501
|
Affiliation(s)
- Meenakshi K Doma
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
502
|
Human capping enzyme promotes formation of transcriptional R loops in vitro. Proc Natl Acad Sci U S A 2007; 104:17620-5. [PMID: 17978174 DOI: 10.1073/pnas.0708866104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cap formation is the first step of pre-mRNA processing in eukaryotic cells. Immediately after transcription initiation, capping enzyme (CE) is recruited to RNA polymerase II (Pol II) by the phosphorylated carboxyl-terminal domain of the Pol II largest subunit (CTD), allowing cotranscriptional capping of the nascent pre-mRNA. Recent studies have indicated that CE affects transcription elongation and have suggested a checkpoint model in which cotranscriptional capping is a necessary step for the early phase of transcription. To investigate further the role of the CTD in linking transcription and processing, we generated a fusion protein of the mouse CTD with T7 RNA polymerase (CTD-T7 RNAP). Unexpectedly, in vitro transcription assays with CTD-T7 RNAP showed that CE promotes formation of DNA.RNA hybrids or R loops. Significantly, phosphorylation of the CTD was required for CE-dependent R-loop formation (RLF), consistent with a critical role for the CTD in CE recruitment to the transcription complex. The guanylyltransferase domain was necessary and sufficient for RLF, but catalytic activity was not required. In vitro assays with appropriate synthetic substrates indicate that CE can promote RLF independent of transcription. ASF/SF2, a splicing factor known to prevent RLF, and GTP, which affects CE conformation, antagonized CE-dependent RLF. Our findings suggest that CE can play a direct role in transcription by modulating displacement of nascent RNA during transcription.
Collapse
|
503
|
García-Rubio M, Chávez S, Huertas P, Tous C, Jimeno S, Luna R, Aguilera A. Different physiological relevance of yeast THO/TREX subunits in gene expression and genome integrity. Mol Genet Genomics 2007; 279:123-32. [PMID: 17960421 DOI: 10.1007/s00438-007-0301-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 10/09/2007] [Indexed: 12/21/2022]
Abstract
THO/TREX is a conserved nuclear complex that functions in mRNP biogenesis and plays a role in preventing the transcription-associated genetic instability. THO is composed of Tho2, Hpr1, Mft1 and Thp2 subunits, which associate with the Sub2-Yra1 export factors and Tex1 to form the TREX complex. To compare the functional relevance of the different THO/TREX subunits, we determined the effect of their null mutations on mRNA accumulation and recombination. Unexpectedly, we noticed that a full deletion of HPR1, hpr1DeltaK, conferred stronger hyper-recombination phenotype and gene expression defects than did hpr1DeltaH, the allele encoding a C-terminal truncated protein which was used in most previous studies. We show that tho2Delta and, to a lesser extent, hpr1DeltaK are the THO mutations with the highest impact on all phenotypes, and that sub2Delta shows a similar transcription-dependent hyper-recombination phenotype and in vivo transcription impairment as hpr1DeltaK and tho2Delta. Recombination and transcription analyses indicate that THO/TREX mutants share a moderate but significant effect on gene conversion and ectopic recombination, as well as transcription impairment of even short and low GC-content genes. Our data provide new information on the relevance of these proteins in mRNP biogenesis and in the maintenance of genomic integrity.
Collapse
Affiliation(s)
- María García-Rubio
- Departamento de Biología Molecular, CABIMER, CSIC, Universidad de Sevilla, Av. Américo Vespucio s/n, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
504
|
Abstract
The transport of RNA molecules from the nucleus to the cytoplasm is fundamental for gene expression. The different RNA species that are produced in the nucleus are exported through the nuclear pore complexes via mobile export receptors. Small RNAs (such as tRNAs and microRNAs) follow relatively simple export routes by binding directly to export receptors. Large RNAs (such as ribosomal RNAs and mRNAs) assemble into complicated ribonucleoprotein (RNP) particles and recruit their exporters via class-specific adaptor proteins. Export of mRNAs is unique as it is extensively coupled to transcription (in yeast) and splicing (in metazoa). Understanding the mechanisms that connect RNP formation with export is a major challenge in the field.
Collapse
Affiliation(s)
- Alwin Köhler
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | |
Collapse
|
505
|
Abstract
R-loops have been described in vivo at the immunoglobulin class switch sequences and at prokaryotic and mitochondrial origins of replication. However, the biochemical mechanism and determinants of R-loop formation are unclear. We find that R-loop formation is nearly eliminated when RNase T(1) is added during transcription but not when it is added afterward. Hence, rather than forming simply as an extension of the RNA-DNA hybrid of normal transcription, the RNA must exit the RNA polymerase and compete with the nontemplate DNA strand for an R-loop to form. R-loops persist even when transcription is done in Li(+) or Cs(+), which do not support G-quartet formation. Hence, R-loop formation does not rely on G-quartet formation. R-loop formation efficiency decreases as the number of switch repeats is decreased, although a very low level of R-loop formation occurs at even one 49-bp switch repeat. R-loop formation decreases sharply as G clustering is reduced, even when G density is kept constant. The critical level for R-loop formation is approximately the same point to which evolution drove the G clustering and G density on the nontemplate strand of mammalian switch regions. This provides an independent basis for concluding that the primary function of G clustering, in the context of high G density, is R-loop formation.
Collapse
|
506
|
Li Y, Lin AW, Zhang X, Wang Y, Wang X, Goodrich DW. Cancer cells and normal cells differ in their requirements for Thoc1. Cancer Res 2007; 67:6657-64. [PMID: 17638875 PMCID: PMC2804983 DOI: 10.1158/0008-5472.can-06-3234] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The evolutionarily conserved TREX (Transcription/Export) complex physically couples transcription, messenger ribonucleoprotein particle biogenesis, RNA processing, and RNA export for a subset of genes. HPR1 encodes an essential component of the S. cerevisiae TREX complex. HPR1 loss compromises transcriptional elongation, nuclear RNA export, and genome stability. Yet, HPR1 is not required for yeast viability. Thoc1 is the recently discovered human functional orthologue of HPR1. Thoc1 is expressed at higher levels in breast cancer than in normal epithelia, and expression levels correlate with tumor size and metastatic potential. Depletion of Thoc1 protein (pThoc1) in human cancer cell lines compromises cell proliferation. It is currently unclear whether Thoc1 is essential for all mammalian cells or whether cancer cells may differ from normal cells in their dependence on Thoc1. To address this issue, we have compared the requirements for Thoc1 in the proliferation and survival of isogenic normal and oncogene-transformed cells. Neoplastic cells rapidly lose viability via apoptotic cell death on depletion of pThoc1. Induction of apoptotic cell death is coincident with increased DNA damage as indicated by the appearance of phosphorylated histone H2AX. In contrast, the viability of normal cells is largely unaffected by pThoc1 loss. Normal cells lacking Thoc1 cannot be transformed by forced expression of E1A and Ha-ras, suggesting that Thoc1 may be important for neoplastic transformation. In sum, our data are consistent with the hypothesis that cancer cells require higher levels of pThoc1 for survival than normal cells. If true, pThoc1 may provide a novel molecular target for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - David W. Goodrich
- Correspondence to David W. Goodrich, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York, 14263;
| |
Collapse
|
507
|
Grabczyk E, Mancuso M, Sammarco MC. A persistent RNA.DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res 2007; 35:5351-9. [PMID: 17693431 PMCID: PMC2018641 DOI: 10.1093/nar/gkm589] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 06/27/2007] [Accepted: 07/16/2007] [Indexed: 11/13/2022] Open
Abstract
Expansion of an unstable GAA.TTC repeat in the first intron of the FXN gene causes Friedreich ataxia by reducing frataxin expression. Deficiency of frataxin, an essential mitochondrial protein, leads to progressive neurodegeneration and cardiomyopathy. The degree of frataxin reduction correlates with GAA.TTC tract length, but the mechanism of reduction remains controversial. Here we show that transcription causes extensive RNA.DNA hybrid formation on GAA.TTC templates in bacteria as well as in defined transcription reactions using T7 RNA polymerase in vitro. RNA.DNA hybrids can also form to a lesser extent on smaller, so-called 'pre-mutation' size GAA.TTC repeats, that do not cause disease, but are prone to expansion. During in vitro transcription of longer repeats, T7 RNA polymerase arrests in the promoter distal end of the GAA.TTC tract and an extensive RNA.DNA hybrid is tightly linked to this arrest. RNA.DNA hybrid formation appears to be an intrinsic property of transcription through long GAA.TTC tracts. RNA.DNA hybrids have a potential role in GAA.TTC tract instability and in the mechanism underlying reduced frataxin mRNA levels in Friedreich Ataxia.
