorithm. Random Survival Forest was used to construct a prognostic model. The relationships between risk scores, RNA methylation, immune cell infiltration, mutation, responses to immunotherapy and drug sensitivity analysis were further examined. Additionally, qRT-PCR experiments were conducted to validate the expression of the core DRLs in human ovarian cancer cells and normal ovarian cells and the scRNA-seq data of the core DRLs were obtained from the GEO dataset, available in the TISCH database. Results A total of 8 core DRLs were obtained to construct a prognostic model for ovarian cancer, categorizing all patients into low-risk and high-risk groups using an optimal cutoff value. The AUC values for 1-year, 3-year and 5-year OS in the TCGA cohort were 0.785, 0.810 and 0.863 respectively, proving a strong predictive capability of the model. The model revealed the high-risk group patients exhibited lower overall survival rates, higher TIDE scores and lower TMB levels compared to the low-risk group. Variations in immune cell infiltration and responses to therapeutic drugs were observed between the high-risk and low-risk groups. Besides, our study verified the correlations between the DRLs and RNA methylation. Additionally, qRT-PCR experiments and single-cell RNA sequencing data analysis were conducted to confirm the significance of the core DRLs at both cellular and scRNA-seq levels. Conclusion We constructed a reliable and novel prognostic model with a DRLs cluster for ovarian cancer, providing a foundation for further researches in the management of this disease.
Collapse
|
474
|
Zhao JF, Zhou BG, Lv Y, Teng QP, Wang XM, Li XY, Ding Y. Association between metabolic dysfunction-associated steatotic liver disease and risk of colorectal cancer or colorectal adenoma: an updated meta-analysis of cohort studies. Front Oncol 2024; 14:1368965. [PMID: 39045565 PMCID: PMC11263091 DOI: 10.3389/fonc.2024.1368965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Background and aims In recent years, the relationship between metabolic dysfunction-associated steatotic liver disease (MASLD) and colorectal cancer (CRC) or colorectal adenoma (CRA) has gained widespread attention. Previous meta-analyses on this subject either incorporated numerous cross-sectional studies, which were susceptible to bias, or concentrated solely on a restricted number of cohort studies. Moreover, with the release of a substantial number of high-quality cohort studies on this subject in the past two years, the findings continue to be debated and contradictory. Therefore, we conducted an updated systematic review and meta-analysis of cohort studies to quantitatively evaluate the magnitude of the association between them. Methods Comprehensive searches of PubMed, Web of Science, and Embase were conducted without language restrictions from the time of their creation up to December, 2023. The pooled hazard ratios (HRs) with 95% confidence interval (CIs) were calculated by the generic inverse variance based on the random-effects model. Moreover, subgroup and sensitivity analyses were performed. Results A total of 15 cohort studies were analyzed in this meta-analysis, which included 9,958,412 participants. The meta-analysis of 13 cohort studies showed that MASLD was linked to a higher risk of CRC (HR=1.25, 95% CI: 1.15-1.36, P < 0.00001). Additionally, further subgroup analysis indicated that the combined HR remained consistent regardless of the study location, nomenclature of fatty liver disease (FLD), confirmation methods for FLD, sample size, follow-up time, and study quality. Furthermore, the meta-analysis of four cohort studies demonstrated that MASLD was correlated with an increased risk of CRA (HR=1.38, 95% CI: 1.17-1.64, P = 0.0002). The sensitivity analysis results further validated the robustness of the aboved findings. Conclusion The results of our meta-analysis indicated that MASLD was associated with an increased risk of incident CRC/CRA. In the future, it is necessary to conduct more prospective cohort studies to thoroughly assess potential confounding factors, particularly in individuals from Europe and North America. Furthermore, related mechanism studies should be conducted to enhance our understanding of the link between MASLD and CRC/CRA. Systematic review registration Open Science Framework registries (https://osf.io/m3p9k).
Collapse
Affiliation(s)
- Jian-Feng Zhao
- Department of Gastrointestinal Surgery, Jingmen People’s Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | | | - Yang Lv
- Department of Gastrointestinal Surgery, Jingmen People’s Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Qiu-Ping Teng
- Department of Nephrology, The Central Hospital of Jingmen, Jingmen, Hubei, China
| | - Xi-Mei Wang
- Department of Gastrointestinal Surgery, Jingmen People’s Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Xiao-Yi Li
- Imaging Diagnosis Center, Jingmen People’s Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Yi Ding
- Department of Gastrointestinal Surgery, Jingmen People’s Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| |
Collapse
|
475
|
Xu Y, Li J, Wang J, Deng F. A novel CAF-cancer cell crosstalk-related gene prognostic index based on machine learning: prognostic significance and prediction of therapeutic response in head and neck squamous cell carcinoma. J Transl Med 2024; 22:645. [PMID: 38982511 PMCID: PMC11234636 DOI: 10.1186/s12967-024-05447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblast (CAF)-cancer cell crosstalk (CCCT) plays an important role in tumor microenvironment shaping and immunotherapy response. Current prognostic indexes are insufficient to accurately assess immunotherapy response in patients with head and neck squamous cell carcinoma (HNSCC). This study aimed to develop a CCCT-related gene prognostic index (CCRGPI) for assessing the prognosis and response to immune checkpoint inhibitor (ICI) therapy of HNSCC patients. METHODS Two cellular models, the fibroblast-cancer cell indirect coculture (FCICC) model, and the fibroblast-cancer cell organoid (FC-organoid) model, were constructed to visualize the crosstalk between fibroblasts and cancer cells. Based on a HNSCC scRNA-seq dataset, the R package CellChat was used to perform cell communication analysis to identify gene pairs involved in CCCT. Least absolute shrinkage and selection operator (LASSO) regression was then applied to further refine the selection of these gene pairs. The selected gene pairs were subsequently subjected to stepwise regression to develop CCRGPI. We further performed a comprehensive analysis to determine the molecular and immune characteristics, and prognosis associated with ICI therapy in different CCRGPI subgroups. Finally, the connectivity map (CMap) analysis and molecular docking were used to screen potential therapeutic drugs. RESULTS FCICC and FC-organoid models showed that cancer cells promoted the activation of fibroblasts into CAFs, that CAFs enhanced the invasion of cancer cells, and that CCCT was somewhat heterogeneous. The CCRGPI was developed based on 4 gene pairs: IGF1-IGF1R, LGALS9-CD44, SEMA5A-PLXNA1, and TNXB-SDC1. Furthermore, a high CCRGPI score was identified as an adverse prognostic factor for overall survival (OS). Additionally, a high CCRGPI was positively correlated with the activation of the P53 pathway, a high TP53 mutation rate, and decreased benefit from ICI therapy but was inversely associated with the abundance of various immune cells, such as CD4+ T cells, CD8+ T cells, and B cells. Moreover, Ganetespib was identified as a potential drug for HNSCC combination therapy. CONCLUSIONS The CCRGPI is reliable for predicting the prognosis and immunotherapy response of HSNCC patients and may be useful for guiding the individualized treatment of HNSCC patients.
