5101
|
Süsens U, Borgmeyer U. Characterization of the human germ cell nuclear factor gene. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1309:179-82. [PMID: 8982251 DOI: 10.1016/s0167-4781(96)00157-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A cDNA clone encoding the germ cell nuclear factor, GCNF, a member of the nuclear receptor superfamily has been isolated from the human embryonal carcinoma cell line NT2/D1. Sequencing of this clone reveals an open reading frame encoding a 476 amino acid protein. A comparison of the amino acid sequence of the human GCNF with its mouse homologue shows only six amino acid exchanges in the whole protein and a deletion in the amino-terminal region. Northern blot analysis demonstrates that the expression in the testis is conserved.
Collapse
Affiliation(s)
- U Süsens
- Zentrum für molekulare Neurobiologie, Universität Hamburg, Germany
| | | |
Collapse
|
5102
|
Larose M, Cassard-Doulcier AM, Fleury C, Serra F, Champigny O, Bouillaud F, Ricquier D. Essential cis-acting elements in rat uncoupling protein gene are in an enhancer containing a complex retinoic acid response domain. J Biol Chem 1996; 271:31533-42. [PMID: 8940169 DOI: 10.1074/jbc.271.49.31533] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transgenic mice were generated with a transgene containing the 211-base pair (bp) enhancer and 0.4 kilobase pairs of 5'-flanking DNA of the uncoupling protein (ucp) gene. Expression of this transgene was restricted to brown adipose tissue and was inducible by cold exposure or treatment of transgenic mice by norepinephrine, retinoic acid (RA), or CL-316,243 beta3-adrenoreceptor agonist. A search for retinoic acid response elements in the ucp gene enhancer was undertaken using mutagenesis and transfection of cultured cells with chloramphenicol acetyltransferase constructs. Deletion or mutations of several putative retinoic acid response elements were ineffective. Mutations of a TGAATCA region dramatically decreased the transcriptional activity in the presence of RA. In vitro this region was able to bind a complex containing proteins recognized by antibodies against Jun or Fos. Mutations of an adjacent region related to an inverted repeat of type 2 also markedly decreased RA effect. This region was able to bind in vitro retinoid X receptor alpha and retinoic acid receptor beta. The two regions form an activating region between bp -2421 and -2402 (referred to as the ucp gene-activating region), which has an enhancer activity but cannot confer RA response to a promoter. This response was obtained with a larger DNA fragment (bp -2489 to -2398) constituting a complex RA response domain.
Collapse
Affiliation(s)
- M Larose
- Centre de Recherches sur l'Endocrinologie Moléculaire et le Développement, Centre National de la Recherche Scientifique, 92190 Meudon, France.
| | | | | | | | | | | | | |
Collapse
|
5103
|
|
5104
|
Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, Fajans SS, Signorini S, Stoffel M, Bell GI. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 1996; 384:458-60. [PMID: 8945471 DOI: 10.1038/384458a0] [Citation(s) in RCA: 795] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The disease maturity-onset diabetes of the young (MODY) is a genetically heterogeneous monogenic form of non-insulin-dependent (type 2) diabetes mellitus (NIDDM), characterized by early onset, usually before 25 years of age and often in adolescence or childhood, and by autosomal dominant inheritance. It has been estimated that 2-5% of patients with NIDDM may have this form of diabetes mellitus. Clinical studies have shown that prediabetic MODY subjects have normal insulin sensitivity but suffer from a defect in glucose-stimulated insulin secretion, suggesting that pancreatic beta-cell dysfunction rather than insulin resistance is the primary defect in this disorder. Linkage studies have localized the genes that are mutated in MODY on human chromosomes 20 (MODY1), 7 (MODY2) and 12 (MODY3), with MODY2 and MODY3 being allelic with the genes encoding glucokinase, a key regulator of insulin secretion, and hepatocyte nuclear factor-1alpha (HNF-1alpha), a transcription factor involved in tissue-specific regulation of liver genes but also expressed in pancreatic islets, insulinoma cells and other tissues. Here we show that MODY1 is the gene encoding HNF-4alpha (gene symbol, TCF14), a member of the steroid/thyroid hormone receptor superfamily and an upstream regulator of HNF-1alpha expression.
Collapse
Affiliation(s)
- K Yamagata
- Howard Hughes Medical Institute, The University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5105
|
Le Douarin B, Nielsen AL, Garnier JM, Ichinose H, Jeanmougin F, Losson R, Chambon P. A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J 1996; 15:6701-15. [PMID: 8978696 PMCID: PMC452494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nuclear receptors (NRs) are ligand-inducible transcription factors that mediate complex effects on development, differentiation and homeostasis. They regulate the transcription of their target genes through binding to cognate DNA sequences as homodimers or heterodimers. The molecular mechanisms underlying transcriptional activation by NRs are still poorly understood, although intermediary factors (mediators) appear to be involved in mediating the transactivation functions of NRs. TIF1 has been identified previously as a protein that interacts specifically with the ligand binding domain of several nuclear receptors, both in yeast and in vitro. The characteristics of these interactions have led us to suggest that TIF1 might be a mediator of the NR ligand-inducible activation function AF-2. Using a two-hybrid screening in yeast, we have now identified two TIF1-binding proteins, mHP1 alpha and mMOD1, that are mouse homologues of the Drosophila heterochromatinic protein 1. Using mHP1 alpha as a bait in a second two-hybrid screening, we have isolated cDNAs encoding proteins that are also very likely to be involved in chromatin structure and function, as well as a protein structurally and functionally related to TIF1 (renamed TIF1 alpha), which was named TIF1 beta. Here we discuss how the function of members of the TIF1 family in the control of transcription could be exerted at the level of the structure of the chromatin template.
Collapse
Affiliation(s)
- B Le Douarin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
5106
|
Anolik JH, Klinge CM, Brolly CL, Bambara RA, Hilf R. Stability of the ligand-estrogen receptor interaction depends on estrogen response element flanking sequences and cellular factors. J Steroid Biochem Mol Biol 1996; 59:413-29. [PMID: 9010347 DOI: 10.1016/s0960-0760(96)00129-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To determine whether accessory proteins mediate the ligand- and DNA sequence-dependent specificity of estrogen receptor (ER) interaction with DNA, the binding of partly purified vs highly purified bovine ER to various estrogen response elements (EREs) was measured in the presence of different ER ligands. Partly purified estradiol-liganded ER (E2-ER) binds cooperatively to stereoaligned tandem EREs flanked by naturally occurring AT-rich sequences, with a stoichiometry of one E2-ER dimer per ERE. In contrast, highly purified E2-ER binds with a 10-fold lower affinity and non-cooperatively to EREs flanked by the AT-rich region. Moreover, the binding stoichiometry of highly purified E2-ER was 0.5 E2-ER dimer, or one monomer per ERE, independent of the ERE flanking sequence. Interestingly, the binding of ER liganded with the antiestrogen 4-hydroxytamoxifen (4-OHT-ER) was non-cooperative with an apparent stoichiometry of 0.5 4-OHT-ER dimer per ERE, regardless of ER purity or ERE flanking sequence. We recently showed that when 4-OHT-ER binds DNA, one molecule of 4-OHT dissociates from the dimeric 4-OHT-ER-ERE complex, accounting for the reduced apparent binding stoichiometry. In contrast, ER covalently bound by tamoxifen aziridine (TAz) gave an ERE binding stoichiometry of one TAz-ER dimer per ERE, and TAz-ER binds cooperatively to multiple AT-rich EREs, regardless of the purity of the receptor. We have obtained evidence that purification of ER removes an accessory protein(s) that interacts with ER in a sequence- and/or DNA conformational-dependent manner, resulting in stabilization of E2, but not 4-OHT, in the ligand binding domain when the receptor binds to DNA. We postulate that retention of ligand by ER maintains the receptor in a conformation necessary to achieve high-affinity, cooperative ERE binding.
Collapse
Affiliation(s)
- J H Anolik
- Department of Biochemistry and the Cancer Center, The University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | | | | | |
Collapse
|
5107
|
Makino Y, Okamoto K, Yoshikawa N, Aoshima M, Hirota K, Yodoi J, Umesono K, Makino I, Tanaka H. Thioredoxin: a redox-regulating cellular cofactor for glucocorticoid hormone action. Cross talk between endocrine control of stress response and cellular antioxidant defense system. J Clin Invest 1996; 98:2469-77. [PMID: 8958209 PMCID: PMC507704 DOI: 10.1172/jci119065] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Adaptation to stress evokes a variety of biological responses, including activation of the hypothalamic-pituitary-adrenal (HPA) axis and synthesis of a panel of stress-response proteins at cellular levels: for example, expression of thioredoxin (TRX) is significantly induced under oxidative conditions. Glucocorticoids, as a peripheral effector of the HPA axis, exert their actions via interaction with a ligand-inducible transcription factor glucocorticoid receptor (GR). However, how these stress responses coordinately regulate cellular metabolism is still unknown. In this study, we demonstrated that either antisense TRX expression or cellular treatment with H2O2 negatively modulates GR function and decreases glucocorticoid-inducible gene expression. Impaired cellular response to glucocorticoids is rescued by overexpression of TRX, most possibly through the functional replenishment of the GR. Moreover, not only the ligand binding domain but the DNA binding domain of the GR is also suggested to be a direct target of TRX. Together, we here present evidence showing that cellular glucocorticoid responsiveness is coordinately modulated by redox state and TRX level and propose that cross talk between neuroendocrine control of stress responses and cellular antioxidant systems may be essential for mammalian adaptation processes.