Collapse
Affiliation(s)
- Ed Grabczyk
- Department of Genetics, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
508
|
Tous C, Aguilera A. Impairment of transcription elongation by R-loops in vitro. Biochem Biophys Res Commun 2007; 360:428-32. [PMID: 17603014 DOI: 10.1016/j.bbrc.2007.06.098] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 11/22/2022]
Abstract
Transcription elongation causes a local change in DNA superhelicity. An excess of negative supercoiling may lead to opening of DNA strands that could allow formation of R-loops. In yeast, mutants of the THO complex are impaired in transcription elongation and this defect has been linked to co-transcriptional formation of R-loops, which could constitute roadblocks for RNA polymerases. In this study, we found that stably formed 300-nt long DNA-RNA hybrids in a negatively supercoiled transcription template reduced the efficiency of transcription elongation by half, providing a first experimental evidence that transcription elongation is impaired by R-loops in vitro.
Collapse
Affiliation(s)
- Cristina Tous
- Departamento de Genética, Facultad de Biología, and Departamento de Biología Molecular, CABIMER, CSIC-Universidad de Sevilla, Av. Américo Vespucio s/n, 41092 Sevilla, Spain
| | | |
Collapse
|
509
|
Dye MJ, Gromak N, Haussecker D, West S, Proudfoot NJ. Turnover and function of noncoding RNA polymerase II transcripts. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:275-84. [PMID: 17381307 DOI: 10.1101/sqb.2006.71.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the past few years, especially since the discovery of RNA interference (RNAi), our understanding of the role of RNA in gene expression has undergone a significant transformation. This change has been brought about by growing evidence that RNA is more complex and transcription more promiscuous than has previously been thought. Many of the new transcripts are of so-called noncoding RNA (ncRNA); i.e., RNA that does not code for proteins such as mRNA, or intrinsic parts of the cellular machinery such as the highly structured RNA components of ribosomes (rRNA) and the small nuclear RNA (snRNA) components of the splicing machinery. It is becoming increasingly apparent that ncRNAs have very important roles in gene expression. This paper focuses on work from our laboratory in which we have investigated the roles and turnover of ncRNA located within the gene pre-mRNA, which we refer to as intragenic ncRNA. Also discussed are some investigations of intergenic ncRNA transcription and how these two classes of ncRNA may interrelate.
Collapse
Affiliation(s)
- M J Dye
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
510
|
Huang FT, Yu K, Balter BB, Selsing E, Oruc Z, Khamlichi AA, Hsieh CL, Lieber MR. Sequence dependence of chromosomal R-loops at the immunoglobulin heavy-chain Smu class switch region. Mol Cell Biol 2007; 27:5921-32. [PMID: 17562862 PMCID: PMC1952116 DOI: 10.1128/mcb.00702-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism by which the cytidine deaminase activation-induced deaminase (AID) acts at immunoglobulin heavy-chain class switch regions during mammalian class switch recombination (CSR) remains unclear. R-loops have been proposed as a basis for this targeting. Here, we show that the difference between various forms of the Smu locus that can or cannot undergo CSR correlates well with the locations and detectability of R-loops. The Smu R-loops can initiate hundreds of base pairs upstream of the core repeat switch regions, and the area where the R-loops initiate corresponds to the zone where the AID mutation frequency begins to rise, despite a constant density of WRC sites in this region. The frequency of R-loops is 1 in 25 alleles, regardless of the presence of the core Smu repeats, again consistent with the initiation of most R-loops upstream of the core repeats. These findings explain the surprisingly high levels of residual CSR in B cells from mice lacking the core Smu repeats but the marked reduction in CSR in mice with deletions of the region upstream of the core Smu repeats. These studies also provide the first analysis of how R-loop formation in the eukaryotic chromosome depends on the DNA sequence.
Collapse
Affiliation(s)
- Feng-Ting Huang
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, California 90089-9176, USA
| | | | | | | | | | | | | | | |
Collapse
|
511
|
Gaillard H, Wellinger RE, Aguilera A. A new connection of mRNP biogenesis and export with transcription-coupled repair. Nucleic Acids Res 2007; 35:3893-906. [PMID: 17537816 PMCID: PMC1919492 DOI: 10.1093/nar/gkm373] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although DNA repair is faster in the transcribed strand of active genes, little is known about the possible contribution of mRNP biogenesis and export in transcription-coupled repair (TCR). Interestingly, mutants of THO, a transcription complex involved in maintenance of genome integrity, mRNP biogenesis and export, were recently found to be deficient in nucleotide excision repair. In this study we show by molecular DNA repair analysis, that Sub2-Yra1 and Thp1-Sac3, two main mRNA export complexes, are required for efficient TCR in yeast. Careful analysis revealed that THO mutants are also specifically affected in TCR. Ribozyme-mediated mRNA self-cleavage between two hot spots for UV damage showed that efficient TCR does not depend on the nascent mRNA, neither in wild-type nor in mutant cells. Along with severe UV damage-dependent loss in processivity, RNAPII was found binding to chromatin upon UV irradiation in THO mutants, suggesting that RNAPII remains stalled at DNA lesions. Furthermore, Def1, a factor responsible for the degradation of stalled RNAPII, appears essential for the viability of THO mutants subjected to DNA damage. Our results indicate that RNAPII is not proficient for TCR in mRNP biogenesis and export mutants, opening new perspectives on our knowledge of TCR in eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Andrés Aguilera
- *To whom correspondence should be addressed. +34-954-468-372+34-954-461-664
| |
Collapse
|
512
|
Gómez-González B, Aguilera A. Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex. Proc Natl Acad Sci U S A 2007; 104:8409-14. [PMID: 17488823 PMCID: PMC1895963 DOI: 10.1073/pnas.0702836104] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is a B cell enzyme essential for Ig somatic hypermutation and class switch recombination. AID acts on ssDNA, and switch regions of Ig genes, a target of AID, form R-loops that contain ssDNA. Nevertheless, how AID action is specifically targeted to particular DNA sequences is not clear. Because mutations altering cotranscriptional messenger ribonucleoprotein (mRNP) formation such as those in THO/TREX in yeast promote R-loops, we investigated whether the cotranscriptional assembly of mRNPs could affect AID targeting. Here we show that AID action is transcription-dependent in yeast and that strong and transcription-dependent hypermutation and hyperrecombination are induced by AID if cells are deprived of THO. In these strains AID-induced mutations occurred preferentially at WRC motifs in the nontranscribed DNA strand. We propose that a suboptimal cotranscriptional mRNP assembly at particular DNA regions could play an important role in Ig diversification and genome dynamics.
Collapse
Affiliation(s)
- Belén Gómez-González
- Departamento de Genética, Facultad de Biología, and Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio s/n, 41092 Sevilla, Spain
| | - Andrés Aguilera
- Departamento de Genética, Facultad de Biología, and Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio s/n, 41092 Sevilla, Spain
| |
Collapse
|
513
|
Niu DK. Protecting exons from deleterious R-loops: a potential advantage of having introns. Biol Direct 2007; 2:11. [PMID: 17459149 PMCID: PMC1863416 DOI: 10.1186/1745-6150-2-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/25/2007] [Indexed: 02/02/2023] Open
Abstract
Background Accumulating evidence indicates that the nascent RNA can invade and pair with one strand of DNA, forming an R-loop structure that threatens the stability of the genome. In addition, the cost and benefit of introns are still in debate. Results At least three factors are likely required for the R-loop formation: 1) sequence complementarity between the nascent RNA and the target DNA, 2) spatial juxtaposition between the nascent RNA and the template DNA, and 3) accessibility of the template DNA and the nascent RNA. The removal of introns from pre-mRNA reduces the complementarity between RNA and the template DNA and avoids the spatial juxtaposition between the nascent RNA and the template DNA. In addition, the secondary structures of group I and group II introns may act as spatial obstacles for the formation of R-loops between nearby exons and the genomic DNA. Conclusion Organisms may benefit from introns by avoiding deleterious R-loops. The potential contribution of this benefit in driving intron evolution is discussed. I propose that additional RNA polymerases may inhibit R-loop formation between preceding nascent RNA and the template DNA. This idea leads to a testable prediction: intermittently transcribed genes and genes with frequently prolonged transcription should have higher intron density. Reviewers This article was reviewed by Dr. Eugene V. Koonin, Dr. Alexei Fedorov (nominated by Dr. Laura F Landweber), and Dr. Scott W. Roy (nominated by Dr. Arcady Mushegian).