Collapse
Affiliation(s)
- Yuming Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Junda Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Jinming Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| |
Collapse
|
476
|
Wang L, Lin F, Liu Y, Li W, Ding Q, Duan X, Yang L, Bai Z, Zhang M, Guo Y. Wogonin protects against bleomycin-induced mouse pulmonary fibrosis via the inhibition of CDK9/p53-mediated cell senescence. Front Pharmacol 2024; 15:1407891. [PMID: 39040475 PMCID: PMC11260675 DOI: 10.3389/fphar.2024.1407891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024] Open
Abstract
Pulmonary fibrosis (PF) is a fatal interstitial lung disease associated with declining pulmonary function but currently with few effective drugs. Cellular senescence has been implicated in the pathogenesis of PF and could be a potential therapeutic target. Emerging evidence suggests wogonin, the bioactive compound isolated from Scutellaria baicalensis, owns the anti-senescence properties, however, the possible impact of wogonin on PF and the potential mechanisms remain unclear. In this study, a well-established mouse model of PF was utilized which mice were administrated with bleomycin (BLM). Strikingly, wogonin treatment significantly reduced fibrosis deposition in the lung induced by BLM. In vitro, wogonin also suppressed fibrotic markers of cultured epithelial cells stimulated by BLM or hydrogen peroxide. Mechanistic investigation revealed that wogonin attenuated the expressions of DNA damage marker γ-H2AX and senescence-related markers including phosphorylated p53, p21, retinoblastoma protein (pRB), and senescence-associated β-galactosidase (SA-β-gal). Moreover, wogonin, as a direct and selective inhibitor of cyclin-dependent kinase 9 (CDK9), exhibited anti-fibrotic capacity by inhibiting CDK9 and p53/p21 signalling. In conclusion, wogonin protects against BLM-induced PF in mice through the inhibition of cell senescence via the regulation of CDK9/p53 and DNA damage pathway. This is the first study to demonstrate the beneficial effect of wogonin on PF, and its implication as a novel candidate for PF therapy.
Collapse
Affiliation(s)
- Libo Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Fei Lin
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Youli Liu
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Qingjie Ding
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Xulei Duan
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Min Zhang
- King’s College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, London, United Kingdom
| | - Yuming Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
477
|
Rac M. Synthesis and Regulation of miRNA, Its Role in Oncogenesis, and Its Association with Colorectal Cancer Progression, Diagnosis, and Prognosis. Diagnostics (Basel) 2024; 14:1450. [PMID: 39001340 PMCID: PMC11241650 DOI: 10.3390/diagnostics14131450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The dysfunction of several types of regulators, including miRNAs, has recently attracted scientific attention for their role in cancer-associated changes in gene expression. MiRNAs are small RNAs of ~22 nt in length that do not encode protein information but play an important role in post-transcriptional mRNA regulation. Studies have shown that miRNAs are involved in tumour progression, including cell proliferation, cell cycle, apoptosis, and tumour angiogenesis and invasion, and play a complex and important role in the regulation of tumourigenesis. The detection of selected miRNAs may help in the early detection of cancer cells, and monitoring changes in their expression profile may serve as a prognostic factor in the course of the disease or its treatment. MiRNAs may serve as diagnostic and prognostic biomarkers, as well as potential therapeutic targets for colorectal cancer. In recent years, there has been increasing evidence for an epigenetic interaction between DNA methylation and miRNA expression in tumours. This article provides an overview of selected miRNAs, which are more frequently expressed in colorectal cancer cells, suggesting an oncogenic nature.
Collapse
Affiliation(s)
- Monika Rac
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
478
|
Huang G, Sun D, Hu X, Wang Q. CircFAM114A2 Suppresses Cell Proliferation, Migration, and Invasion of Colorectal Cancer Through Sponging miR-647 to Upregulate DAB2IP Expression. Biochem Genet 2024:10.1007/s10528-024-10870-x. [PMID: 38970722 DOI: 10.1007/s10528-024-10870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/17/2023] [Indexed: 07/08/2024]
Abstract
BACKGROUND Increasing evidence had proved that some circular RNA (circRNA) exerted critical roles in tumors progression by functioning as "microRNAs (miRNAs) sponges" to regulate their targeted genes. METHODS circFAM114A2 and miR-647 expression was measured in CRC tissues and cells by quantitative real-time polymerase chain reaction (qRT-PCR), and the prognostic value of circFAM114A2 evaluated by Kaplan-Meier survival curve. Subsequently, wounding healing and transwell assays were performed to assess cell proliferation, migration, and invasion. RNA pull-down and dual-luciferase reporter assays were used to confirm the interactions between circFAM114A2, miR-647, and DAB2IP. RESULTS CircFAM114A2 was notably downregulated in CRC tissues and cells, and low circFAM114A2 expression indicated the poor prognosis of CRC patients. Next, overexpression of circFAM114A2 suppressed CRC cells proliferation, migration, and invasion in vitro and impede CRC tumor growth in vivo. Mechanically, circFAM114A2 competitively bound to miR-647 and upregulated its target gene DAB2IP expression in CRC cells. CONCLUSION Our results indicated that circFAM114A2/miR-647/DAP2IP axis played an important role in CRC progression, suggesting that circFAM114A2 might be a novel therapeutic target in patients with CRC.