Collapse
Affiliation(s)
- Y Makino
- Second Department of Internal Medicine, Asahikawa Medical College, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5108
|
Abstract
The mRNA levels of LIV-1 and pS2, two estrogen-responsive genes, are increased by the agents, cholera toxin (CT) plus 3-isobutyl-l-methylxanthine (IBMX), which cause an increase in cAMP in MCF-7 human breast cancer cells. The simultaneous addition of estradiol and CT/IBMX results in a synergistic induction of the two mRNAs. The changes in mRNA reflect changes in transcription of the two genes. Interestingly, the addition of CT/IBMX to estradiol not only causes a greater increase in transcription rate but the increase is longer-lasting that seen with the hormone alone. Stimulation of mRNA levels by CT/IBMX, but not by estradiol, was prevented by cycloheximide. Stimulation by both estradiol and by CT/IBMX was prevented by the antiestrogen, ICI 164387. Transcription of LIV-1 and pS2 genes is by both estradiol and cAMP, via separate mechanisms both requiring the estrogen receptor.
Collapse
Affiliation(s)
- M K el-Tanani
- Department of Biochemistry, University of Liverpool, UK
| | | |
Collapse
|
5109
|
Kerry DM, Dwivedi PP, Hahn CN, Morris HA, Omdahl JL, May BK. Transcriptional synergism between vitamin D-responsive elements in the rat 25-hydroxyvitamin D3 24-hydroxylase (CYP24) promoter. J Biol Chem 1996; 271:29715-21. [PMID: 8939905 DOI: 10.1074/jbc.271.47.29715] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transcription of the CYP24 gene is induced by 1,25-(OH)2D3 through a vitamin D receptor-dependent process. The functional activities of three possible vitamin D response elements (VDREs), located on the antisense strand of the rat CYP24 promoter, were investigated by transient expression of native and mutant promoter constructs in COS-1, JTC-12, and ROS 17/2.8 cells. A putative VDRE with a half-site spacing of 6 base pairs at -249/-232 (VDRE-3) did not contribute to 1,25-(OH)2D3 induced expression in the native promoter, although activity has been reported when the element was fused to the heterologous thymidine kinase promoter. Two VDREs with half-site spacings of 3 base pairs at -150/-136 and -258/-244 (VDRE-1 and VDRE-2, respectively), showed transcriptional synergism in COS-1 cells when treated with 1,25-(OH)2D3 (10(-7) to 10(-11) M). The contribution of both VDREs was hormone-concentration dependent from 10(-10) to 10(-12) M, with VDRE-1 demonstrating greatest sensitivity to 1,25-(OH)2D3. Transactivation by VDRE-1 was always greater than VDRE-2, but the converse was observed for the binding of vitamin D receptor-retinoid X receptor complex by each VDRE in gel mobility shift assays. The synergy observed between VDRE-1 and VDRE-2 may have important implications in cellular responses to different circulating levels of 1,25-(OH)2D3.
Collapse
Affiliation(s)
- D M Kerry
- Department of Biochemistry, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | | | | | |
Collapse
|
5110
|
Nayeri S, Kahlen JP, Carlberg C. The high affinity ligand binding conformation of the nuclear 1,25-dihydroxyvitamin D3 receptor is functionally linked to the transactivation domain 2 (AF-2). Nucleic Acids Res 1996; 24:4513-8. [PMID: 8948643 PMCID: PMC146265 DOI: 10.1093/nar/24.22.4513] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nuclear receptor for 1,25-dihydroxyvitamin D3 (VD), VDR, is a transcription factor that mediates all genomic actions of the hormone. The activation of VDR by ligand induces a conformational change within its ligand binding domain (LBD). Due to the lack of a crystal structure analysis, biochemical methods have to be applied in order to investigate the details of this receptor-ligand interaction. The limited protease digestion assay can be used as a tool for the determination of a functional dissociation constant (K(df)) of VDR with any potential ligand. This method provided with the natural hormone VD two protease-resistant fragments of the VDR LBD and with the 20-epi conformation of VD, known as MC1288, even an additional fragment of intermediate size. These fragments were interpreted as different receptor conformations and their decreasing size was found to be associated with decreasing ligand binding affinity. A critical amino acid for VDR's high ligand binding conformation has been identified by C-terminal receptor truncations and point mutations as phenylalanine 422. This amino acid appears to directly contact the ligand and belongs to the ligand-inducible activation function-2 (AF-2) domain. Moreover, functional assays supported the observation that high affinity ligand binding is directly linked to transactivation function.
Collapse
Affiliation(s)
- S Nayeri
- Clinique de Dermatologie, Hôpital Cantonal Universitaire, Genève, Switzerland
| | | | | |
Collapse
|
5111
|
Downes M, Burke LJ, Bailey PJ, Muscat GE. Two receptor interaction domains in the corepressor, N-CoR/RIP13, are required for an efficient interaction with Rev-erbA alpha and RVR: physical association is dependent on the E region of the orphan receptors. Nucleic Acids Res 1996; 24:4379-86. [PMID: 8948627 PMCID: PMC146280 DOI: 10.1093/nar/24.22.4379] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rev-erbA alpha and RVR/Rev-erb beta/BD73 are orphan steroid receptors that have no known ligands in the 'classical sense'. These 'orphans' do not activate transcription, but function as dominant transcriptional silencers. The thyroid hormone receptor (TR) and the retinoic acid receptor (RAR) act as transcriptional silencers by binding corepressors (e.g. N-CoR/RIP13 and SMRT/TRAC-2) in the absence of ligands. The molecular basis of repression by orphan receptors, however, remains obscure, and it is unclear whether these corepressors mediate transcriptional silencing by Rev-erbA alpha and RVR. Recently, two new variants of N-CoR have been described, RIP13a and RIP13delta1. The characterisation of these splice variants has identified a second receptor interaction domain (ID-II), in addition to the previously characterised interaction domain (ID-I). This investigation utilised the mammalian two hybrid system and transfection analysis to demonstrate that Rev-erbA alpha and RVR will not efficiently interact with either ID-I or ID-II separately from RIP13a or RIP13delta1. However, they interact efficiently with a domain composed of ID-I and ID-II from RIP13a. Interestingly, the interaction of Rev-erbA alpha and RVR is strongest with ID-I and ID-II from RIP13delta1. Detailed deletion analysis of the orphan receptor interaction with RIP13/N-CoR rigorously demonstrated that the physical association was critically dependent on an intact E region of Rev-erbA alpha and RVR. Over-expression of the corepressor interaction domains (i.e. dominant negative forms of N-CoR/RIP13) could alleviate orphan receptor-mediated repression of transactivation by GALVP16. This demonstrated that these regions could function as anti-repressors. In conclusion, these data from two independent approaches demonstrate that repression by Rev-erbA alpha and RVR is mediated by an interaction of ID-I and ID-II of N-CoR, RIP13a and delta1 with the putative ligand binding domain of the orphan receptors.
Collapse
Affiliation(s)
- M Downes
- University of Queensland, Centre for Molecular and Cellular Biology, Ritchie Research Laboratories, St Lucia, Australia
| | | | | | | |
Collapse
|
5112
|
L'Horset F, Dauvois S, Heery DM, Cavaillès V, Parker MG. RIP-140 interacts with multiple nuclear receptors by means of two distinct sites. Mol Cell Biol 1996; 16:6029-36. [PMID: 8887632 PMCID: PMC231605 DOI: 10.1128/mcb.16.11.6029] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have characterized two distinct binding sites, called site 1 and site 2, in the nuclear protein RIP-140 which interact with the ligand binding domain of the estrogen receptor both in solution and when the receptor is bound to DNA. Both sites are capable of independently interacting with other nuclear receptors, including the thyroid hormone and retinoic acid receptors, but they are not identical since the interaction with retinoid X receptor is mediated primarily by site 1. The interaction is enhanced by agonists but not by antagonists, and the in vitro binding activities to a number of mutant receptors correlate with their abilities to stimulate transcription in vivo. When RIP-140 is fused to heterologous DNA binding domains, it is able to stimulate the transcription of reporter genes in both yeast and mammalian cells. Thus, RIP-140 is likely to function as a bridging protein between receptors and the basal transcription machinery and thereby stimulate the transcription of target genes.
Collapse
Affiliation(s)
- F L'Horset
- Molecular Endocrinology Laboratory, Imperial Cancer Research Fund, London, United Kingdom
| | | | | | | | | |
Collapse
|
5113
|
Joos TO, David R, Dreyer C. xGCNF, a nuclear orphan receptor is expressed during neurulation in Xenopus laevis. Mech Dev 1996; 60:45-57. [PMID: 9025060 DOI: 10.1016/s0925-4773(96)00599-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nuclear orphan receptors are DNA binding proteins that share the domain structure of the nuclear hormone receptor superfamily, although ligands are unknown. We have identified an orphan receptor in Xenopus laevis and named it xGCNF based on its high degree of sequence homology to the previously described murine germ cell nuclear factor (mGCNF). In gel-electrophoresis mobility shift analysis experiments in vitro translated xGCNF and mGCNF proteins both bind specifically as homodimers to the same response element, a direct repeat of the half-site consensus AGGTCA with zero spacing (DRO). Transcripts of xGCNF are found in oocytes and in much smaller amounts in the testes. In developmental Northern blots and RNase protection using RNA from different embryonic stages, zygotic expression of xGCNF peaks at midneurula. From late gastrula to midneurula stages, an anterior to posterior concentration gradient of the RNA was observed in whole mount in situ analysis. This antero-posterior gradient of expression was also observed in exogastrulae, both in the ectoderm and mesoderm. In the midneurula embryo, the mRNA was predominantly found in the neural plate and neural crest. Transcription of xGCNF in animal cap explants occurred independent of mesoderm induction.