Collapse
Affiliation(s)
- Deng-Ke Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
514
|
Nicolas E, Yamada T, Cam HP, Fitzgerald PC, Kobayashi R, Grewal SIS. Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nat Struct Mol Biol 2007; 14:372-80. [PMID: 17450151 DOI: 10.1038/nsmb1239] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 03/23/2007] [Indexed: 12/21/2022]
Abstract
Histone acetylation is important in regulating DNA accessibility. Multifunctional Sin3 proteins bind histone deacetylases (HDACs) to assemble silencing complexes that selectively target chromatin. We show that, in fission yeast, an essential HDAC, Clr6, exists in two distinct Sin3 core complexes. Complex I contains an essential Sin3 homolog, Pst1, and other factors, and predominantly targets gene promoters. Complex II contains a nonessential Sin3 homolog, Pst2, and several conserved proteins. It preferentially targets transcribed chromosomal regions and centromere cores. Defects in complex II abrogate global protective functions of chromatin, causing increased accessibility of DNA to genotoxic agents and widespread antisense transcripts that are processed by the exosome. Notably, the two Clr6 complexes differentially repress forward and reverse centromeric repeat transcripts, suggesting that these complexes regulate transcription in heterochromatin and euchromatin in similar manners, including suppression of spurious transcripts from cryptic start sites.
Collapse
Affiliation(s)
- Estelle Nicolas
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, US National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
515
|
Storici F, Bebenek K, Kunkel TA, Gordenin DA, Resnick MA. RNA-templated DNA repair. Nature 2007; 447:338-41. [PMID: 17429354 PMCID: PMC2121219 DOI: 10.1038/nature05720] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 02/28/2007] [Indexed: 01/05/2023]
Abstract
RNA can act as a template for DNA synthesis in the reverse transcription of retroviruses and retrotransposons and in the elongation of telomeres. Despite its abundance in the nucleus, there has been no evidence for a direct role of RNA as a template in the repair of any chromosomal DNA lesions, including DNA double-strand breaks (DSBs), which are repaired in most organisms by homologous recombination or by non-homologous end joining. An indirect role for RNA in DNA repair, following reverse transcription and formation of a complementary DNA, has been observed in the non-homologous joining of DSB ends. In the yeast Saccharomyces cerevisiae, in which homologous recombination is efficient, RNA was shown to mediate recombination, but only indirectly through a cDNA intermediate generated by the reverse transcriptase function of Ty retrotransposons in Ty particles in the cytoplasm. Although pairing between duplex DNA and single-strand (ss)RNA can occur in vitro and in vivo, direct homologous exchange of genetic information between RNA and DNA molecules has not been observed. We show here that RNA can serve as a template for DNA synthesis during repair of a chromosomal DSB in yeast. The repair was accomplished with RNA oligonucleotides complementary to the broken ends. This and the observation that even yeast replicative DNA polymerases such as alpha and delta can copy short RNA template tracts in vitro demonstrate that RNA can transfer genetic information in vivo through direct homologous interaction with chromosomal DNA.
Collapse
Affiliation(s)
- Francesca Storici
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIH, DHHS), Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
516
|
Rougemaille M, Gudipati RK, Olesen JR, Thomsen R, Seraphin B, Libri D, Jensen TH. Dissecting mechanisms of nuclear mRNA surveillance in THO/sub2 complex mutants. EMBO J 2007; 26:2317-26. [PMID: 17410208 PMCID: PMC1864968 DOI: 10.1038/sj.emboj.7601669] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 03/07/2007] [Indexed: 11/09/2022] Open
Abstract
The nuclear exosome is involved in numerous RNA metabolic processes. Exosome degradation of rRNA, snoRNA, snRNA and tRNA in Saccharomyces cerevisiae is activated by TRAMP complexes, containing either the Trf4p or Trf5p poly(A) polymerase. These enzymes are presumed to facilitate exosome access by appending oligo(A)-tails onto structured substrates. Another role of the nuclear exosome is that of mRNA surveillance. In strains harboring a mutated THO/Sub2p system, involved in messenger ribonucleoprotein particle biogenesis and nuclear export, the exosome-associated 3' --> 5' exonuclease Rrp6p is required for both retention and degradation of nuclear restricted mRNAs. We show here that Trf4p, in the context of TRAMP, is an mRNA surveillance factor. However, unlike Rrp6p, Trf4p only partakes in RNA degradation and not in transcript retention. Surprisingly, a polyadenylation-defective Trf4p protein is fully active, suggesting polyadenylation-independent mRNA degradation. Transcription pulse-chase experiments show that HSP104 molecules undergoing quality control in THO/sub2 mutant strains fall into two distinct populations: One that is quickly degraded after transcription induction and another that escapes rapid decay and accumulates in foci associated with the HSP104 transcription site.
Collapse
Affiliation(s)
- Mathieu Rougemaille
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, France
| | - Rajani Kanth Gudipati
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, France
- Department of Molecular Biology, Centre for mRNP Biogenesis and Metabolism, Aarhus University, Arhus C, Denmark
| | - Jens Raabjerg Olesen
- Department of Molecular Biology, Centre for mRNP Biogenesis and Metabolism, Aarhus University, Arhus C, Denmark
| | - Rune Thomsen
- Department of Molecular Biology, Centre for mRNP Biogenesis and Metabolism, Aarhus University, Arhus C, Denmark
| | - Bertrand Seraphin
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, France
| | - Domenico Libri
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, France
- Department of Molecular Biology, Centre for mRNP Biogenesis and Metabolism, Aarhus University, Arhus C, Denmark
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, Gif sur Yvette, France. Tel.: +33 1 698 23809; Fax: +33 1 698 23877; E-mail:
| | - Torben Heick Jensen
- Department of Molecular Biology, Centre for mRNP Biogenesis and Metabolism, Aarhus University, Arhus C, Denmark
- Department of Molecular Biology, Centre for mRNP Biogenesis and Metabolism, University of Aarhus, CF Møllers Alle, Bldg 130, Aarhus, Aarhus C 8000, Denmark. Tel.: +45 8942 2609; Fax: +45 8619 6500; E-mail:
| |
Collapse
|
517
|
Kim N, Abdulovic AL, Gealy R, Lippert MJ, Jinks-Robertson S. Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication. DNA Repair (Amst) 2007; 6:1285-96. [PMID: 17398168 PMCID: PMC2034516 DOI: 10.1016/j.dnarep.2007.02.023] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 02/12/2007] [Accepted: 02/15/2007] [Indexed: 10/23/2022]
Abstract
A high level of transcription has been associated with elevated spontaneous mutation and recombination rates in eukaryotic organisms. To determine whether the transcription level is directly correlated with the degree of genomic instability, we have developed a tetracycline-regulated LYS2 reporter system to modulate the transcription level over a broad range in Saccharomyces cerevisiae. We find that spontaneous mutation rate is directly proportional to the transcription level, suggesting that movement of RNA polymerase through the target initiates a mutagenic process(es). Using this system, we also investigated two hypotheses that have been proposed to explain transcription-associated mutagenesis (TAM): (1) transcription impairs replication fork progression in a directional manner and (2) DNA lesions accumulate under high-transcription conditions. The effect of replication fork progression was probed by comparing the mutational rates and spectra in yeast strains with the reporter gene placed in two different orientations near a well-characterized replication origin. The effect of endogenous DNA damage accumulation was investigated by studying TAM in strains defective in nucleotide excision repair or in lesion bypass by the translesion polymerase Polzeta. Our results suggest that both replication orientation and endogenous lesion accumulation play significant roles in TAM, particularly in terms of mutation spectra.