Collapse
Affiliation(s)
- Guanghao Huang
- General Surgery, Qianjiang Central Hospital, Qianjiang, China
| | - Dahua Sun
- Department of Science and Education, Qianjiang Central Hospital, Qianjiang, China
| | - Xiaoli Hu
- Gastrointestinal Surgery, Qianjiang Central Hospital, Qianjiang, China
| | - Qiushuang Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
479
|
Huang Y, Sun Y, Huang Q, Wu S, Huang Z, Hong Y. Abamectin-induced behavioral alterations link to energy metabolism disorder and ferroptosis via oxidative stress in Chinese mitten crab, Eriocheir sinensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174558. [PMID: 38972409 DOI: 10.1016/j.scitotenv.2024.174558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The increasing application of abamectin (ABM) in agriculture has raised concerns regarding its environmental safety and potential adverse effects on aquatic environment safety. In the present study, the toxic effects of ABM exposure on the adult Chinese mitten crab, Eriocheir sinensis were investigated, with a focus on locomotion impairment, behavioral changes, oxidative stress, energy metabolism disruption, and ferroptosis. Crabs were exposed to sublethal concentrations of ABM at 2, 20 and 200 μg/L. After 21 d chronic exposure to 200 μg/L, residual ABM in hepatopancreas and muscles were detected as 12.24 ± 6.67 and 8.75 ± 5.42 μg/Kg, respectively. By using acute exposure experiments (96 h), we observed significant locomotion and behavioral alterations, alongside biochemical evidences of oxidative stress and energy metabolism impairment. The presence of ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, was notably identified in the hepatopancreas. Functional tests with N-acetylcysteine (NAC) supplementation showed restored behavioral responses and decrease of ferroptosis levels. It suggests that mitigating oxidative stress could counteract ABM-induced toxicity. Our findings highlight the critical roles of oxidative stress and ferroptosis in mediating the toxic effects of ABM on E. sinensis, underscoring the need for strategies to mitigate environmental exposure to pesticides.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Yan Sun
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Qiang Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Shu Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, Chengdu 611137, China
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China.
| |
Collapse
|
480
|
Sadler RA, Shoveller AK, Shandilya UK, Charchoglyan A, Wagter-Lesperance L, Bridle BW, Mallard BA, Karrow NA. Beyond the Coagulation Cascade: Vitamin K and Its Multifaceted Impact on Human and Domesticated Animal Health. Curr Issues Mol Biol 2024; 46:7001-7031. [PMID: 39057059 PMCID: PMC11276079 DOI: 10.3390/cimb46070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin K (VK) is an essential micronutrient impacting many systems in the body. This lipid-soluble vitamin is found in various plant and animal products and is absorbed via the lymphatic system. This biomolecule's importance to human health includes but is not limited to its promotion of brain, cardiovascular, bone, and immune functions. These biological properties are also necessary for maintaining domesticated animal health. The synergistic impact of both VK and vitamin D (VD) maximizes these health benefits, specifically for the circulatory and skeletal systems. This manuscript reviews VK's properties, molecular structures, nutrikinetics, mechanisms of action, daily requirements, safety in supplemental form, biomarkers used for its detection, and impacts on various organs. The purpose of synthesizing this information is to evaluate the potential uses of VK for the treatment or prevention of diseases.
Collapse
Affiliation(s)
- Rebecka A. Sadler
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Armen Charchoglyan
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lauraine Wagter-Lesperance
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W. Bridle
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bonnie A. Mallard
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
| |
Collapse
|
481
|
Xia L, Ni C, Sun H, Guo H, Huang H, Cao X, Xia J, Shi X, Guo R. Dual drug-loaded metal-phenolic networks for targeted magnetic resonance imaging and synergistic chemo-chemodynamic therapy of breast cancer. J Mater Chem B 2024; 12:6480-6491. [PMID: 38867551 DOI: 10.1039/d4tb00462k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The development of nanomedicines with simplified compositions and synergistic theranostic functionalities remains a great challenge. Herein, we develop a simple method to integrate both atovaquone (ATO, a mitochondrial inhibitor) and cisplatin within tannic acid (TA)-iron (Fe) networks coated with hyaluronic acid (HA) for targeted magnetic resonance (MR) imaging-guided chemo-chemodynamic synergistic therapy. The formed TFP@ATO-HA displayed good colloidal stability with a mean size of 95.5 nm, which could accumulate at tumor sites after circulation and be specifically taken up by metastatic 4T1 cells overexpressing CD44 receptors. In the tumor microenvironment, TFP@ATO-HA could release ATO/cisplatin and Fe3+ in a pH-responsive manner, deplete glutathione, and generate reactive oxygen species with endogenous H2O2 for chemodynamic therapy (CDT). Additionally, ATO could enhance chemotherapeutic efficacy by inhibiting mitochondrial respiration, relieving hypoxia, and amplifying the CDT effect by decreasing intracellular pH and elevating Fenton reaction efficiency. In vivo experiments demonstrated that TFP@ATO-HA could effectively inhibit tumor growth and suppress lung metastases without obvious systemic toxicity. Furthermore, TFP@ATO-HA exhibited a r1 relaxivity of 2.6 mM-1 s-1 and targeted MR imaging of 4T1 tumors. Dual drug-loaded metal-phenolic networks can be easily prepared and act as effective theranostic nanoplatforms for targeted MR imaging and synergistic chemo-chemodynamic therapy.
Collapse
Affiliation(s)
- Li Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Cheng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Huxiao Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Honghua Guo
- Department of Radiology, Songjiang Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, P. R. China
| | - Haoyu Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jindong Xia
- Department of Radiology, Songjiang Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
482
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15:1428920. [PMID: 39015566 PMCID: PMC11249567 DOI: 10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
Affiliation(s)
- Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Chang Lu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Narasimha M. Beeraka
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, India
| | - Sergey Efetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Mikhail Enikeev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, India
| | - Mingze He
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zhi Li
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
483
|
Li YS, Jiang HC. Integrating molecular pathway with genome-wide association data for causality identification in breast cancer. Discov Oncol 2024; 15:254. [PMID: 38954227 PMCID: PMC11219684 DOI: 10.1007/s12672-024-01125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVE The study purpose was to explore the causal association between pyruvate metabolism and breast cancer (BC), as well as the molecular role of key metabolic genes, by using bioinformatics and Mendelian randomization (MR) analysis. METHODS We retrieved and examined diverse datasets from the GEO database to ascertain differentially acting genes (DAGs) in BC via differential expression analysis. Following this, we performed functional and pathway enrichment analyses to ascertain noteworthy molecular functions and metabolic pathways in BC. Employing MR analysis, we established a causal association between pyruvate metabolism and the susceptibility to BC. Additionally, utilizing the DGIdb database, we identified potential targeted medications that act on genes implicated in the pyruvate metabolic pathway and formulated a competing endogenous RNA (ceRNA) regulatory network in BC. RESULTS We collected the datasets GSE54002, GSE70947, and GSE22820, and identified a total of 1127 DEGs between the BC and NC groups. GO and KEGG enrichment analysis showed that the molecular functions of these DEGs mainly included mitotic nuclear division, extracellular matrix, signaling receptor activator activity, etc. Metabolic pathways were mainly concentrated in PI3K-Akt signaling pathway, Cytokine-cytokine receptor binding and Pyruvate, Tyrosine, Propanoate and Phenylalanine metabolism, etc. In addition, MR analysis demonstrated a causal relationship between pyruvate metabolism and BC risk. Finally, we constructed a regulatory network between pathway genes (ADH1B, ACSS2, ACACB, ADH1A, ALDH2, and ADH1C) and targeted drugs, as well as a ceRNA (lncRNA-miRNA-mRNA) regulatory network for BC, further revealing their interactions. CONCLUSIONS Our research revealed a causal association between pyruvate metabolism and BC risk, found that ADH1B, ACSS2, ACACB, ADH1A, ALDH2, and ADH1C takes place an important part in the development of BC in the molecular mechanisms related to pyruvate metabolism, and identified some potential targeted small molecule drugs.