Collapse
Affiliation(s)
- T O Joos
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | | | | |
Collapse
|
5114
|
Danielsson C, Nayeri S, Wiesinger H, Thieroff-Ekerdt R, Carlberg C. Potent gene regulatory and antiproliferative activities of 20-methyl analogues of 1,25 dihydroxyvitamin D3. J Cell Biochem 1996; 63:199-206. [PMID: 8913871 DOI: 10.1002/(sici)1097-4644(19961101)63:2<199::aid-jcb7>3.0.co;2-t] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The biological active form of vitamin D3, 1,25-dihydroxyvitamin D3 (VD), regulates cellular growth and differentiation. This provides the hormone with an interesting therapeutic potential. However, hypercalcemia is a side effect, which is caused by VD's classical action, the regulation of calcium homeostasis. This made the need for VD analogues with selectively increased cell regulatory properties. Studies with 20-epi analogues pointed out the importance of the carbon-20 position and led to the development of 20-methyl derivatives of VD. In this report the biological properties of the compounds ZK161422 and ZK157202, which are 20-methyl- and 20-methyl-23-eneanalogues, respectively, have been analyzed in comparison with VD. Both compounds show about 2-fold lower affinity to the VD receptor (VDR) than VD. However, compared to VD, their antiproliferative effect is up to 30-fold higher on human peripheral blood mononuclear cells and even up to 300-fold higher on human breast cancer MCF-7 cells. Whereas the hypercalcemic effect for ZK157202 is also increased 10-fold, ZK161422 has the same calcium-mobilizing potency as VD. Moreover, ZK161422, but not ZK157202, showed preference for gene activation from a promoter carrying a VD response element with a palindromic arrangement of two hexameric receptor binding sites spaced by 9 nucleotides (IP9) rather than for activation from a response element formed by a direct repeat spaced by 3 nucleotides (DR3). This observation supports a model, in which promoter selectivity reflects the selectively increased antiproliferative effect of VD analogues.
Collapse
Affiliation(s)
- C Danielsson
- Clinique de Dermatologie, Hôpital Cantonal Universitaire, Genève 14, Switzerland
| | | | | | | | | |
Collapse
|
5115
|
Abstract
The aryl hydrocarbon (Ah) receptor has occupied the attention of toxicologists for over two decades. Interest arose from the early observation that this soluble protein played key roles in the adaptive metabolic response to polycyclic aromatic hydrocarbons and in the toxic mechanism of halogenated dioxins and dibenzofurans. More recent investigations have provided a fairly clear picture of the primary adaptive signaling pathway, from agonist binding to the transcriptional activation of genes involved in the metabolism of xenobiotics. Structure-activity studies have provided an understanding of the pharmacology of this receptor; recombinant DNA approaches have identified the enhancer sequences through which this factor regulates gene expression; and functional analysis of cloned cDNAs has allowed the characterization of the major signaling components in this pathway. Our objective is to review the Ah receptor's role in regulation of xenobiotic metabolism and use this model as a framework for understanding the less well-characterized mechanism of dioxin toxicity. In addition, it is hoped that this information can serve as a model for future efforts to understand an emerging superfamily of related signaling pathways that control biological responses to an array of environmental stimuli.
Collapse
Affiliation(s)
- J V Schmidt
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
5116
|
Abstract
Retinoids serve two main functions in biology: retinaldehyde forms the chromophore bound to opsins, and retinoic acid (RA) is the activating ligand of transcription factors. These two functions are linked in the vertebrate eye: we describe here that illumination of the retina results in an increase in RA synthesis, as detected with a RA bioassay and by HPLC. The synthesis is mediated by retinaldehyde dehydrogenases which convert some of the chromophore all-trans retinaldehyde, released from bleached rhodopsin, into RA. As the eye contains high levels of retinaldehyde dehydrogenases, and as the oxidation of retinaldehyde is an irreversible reaction, RA production has to be considered an unavoidable by-product of light. Through RA synthesis, light can thus directly influence gene transcription in the eye, which provides a plausible mechanism for light effects that cannot be explained by electric activity. Whereas the function of retinaldehyde as chromophore is conserved from bacteria to mammals, RA-mediated transcription is fully evolved only in vertebrates. Invertebrates differ from vertebrates in the mechanism of chromophore regeneration: while in the invertebrate visual cycle the chromophore remains bound, it is released as free all-trans retinaldehyde from illuminated vertebrate rhodopsin. RA synthesis occurring as corollary of dark regeneration in the vertebrate visual cycle may have given rise to the expansion of RA-mediated transcriptional regulation.
Collapse
Affiliation(s)
- P McCaffery
- Division of Developmental Neuroscience, E. K. Shriver Center, Waltham, MA 02254, USA
| | | | | |
Collapse
|
5117
|
Xu J, Nawaz Z, Tsai SY, Tsai MJ, O'Malley BW. The extreme C terminus of progesterone receptor contains a transcriptional repressor domain that functions through a putative corepressor. Proc Natl Acad Sci U S A 1996; 93:12195-9. [PMID: 8901556 PMCID: PMC37966 DOI: 10.1073/pnas.93.22.12195] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Binding of a hormone agonist to a steroid receptor leads to the dissociation of heat shock proteins, dimerization, specific DNA binding, and target gene activation. Although the progesterone antagonist RU486 can induce most of these events, it fails to activate human progesterone receptor (hPR)-dependent transcription. We have previously demonstrated that a conformational change is a key event leading to receptor activation. The major conformational distinction between hormone- and antihormone-bound receptors occurs within the C-terminal portion of the molecule. Furthermore, hPR mutants lacking the C terminus become transcriptionally active in the presence of RU486. These results suggest that the C terminus contains a repressor domain that inhibits the transcriptional activity of the RU486-bound hPR. In this study, we have defined a 12 amino acid (12AA) region in the C terminus of hPR that is necessary and sufficient for the repressor function when fused to the C-terminal truncated hPR or to the GAL4 DNA-binding domain. Mutations in the 12AA domain (aa 917-928) generate an hPR that is active in the presence of RU486. Furthermore, overexpression of the 12AA peptide activates the RU486-bound wild-type hPR without affecting progesterone-dependent activation. These results suggest that association of the 12AA repressor region with a corepressor might inactivate hPR activity when it is bound to RU486. We propose that binding of a hormone agonist to the receptor changes its conformation in the ligand-binding domain so that association with coactivator is promoted and activation of target gene occurs.
Collapse
Affiliation(s)
- J Xu
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
5118
|
Stöcklin E, Wissler M, Gouilleux F, Groner B. Functional interactions between Stat5 and the glucocorticoid receptor. Nature 1996; 383:726-8. [PMID: 8878484 DOI: 10.1038/383726a0] [Citation(s) in RCA: 482] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Signal transduction pathways enable extracellular signals to activate latent transcription factors in the cytoplasm of cells. Dimerization, nuclear localization and binding to specific DNA sequences result in the induction of gene transcription by these proteins. These events are necessary for the functioning of the JAK/STAT pathway and of the glucocorticoid-receptor pathway. In the former, the protein Stat5, which is a member of a family of signal transducers and activators of transcription, is activated by cytokines, hormones and growth factors. These polypeptide ligands bind at the outside of the cell to specific transmembrane receptors and activate intracellular Janus protein tyrosine kinases (JAKs) to tyrosine-phosphorylate STAT proteins; interaction with the SH2 domain of the dimerization partner then confers the ability to bind to DNA at the STAT-response element and induce transcription. In the glucocorticoid-receptor pathway, the receptor interacts with its steroid hormone ligand in the cytoplasm, undergoes an allosteric change that enables the hormone receptor complex to bind to specific DNA-response elements (glucocorticoid response elements, or GRE) and modulate transcription. Although these pathways appear to be unrelated, we show here that the glucocorticoid receptor can act as a transcriptional co-activator for Stat5 and enhance Stat5-dependent transcription. Stat5 forms a complex with the glucocorticoid receptor which binds to DNA independently of the GRE. This complex formation between Stat5 and the glucocorticoid receptor diminishes the glucocorticoid response of a GRE-containing promoter.
Collapse
Affiliation(s)
- E Stöcklin
- Institute for Experimental Cancer Research, Tumor Biology Center, Freiburg, Germany
| | | | | | | |
Collapse
|
5119
|
Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 1996; 383:728-31. [PMID: 8878485 DOI: 10.1038/383728a0] [Citation(s) in RCA: 1370] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cholesterol and its oxysterol congeners are important constituents of cell membranes and function as intermediates in several crucial biosynthetic pathways. These compounds autoregulate their metabolic fate by end-product repression and activation of downstream catabolism. Although end-product repression by oxysterols is relatively well understood, the mechanism by which these compounds act as positive transcription signalling molecules is unknown. Here we identify a specific group of endogenous oxysterols that activate transcription through the nuclear receptor LXR alpha. Transactivation of LXR alpha by oxysterols occurs at concentrations at which these compounds exist in vivo. The most potent activators also serve as intermediary substrates in the rate-limiting steps of three important metabolic pathways: steroid hormone biosynthesis, bile acid synthesis, and conversion of lanosterol to cholesterol. Our results demonstrate the existence of a nuclear receptor signalling pathway for oxysterols and suggest that LXR alpha may be important as a sensor of cholesterol metabolites.