Collapse
Affiliation(s)
- Nayun Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Amy L. Abdulovic
- Biochemistry, Cell and Developmental Biology Program, Emory University, Atlanta, GA 30322
| | - Regan Gealy
- Genetics and Molecular Biology Program of the Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | | | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
- Biochemistry, Cell and Developmental Biology Program, Emory University, Atlanta, GA 30322
- Genetics and Molecular Biology Program of the Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
- *Corresponding Author: Sue Jinks-Robertson, Department of Molecular Genetics and Microbiolgy, Duke University Medical Center, Research Drive, Jones Bldg. Box 3020, Durham, NC 27710, Phone: 919 681 7273; Fax: 919 684 2790,
| |
Collapse
|
518
|
Abstract
Thoc1 encodes an essential component of the mammalian TREX protein complex. TREX is an evolutionary conserved complex that couples elongating RNA polymerase II with RNA processing factors. Depletion of Thoc1 protein (pThoc1) compromises transcriptional elongation and nuclear export of some RNAs. Loss of Thoc1 causes periimplantation embryonic lethality in the mouse. Early embryonic lethality precludes analysis of the physiological requirements for Thoc1 in the developing embryo or adult. To circumvent this limitation, we have generated mice containing hypomorphic or conditional alleles of Thoc1. Mice homozygous for the conditional allele appear normal. Mice containing Cre recombined conditional alleles phenocopy the previously characterized Thoc1 null allele. Mice homozygous for the hypomorphic allele are viable and born at a frequency that is not significantly different from the expected Mendelian ratio. However, these mice express less pThoc1 than wild type mice and exhibit a dwarf phenotype. The dwarf phenotype can be detected in mid-gestation embryos, suggesting that Thoc1 is also required later in embryonic and postnatal development.
Collapse
|
519
|
Wang HF, Feng L, Niu DK. Relationship between mRNA stability and intron presence. Biochem Biophys Res Commun 2007; 354:203-8. [PMID: 17207776 PMCID: PMC7092898 DOI: 10.1016/j.bbrc.2006.12.184] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Accepted: 12/26/2006] [Indexed: 12/02/2022]
Abstract
Introns were found to enhance almost every steps of gene expression except increasing mRNA stability. By analyzing the genome-wide data of mRNA stability published by someone previously, we found that human intron-containing genes have more stable mRNAs than intronless genes, and the Arabidopsis thaliana genes with the most unstable mRNAs have fewer introns than other genes in the genome. After controlling for mRNA length, we found mRNA stability is still positively correlated with intron number in human intron-containing genes. But in yeast Saccharomyces cerevisiae, two different datasets on mRNA half-life gave conflicting results. The components of messenger ribonucleoprotein particles recruited during intron splicing may be retained in cytoplasmic mRNPs and act as signals of mRNA stability or simply insulators to avoid mRNA degradation.
Collapse
|
520
|
Abstract
Recent advances have made a persuasive case for the existence of G4 DNA in living cells, but what--if any--are its functions? Experiments have established how G4 DNA may contribute to the biology of eukaryotic cells, and genomic analysis has identified new ways in which the potential to form G4 DNA may influence gene regulation and genomic stability. This Perspective highlights those advances and identifies some key open questions.
Collapse
Affiliation(s)
- Nancy Maizels
- Department of Immunology, University of Washington School of Medicine, 1959 N.E. Pacific Street, Seattle, Washington 98195-7650, USA.
| |
Collapse
|
521
|
Gwizdek C, Iglesias N, Rodriguez MS, Ossareh-Nazari B, Hobeika M, Divita G, Stutz F, Dargemont C. Ubiquitin-associated domain of Mex67 synchronizes recruitment of the mRNA export machinery with transcription. Proc Natl Acad Sci U S A 2006; 103:16376-81. [PMID: 17056718 PMCID: PMC1637590 DOI: 10.1073/pnas.0607941103] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mRNA nuclear export receptor Mex67/Mtr2 is recruited to mRNAs through RNA-binding adaptors, including components of the THO/TREX complex that couple transcription to mRNA export. Here we show that the ubiquitin-associated (UBA) domain of Mex67 is not only required for proper nuclear export of mRNA but also contributes to recruitment of Mex67 to transcribing genes. Our results reveal that the UBA domain of Mex67 directly interacts with polyubiquitin chains and with Hpr1, a component of the THO/TREX complex, which is regulated by ubiquitylation in a transcription-dependent manner. This interaction transiently protects Hpr1 from ubiquitin/proteasome-mediated degradation and thereby coordinates recruitment of the mRNA export machinery with transcription and early messenger ribonucleoproteins assembly.
Collapse
Affiliation(s)
- Carole Gwizdek
- *Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Universités Paris VI and VII, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France
| | - Nahid Iglesias
- Department of Cell Biology, Sciences III, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland; and
| | - Manuel S. Rodriguez
- *Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Universités Paris VI and VII, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France
| | - Batool Ossareh-Nazari
- *Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Universités Paris VI and VII, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France
| | - Maria Hobeika
- *Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Universités Paris VI and VII, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France
| | - Gilles Divita
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique Formation de Recherche en Evolution-2593, Molecular Biophysics and Therapeutics, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Françoise Stutz
- Department of Cell Biology, Sciences III, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland; and
- To whom correspondence may be addressed. E-mail:
or
| | - Catherine Dargemont
- *Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Universités Paris VI and VII, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
522
|
Röther S, Clausing E, Kieser A, Strässer K. Swt1, a novel yeast protein, functions in transcription. J Biol Chem 2006; 281:36518-25. [PMID: 17030511 DOI: 10.1074/jbc.m607510200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved TREX complex couples transcription to nuclear mRNA export. Here, we report that the uncharacterized open reading frame YOR166c genetically interacts with TREX complex components and encodes a novel protein named Swt1 for "synthetically lethal with TREX." Co-immunoprecipitation experiments show that Swt1 also interacts with the TREX complex biochemically. Consistent with a potential role in transcription as suggested by its interaction with TREX, Swt1 localizes mainly to the nucleus. Importantly, deletion of Swt1 leads to decreased transcription. Taken together, these data suggest that Swt1 functions in gene expression in conjunction with the TREX complex.
Collapse
Affiliation(s)
- Susanne Röther
- Gene Center, Ludwig-Maximilians-University of Munich,Department of Chemistry and Biochemistry, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | |
Collapse
|
523
|
Saunders A, Core LJ, Lis JT. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 2006; 7:557-67. [PMID: 16936696 DOI: 10.1038/nrm1981] [Citation(s) in RCA: 387] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Abbie Saunders
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
524
|
Jimeno-González S, Gómez-Herreros F, Alepuz PM, Chávez S. A gene-specific requirement for FACT during transcription is related to the chromatin organization of the transcribed region. Mol Cell Biol 2006; 26:8710-21. [PMID: 17000768 PMCID: PMC1636840 DOI: 10.1128/mcb.01129-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The FACT complex stimulates transcription elongation on nucleosomal templates. In vivo experiments also involve FACT in the reassembly of nucleosomes traversed by RNA polymerase II. Since several features of chromatin organization vary throughout the genome, we wondered whether FACT is equally required for all genes. We show in this study that the in vivo depletion of Spt16, one of the subunits of Saccharomyces cerevisiae FACT, strongly affects transcription of three genes, GAL1, PHO5, and Kluyveromyces lactis LAC4, which exhibit positioned nucleosomes at their transcribed regions. In contrast, showing a random nucleosome structure, YAT1 and Escherichia coli lacZ are only mildly influenced by Spt16 depletion. We also show that the effect of Spt16 depletion on GAL1 expression is suppressed by a histone mutation and that the insertion of a GAL1 fragment, which allows the positioning of two nucleosomes, at the 5' end of YAT1 makes the resulting transcription unit sensitive to Spt16 depletion. These results indicate that FACT requirement for transcription depends on the chromatin organization of the 5' end of the transcribed region.