Collapse
Affiliation(s)
- Yan-Shuang Li
- Department of Breast Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hong-Chuan Jiang
- Department of Breast Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
484
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15. [DOI: https:/doi.org/10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
|
485
|
Yan HF, Tuo QZ, Lei P. Cell density impacts the susceptibility to ferroptosis by modulating IRP1-mediated iron homeostasis. J Neurochem 2024; 168:1359-1373. [PMID: 38382918 DOI: 10.1111/jnc.16085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Ferroptosis has been implicated in several neurological disorders and may be therapeutically targeted. However, the susceptibility to ferroptosis varies in different cells, and inconsistent results have been reported even using the same cell line. Understanding the effects of key variables of in vitro studies on ferroptosis susceptibility is of critical importance to facilitate drug discoveries targeting ferroptosis. Here, we showed that increased cell seeding density leads to enhanced resistance to ferroptosis by reducing intracellular iron levels. We further identified iron-responsive protein 1 (IRP1) as the key protein affected by cell density, which affects the expression of ferroportin or transferrin receptor and results in altered iron levels. Such observations were consistent across different cell lines, indicating that cell density should be tightly controlled in studies of ferroptosis. Since cell densities vary in different brain regions, these results may also shed light on selective regional vulnerability observed in neurological disorders.
Collapse
Affiliation(s)
- Hong-Fa Yan
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing-Zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
486
|
Huang B, Yu Z, Cui D, Du F. MAPKAP1 orchestrates macrophage polarization and lipid metabolism in fatty liver-enhanced colorectal cancer. Transl Oncol 2024; 45:101941. [PMID: 38692197 PMCID: PMC11070763 DOI: 10.1016/j.tranon.2024.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/02/2024] [Accepted: 03/16/2024] [Indexed: 05/03/2024] Open
Abstract
Various factors, including fatty liver and macrophage alterations, influence colorectal cancer (CRC). This study explores the mechanistic role of fatty liver in CRC progression, focusing on macrophage polarization and lipid metabolism. A murine fatty liver model was created with a high-fat diet (HFD), and CRC was induced using AOM and DSS. Single-cell transcriptome sequencing (scRNA-seq) identified MAPKAP1 as a critical gene promoting CRC via M2 macrophage polarization and lipid metabolism reprogramming. Prognosis analysis on the TCGA-CRC dataset confirmed MAPKAP1's significance. In vitro and in vivo experiments demonstrated that EVs from fatty liver cells enhanced MAPKAP1 expression, accelerating CRC development and metastasis. HFD exacerbated CRC, but fatty acid inhibitors delayed progression. Fatty liver upregulates MAPKAP1, driving M2 macrophage polarization and lipid metabolism changes, worsening CRC. These findings suggest potential therapeutic strategies for CRC, particularly targeting lipid metabolism and macrophage-mediated tumor promotion.
Collapse
Affiliation(s)
- Bo Huang
- Department of Hypertension, The Affiliated Hospital of Guizhou Medical University, No.28, Guimedical Street, Yunyan District, Guiyang City, Guizhou Province, PR China.
| | - Zhenqiu Yu
- Department of Hypertension, The Affiliated Hospital of Guizhou Medical University, No.28, Guimedical Street, Yunyan District, Guiyang City, Guizhou Province, PR China.
| | - Dejun Cui
- Department of Gastroenterology, Guizhou Provincial People's Hospital, PR China.
| | - Fawang Du
- Department of Hypertension, The Affiliated Hospital of Guizhou Medical University, No.28, Guimedical Street, Yunyan District, Guiyang City, Guizhou Province, PR China
| |
Collapse
|
487
|
Fang J, Shen S, Wang H, He Y, Chao L, Cao Y, Chen X, Zhu Z, Hong Z, Chai Y. High-throughput BCRP inhibitors screening system based on styrene maleic acid polymer membrane protein stabilization strategy and surface plasmon resonance biosensor. Talanta 2024; 274:125987. [PMID: 38552478 DOI: 10.1016/j.talanta.2024.125987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 05/04/2024]
Abstract
Multidrug resistance (MDR) is a dominant challenge in cancer chemotherapy failure. The over-expression of breast cancer resistance protein (BCRP) in tumorous cells, along with its extensive substrate profile, is a leading cause of tumor MDR. Herein, on the basis of styrene maleic acid (SMA) polymer membrane protein stabilization strategy and surface plasmon resonance (SPR) biosensor, a novel high-throughput screening (HTS) system for BCRP inhibitors has been established. Firstly, LLC-PK1 and LLC-PK1/BCRP cell membranes were co-incubated with SMA polymers to construct SMA lipid particles (SMALPs). PK1-SMALPs were thus immobilized in channel 1 of the L1 chip as the reference channel, and BCRP-SMALPs were immobilized in channel 2 as the detection channel to establish the BCRP-SMALPs-SPR screening system. The methodological investigation demonstrated that the screening system was highly specific and stable. Three active compounds were screened out from 26 natural products and their affinity constants with BCRP were determined. The KD of xanthotoxin, bergapten, and naringenin were 5.14 μM, 4.57 μM, and 3.72 μM, respectively. The in vitro cell verification experiments demonstrated that xanthotoxin, bergapten, and naringenin all significantly increased the sensitivity of LLC-PK1/BCRP cells to mitoxantrone with possessing reversal BCRP-mediated MDR activity. Collectively, the developed BCRP-SMALPs-SPR screening system in this study has the advantages of rapidity, efficiency, and specificity, providing a novel strategy for the in-depth screening of BCRP inhibitors with less side effects and higher efficacy.