Collapse
Affiliation(s)
- B A Janowski
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 75235-9050, USA
| | | | | | | | | |
Collapse
|
5120
|
Hanstein B, Eckner R, DiRenzo J, Halachmi S, Liu H, Searcy B, Kurokawa R, Brown M. p300 is a component of an estrogen receptor coactivator complex. Proc Natl Acad Sci U S A 1996; 93:11540-5. [PMID: 8876171 PMCID: PMC38093 DOI: 10.1073/pnas.93.21.11540] [Citation(s) in RCA: 304] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The estrogen receptor (ER) is a ligand-dependent transcription factor that regulates expression of target genes in response to estrogen in concert with other cellular signaling pathways. This suggests that the mechanism by which ER transmits an activating signal to the general transcription machinery may include factors that integrate these diverse signals. We have previously characterized the estrogen receptor-associated protein, ERAP160, as a factor that complexes with ER in an agonist-dependent manner. We have now found that the transcriptional coactivator p300 associates with agonist bound ER and augments ligand-dependent activation by ER. Our studies show that an ER coactivator complex involves a direct hormone-dependent interaction between ER and ERAP160, resulting in the recruitment of p300. In addition, antibodies directed against the cloned steroid receptor coactivator 1 (SRC1) recognize ERAP160. The known role of p300 in multiple signal transduction pathways, including those involving the second messenger cAMP, suggests p300 functions as a point of integration between ER and these other pathways.
Collapse
Affiliation(s)
- B Hanstein
- Division of Neoplastic Disease Mechanisms, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
5121
|
Bubulya A, Wise SC, Shen XQ, Burmeister LA, Shemshedini L. c-Jun can mediate androgen receptor-induced transactivation. J Biol Chem 1996; 271:24583-9. [PMID: 8798722 DOI: 10.1074/jbc.271.40.24583] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The proto-oncoprotein c-Jun forms as a heterodimer with c-Fos, the transcription factor AP-1. AP-1 regulates transcription through transactivation, a process requiring DNA binding. Here we report an indirect mechanism by which c-Jun can regulate transcription via the androgen receptor. In this process, c-Jun is able to support androgen receptor-mediated transactivation in the absence of an interaction with c-Fos or any apparent DNA binding. This positive effect of c-Jun was dose-dependent. Both exogenously added and endogenously induced c-Jun are able to act on the androgen receptor. Transactivation by the androgen receptor can undergo self-squelching, and this was relieved by transfected c-Jun. Using a time-course experiment, we provide evidence that the c-Jun effect is primary. c-Fos is able to block human androgen receptor activity in both the absence and presence of transfected c-Jun. Using a modified form of the yeast two-hybrid system, we show in Cos cells that c-Jun can interact with the DNA binding domain/hinge region (CD regions) of the androgen receptor. Therefore, we propose that c-Jun functions as a mediator for androgen receptor-induced transactivation.
Collapse
Affiliation(s)
- A Bubulya
- Department of Biology, University of Toledo, Toledo, Ohio 43606, USA
| | | | | | | | | |
Collapse
|
5122
|
Oulad-Abdelghani M, Bouillet P, Décimo D, Gansmuller A, Heyberger S, Dollé P, Bronner S, Lutz Y, Chambon P. Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene. J Biophys Biochem Cytol 1996; 135:469-77. [PMID: 8896602 PMCID: PMC2121034 DOI: 10.1083/jcb.135.2.469] [Citation(s) in RCA: 244] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The full-length cDNA corresponding to Stra8, a novel gene inducible by retinoic acid (RA) in P19 embryonal carcinoma cells, has been isolated and shown to encode a 45-kD protein. Both Stra8 mRNA and protein were induced in cells treated by all-trans and 9-cis retinoic acids. Two-dimensional gel analysis and dephosphorylation experiments revealed that the two stereoisomers of RA differentially regulate the phosphorylation status of the Stra8 protein, which was shown to exist in differently phosphorylated forms. Subcellular fractionation and immunocytochemistry studies showed that the Stra8 protein is cytoplasmic. During mouse embryogenesis, Stra8 expression was restricted to the male developing gonads, and in adult mice, the expression of Stra8 was restricted to the premeiotic germ cells. Thus, Stra8 protein may play a role in the premeiotic phase of spermatogenesis.
Collapse
Affiliation(s)
- M Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, Collège de France, Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
5123
|
Yao TP, Ku G, Zhou N, Scully R, Livingston DM. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc Natl Acad Sci U S A 1996; 93:10626-31. [PMID: 8855229 PMCID: PMC38204 DOI: 10.1073/pnas.93.20.10626] [Citation(s) in RCA: 352] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
p300 and its family member, CREB-binding protein (CBP), function as key transcriptional coactivators by virtue of their interaction with the activated forms of certain transcription factors. In a search for additional cellular targets of p300/CBP, a protein-protein cloning strategy, surprisingly identified SRC-1, a coactivator involved in nuclear hormone receptor transcriptional activity, as a p300/CBP interactive protein. p300 and SRC-1 interact, specifically, in vitro and they also form complexes in vivo. Moreover, we show that SRC-1 encodes a new member of the basic helix-loop-helix-PAS domain family and that it physically interacts with the retinoic acid receptor in response to hormone binding. Together, these results implicate p300 as a component of the retinoic acid signaling pathway, operating, in part, through specific interaction with a nuclear hormone receptor coactivator, SRC-1.
Collapse
Affiliation(s)
- T P Yao
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | |
Collapse
|
5124
|
Abstract
Our understanding of the mechanism of action of retinoids has been greatly expanded by a series of recent findings. First, the three-dimensional structure of the ligand-binding domain of two retinoid receptors has been solved and suggests that ligand binding induces marked allosteric changes. Second, several co-factors interacting with the receptors have been cloned, some of which are capable of regulating the function of receptors. Third, the advent of synthetic retinoids helped define the activities of the receptors. Fourth, the study of the in vivo receptor-DNA interactions has revealed a previously unrecognized role of the ligand in regulating the stability of receptor-DNA complexes. These advances have revealed complex molecular interactions operating at multiple levels, opening new avenues of research for addressing their mechanisms.
Collapse
Affiliation(s)
- S Minucci
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
5125
|
McInerney EM, Katzenellenbogen BS. Different regions in activation function-1 of the human estrogen receptor required for antiestrogen- and estradiol-dependent transcription activation. J Biol Chem 1996; 271:24172-8. [PMID: 8798658 DOI: 10.1074/jbc.271.39.24172] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human estrogen receptor (ER) is a ligand-inducible transcription factor that contains two transcriptional activation functions, one located in the NH2-terminal region of the protein (AF-1) and the second in the COOH-terminal region (AF-2). Antiestrogens, such as trans-hydroxytamoxifen (TOT), have partial agonistic activity in certain cell types, and studies have implied that this agonism is AF-1-dependent. We have made progressive NH2-terminal and other segment deletions and ligations in the A/B domain, and studied the transcriptional activity of these mutant ERs in ER-negative MDA-MB-231 human breast cancer and HEC-1 human endometrial cancer cells. Using several estrogens and several partial agonist/antagonist antiestrogens, we find that estrogens and antiestrogens require different regions of AF-1 for transcriptional activation. Deletion of the first 40 amino acids has no effect on receptor activity. Antiestrogen agonism is lost upon deletion to amino acid 87, while estrogen agonism is not lost until deletions progress to amino acid 109. Antiestrogen agonism has been further defined to require amino acids 41-64, as deletion of only these amino acids results in an ER that exhibits 100% activity with E2, but no longer shows an agonist response to TOT. With A/B-modified receptors in which antiestrogens lose their agonistic activity, the antiestrogens then function as pure estrogen antagonists. Our studies show that in these cellular contexts, hormone-dependent transcription utilizes a range of the amino acid sequence within the A/B domain. Furthermore, the agonist/antagonist balance and activity of antiestrogens such as TOT are determined by specific sequences within the A/B domain and thus may be influenced by differences in levels of specific factors that interact with these regions of the ER.
Collapse
Affiliation(s)
- E M McInerney
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
5126
|
Driscoll JE, Seachord CL, Lupisella JA, Darveau RP, Reczek PR. Ligand-induced conformational changes in the human retinoic acid receptor detected using monoclonal antibodies. J Biol Chem 1996; 271:22969-75. [PMID: 8798483 DOI: 10.1074/jbc.271.38.22969] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanism by which the naturally occurring ligand for a nuclear hormone receptor regulates transcription remains largely unknown. One approach combines the specificity of monoclonal antibodies, which recognize a three-dimensional epitope, with ligand binding. Using purified retinoic acid receptor gamma D and E domains, a panel of six unique monoclonal antibodies were isolated and characterized using solid-state receptor binding and retinoic acid receptor (RAR)-RXR heterodimer supershift formation. Three antibodies are specific for RARgamma (mAbI, mAbII, and mAbV) and four recognize a three-dimensional epitope (mAbI, mAbIV, mAbV, and mAbVI). Three antibodies (mAbIII, mAbV, and mAbVI) dissociate from the receptor in electrophoretic mobility shift assays upon the addition of retinoic acid. In particular, the binding characteristics of mAbIII, whose epitope was mapped to a region identified as an omega-loop (amino acids 207-222), suggest a model for ligand binding to the receptor. In this model, ligand binding causes a positioning of helix 12 into a favorable conformation for interaction with the transcriptional machinery. The Omega-loop then closes in order to stabilize this "active" position. The results reported here also suggest that a region of the hinge or D domain of the receptor (amino acids 156-188), an area that can play a role in protein-protein interactions, may also be important in ligand-induced functional changes.