Collapse
Affiliation(s)
- Silvia Jimeno-González
- Departamento de Genética, Facultad de Biología, Avda. Reina Mercedes 6, 41012-Seville, Spain
| | | | | | | |
Collapse
|
525
|
Voynov V, Verstrepen KJ, Jansen A, Runner VM, Buratowski S, Fink GR. Genes with internal repeats require the THO complex for transcription. Proc Natl Acad Sci U S A 2006; 103:14423-8. [PMID: 16983072 PMCID: PMC1599979 DOI: 10.1073/pnas.0606546103] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolutionarily conserved multisubunit THO complex, which is recruited to actively transcribed genes, is required for the efficient expression of FLO11 and other yeast genes that have long internal tandem repeats. FLO11 transcription elongation in Tho- mutants is hindered in the region of the tandem repeats, resulting in a loss of function. Moreover, the repeats become genetically unstable in Tho- mutants. A FLO11 gene without the tandem repeats is transcribed equally well in Tho+ or Tho- strains. The Tho- defect in transcription is suppressed by overexpression of topoisomerase I, suggesting that the THO complex functions to rectify aberrant structures that arise during transcription.
Collapse
Affiliation(s)
- Vladimir Voynov
- *Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kevin J. Verstrepen
- Bauer Center for Genomics Research, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - An Jansen
- *Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142
| | - Vanessa M. Runner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Gerald R. Fink
- *Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
526
|
Abstract
Numerous studies support the idea that the complex process of gene expression is composed of multiple highly coordinated and integrated steps. While such an extensive coupling ensures the efficiency and accuracy of each step during the gene expression pathway, recent studies have suggested an evolutionarily conserved function for cotranscriptional processes in the maintenance of genome stability. Specifically, such processes prevent a detrimental effect of nascent transcripts on the integrity of the genome. Here we describe studies indicating that nascent transcripts can rehybridize with template DNA, and that this can lead to DNA strand breaks and rearrangements. We present an overview of the diverse mechanisms that different species employ to keep nascent RNA away from DNA during transcription. We also discuss possible mechanisms by which nascent transcripts impact genome stability, as well as the possibility that transcription-induced genomic instability may contribute to disease.
Collapse
Affiliation(s)
- Xialu Li
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
527
|
Huertas P, García-Rubio ML, Wellinger RE, Luna R, Aguilera A. An hpr1 point mutation that impairs transcription and mRNP biogenesis without increasing recombination. Mol Cell Biol 2006; 26:7451-65. [PMID: 16908536 PMCID: PMC1636866 DOI: 10.1128/mcb.00684-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
THO/TREX, a conserved eukaryotic protein complex, is a key player at the interface between transcription and mRNP metabolism. The lack of a functional THO complex impairs transcription, leads to transcription-dependent hyperrecombination, causes mRNA export defects and fast mRNA decay, and retards replication fork progression in a transcription-dependent manner. To get more insight into the interconnection between mRNP biogenesis and genomic instability, we searched for HPR1 mutations that differentially affect gene expression and recombination. We isolated mutants that were barely affected in gene expression but exhibited a hyperrecombination phenotype. In addition, we isolated a mutant, hpr1-101, with a strong defect in transcription, as observed for lacZ, and a general defect in mRNA export that did not display a relevant hyperrecombination phenotype. In THO single-null mutants, but not in the hpr1 point mutants studied, THO and its subunits were unstable. Interestingly, in contrast to hyperrecombinant null mutants, hpr1-101 did not cause retardation of replication fork progression. Transcription and mRNP biogenesis can therefore be impaired by THO/TREX dysfunction without increasing recombination, suggesting that it is possible to separate the mechanism(s) responsible for mRNA biogenesis defects from the further step of triggering transcription-dependent recombination.
Collapse
Affiliation(s)
- Pablo Huertas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain
| | | | | | | | | |
Collapse
|
528
|
Eddy J, Maizels N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res 2006; 34:3887-96. [PMID: 16914419 PMCID: PMC1557811 DOI: 10.1093/nar/gkl529] [Citation(s) in RCA: 401] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
G-rich genomic regions can form G4 DNA upon transcription or replication. We have quantified the potential for G4 DNA formation (G4P) of the 16 654 genes in the human RefSeq database, and then correlated gene function with G4P. We have found that very low and very high G4P correlates with specific functional classes of genes. Notably, tumor suppressor genes have very low G4P and proto-oncogenes have very high G4P. G4P of these genes is evenly distributed between exons and introns, and it does not reflect enrichment for CpG islands or local chromosomal environment. These results show that genomic structure undergoes selection based on gene function. Selection based on G4P could promote genomic stability (or instability) of specific classes of genes; or reflect mechanisms for global regulation of gene expression.
Collapse
Affiliation(s)
- Johanna Eddy
- Molecular and Cellular Biology Graduate Program, University of Washington School of Medicine1959 NE Pacific Street, Seattle, WA 98195-7650, USA
| | - Nancy Maizels
- Molecular and Cellular Biology Graduate Program, University of Washington School of Medicine1959 NE Pacific Street, Seattle, WA 98195-7650, USA
- Department of Immunology, University of Washington School of Medicine1959 NE Pacific Street, Seattle, WA 98195-7650, USA
- Department of Biochemistry, University of Washington School of Medicine1959 NE Pacific Street, Seattle, WA 98195-7650, USA
- To whom correspondence should be addressed. Tel: +1 206 221 6876; Fax: +1 206 221 6781;
| |
Collapse
|
529
|
Jamnadass RH, Pellé R, Pandit P, Ricard B, Murphy NB. Trypanosoma brucei: Composition, organisation, plasticity, and differential transcription of NlaIII repeat elements in drug-resistant and sensitive isolates. Exp Parasitol 2006; 113:244-55. [PMID: 16563386 DOI: 10.1016/j.exppara.2006.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 01/25/2006] [Accepted: 01/26/2006] [Indexed: 11/23/2022]
Abstract
A Trypanosoma brucei brucei DNA repeat sequence termed NlaIII repeat (NR) was originally isolated from a multidrug-resistant field isolate CP547 [Jamnadass, R., 1995. Identification and characterisation of an extrachromosomal element from a multidrug-resistant isolate of T. brucei brucei, Ph.D. thesis, Brunel University, UK]. Subsequently studied in a laboratory strain (Tb427) [Alsford, N.S., Navarro, M., Jamnadass, H.R., Dunbar, H., Ackroyd, M., Murphy, N.B., Gull, K., Ersfeld,K., 2003. The identification of circular extrachromosomal DNA in the nuclear genome of T. brucei. Molecular Microbiology 47, 277-288], NRs were exclusively episomal. Here we show that NR sequences in CP547 are present on linear chromosomes as well as on episomal circular elements. Sequence analysis shows that NRs are composed of three classes of sub-repeat arranged in a specific order. Heterogeneity in size and sequence of an episomal 6.6kbp element was shown in successive passages of the original CP547 isolate and derived clones in mice. Its copy number was unstable and was affected by selective pressure with the trypanocide diminazene aceturate. Some of the extrachromosomal elements appear to be composed of RNA-DNA hybrids. NR sequences were transcribed in a developmentally regulated manner but transcripts did not contain the spliced-leader sequence found on all trypanosome mRNAs.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Cattle
- Chromosomes/chemistry
- Chromosomes/genetics
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Drug Resistance, Multiple/genetics
- Electrophoresis, Agar Gel
- Electrophoresis, Gel, Pulsed-Field
- Molecular Sequence Data
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Spliced Leader/chemistry
- RNA, Spliced Leader/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Restriction Mapping
- Transcription, Genetic/physiology
- Trypanosoma brucei brucei/drug effects
- Trypanosoma brucei brucei/genetics
Collapse
Affiliation(s)
- Ramni H Jamnadass
- International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya
| | | | | | | | | |
Collapse
|
530
|
Lacadie SA, Tardiff DF, Kadener S, Rosbash M. In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants. Genes Dev 2006; 20:2055-66. [PMID: 16882983 PMCID: PMC1536057 DOI: 10.1101/gad.1434706] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 06/01/2006] [Indexed: 11/25/2022]
Abstract
Spliceosome assembly in the budding yeast Saccharomyces cerevisiae was recently shown to occur at the site of transcription. However, evidence for cotranscriptional splicing as well as for coupling between transcription and splicing is still lacking. Using modifications of a previously published chromatin immunoprecipitation (ChIP) assay, we show that cotranscriptional splicing occurs approximately 1 kb after transcription of the 3' splice site (3'SS). This pathway furthermore protects most intron-containing nascent transcripts from the effects of cleavage by an intronic hammerhead ribozyme. This suggests that a high percentage of introns are recognized cotranscriptionally. This observation led us to screen a small deletion library for strains that sensitize a splicing reporter to ribozyme cleavage. Characterization of the Deltamud2 strain indicates that the early splicing factor Mud2p functions with U1 snRNP to form a cross-intron bridging complex on nascent pre-mRNA. The complex helps protect the transcript from ribozyme-mediated destruction and suggests an intron-definition event early in the spliceosome assembly process. The transcription elongation mutant strains Deltadst1 and Deltapaf1 show different cotranscriptional splicing phenotypes, suggesting that different transcription pathways differentially impact the efficiency of nascent intron definition.