Collapse
Affiliation(s)
- Jiahao Fang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Shuqi Shen
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Hui Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yuzhen He
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Liang Chao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Zhenyu Zhu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Zhanying Hong
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| |
Collapse
|
488
|
Zhang B, Wu H, Zhang J, Cong C, Zhang L. The study of the mechanism of non-coding RNA regulation of programmed cell death in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:1673-1696. [PMID: 38189880 DOI: 10.1007/s11010-023-04909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024]
Abstract
Diabetic cardiomyopathy (DCM) represents a distinct myocardial disorder elicited by diabetes mellitus, characterized by aberrations in myocardial function and structural integrity. This pathological condition predominantly manifests in individuals with diabetes who do not have concurrent coronary artery disease or hypertension. An escalating body of scientific evidence substantiates the pivotal role of programmed cell death (PCD)-encompassing apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis-in the pathogenic progression of DCM, thereby emerging as a prospective therapeutic target. Additionally, numerous non-coding RNAs (ncRNAs) have been empirically verified to modulate the biological processes underlying programmed cell death, consequently influencing the evolution of DCM. This review systematically encapsulates prevalent types of PCD manifest in DCM as well as nascent discoveries regarding the regulatory influence of ncRNAs on programmed cell death in the pathogenesis of DCM, with the aim of furnishing novel insights for the furtherance of research in PCD-associated disorders relevant to DCM.
Collapse
Affiliation(s)
- Bingrui Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Hua Wu
- Tai'an Special Care Hospital Clinical Laboratory Medical Laboratory Direction, Tai'an, 271000, Shandong, China
| | - Jingwen Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Cong Cong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Lin Zhang
- Tai'an Hospital of Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, No.216, Yingxuan Street, Tai'an, 271000, Shandong, China.
| |
Collapse
|
489
|
Lacombe J, Ferron M. Vitamin K-dependent carboxylation in β-cells and diabetes. Trends Endocrinol Metab 2024; 35:661-673. [PMID: 38429160 DOI: 10.1016/j.tem.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Vitamin K is an essential micronutrient and a cofactor for the enzyme γ-glutamyl carboxylase, which adds a carboxyl group to specific glutamic acid residues in proteins transiting through the secretory pathway. Higher vitamin K intake has been linked to a reduced incidence of type 2 diabetes (T2D) in humans. Preclinical work suggests that this effect depends on the γ-carboxylation of specific proteins in β-cells, including endoplasmic reticulum Gla protein (ERGP), implicated in the control of intracellular Ca2+ levels. In this review we discuss these recent advances linking vitamin K and glucose metabolism, and argue that identification of γ-carboxylated proteins in β-cells is pivotal to better understand how vitamin K protects from T2D and to design targeted therapies for this disease.
Collapse
Affiliation(s)
- Julie Lacombe
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, H2W 1R7, Canada.
| | - Mathieu Ferron
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, H2W 1R7, Canada; Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC, H3T 1J4, Canada; Département de Médecine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
490
|
Jahantab MB, Salehi M, Koushki M, Farrokhi Yekta R, Amiri-Dashatan N, Rezaei-Tavirani M. Modelling of miRNA-mRNA Network to Identify Gene Signatures with Diagnostic and Prognostic Value in Gastric Cancer: Evidence from In-Silico and In-Vitro Studies. Rep Biochem Mol Biol 2024; 13:281-300. [PMID: 39995653 PMCID: PMC11847593 DOI: 10.61186/rbmb.13.2.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/08/2024] [Indexed: 02/26/2025]
Abstract
Background Gastric cancer (GC) is a prevalent malignancy with high recurrence. Advances in systems biology have identified molecular pathways and biomarkers. This study focuses on discovering gene and miRNA biomarkers for diagnosing and predicting survival in GC patients. Methods Three sets of genes (GSE19826, GSE81948, and GSE112369) and two sets of miRNA expression (GSE26595, GSE78775) were obtained from the Gene Expression Omnibus (GEO), and subsequently, differentially expressed genes (DEGs) and miRNAs (DEMs) were identified. Functional pathway enrichment, DEG-miR-TF-protein-protein interaction network, DEM-mRNA network, ROC curve, and survival analyses were performed. Finally, qRT-PCR was applied to validate our results. Results From the high-throughput profiling studies of GC, we investigated 10 candidate mRNA and 7 candidate miRNAs as potential biomarkers. Expression analysis of these hubs revealed that 5 miRNAs (including miR-141-3p, miR-204-5p, miR-338-3p, miR-609, and miR-369-5p) were significantly upregulated compared to the controls. The genes with the highest degree included 6 upregulated and 4 downregulated genes in tumor samples compared to controls. The expression of miR-141-3p, miR-204-5p, SESTD1, and ANTXR1 were verified in vitro from these hub DEMs and DEGs. The findings indicated a decrease in the expression of miR-141-3p and miR-204-5p and increased expression of SESTD1 and ANTXR1 in GC cell lines compared to the GES-1 cell line. Conclusions The current investigation successfully recognized a set of prospective miRNAs and genes that may serve as potential biomarkers for GC's early diagnosis and prognosis.
Collapse
Affiliation(s)
- Mohammad Bagher Jahantab
- Clinical Research Development Unit, Shahid Jalil Hospital, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Mohammad Salehi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mehdi Koushki
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Reyhaneh Farrokhi Yekta
- Proteomics Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nasrin Amiri-Dashatan
- Proteomics Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
491
|
Liao W, Zhang R, Chen G, Zhu X, Wu W, Chen Z, Jiang C, Lin Z, Ma L, Yu H. Berberine synergises with ferroptosis inducer sensitizing NSCLC to ferroptosis in p53-dependent SLC7A11-GPX4 pathway. Biomed Pharmacother 2024; 176:116832. [PMID: 38850659 DOI: 10.1016/j.biopha.2024.116832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024] Open
Abstract
Berberine (BBR) is a compound derived from Chinese herbal medicine, known for its anticancer properties through multiple signaling pathways. However, whether BBR can inhibit tumor growth by participating in ferroptosis remains unconfirmed. In this study, we demonstrated that berberine synergistically inhibited NSCLC in combination with multiple ferroptosis inducers, and this combination synergistically down-regulated the mRNA and protein expression of SLC7A11, GPX4, and NRF2, resulting in ferroptosis accompanied by significant depletion of GSH, and aberrant accumulation of reactive oxygen species and malondialdehyde. In a lung cancer allograft model, the combination treatment exhibited enhanced anticancer effects compared to using either drug alone. Notably, p53 is critical in determining the ferroptosis sensitivity. We found that the combination treatment did not elicit a synergistic anticancer effect in cells with a p53 mutation or with exogenous expression of mutant p53. These findings provide insight into the mechanism by which combination induces ferroptosis and the regulatory role of p53 in this process. It may guide the development of new strategies for treating NSCLC, offering great medical potential for personal diagnosis and treatment.