Collapse
Affiliation(s)
- J E Driscoll
- Department of Molecular Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, Buffalo, New York 14213, USA
| | | | | | | | | |
Collapse
|
5127
|
Greiner EF, Kirfel J, Greschik H, Dörflinger U, Becker P, Mercep A, Schüle R. Functional analysis of retinoid Z receptor beta, a brain-specific nuclear orphan receptor. Proc Natl Acad Sci U S A 1996; 93:10105-10. [PMID: 8816759 PMCID: PMC38344 DOI: 10.1073/pnas.93.19.10105] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The retinoid Z receptor beta (RZR beta), an orphan receptor, is a member of the retinoic acid receptor (RAR)/thyroid hormone receptor (TR) subfamily of nuclear receptors. RZR beta exhibits a highly restricted brain-specific expression pattern. So far, no natural RZR beta target gene has been identified and the physiological role of the receptor in transcriptional regulation remains to be elucidated. Electrophoretic mobility shift assays reveal binding of RZR beta to monomeric response elements containing the sequence AnnTAGGTCA, but RZR beta-mediated transactivation of reporter genes is only achieved with two property spaced binding sites. We present evidence that RZR beta can function as a cell-type-specific transactivator. In neuronal cells, GaI-RZR beta fusion proteins function as potent transcriptional activators, whereas no transactivation can be observed in nonneuronal cells. Mutational analyses demonstrate that the activation domain (AF-2) of RZR beta and RAR alpha are functionally interchangeable. However, in contrast to RAR and TR, the RZR beta AF-2 cannot function autonomously as a transactivation domain. Furthermore, our data define a novel repressor function for the C-terminal part of the putative ligand binding domain. We propose that the transcriptional activity of RZR beta is regulated by an interplay of different receptor domains with coactivators and corepressors.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Base Sequence
- Binding Sites
- Brain/metabolism
- Cell Line
- DNA Primers
- Genes, Reporter
- Humans
- Luciferases/biosynthesis
- Mice
- Neurons/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 1
- Nuclear Receptor Subfamily 1, Group F, Member 2
- Oligonucleotide Probes
- Polymerase Chain Reaction
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/metabolism
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Melatonin
- Receptors, Retinoic Acid
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/metabolism
- Trans-Activators/metabolism
- Transcriptional Activation
- Transfection
- beta-Galactosidase/biosynthesis
Collapse
Affiliation(s)
- E F Greiner
- Klinik für Tumorbiologie, Universität Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
5128
|
McInerney EM, Tsai MJ, O'Malley BW, Katzenellenbogen BS. Analysis of estrogen receptor transcriptional enhancement by a nuclear hormone receptor coactivator. Proc Natl Acad Sci U S A 1996; 93:10069-73. [PMID: 8816752 PMCID: PMC38337 DOI: 10.1073/pnas.93.19.10069] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The estrogen receptor (ER), a member of a large superfamily of nuclear hormone receptors, is a ligand-inducible transcription factor that regulates the expression of estrogen-responsive genes. The ER, in common with other members of this superfamily, contains two transcription activation functions (AFs)--one located in the amino-terminal region (AF-1) and the second located in the carboxyl-terminal region (AF-2). In most cell contexts, the synergistic activity of AF-1 and AF-2 is required for full estradiol (E2)-stimulated activity. We have previously shown that a ligand-dependent interaction between the two AF-containing regions of ER was promoted by E2 and the antiestrogen trans-hydroxytamoxifen (TOT). This interaction, however, was transcriptionally productive only in the presence of E2. To explore a possible role of steroid receptor coactivators in transcriptional synergism between AF-1 and AF-2, we expressed the amino terminal (AF-1-containing) and carboxyl-terminal (AF-2-containing) regions of ER as separate polypeptides in mammalian cells, along with the steroid receptor coactivator-1 protein (SRC-1). We demonstrate that SRC-1, which has been shown to significantly increase ER transcriptional activity, enhanced the interaction, mediated by either E2 or TOT, between the AF-1-containing and AF-2-containing regions of the ER. However, this enhanced interaction resulted in increased transcriptional effectiveness only with E2 and not with TOT, consistent with the effects of SRC-1 on the full-length receptor. Our results suggest that after ligand binding, SRC-1 may act, in part, as an adapter protein that promotes the integration of amino- and carboxyl-terminal receptor functions, allowing for full receptor activation. Potentially, SRC-1 may be capable of enhancing the transcriptional activity of related nuclear receptor superfamily members by facilitating the productive association of the two AF-containing regions in these receptors.
Collapse
Affiliation(s)
- E M McInerney
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana 61801, USA
| | | | | | | |
Collapse
|
5129
|
Lehmann M, Korge G. The fork head product directly specifies the tissue-specific hormone responsiveness of the Drosophila Sgs-4 gene. EMBO J 1996; 15:4825-34. [PMID: 8890156 PMCID: PMC452219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Here we describe the identification of four binding sites of secretion enhancer binding protein 2 (SEBP2) in the regulatory region of the Drosophila salivary gland secretion protein gene 4 (Sgs-4) and show that despite these sites' correspondence with previously described Broad-Complex protein binding sites, SEBP2 is a Broad-Complex-independent factor encoded by the region-specific homeotic gene fork head (fkh). Two of the Fork head/SEBP2 binding sites are located within an ecdysone response unit which controls the tissue- and stage-specific responses of Sgs-4 to the steroid hormone 20-hydroxyecdysone. We demonstrate that these binding sites are relevant to the transcriptional activation of Sgs-4 and show that Fork head also binds to the Sgs-4 ecdysone response unit in vivo. Aside from being involved in the control of decisions during embryonic development, fkh thus participates directly in the control of specialized functions of differentiated cells at later stages of development.
Collapse
Affiliation(s)
- M Lehmann
- Institut für Genetik der Freien Universität Berlin, Germany
| | | |
Collapse
|
5130
|
Downes M, Burke LJ, Muscat GE. Transcriptional repression by Rev-erbA alpha is dependent on the signature motif and helix 5 in the ligand binding domain: silencing does not involve an interaction with N-CoR. Nucleic Acids Res 1996; 24:3490-8. [PMID: 8836173 PMCID: PMC146124 DOI: 10.1093/nar/24.18.3490] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rev-erbA alpha is an orphan nuclear receptor that functions as a dominant transcriptional repressor. Tissue culture and in situ hybridisation studies indicated that Rev-erbA alpha plays an important role in mammalian differentiation and development. Previous studies have localised the silencing domain of Rev-erbA alpha to the D/E region of the orphan receptor. This study utilised the GAL4 hybrid system to demonstrate that efficient repression is mediated by 34 amino acids (aa) between aa 455 and 488 in the E region of the receptor. This domain contains the ligand binding domain (LBD)-signature motif [(F/W)AKxxxxFxxLxxxDQxxLL] and a region that, according to the recently published crystal structures of steroid receptors, would be predicted to form helix 5 of the canonical LBD structure. Fine deletions and site-specific mutagenesis indicated that both the LBD signature motif and helix 5 were necessary for efficient silencing. Utilising mammalian two hybrid technology, we have also demonstrated that Rev-erbA alpha does not associate with the interaction domain (aa 2218-2451) of the nuclear receptor corepressor, N-CoR, that is known to interact with the thyroid hormone and retinoic acid receptors. This suggested that transcriptional repression by Rev-erbA alpha is not mediated through an interaction with N-CoR. In conclusion, we have identified and characterised the minimal domain of Rev-erbA alpha, that mediates transcriptional repression by this orphan receptor.
Collapse
Affiliation(s)
- M Downes
- University of Queensland, Centre for Molecular and Cellular Biology, Ritchie Research Laboratories, St Lucia, Australia
| | | | | |
Collapse
|
5131
|
Sawaya BE, Rohr O, Aunis D, Schaeffer E. Regulation of human immunodeficiency virus type 1 gene transcription by nuclear receptors in human brain cells. J Biol Chem 1996; 271:22895-900. [PMID: 8798469 DOI: 10.1074/jbc.271.37.22895] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Infection of cells of the central nervous system by the human immunodeficiency virus type-1 (HIV-1) leads to HIV-1-associated neuropathology. Recent studies have demonstrated the importance of long terminal repeat (LTR) binding sites in determining the pathogenicity of HIV. Here we have investigated the presence and the functional role of transcription factors that have the potential to interact, directly or indirectly, with the nuclear receptor-responsive element in the LTR of HIV-1, in different human cell lines of the brain. Cotransfection experiments showed that in oligodendroglioma TC-620 cells, the retinoic acid receptor and the retinoid X receptor activate LTR-driven transcription in the absence of ligand. Addition of all-trans- or 9-cis-retinoic acid reverses this effect. In contrast, in astrocytoma, neuronal, and microglial cells, no significant effect of the retinoid acid pathway was detected. This retinoid response is mediated by distinct molecular interactions in the lymphotropic LAI and the neurotropic JR-CSF HIV-1 strains. Moreover, retinoid receptors were found to antagonize the chicken ovalbumin upstream promoter transcription factor- as well as the c-JUN-mediated LTR transactivation. Our findings demonstrate the importance of the retinoic acid signaling pathway and of cross-coupling interactions in the repression of HIV-1 LTR gene expression.