Collapse
Affiliation(s)
- Scott A Lacadie
- Howard Hughes Medical Institute, Biology Department, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
531
|
Jimeno S, Luna R, García-Rubio M, Aguilera A. Tho1, a novel hnRNP, and Sub2 provide alternative pathways for mRNP biogenesis in yeast THO mutants. Mol Cell Biol 2006; 26:4387-98. [PMID: 16738307 PMCID: PMC1489133 DOI: 10.1128/mcb.00234-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
THO is a protein complex that functions in cotranscriptional mRNP formation. Yeast THO1 and SUB2 (Saccharomyces cerevisiae) were identified as multicopy suppressors of the expression defects of the hpr1Delta mutant of THO. Here we show that multicopy THO1 suppresses the mRNA accumulation and export defects and the hyperrecombination phenotype of THO mutants but not those of sub2Delta, thp1Delta, or spt4Delta. Similarly, Sub2 overexpression suppresses the RNA export defect of hpr1Delta. Tho1 is a conserved RNA binding nuclear protein that specifically binds to transcribed chromatin in a THO- and RNA-dependent manner and genetically interacts with the shuttling hnRNP Nab2. The ability of Tho1 to suppress hpr1Delta resides in its C-terminal half, which contains the RNA binding activity and is located after a SAP/SAF (scaffold-associated protein/scaffold-associated factor) domain. Altogether, these results suggest that Tho1 is an hnRNP that, similarly to Sub2, assembles onto the nascent mRNA during transcription and participates in mRNP biogenesis and export. Overexpression of Tho1 or Sub2 may provide alternative ways for mRNP formation and export in the absence of a functional THO complex.
Collapse
Affiliation(s)
- Sonia Jimeno
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
532
|
Shin JH, Kelman Z. The replicative helicases of bacteria, archaea, and eukarya can unwind RNA-DNA hybrid substrates. J Biol Chem 2006; 281:26914-21. [PMID: 16829518 DOI: 10.1074/jbc.m605518200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replicative helicases are hexameric enzymes that unwind DNA during chromosomal replication. They use energy from nucleoside triphosphate hydrolysis to translocate along one strand of the duplex DNA and displace the complementary strand. Here, the ability of a replicative helicase from each of the three domains, bacteria, archaea, and eukarya, to unwind RNA-containing substrate was determined. It is shown that all three helicases can unwind DNA-RNA hybrids while translocating along the single-stranded DNA. No unwinding could be observed when the helicases were provided with a single-stranded RNA overhang. Using DNA, RNA, and DNA-RNA chimeric oligonucleotides it was found that whereas the enzymes can bind both DNA and RNA, they could translocate only along DNA and only DNA stimulates the ATPase activity of the enzymes. Recent observations suggest that helicases may interact with enzymes participating in RNA metabolism and that RNA-DNA hybrids may be present on the chromosomes. Thus, the results presented here may suggest a new role for the replicative helicases during chromosomal replication or in other cellular processes.
Collapse
Affiliation(s)
- Jae-Ho Shin
- University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, Rockville, Maryland 20850, USA
| | | |
Collapse
|
533
|
Wang X, Chang Y, Li Y, Zhang X, Goodrich DW. Thoc1/Hpr1/p84 is essential for early embryonic development in the mouse. Mol Cell Biol 2006; 26:4362-7. [PMID: 16705185 PMCID: PMC1489088 DOI: 10.1128/mcb.02163-05] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast TREX complex physically couples elongating RNA polymerase II with RNA processing and nuclear RNA export factors to facilitate regulated gene expression. Hpr1p is an essential component of TREX, and loss of Hpr1p compromises transcriptional elongation, RNA export, and genome stability. Despite these defects, HPR1 is not essential for viability in yeast. A functional orthologue of Hpr1p has been identified in metazoan species and is variously known as Thoc1, Hpr1, or p84. However, the physiological functions of this protein have not been determined. Here, we describe the generation and phenotypic characterization of mice containing a null allele of the Thoc1 gene. Heterozygous null Thoc1 mice are born at the expected Mendelian frequency with no phenotype distinguishable from the wild type. In contrast, homozygous null mice are not recovered, indicating that Thoc1 is required for embryonic development. Embryonic development is arrested around the time of implantation, as blastocysts exhibit hatching and blastocyst outgrowth defects upon in vitro culture. Cells of the inner cell mass are particularly dependent on Thoc1, as these cells rapidly lose viability coincident with Thoc1 protein loss. While Hpr1p is not essential for the viability of unicellular yeasts, the orthologous Thoc1 protein is required for viability of the early mouse embryo.
Collapse
Affiliation(s)
- Xiaoling Wang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
534
|
Preker PJ, Guthrie C. Autoregulation of the mRNA export factor Yra1p requires inefficient splicing of its pre-mRNA. RNA (NEW YORK, N.Y.) 2006; 12:994-1006. [PMID: 16618971 PMCID: PMC1464842 DOI: 10.1261/rna.6706] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Yra1p is an essential RNA-binding protein that couples transcription to export. The YRA1 gene is one of only approximately 5% of genes that undergo splicing in budding yeast, and its intron is unusual in several respects, including its large size and anomalous branchpoint sequence. We showed previously that the intron is required for autogenous regulation of Yra1p levels, which cause a dominant negative growth phenotype when elevated. The mechanism of this regulation, however, remains unknown. Here we demonstrate that growth is inversely correlated with splicing efficiency. Substitution of a canonical branchpoint moderately improves splicing but compromises autoregulation. Shortening the intron from 766 to approximately 350 nt significantly improves splicing but abolishes autoregulation. Notably, proper regulation can be restored by insertion of unrelated sequences into the shortened intron. In that the current paradigm for regulated splicing involves the binding of protein factors to specific elements in the pre-mRNA, the regulation of YRA1 expression appears to occur by a novel mechanism. We propose that appropriate levels of Yra1p are maintained by inefficient cotranscriptional splicing.
Collapse
Affiliation(s)
- Pascal J Preker
- Department of Biochemistry and Biophysics, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
535
|
Abstract
Two mechanisms are available for the repair of DNA double-strand breaks (DSBs) in eukaryotic cells: homology directed repair (HDR) and non-homologous end-joining (NHEJ). While NHEJ is not restricted to a particular phase of the cell cycle, it is incapable of accurately repairing DBSs that have suffered a loss or gain of nucleotide sequence information. In contrast, HDR achieves accurate repair of such DSBs by use of a sister chromatid as a DNA template, but is restricted to cell cycle phases (S/G2) when such templates are available. In this scheme, G1 cells appear to lack a mechanism for the accurate repair of certain DSBs, and an ability to use alternative templates would be highly advantageous. Considered here, therefore, is the possibility that RNA transcripts are used as templates for HDR. Potential mechanisms for transcript-templated HDR, and ways in which it might be detected, are presented.
Collapse
Affiliation(s)
- Deborah A Trott
- Division of Investigative Science, Department of Haematology, Imperial College Faculty of Medicine, London, UK
| | | |
Collapse
|
536
|
Wellinger RE, Prado F, Aguilera A. Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol Cell Biol 2006; 26:3327-34. [PMID: 16581804 PMCID: PMC1446968 DOI: 10.1128/mcb.26.8.3327-3334.2006] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
THO/TREX is a conserved, eukaryotic protein complex operating at the interface between transcription and messenger ribonucleoprotein (mRNP) metabolism. THO mutations impair transcription and lead to increased transcription-associated recombination (TAR). These phenotypes are dependent on the nascent mRNA; however, the molecular mechanism by which impaired mRNP biogenesis triggers recombination in THO/TREX mutants is unknown. In this study, we provide evidence that deficient mRNP biogenesis causes slowdown or pausing of the replication fork in hpr1Delta mutants. Impaired replication appears to depend on sequence-specific features since it was observed upon activation of lacZ but not leu2 transcription. Replication fork progression could be partially restored by hammerhead ribozyme-guided self-cleavage of the nascent mRNA. Additionally, hpr1Delta increased the number of S-phase but not G(2)-dependent TAR events as well as the number of budded cells containing Rad52 repair foci. Our results link transcription-dependent genomic instability in THO mutants with impaired replication fork progression, suggesting a molecular basis for a connection between inefficient mRNP biogenesis and genetic instability.