Collapse
Affiliation(s)
- Weilin Liao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Ren Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Geer Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Xiaoyu Zhu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Weiyu Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Ziyu Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Chenyu Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Zicong Lin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Lijuan Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Haijie Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China.
| |
Collapse
|
492
|
Zhang M, Guo M, Gao Y, Wu C, Pan X, Huang Z. Mechanisms and therapeutic targets of ferroptosis: Implications for nanomedicine design. J Pharm Anal 2024; 14:100960. [PMID: 39135963 PMCID: PMC11318476 DOI: 10.1016/j.jpha.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 08/15/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death and differs considerably from the well-known forms of cell death in terms of cell morphology, genetics, and biochemistry. The three primary pathways for cell ferroptosis are system Xc-/glutathione peroxidase 4 (GPX4), lipid metabolism, and ferric metabolism. Since the discovery of ferroptosis, mounting evidence has revealed its critical regulatory role in several diseases, especially as a novel potential target for cancer therapy, thereby attracting increasing attention in the fields of tumor biology and anti-tumor therapy. Accordingly, broad prospects exist for identifying ferroptosis as a potential therapeutic target. In this review, we aimed to systematically summarize the activation and defense mechanisms of ferroptosis, highlight the therapeutic targets, and discuss the design of nanomedicines for ferroptosis regulation. In addition, we opted to present the advantages and disadvantages of current ferroptosis research and provide an optimistic vision of future directions in related fields. Overall, we aim to provide new ideas for further ferroptosis research and inspire new strategies for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Meihong Zhang
- College of Pharmacy, University of Jinan, Guangzhou, 510632, China
| | - Mengqin Guo
- College of Pharmacy, University of Jinan, Guangzhou, 510632, China
| | - Yue Gao
- College of Pharmacy, University of Jinan, Guangzhou, 510632, China
| | - Chuanbin Wu
- College of Pharmacy, University of Jinan, Guangzhou, 510632, China
| | - Xin Pan
- College of Pharmacy, University of Sun Yat-sen, Guangzhou, 510275, China
| | - Zhengwei Huang
- College of Pharmacy, University of Jinan, Guangzhou, 510632, China
| |
Collapse
|
493
|
Li Y, Tian M, Pires Sanches JG, Zhang Q, Hou L, Zhang J. Sorcin Inhibits Mitochondrial Apoptosis by Interacting with STAT3 via NF-κB Pathway. Int J Mol Sci 2024; 25:7206. [PMID: 39000312 PMCID: PMC11241191 DOI: 10.3390/ijms25137206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common tumor. Our group has previously reported that sorcin (SRI) plays an important role in the progression and prognosis of HCC. This study aims to explore the mechanism of SRI inhibiting the mitochondrial apoptosis. Bioinformatics analysis, co-IP and immunofluorescence were used to analyze the relationship between SRI and STAT3. MMP and Hoechst staining were performed to detect the effect of SRI on cell apoptosis. The expression of apoptosis-related proteins and NF-κB signaling pathway were examined by Western blot and immunohistochemistry when SRI overexpression or underexpression in vivo and in vitro were found. Moreover, inhibitors were used to further explore the molecular mechanism. Overexpression of SRI inhibited cell apoptosis, which was attenuated by SRI knockdown in vitro and in vivo. Moreover, we identified that STAT3 is an SRI-interacting protein. Mechanistically, SRI interacts with STAT3 and then activates the NF-κB signaling pathway in vitro and in vivo. SRI interacting with STAT3 inhibits apoptosis by the NF-κB pathway and further contributes to the proliferation in HCC, which offers a novel clue and a new potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yizi Li
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Manlin Tian
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jaceline Gislaine Pires Sanches
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qingqing Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Li Hou
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jun Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
494
|
Krześniak M, Łasut-Szyszka B, Będzińska A, Gdowicz-Kłosok A, Rusin M. The Strong Activation of p53 Tumor Suppressor Drives the Synthesis of the Enigmatic Isoform of DUSP13 Protein. Biomedicines 2024; 12:1449. [PMID: 39062022 PMCID: PMC11274236 DOI: 10.3390/biomedicines12071449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The p53 tumor suppressor protein activates various sets of genes depending on its covalent modifications, which are controlled by the nature and intensity of cellular stress. We observed that actinomycin D and nutlin-3a (A + N) collaborate in inducing activating phosphorylation of p53. Our recent transcriptomic data demonstrated that these substances strongly synergize in the upregulation of DUSP13, a gene with an unusual pattern of expression, coding for obscure phosphatase having two isoforms, one expressed in the testes and the other in skeletal muscles. In cancer cells exposed to A + N, DUSP13 is expressed from an alternative promoter in the intron, resulting in the expression of an isoform named TMDP-L1. Luciferase reporter tests demonstrated that this promoter is activated by both endogenous and ectopically expressed p53. We demonstrated for the first time that mRNA expressed from this promoter actually produces the protein, which can be detected with Western blotting, in all examined cancer cell lines with wild-type p53 exposed to A + N. In some cell lines, it is also induced by clinically relevant camptothecin, by nutlin-3a acting alone, or by a combination of actinomycin D and other antagonists of p53-MDM2 interaction-idasanutlin or RG7112. This isoform, fused with green fluorescent protein, localizes in the perinuclear region of cells.
Collapse
Affiliation(s)
| | | | | | | | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland; (M.K.); (B.Ł.-S.); (A.B.); (A.G.-K.)
| |
Collapse
|
495
|
Chattopadhyay M, Jenkins EC, Janssen W, Mashaka T, Germain D. Idiosyncratic nature of lactation reveals link to breast cancer risk. RESEARCH SQUARE 2024:rs.3.rs-4601714. [PMID: 38978600 PMCID: PMC11230499 DOI: 10.21203/rs.3.rs-4601714/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Breastfeeding protects against breast cancer in some women but not others, however the mechanism remains elusive. Lactation requires intense secretory activity of the endoplasmic reticulum (ER) for the production of milk proteins and ER-mitochondria contacts for lipid synthesis. We show that in female mice that share the same nuclear genome (BL/6) but differ in mitochondrial genomes (C57 or NZB), the biological processes engaged during lactation are entirely different at the sub-cellular organization and transcriptional levels resulting in anti-tumorigenic lactation in BL/6C57 females and pro-tumorigenic lactation in BL/6NZB females. Single cell sequencing identified a sub-population of cells, uniquely amplified during lactation in BL/6NZB females, which shares the genetic signature that characterizes post-partum breast cancer (PPBC) in humans relative to matched breast cancers in never pregnant women. Our data indicate that differences in ER and mitochondrial-stress responses during lactation between genotypes inadvertently leads to loss of p53 tumor suppressor function in BL/6NZB females allowing the expansion of the PPBC-like sub-population of cells. Overall, our data reveals the unexpected idiosyncratic nature of lactation and its impacts on the risk of the development of PPBC.