Collapse
Affiliation(s)
- B E Sawaya
- Unité 338 INSERM, 5, rue Blaise Pascal, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
5132
|
Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM. Role of CBP/P300 in nuclear receptor signalling. Nature 1996; 383:99-103. [PMID: 8779723 DOI: 10.1038/383099a0] [Citation(s) in RCA: 771] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nuclear receptor superfamily includes receptors for steroids, retinoids, thyroid hormone and vitamin D, as well as many related proteins. An important feature of the action of the lipophilic hormones and vitamins is that the maintenance of homeostatic function requires both intrinsic positive and negative regulation. Here we provide in vitro and in vivo evidence that identifies the CREB-binding protein (CBP) and its homologue P300 (refs 6,7) as cofactors mediating nuclear-receptor-activated gene transcription. The role of CBP/P300 in the transcriptional response to cyclic AMP, phorbol esters, serum, the lipophilic hormones and as the target of the E1A oncoprotein suggests they may serve as integrators of extracellular and intracellular signalling pathways.
Collapse
Affiliation(s)
- D Chakravarti
- The Gene Expression Laboratory, the Howard Hughes Medical Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
5133
|
Shi YB, Wong J, Puzianowska-Kuznicka M. Thyroid Hormone Receptors: Mechanisms of Transcriptional Regulation and Roles during Frog Development. J Biomed Sci 1996; 3:307-318. [PMID: 11725112 DOI: 10.1007/bf02257960] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Thyroid hormone receptors (TRs) are members of the fast growing superfamily of nuclear hormone receptors. They are dual function transcription factors. In the unliganded form, they repress basal transcription of their target genes. The presence of thyroid hormone leads to not only the relief of this repression but also a strong transcriptional activation above the basal level. Mechanistically, thyroid hormone receptors appear to function as heterodimers with 9-cis-retinoic acid receptors both in the absence and in the presence of thyroid hormone. Recent studies indicate that the heterodimers can interact with thyroid hormone response elements in chromatin independently of thyroid hormone and that the receptors have evolved to function efficiently in a chromatin environment, utilizing chromatin assembly to effectively repress transcription in the absence of thyroid hormone and overcoming the repression by chromatin by inducing chromatin disruption in the presence of the hormone. In addition, a number of TR-interacting proteins have been isolated. How these proteins participate in the regulation of transcription by TRs remains to be elucidated. Independent of the exact mechanisms of action, the developmental expression of thyroid hormone receptor genes during amphibian metamorphosis suggests that both the repression and activation functions of the receptors are important for proper control of the temporal and tissue-specific regulation of metamorphosis. Copyright 1996 S. Karger AG, Basel
Collapse
Affiliation(s)
- Y.-B. Shi
- Laboratory of Molecular Embryology, NICHD/NIH, Bethesda, Md., USA
| | | | | |
Collapse
|
5134
|
Chen JY, Clifford J, Zusi C, Starrett J, Tortolani D, Ostrowski J, Reczek PR, Chambon P, Gronemeyer H. Two distinct actions of retinoid-receptor ligands. Nature 1996; 382:819-22. [PMID: 8752277 DOI: 10.1038/382819a0] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Signalling by all-trans retinoic acid is mediated through RXR-RAR retinoid receptor heterodimers, in which RXR has been considered to act as a transcriptionally silent partner. However, we show here that in cultured NB4 (ref. 6) human acute promyelocytic leukaemia cells treated with either an RAR-alpha-selective agonist alone, or certain RAR-alpha antagonists in combination with an RXR agonist, receptor-DNA binding is induced in vivo, resulting in expression of the target genes of retinoic acid as well as acute promyelocytic leukaemia protein (PML) relocation to nuclear bodies and differentiation before apoptosis. These results indicate that RAR-alpha ligands can induce two separate events: one enables RXR-RAR-alpha heterodimers to bind to DNA in vivo and allows RXR agonists to act; the other induces transcriptional activity of RAR-alpha. The availability of receptor-specific synthetic retinoids that can induce distinct receptor functions has potential in extending the therapeutic repertoire of retinoids.
Collapse
Affiliation(s)
- J Y Chen
- Institut de Génetique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, College de France, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
5135
|
Mosselman S, Polman J, Dijkema R. ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett 1996; 392:49-53. [PMID: 8769313 DOI: 10.1016/0014-5793(96)00782-x] [Citation(s) in RCA: 1514] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A novel estrogen receptor (hereinafter referred to as ER beta) was cloned using degenerate PCR primers. A comparison of the amino acid sequence of ER beta with the "classical' ER (ER alpha) shows a high degree of conservation of the DNA-binding domain (96%), and of the ligand-binding domain (58%). In contrast, the A/B domain, the hinge region and the F-domain are not conserved. Northern blot analysis revealed that ER beta is expressed in human thymus, spleen, ovary and testis. Transient transfections of an ER beta expression construct together with an ERE-based reporter construct in CHO cells clearly demonstrated transactivation of ER beta by 17 beta-estradiol. In addition, the ER alpha antagonist ICI-164384 is a potent antagonist for ER beta as well. Interestingly, the level of transactivation by 17 beta-estradiol is higher for ER alpha than for ER beta, which may reflect suboptimal conditions for ER beta at the level of the ligand, responsive element or cellular context.
Collapse
Affiliation(s)
- S Mosselman
- N.V. Organon, Department of Biotechnology and Biochemistry, The Netherlands
| | | | | |
Collapse
|
5136
|
Schräder M, Danielsson C, Wiesenberg I, Carlberg C. Identification of natural monomeric response elements of the nuclear receptor RZR/ROR. They also bind COUP-TF homodimers. J Biol Chem 1996; 271:19732-6. [PMID: 8702678 DOI: 10.1074/jbc.271.33.19732] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The receptor RZR/ROR is an important member of the nuclear receptor superfamily and has recently been shown to be the nuclear receptor for the pineal gland hormone melatonin. RZR/ROR binds as a monomer to DNA, and the human 5-lipoxygenase gene has been identified as the first RZR/ROR/melatonin-responding gene. Another prominent nuclear receptor is COUP-TF, which binds as a dimer to DNA. In this study, the sequences of known promoter regions of genes that may be involved in the physiological action of melatonin have been screened for putative monomeric RZR/ROR response elements. The binding of RZR/ROR and COUP-TF was compared and quantified on a set of 12 putative response elements. Interestingly, COUP-TF homodimers were found to bind with high affinity to some of the monomeric RZR/ROR response elements. Four RZR/ROR response elements, found in the genes of the mouse bifunctional enzyme, the rat bone sialoprotein, mouse Purkinje cell protein 2, and human p21(WAF1/CIP1), were shown to be inducible by melatonin under conditions of low constitutive activity. Surprisingly, the constitutive activity of COUP-TF was also stimulated by an unknown serum compound. The novel Purkinje cell protein 2 and p21(WAF1/CIP1) RZR/ROR/melatonin-responding genes may be the key for understanding the role of RZR/RORalpha in the mouse mutation staggerer and the antiproliferative action of melatonin, respectively.
Collapse
Affiliation(s)
- M Schräder
- Clinique de Dermatologie, Hôpital Cantonal Universitaire, CH-1211 Genève 14, Switzerland
| | | | | | | |
Collapse
|
5137
|
Lavigne AC, Mengus G, May M, Dubrovskaya V, Tora L, Chambon P, Davidson I. Multiple interactions between hTAFII55 and other TFIID subunits. Requirements for the formation of stable ternary complexes between hTAFII55 and the TATA-binding protein. J Biol Chem 1996; 271:19774-80. [PMID: 8702684 DOI: 10.1074/jbc.271.33.19774] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have cloned and characterized the human TATA-binding protein (TBP)-associated factor hTAFII55. hTAFII55, which has no known Drosophila counterpart, is present in both of the previously described TFIIDalpha and TFIIDbeta subpopulations. We describe the interactions of hTAFII55 with other subunits of the transcription factor TFIID. By cotransfection in COS cells, we show that hTAFII55 interacts with hTAFII250, hTAFII100, hTAFII28, hTAFII20, and hTAFII18, but not with hTAFII30 or TBP. Analysis of the binding of hTAFII55 and TBP to hTAFII28 deletion mutants indicates that distinct regions of hTAFII28 are required for these interactions. Although hTAFII55 does not interact by itself with TBP, stable ternary complexes containing hTAFII55 and TBP can be formed in the presence of hTAFII250, hTAFII100, or hTAFII28. These results not only show that hTAFII100 and hTAFII28 interact with TBP, but also that they can nucleate the formation of partial TFIID complexes.