Collapse
Affiliation(s)
- Ralf E Wellinger
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | | | | |
Collapse
|
537
|
Dye MJ, Gromak N, Proudfoot NJ. Exon tethering in transcription by RNA polymerase II. Mol Cell 2006; 21:849-59. [PMID: 16543153 DOI: 10.1016/j.molcel.2006.01.032] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 12/12/2005] [Accepted: 01/30/2006] [Indexed: 10/24/2022]
Abstract
There is an emerging consensus that RNA polymerase II (RNA Pol II) transcription and pre-mRNA processing are tightly coupled events. We show here that exons flanking an intron that has been engineered to be co-transcriptionally cleaved are accurately and efficiently spliced together. These data underline the close coupling of processes in the initial stages of protein-encoding gene expression and provide evidence for a molecular tether connecting emergent splice sites in the pre-mRNA to transcribing RNA Pol II. This observation suggests that for some genes a continuous intron transcript is not required for pre-mRNA splicing in vivo.
Collapse
Affiliation(s)
- Michael J Dye
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
538
|
Buszczak M, Spradling AC. The Drosophila P68 RNA helicase regulates transcriptional deactivation by promoting RNA release from chromatin. Genes Dev 2006; 20:977-89. [PMID: 16598038 PMCID: PMC1472305 DOI: 10.1101/gad.1396306] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 02/07/2006] [Indexed: 11/25/2022]
Abstract
Terminating a gene's activity requires that pre-existing transcripts be matured or destroyed and that the local chromatin structure be returned to an inactive configuration. Here we show that the Drosophila homolog of the mammalian P68 RNA helicase plays a novel role in RNA export and gene deactivation. p68 mutations phenotypically resemble mutations in small bristles (sbr), the Drosophila homolog of the human mRNA export factor NXF1. Full-length hsp70 mRNA accumulates in the nucleus near its sites of transcription following heat shock of p68 homozygotes, and hsp70 gene shutdown is delayed. Unstressed mutant larvae show similar defects in transcript accumulation and gene repression at diverse loci, and we find that p68 mutations are allelic to Lighten-up, a known suppressor of position effect variegation. Our observations reveal a strong connection between transcript clearance and gene repression. P68 may be needed to rapidly remove transcripts from a gene before its activity can be shut down and its chromatin reset to an inactive state.
Collapse
Affiliation(s)
- Michael Buszczak
- Howard Hughes Laboratories/Embryology Department, Carnegie Institution of Washington, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
539
|
West S, Zaret K, Proudfoot NJ. Transcriptional termination sequences in the mouse serum albumin gene. RNA (NEW YORK, N.Y.) 2006; 12:655-65. [PMID: 16581808 PMCID: PMC1421085 DOI: 10.1261/rna.2232406] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Poly(A) signals are required for efficient 3' end formation and transcriptional termination of most protein-encoding genes transcribed by RNA polymerase II. However, transcription can extend far beyond the poly(A) site before termination occurs. This implies the existence of further downstream termination signals. In mammals, a variety of sequence elements, in addition to the poly(A) site, have been implicated in the termination process. For example, termination of the human beta- and epsilon-globin genes is mediated by a sequence downstream of the poly(A) site that promotes an RNA cotranscriptional cleavage (CoTC). Here we report the identification of multiple termination sequences in the mouse serum albumin (MSA) 3' flanking region. Many transcripts from this region are cleaved cotranscriptionally, implying that such cleavage of pre-mRNA may be a more general feature of transcriptional termination.
Collapse
Affiliation(s)
- Steven West
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
540
|
Yilmaz A, Fernandez S, Lairmore MD, Boris-Lawrie K. Coordinate enhancement of transgene transcription and translation in a lentiviral vector. Retrovirology 2006; 3:13. [PMID: 16480517 PMCID: PMC1388234 DOI: 10.1186/1742-4690-3-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 02/15/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coordinate enhancement of transgene transcription and translation would be a potent approach to significantly improve protein output in a broad array of viral vectors and nonviral expression systems. Many vector transgenes are complementary DNA (cDNA). The lack of splicing can significantly reduce the efficiency of their translation. Some retroviruses contain a 5' terminal post-transcriptional control element (PCE) that facilitates translation of unspliced mRNA. Here we evaluated the potential for spleen necrosis virus PCE to stimulate protein production from HIV-1 based lentiviral vector by: 1) improving translation of the internal transgene transcript; and 2) functionally synergizing with a transcriptional enhancer to achieve coordinate increases in RNA synthesis and translation. RESULTS Derivatives of HIV-1 SIN self-inactivating lentiviral vector were created that contain PCE and cytomegalovirus immediate early enhancer (CMV IE). Results from transfected cells and four different transduced cell types indicate that: 1) PCE enhanced transgene protein synthesis; 2) transcription from the internal promoter is enhanced by CMV IE; 3) PCE and CMV IE functioned synergistically to significantly increase transgene protein yield; 4) the magnitude of translation enhancement by PCE was similar in transfected and transduced cells; 5) differences were observed in steady state level of PCE vector RNA in transfected and transduced cells; 6) the lower steady state was not attributable to reduced RNA stability, but to lower cytoplasmic accumulation in transduced cells. CONCLUSION PCE is a useful tool to improve post-transcriptional expression of lentiviral vector transgene. Coordinate enhancement of transcription and translation is conferred by the combination of PCE with CMV IE transcriptional enhancer and increased protein yield up to 11 to 17-fold in transfected cells. The incorporation of the vector provirus into chromatin correlated with reduced cytoplasmic accumulation of PCE transgene RNA. We speculate that epigenetic modulation of promoter activity altered cotranscriptional recruitment of RNA processing factors and reduced the availability of fully processed transcript or the efficiency of export from the nucleus. Our results provide an example of the dynamic interplay between the transcription and post-transcription steps of gene expression and document that introduction of heterologous gene expression signals can yield disparate effects in transfected versus transduced cells.
Collapse
Affiliation(s)
- Alper Yilmaz
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Soledad Fernandez
- Center for Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael D Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Kathleen Boris-Lawrie
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
541
|
Drolet M. Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology. Mol Microbiol 2006; 59:723-30. [PMID: 16420346 DOI: 10.1111/j.1365-2958.2005.05006.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been known for a long time that supercoiling can affect gene expression at the level of promoter activity. Moreover, the results of a genome-wide analysis have recently led to the proposal that supercoiling could play a role in the regulation of gene expression at this level by acting as a second messenger, relaying environmental signals to regulatory networks. Although evidence is lacking for a regulatory role of supercoiling following transcription initiation, recent results from both yeast and bacteria suggest that the effect of supercoiling on gene expression can be considerably more dramatic after this initiation step. Transcription-induced supercoiling and its associated R-loops seem to be involved in this effect. In this context, one major function of topoisomerases would be to prevent the generation of excess negative supercoiling by transcription elongation, to inhibit R-loop formation and allow gene expression. This function would be especially evident when substantial and rapid gene expression is required for stress resistance, and it may explain, at least in part, why topoisomerase I synthesis is directed from stress-induced promoters in Escherichia coli. Growth inhibition mediated by excess negative supercoiling might be related to this interplay between transcription elongation and supercoiling.