Collapse
Affiliation(s)
- Mrittika Chattopadhyay
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/ Oncology, New York, 10029, NY, USA
| | - Edmund Charles Jenkins
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/ Oncology, New York, 10029, NY, USA
| | - William Janssen
- Icahn School of Medicine at Mount Sinai, Microscopy and Advanced Bioimaging Core, New York, 10029, NY, USA
| | - Thelma Mashaka
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/ Oncology, New York, 10029, NY, USA
| | - Doris Germain
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/ Oncology, New York, 10029, NY, USA
| |
Collapse
|
496
|
Király J, Szabó E, Fodor P, Vass A, Choudhury M, Gesztelyi R, Szász C, Flaskó T, Dobos N, Zsebik B, Steli ÁJ, Halmos G, Szabó Z. Expression of hsa-miRNA-15b, -99b, -181a and Their Relationship to Angiogenesis in Renal Cell Carcinoma. Biomedicines 2024; 12:1441. [PMID: 39062015 PMCID: PMC11274182 DOI: 10.3390/biomedicines12071441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a regulatory role in various human cancers. The roles of hsa-miR-15a-5p, hsa-miR-99b-5p, and hsa-miR-181a-5p have not been fully explored in the angiogenesis of renal cell carcinoma (RCC). AIMS The present study aimed to evaluate the expression of these miRNAs in tumorous and adjacent healthy tissues of RCC. METHODS Paired tumorous and adjacent normal kidney tissues from 20 patients were studied. The expression levels of hsa-miR-15b-5p, hsa-miR-99b-5p, and hsa-miR-181a-5p were quantified by TaqMan miRNA Assays. Putative targets were analyzed by qRT-PCR. RESULTS Significant downregulation of all three miRNAs investigated was observed in tumorous samples compared to adjacent normal kidney tissues. Spearman analysis showed a negative correlation between the expression levels of miRNAs and the pathological grades of the patients. Increased expression of vascular endothelial growth factor-A (VEGF-A) and hypoxia-inducible factor-1α (HIF-1α), a tissue inhibitor of metalloproteinases-1 (TIMP-1), was observed in tumorous samples compared to adjacent normal tissues. Depletion of tissue inhibitors of metalloproteinase-2 (TIMP-2) and metalloproteinase-2 (MMP-2) was detected compared to normal adjacent tissues. The examined miRNAs might function as contributing factors to renal carcinogenesis. However, more prospective studies are warranted to evaluate the potential role of miRNAs in RCC angiogenesis.
Collapse
Affiliation(s)
- József Király
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (N.D.); (B.Z.); (Á.J.S.); (G.H.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Erzsébet Szabó
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
- HUN-REN-DE Pharmamodul Research Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Petra Fodor
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (N.D.); (B.Z.); (Á.J.S.); (G.H.)
| | - Anna Vass
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (N.D.); (B.Z.); (Á.J.S.); (G.H.)
| | - Mahua Choudhury
- Texas A&M Health Science Center, Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, College Station, TX 77845, USA;
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Csaba Szász
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Tibor Flaskó
- Department of Urology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Nikoletta Dobos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (N.D.); (B.Z.); (Á.J.S.); (G.H.)
| | - Barbara Zsebik
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (N.D.); (B.Z.); (Á.J.S.); (G.H.)
| | - Ákos József Steli
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (N.D.); (B.Z.); (Á.J.S.); (G.H.)
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (N.D.); (B.Z.); (Á.J.S.); (G.H.)
| | - Zsuzsanna Szabó
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (N.D.); (B.Z.); (Á.J.S.); (G.H.)
| |
Collapse
|
497
|
Guan QL, Zhang HX, Gu JP, Cao GF, Ren WX. Omics-imaging signature-based nomogram to predict the progression-free survival of patients with hepatocellular carcinoma after transcatheter arterial chemoembolization. World J Clin Cases 2024; 12:3340-3350. [PMID: 38983440 PMCID: PMC11229926 DOI: 10.12998/wjcc.v12.i18.3340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Enhanced magnetic resonance imaging (MRI) is widely used in the diagnosis, treatment and prognosis of hepatocellular carcinoma (HCC), but it can not effectively reflect the heterogeneity within the tumor and evaluate the effect after treatment. Preoperative imaging analysis of voxel changes can effectively reflect the internal heterogeneity of the tumor and evaluate the progression-free survival (PFS). AIM To predict the PFS of patients with HCC before operation by building a model with enhanced MRI images. METHODS Delineate the regions of interest (ROI) in arterial phase, portal venous phase and delayed phase of enhanced MRI. After extracting the combinatorial features of ROI, the features are fused to obtain deep learning radiomics (DLR)_Sig. DeLong's test was used to evaluate the diagnostic performance of different typological features. K-M analysis was applied to assess PFS in different risk groups, and the discriminative ability of the model was evaluated using the C-index. RESULTS Tumor diameter and diolame were independent factors influencing the prognosis of PFS. Delong's test revealed multi-phase combined radiomic features had significantly greater area under the curve values than did those of the individual phases (P < 0.05).In deep transfer learning (DTL) and DLR, significant differences were observed between the multi-phase and individual phases feature sets (P < 0.05). K-M survival analysis revealed a median survival time of high risk group and low risk group was 12.8 and 14.2 months, respectively, and the predicted probabilities of 6 months, 1 year and 2 years were 92%, 60%, 40% and 98%, 90%,73%, respectively. The C-index was 0.764, indicating relatively good consistency between the predicted and observed results. DTL and DLR have higher predictive value for 2-year PFS in nomogram. CONCLUSION Based on the multi-temporal characteristics of enhanced MRI and the constructed Nomograph, it provides a new strategy for predicting the PFS of transarterial chemoembolization treatment of HCC.