Collapse
Affiliation(s)
- A C Lavigne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, B. P. 163, 67404 Illkirch Cédex, France
| | | | | | | | | | | | | |
Collapse
|
5138
|
Kapitskaya M, Wang S, Cress DE, Dhadialla TS, Raikhel AS. The mosquito ultraspiracle homologue, a partner of ecdysteroid receptor heterodimer: cloning and characterization of isoforms expressed during vitellogenesis. Mol Cell Endocrinol 1996; 121:119-32. [PMID: 8892313 DOI: 10.1016/0303-7207(96)03847-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report the cloning and characterization of two isoforms of the Ultraspiracle homologue (AaUSP) from the mosquito, Aedes aegypti. The 2.33-kb AaUSPa cDNA has an open reading frame (ORF) of 484 amino acids encoding a polypeptide of 54 kDa, whereas the 2.14-kb AaUSPb ORF of 459 amino acids encodes a 51.3 kDa polypeptide. The AaUSPa and AaUSPb proteins differ only in the N-terminal portion of the variable A/B domain. The AaUSP DNA-binding domain shares 92% and 97% identities with the respective domains of the Drosophila (DmUSP) and Bombyx (BmUSP) Ultraspiracles. However, the AaUSP ligand-binding domain is only 57% and 52% identical to those of DmUSP and BmUSP, respectively. In spite of the relatively low level of sequence conservation, electrophoretic mobility shift assay (EMSA) and hormone-binding assay clearly demonstrated that the products of the AaUSPa and AaUSPb cDNAs are functional heterodimeric partners of the mosquito ecdysteroid receptor. In vitellogenic tissues, each of the two AaUSP isoforms is expressed differently: the AaUSPa is predominant in the fat body and the AaUSPb in the ovary. The kinetics of ovarian AaUSP mRNA coincide with those of the ecdysteroid receptor, being elevated during the previtellogenic period and shortly after the onset of vitellogenesis. In contrast, the level of the AaUSP in the fat body remains relatively constant throughout most of the vitellogenic cycle.
Collapse
Affiliation(s)
- M Kapitskaya
- Department of Entomology, Michigan State University, East Lansing 48824, USA
| | | | | | | | | |
Collapse
|
5139
|
Fondell JD, Ge H, Roeder RG. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc Natl Acad Sci U S A 1996; 93:8329-33. [PMID: 8710870 PMCID: PMC38670 DOI: 10.1073/pnas.93.16.8329] [Citation(s) in RCA: 458] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcriptional regulation by nuclear hormone receptors is thought to involve interactions with putative cofactors that may potentiate receptor function. Here we show that human thyroid hormone receptor alpha purified from HeLa cells grown in the presence of thyroid hormone (T3) is associated with a group of distinct nuclear proteins termed thyroid hormone receptor-associated proteins (TRAPs). In an in vitro system reconstituted with general initiation factors and cofactors (and in the absence of added T3), the "liganded" thyroid hormone receptor (TR)/TRAP complex markedly activates transcription from a promoter template containing T3-response elements. Moreover, whereas the retinoid X receptor is not detected in the TR/TRAP complex, its presence is required for the function of the complex. In contrast, human thyroid hormone receptor alpha purified from cells grown in the absence of T3 lacks the TRAPs and effects only a low level of activation that is dependent on added ligand. These findings demonstrate the ligand-dependent in vivo formation of a transcriptionally active TR-multisubunit protein complex and suggest a role for TRAPs as positive coactivators for gene-specific transcriptional activation.
Collapse
Affiliation(s)
- J D Fondell
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
5140
|
Kim SW, Ahn IM, Larsen PR. In vivo genomic footprinting of thyroid hormone-responsive genes in pituitary tumor cell lines. Mol Cell Biol 1996; 16:4465-77. [PMID: 8754847 PMCID: PMC231445 DOI: 10.1128/mcb.16.8.4465] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We studied the effects of thyroid hormone (T3) on nuclear protein-DNA interactions by using dimethyl sulfate (DMS) and DNase I ligation-mediated PCR footprinting. We examined an endogenous gene the growth hormone (GH) gene, and a stably transfected plasmid containing the chicken lysozyme silencer (F2) T3 response element (TRE) gene, F2-TRE-TK-CAT, both in pituitary tumor (GC) cells. The 235-1 cell line, which expresses prolactin (PRL) and Pit-1, but not the T3 receptor (TR) or GH, was used as a control. DMS and DNase I footprinting identified protected G residues in the Pit-1, Sp1, and Zn-15 binding sites of the GH gene in GC, but not in 235-1, cells. There was no specific protection of the tripartite GH TRE at -180 bp against either DMS or DNase I in the absence or presence of T3 in either cell line. However, T3 increased protection of the Pit-1 and Sp1 binding sites against DMS in GC cells. In GC cells stably transfected with a plasmid containing F2-TRE-TK-CAT or TRalpha, chloramphenicol acetyltransferase expression was T3 inducible and DMS footprinting revealed both F2 TRE TR-binding half sites in a pattern suggesting the binding of TR homodimers before and during T3 exposure. We conclude that the GH gene is accessible to specific nuclear proteins in GC, but not in 235-1, cells and that T3 enhances this interaction, although there is no evidence of TR binding to the low-affinity rat GH TRE. The presence of TR binding to the high-affinity F2 TRE before and during T3 exposure suggests that reversible interaction of T3 with DNA-bound TRs, rather than transient T3-TR contact with TREs, determines the level of T3-stimulated transcriptional activation.
Collapse
Affiliation(s)
- S W Kim
- Thyroid Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
5141
|
Ikeda Y. SF-1: a key regulator of development and function in the mammalian reproductive system. ACTA PAEDIATRICA JAPONICA : OVERSEAS EDITION 1996; 38:412-9. [PMID: 8840555 DOI: 10.1111/j.1442-200x.1996.tb03516.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The orphan nuclear receptor steroidogenic factor 1 (SF-1) was isolated as a transcription factor expressed specifically in the mouse primary steroidogenic tissues. SF-1 expression occurs at the earliest stages of adrenal and gonadal development and the expression pattern is sexually dimorphic in gonads during sexual differentiation. The two hormones required for male differentiation, testosterone and Müllerian-inhibiting substance, are regulated by SF-1. Analyses of knockout mice lacking SF-1 by gene targeting disruption demonstrated that the SF-1-disrupted mice lack adrenal glands and gonads, supporting the suggestion that SF-1 is an essential regulator of the endocrine development and differentiation. Additionally, SF-1 is expressed in the pituitary gonadotropes and the ventrolateral hypothalamic nucleus, which are higher levels of the reproductive regulatory axis, of both adults and embryos. These tissues are also affected in SF-1 knockout mice, indicating that SF-1 plays extended roles at all levels of the reproductive axis, by regulating more genes involved in reproductive function and development.
Collapse
Affiliation(s)
- Y Ikeda
- Department of Anatomy, Tokyo Metropolitan Institute for Neuroscience, Japan
| |
Collapse
|
5142
|
Schoonjans K, Staels B, Auwerx J. The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1302:93-109. [PMID: 8695669 DOI: 10.1016/0005-2760(96)00066-5] [Citation(s) in RCA: 732] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The three types of peroxisome proliferator activated receptor (PPAR), alpha, beta (or delta), and gamma, each with a specific tissue distribution, compose a subfamily of the nuclear hormone receptor gene family. Although peroxisome proliferators, including fibrates and fatty acids, activate the transcriptional activity of these receptors, only prostaglandin J2 derivatives have been identified as natural ligands of the PPAR gamma subtype, which also binds thiazolidinedione antidiabetic agents with high affinity. Activated PPARs heterodimerize with RXR and alter the transcription of target genes after binding to specific response elements or PPREs, consisting of a direct repeat of the nuclear receptor hexameric DNA core recognition motif spaced by one nucleotide. The different PPARs can be considered key messengers responsible for the translation of nutritional, pharmacological and metabolic stimuli into changes in the expression of genes, more specifically those genes involved in lipid metabolism. PPAR alpha is involved in stimulating beta-oxidation of fatty acids. In rodents, a PPAR alpha-mediated change in the expression of genes involved in fatty acid metabolism lies at the basis of the phenomenon of peroxisome proliferation, a pleiotropic cellular response, mainly limited to liver and kidney and which can lead to hepatocarcinogenesis. In addition to their role in peroxisome proliferation in rodents, PPAR is also involved in the control of HDL cholesterol levels by fibrates and fatty acids in rodents and humans. This effect is, at least partially, based on a PPAR-mediated transcriptional regulation of the major HDL apolipoproteins, apo A-I and apo A-II. The hypotriglyceridemic action of fibrates and fatty acids also involves PPARs and can be summarized as follows: (1) an increased lipolysis and clearance of remnant particles, due to changes in LPL and apo C-III levels, (2) a stimulation of cellular fatty acid uptake and their conversion to acyl-CoA derivatives by the induction of FAT, FATP and ACS activity, (3) an induction of fatty acid beta-oxidation pathways, (4) a reduction in fatty acid and triglyceride synthesis, and finally (5) a decrease in VLDL production. Hence, both enhanced catabolism of triglyceride-rich particles as well as reduced secretion of VLDL particles are mechanisms that contribute to the hypolipidemic effect of fibrates and FFAs. Whereas for PPAR beta no function so far has been identified, PPAR gamma triggers adipocyte differentiation by inducing the expression of several genes critical for adipogenesis.
Collapse
Affiliation(s)
- K Schoonjans
- L.B.R.E., Unité 325 INSERM, Département d'Athérosclérose, Institut Pasteur, Lille, France
| | | | | |
Collapse
|
5143
|
Chen JD, Umesono K, Evans RM. SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers. Proc Natl Acad Sci U S A 1996; 93:7567-71. [PMID: 8755515 PMCID: PMC38786 DOI: 10.1073/pnas.93.15.7567] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcriptional repression represents an important component in the regulation of cell differentiation and oncogenesis mediated by nuclear hormone receptors. Hormones act to relieve repression, thus allowing receptors to function as transcriptional activators. The transcriptional corepressor SMRT was identified as a silencing mediator for retinoid and thyroid hormone receptors. SMRT is highly related to another corepressor, N-CoR, suggesting the existence of a new family of receptor-interacting proteins. We demonstrate that SMRT is a ubiquitous nuclear protein that interacts with unliganded receptor heterodimers in mammalian cells. Furthermore, expression of the receptor-interacting domain of SMRT acts as an antirepressor, suggesting the potential importance of splicing variants as modulators of thyroid hormone and retinoic acid signaling.