Collapse
Affiliation(s)
- Marc Drolet
- Département de microbiologie et immunologie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, P. Québec, Canada H3C 3J7.
| |
Collapse
|
542
|
Budd ME, Tong AHY, Polaczek P, Peng X, Boone C, Campbell JL. A network of multi-tasking proteins at the DNA replication fork preserves genome stability. PLoS Genet 2005; 1:e61. [PMID: 16327883 PMCID: PMC1298934 DOI: 10.1371/journal.pgen.0010061] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 10/12/2005] [Indexed: 11/18/2022] Open
Abstract
To elucidate the network that maintains high fidelity genome replication, we have introduced two conditional mutant alleles of DNA2, an essential DNA replication gene, into each of the approximately 4,700 viable yeast deletion mutants and determined the fitness of the double mutants. Fifty-six DNA2-interacting genes were identified. Clustering analysis of genomic synthetic lethality profiles of each of 43 of the DNA2-interacting genes defines a network (consisting of 322 genes and 876 interactions) whose topology provides clues as to how replication proteins coordinate regulation and repair to protect genome integrity. The results also shed new light on the functions of the query gene DNA2, which, despite many years of study, remain controversial, especially its proposed role in Okazaki fragment processing and the nature of its in vivo substrates. Because of the multifunctional nature of virtually all proteins at the replication fork, the meaning of any single genetic interaction is inherently ambiguous. The multiplexing nature of the current studies, however, combined with follow-up supporting experiments, reveals most if not all of the unique pathways requiring Dna2p. These include not only Okazaki fragment processing and DNA repair but also chromatin dynamics.
Collapse
Affiliation(s)
- Martin E Budd
- Braun Laboratories, California Institute of Technology, Pasadena, California, United States of America
| | - Amy Hin Yan Tong
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada
| | - Piotr Polaczek
- Braun Laboratories, California Institute of Technology, Pasadena, California, United States of America
| | - Xiao Peng
- Braun Laboratories, California Institute of Technology, Pasadena, California, United States of America
| | - Charles Boone
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
543
|
Abstract
mRNAs are transported from the nucleus to the cytoplasm by a machinery conserved from yeast to humans. Previous studies showed that mRNA export factors are loaded on nascent mRNAs during elongation, coupling transcription to export. More recently identified mRNA export factors connect transcription initiation to the export machinery associated with nuclear pores, and potentially tether active genes to the nuclear periphery. Furthermore, a newly identified link between the nuclear exosome and the transcription, 3'-end formation and export machineries suggests that early messenger ribonucleoprotein complex (mRNP) assembly is co-transcriptionally monitored. Moreover, inefficient mRNP assembly impairs transcription elongation, indicating tight interdependence of these processes. Finally, nuclear retention of unspliced mRNAs by the perinuclear Mlp proteins reveals a novel mechanism of mRNP surveillance prior to export.
Collapse
Affiliation(s)
- Patrizia Vinciguerra
- Department of Cell Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
544
|
|
545
|
Masuda S, Das R, Cheng H, Hurt E, Dorman N, Reed R. Recruitment of the human TREX complex to mRNA during splicing. Genes Dev 2005; 19:1512-7. [PMID: 15998806 PMCID: PMC1172058 DOI: 10.1101/gad.1302205] [Citation(s) in RCA: 343] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In yeast, the TREX complex contains the THO transcription elongation complex, which functions in direct cotranscriptional recruitment of the mRNA export proteins Sub2 and Yra1 to nascent transcripts. Here we report the identification of the human THO complex and show that it associates with spliced mRNA, but not with unspliced pre-mRNA in vitro. Transcription is not required for this recruitment. We also show that the human THO complex colocalizes with splicing factors in nuclear speckle domains in vivo. Considering that splicing occurs cotranscriptionally in humans, our data indicate that recruitment of the human TREX complex to spliced mRNA is not directly coupled to transcription, but is instead coupled to transcription indirectly through splicing.
Collapse
Affiliation(s)
- Seiji Masuda
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
546
|
Li X, Manley JL. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 2005; 122:365-78. [PMID: 16096057 DOI: 10.1016/j.cell.2005.06.008] [Citation(s) in RCA: 593] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 01/18/2005] [Accepted: 06/06/2005] [Indexed: 01/10/2023]
Abstract
SR proteins constitute a family of pre-mRNA splicing factors now thought to play several roles in mRNA metabolism in metazoan cells. Here we provide evidence that a prototypical SR protein, ASF/SF2, is unexpectedly required for maintenance of genomic stability. We first show that in vivo depletion of ASF/SF2 results in a hypermutation phenotype likely due to DNA rearrangements, reflected in the rapid appearance of DNA double-strand breaks and high-molecular-weight DNA fragments. Analysis of DNA from ASF/SF2-depleted cells revealed that the nontemplate strand of a transcribed gene was single stranded due to formation of an RNA:DNA hybrid, R loop structure. Stable overexpression of RNase H suppressed the DNA-fragmentation and hypermutation phenotypes. Indicative of a direct role, ASF/SF2 prevented R loop formation in a reconstituted in vitro transcription reaction. Our results support a model by which recruitment of ASF/SF2 to nascent transcripts by RNA polymerase II prevents formation of mutagenic R loop structures.
Collapse
Affiliation(s)
- Xialu Li
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
547
|
Franklin A, Blanden RV. Hypothesis: biological role for J-C intronic matrix attachment regions in the molecular mechanism of antigen-driven somatic hypermutation. Immunol Cell Biol 2005; 83:383-91. [PMID: 16033533 DOI: 10.1111/j.1440-1711.2005.01327.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A major function of J-C intronic matrix attachment regions (MAR) during immune diversification via somatic hypermutation (SHM) at immunoglobulin loci may be to manipulate the topology of DNA within the upstream target domain. The suggestion that SHM induction requires MAR-induced torsional strain, in conjunction with DNA remodelling at the J-C intron, completes the definition of a cogent paradigm within which all extant molecular data on the issue may be interpreted. Moreover, the suggestion that a mutagenic mechanism relieves MAR-generated superhelicity could provide an indication as to the evolutionary basis of SHM.
Collapse
Affiliation(s)
- Andrew Franklin
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | |
Collapse
|
548
|
Abstract
Transcription is coupled with the concomitant assembly of RNA-binding proteins to the nascent mRNA to generate a stable and export-competent mRNP particle. RNA-binding factors recruited at active transcription sites specify the processing, nuclear export, subcellular localization, translation and stability of the mRNA. The assembly of the mRNP particle starts with the association of the cap-binding protein complex followed by the splicing-dependent assembly of the exon-junction complex in intron-containing genes and by the binding of RNA-export adaptor proteins. New findings suggest that mRNP assembly is a genetically controlled process that plays a key role in gene expression and other cellular processes, including the maintenance of genome integrity.
Collapse
Affiliation(s)
- Andrés Aguilera
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain.
| |
Collapse
|
549
|
Sommer P, Nehrbass U. Quality control of messenger ribonucleoprotein particles in the nucleus and at the pore. Curr Opin Cell Biol 2005; 17:294-301. [PMID: 15901500 DOI: 10.1016/j.ceb.2005.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The spatial separation of nuclear transcription and cytoplasmic translation in eukaryotic cells implies that mRNAs have to travel. On their journey, proteins involved in the various steps of transcript formation, processing and transport dynamically interact with mRNAs to form diverse messenger ribonucleoprotein complexes (mRNPs). Increasing evidence indicates that the protein complexes involved in distinct phases of manufacturing a bona fide mRNA in the nucleus are tightly coupled. Moreover, the recent demonstration that active genes migrate into preassembled, shared nuclear sub-compartments suggests that mRNAs are churned out in large 'transcription factories' with distinct but interconnected divisions. Nuclear factors have now been identified that specifically control the quality of mRNAs without affecting mRNP biogenesis or export.
Collapse
Affiliation(s)
- Peter Sommer
- Unité de Biologie Cellulaire du Noyau, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | | |
Collapse
|
550
|
Abstract
The machineries involved in gene expression are highly conserved from yeast to metazoans. However, a fundamental difference between these organisms is that most yeast genes lack introns whereas the converse is true in higher organisms. Recent studies of the TREX complex, which functions in mRNA export, unexpectedly revealed that this complex is recruited by the transcription machinery in yeast whereas the TREX complex appears to be recruited by the splicing machinery in mammals. Studies during the past year also revealed a possible conserved role for SR protein dephosphorylation in regulating the interaction between SR proteins and the mRNA export receptor TAP (Mex67 in yeast). There is also an interesting possibility that an SR protein-TREX complex interaction is a conserved part of the mRNA export machinery.
Collapse
Affiliation(s)
- Robin Reed
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|