Collapse
Affiliation(s)
- Qing-Long Guan
- Department of Interventional Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous region, China
| | - Hai-Xiao Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous region, China
| | - Jun-Peng Gu
- Department of Interventional Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous region, China
| | - Geng-Fei Cao
- Department of Interventional Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous region, China
| | - Wei-Xin Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
498
|
Tang H, Pang X, Li S, Tang L. The Double-Edged Effects of MLN4924: Rethinking Anti-Cancer Drugs Targeting the Neddylation Pathway. Biomolecules 2024; 14:738. [PMID: 39062453 PMCID: PMC11274557 DOI: 10.3390/biom14070738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: The neddylation pathway assumes a pivotal role in the initiation and progression of cancer. MLN4924, a potent small-molecule inhibitor of the NEDD8-activating enzyme (NAE), effectively intervenes in the early stages of the neddylation pathway. By instigating diverse cellular responses, such as senescence and apoptosis in cancer cells, MLN4924 also exerts regulatory effects on non-malignant cells within the tumor microenvironment (TME) and tumor virus-infected cells, thereby impeding the onset of tumors. Consequently, MLN4924 has been widely acknowledged as a potent anti-cancer drug. (2) Recent findings: Nevertheless, recent findings have illuminated additional facets of the neddylation pathway, revealing its active involvement in various biological processes detrimental to the survival of cancer cells. This newfound understanding underscores the dual role of MLN4924 in tumor therapy, characterized by both anti-cancer and pro-cancer effects. This dichotomy is herein referred to as the "double-edged effects" of MLN4924. This paper delves into the intricate relationship between the neddylation pathway and cancer, offering a mechanistic exploration and analysis of the causes underlying the double-edged effects of MLN4924-specifically, the accumulation of pro-cancer neddylation substrates. (3) Perspectives: Here, the objective is to furnish theoretical support and novel insights that can guide the development of next-generation anti-cancer drugs targeting the neddylation pathway.
Collapse
Affiliation(s)
- Haoming Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (H.T.); (X.P.)
| | - Xin Pang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (H.T.); (X.P.)
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (H.T.); (X.P.)
| |
Collapse
|
499
|
Song C, Li D, Huang L, Zhang J, Zhao X. Role of Ferroptosis Regulation by Nrf2/NQO1 Pathway in Alcohol-Induced Cardiotoxicity In Vitro and In Vivo. Chem Res Toxicol 2024; 37:1044-1052. [PMID: 38833663 DOI: 10.1021/acs.chemrestox.4c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The aim of the present study was to evaluate the cardiotoxic effects of alcohol and its potential toxic mechanism on ferroptosis in mice and H9c2 cells. Mice were intragastrically treated with three different concentrations of alcohol, 7, 14, and 28%, each day for 14 days. Body weight and electrocardiography (ECG) were recorded over the 14 day period. Serum creatine kinase (CK), lactic dehydrogenase (LDH), MDA, tissue iron, and GSH levels were measured. Cardiac tissues were examined histologically, and ferroptosis was assessed. In H9c2 cardiomyocytes, cell viability, reactive oxygen species (ROS), labile iron pool (LIP), and mitochondrial membrane potential (MMP) were measured. The proteins of ferroptosis were evaluated by the western blot technique in vivo and in vitro. The results showed that serum CK, LDH, MDA, and tissue iron levels significantly increased in the alcohol treatment group in a dose-dependent manner. The content of GSH decreased after alcohol treatment. ECG and histological examinations showed that alcohol impaired cardiac function and structure. In addition, the levels of ROS and LIP increased, and MMP levels decreased after alcohol treatment. Ferrostatin-1 (Fer-1) protected cells from lipid peroxidation. Western blotting analysis showed that alcohol downregulated the expression of Nrf2, NQO1, HO-1, and GPX4. The expressions of P53 and TfR were upregulated in vivo and in vitro. Fer-1 significantly alleviated alcohol-induced ferroptosis. In conclusion, the study showed that Nrf2/NQO1-dependent ferroptosis played a vital role in the cardiotoxicity induced by alcohol.
Collapse
Affiliation(s)
- Chunpu Song
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Dongjie Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Ling Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Xiaoyan Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
500
|
Chaiyasing R, Jinagool P, Wipassa V, Kusolrat P, Aengwanich W. Impact of rising temperature on physiological and biochemical alterations that affect the viability of blood cells in American bullfrog crossbreeds. Heliyon 2024; 10:e32416. [PMID: 38933952 PMCID: PMC11200338 DOI: 10.1016/j.heliyon.2024.e32416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The study aimed to examine the impact of increasing environmental temperatures on physiological changes, oxidative stress, nitric oxide production, total antioxidant capacity, and blood cell viability in American bullfrog crossbreeds. Frogs and frog blood cells were exposed to temperature ranges of 25-33 °C and 25-37 °C, respectively. Physiological parameters (body temperature, pulse rate, ventilation rate, and oxygen saturation) and biochemical parameters (total antioxidant power, hydrogen peroxide, malondialdehyde, nitric oxide, and mitochondrial activity) were measured at every 2 °C increment. Results showed that body temperature rose with increased environmental temperature (P < 0.05). Pulse rates at 33 °C were higher than those at 25-31 °C (P < 0.05). Ventilation rates at 31 °C exceeded those at 25 °C and 27 °C (P < 0.05). Oxygen saturation levels remained stable at 25-33 °C (P > 0.05). Total antioxidant power at 25 °C was greater than at 27-37 °C (P < 0.05). Hydrogen peroxide levels at 27 °C were higher compared to 25 °C and 31-37 °C (P < 0.05). Malondialdehyde levels at 25-33 °C were higher than at 35 °C and 37 °C (P < 0.05). Nitric oxide levels at 37 °C were higher than at 25-33 °C (P < 0.05), and at 35 °C were higher than at 25-31 °C (P < 0.05). Blood cell viability at 25-31 °C was higher than at 37 °C (P < 0.05). These results suggest that at an environmental temperature of 33 °C, the frogs' body temperature approached 31 °C or higher, and were likely to be harmful to the frogs. Finally, the environmental temperature that caused frog blood cell death was 37 °C.
Collapse
Affiliation(s)
| | - Pailin Jinagool
- Stress and Oxidative Stress in Animal Research Unit of Mahasarakham University, Thailand
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Vajara Wipassa
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Prayuth Kusolrat
- Faculty of Science and Technology, Nakhonratchasima Rajabhat University, Nakhonratchasima, 30000, Thailand
| | - Worapol Aengwanich
- Stress and Oxidative Stress in Animal Research Unit of Mahasarakham University, Thailand
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand
| |
Collapse
|