Collapse
Affiliation(s)
- J D Chen
- The Salk Institute for Biological Studies, Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
5144
|
Voegel JJ, Heine MJ, Zechel C, Chambon P, Gronemeyer H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 1996; 15:3667-75. [PMID: 8670870 PMCID: PMC452006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nuclear receptors (NRs) act as ligand-inducible transcription factors which regulate the expression of target genes upon binding to cognate response elements. The ligand-dependent activity of the NR activation function AF-2 is believed to be mediated to the transcription machinery through transcriptional mediators/intermediary factors (TIFs). We report here the cloning of the 160 kDa human nuclear protein TIF2, which exhibits all properties expected for a mediator of AF-2: (i) it interacts in vivo with NRs in an agonist-dependent manner; (ii) it binds directly to the ligand-binding domains (LBDs) of NRs in an agonist- and AF-2-integrity-dependent manner in vitro; (iii) it harbours an autonomous transcriptional activation function; (iv) it relieves nuclear receptor autosquelching; and (v) it enhances the activity of some nuclear receptor AF-2s when overexpressed in mammalian cells. TIF2 exhibits partial sequence homology with the recently isolated steroid receptor coactivator SRC-1, indicating the existence of a novel gene family of nuclear receptor transcriptional mediators.
Collapse
Affiliation(s)
- J J Voegel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP/Collége de France, Illkrich, Strasbourg, France
| | | | | | | | | |
Collapse
|
5145
|
Calkhoven CF, Ab G. Multiple steps in the regulation of transcription-factor level and activity. Biochem J 1996; 317 ( Pt 2):329-42. [PMID: 8713055 PMCID: PMC1217492 DOI: 10.1042/bj3170329] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This review focuses on the regulation of transcription factors, many of which are DNA-binding proteins that recognize cis-regulatory elements of target genes and are the most direct regulators of gene transcription. Transcription factors serve as integration centres of the different signal-transduction pathways affecting a given gene. It is obvious that the regulation of these regulators themselves is of crucial importance for differential gene expression during development and in terminally differentiated cells. Transcription factors can be regulated at two, principally different, levels, namely concentration and activity, each of which can be modulated in a variety of ways. The concentrations of transcription factors, as of intracellular proteins in general, may be regulated at any of the steps leading from DNA to protein, including transcription, RNA processing, mRNA degradation and translation. The activity of a transcription factor is often regulated by (de) phosphorylation, which may affect different functions, e.g. nuclear localization DNA binding and trans-activation. Ligand binding is another mode of transcription-factor activation. It is typical for the large super-family of nuclear hormone receptors. Heterodimerization between transcription factors adds another dimension to the regulatory diversity and signal integration. Finally, non-DNA-binding (accessory) factors may mediate a diverse range of functions, e.g. serving as a bridge between the transcription factor and the basal transcription machinery, stabilizing the DNA-binding complex or changing the specificity of the target sequence recognition. The present review presents an overview of different modes of transcription-factor regulation, each illustrated by typical examples.
Collapse
Affiliation(s)
- C F Calkhoven
- Department of Biochemistry, University of Groningen, The Netherlands
| | | |
Collapse
|
5146
|
Schulman IG, Juguilon H, Evans RM. Activation and repression by nuclear hormone receptors: hormone modulates an equilibrium between active and repressive states. Mol Cell Biol 1996; 16:3807-13. [PMID: 8668198 PMCID: PMC231377 DOI: 10.1128/mcb.16.7.3807] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transactivation-defective retinoid X and thyroid hormone receptors have been used to examine mechanisms of hormonal activation. Activation and repression of transcription by retinoid X and thyroid hormone receptors are shown to be mediated by physically distinct and functionally independent regions of the hormone binding domain. Nevertheless, the ability of receptors to respond to hormone requires communication between both functional domains. Deletion of the hormone-dependent transactivation function of the retinoid X receptor, the common subunit of heterodimeric nuclear receptors, significantly impairs hormone-dependent transcription by retinoic acid, thyroid hormone, and vitamin D receptors. The results indicate that receptors do not exist in static off and on conformations but that hormone alters an equilibrium between inactive and active states.
Collapse
Affiliation(s)
- I G Schulman
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
5147
|
Clouse SD, Langford M, McMorris TC. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. PLANT PHYSIOLOGY 1996; 111:671-8. [PMID: 8754677 PMCID: PMC157882 DOI: 10.1104/pp.111.3.671] [Citation(s) in RCA: 536] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Brassinosteroids are widely distributed plant compounds that modulate cell elongation and division, but little is known about the mechanism of action of these plant growth regulators. To investigate brassinosteroids as signals influencing plant growth and development, we identified a brassinosteroid-insensitive mutant in Arabidopsis thaliana (L.) Henyh. ecotype Columbia. The mutant, termed bri1, did not respond to brassinosteroids in hypocotyl elongation and primary root inhibition assays, but it did retain sensitivity to auxins, cytokinins, ethylene, abscisic acid, and gibberellins. The bri1 mutant showed multiple deficiencies in developmental pathways that could not be rescued by brassinosteroid treatment including a severely dwarfed stature; dark green, thickened leaves; males sterility; reduced apical dominance; and de-etiolation of dark-grown seedlings. Genetic analysis suggests that the Bri1 phenotype is caused by a recessive mutation in a single gene with pleiotropic effects that maps 1.6 centimorgans from the cleaved, amplified, polymorphic sequence marker DHS1 on the bottom of chromosome IV. The multiple and dramatic effects of mutation of the BRI1 locus on development suggests that the BRI1 gene may play a critical role in brassinosteroid perception or signal transduction.
Collapse
Affiliation(s)
- S D Clouse
- Department of Horticultural Science, North Carolina State University, Raleigh 27695, USA.
| | | | | |
Collapse
|
5148
|
Katzenellenbogen JA, Katzenellenbogen BS. Nuclear hormone receptors: ligand-activated regulators of transcription and diverse cell responses. CHEMISTRY & BIOLOGY 1996; 3:529-36. [PMID: 8807884 DOI: 10.1016/s1074-5521(96)90143-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Signal transduction via nuclear hormone receptors is unusual in that the hormone ligand forms an integral part of the protein complex involved in DNA binding and transcriptional activation. New structural and biochemical results have begun to unravel how these receptors produce different effects in different cells, and the structural changes involved in transcriptional activation.
Collapse
|
5149
|
Lin DL, Chang C. p53 is a mediator for radiation-repressed human TR2 orphan receptor expression in MCF-7 cells, a new pathway from tumor suppressor to member of the steroid receptor superfamily. J Biol Chem 1996; 271:14649-52. [PMID: 8663350 DOI: 10.1074/jbc.271.25.14649] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
p53 may function as a checkpoint by arresting the G1 cell cycle in response to DNA damage induced by radiation or other stimuli. We have found that the expression of the TR2 orphan receptor (TR2), a member of the steroid receptor superfamily, was down-regulated by ionizing irradiation. Our data shown in the present study demonstrate that irradiation can repress TR2 at both the translational and transcriptional levels. Transient transfection assays further link p53 to this repression by proving that endogenously induced or exogenously transfected p53 can repress TR2 gene expression, and this repression can be reversed by the co-transfection of SV40 large T antigen. Together, our data demonstrate for the first time that radiation and p53 can repress TR2, possibly providing a new pathway to link ionizing irradiation and p53 to members of the steroid receptor superfamily.
Collapse
Affiliation(s)
- D L Lin
- Department of Medicine and University of Wisconsin Comprehensive Cancer Center, University of Wisconsin, Madison, 53792, USA
| | | |
Collapse
|
5150
|
Chen AC, Gudas LJ. An analysis of retinoic acid-induced gene expression and metabolism in AB1 embryonic stem cells. J Biol Chem 1996; 271:14971-80. [PMID: 8663043 DOI: 10.1074/jbc.271.25.14971] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Murine embryonic stem cells such as the AB1 cell line undergo differentiation in the presence of retinoic acid (RA) into an extraembryonic epithelial cell type. This results in the activation of genes such as Hoxa-1, Hoxb-1, laminin, collagen IV(alpha1), tissue plasminogen activator, RARbeta, and CRABPII. The CRABPI gene is regulated in an unusual fashion; CRABPI message and protein levels are induced at low concentrations of RA, but induction is diminished at higher concentrations. AB1 cells take up RA rapidly from the medium, and the addition of low, exogenous concentrations of RA to the culture medium results in very high intracellular RA concentrations. For example, AB1 stem cells cultured in 5 nM [3H]RA have an internal [3H]RA concentration of 1-2 microM within the first hour. AB1 cells also metabolize [3H]RA to more polar RA derivatives. The half-life of RA in AB1 cells not previously exposed to RA is about 2-2.5 h versus 40-45 min in cells cultured for 2-3 days in 1 microM exogenous RA. Thus, the enzyme(s) which metabolize RA are induced or activated by RA. Furthermore, the local concentration of RA required to elicit some biological responses may be higher than previously thought.
Collapse
Affiliation(s)
- A C Chen
- Department of Pharmacology, Cornell University Medical College, New York, New York 10021, USA
| | | |
Collapse
|