501
|
Heery R, Finn SP, Cuffe S, Gray SG. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9040038. [PMID: 28430163 PMCID: PMC5406713 DOI: 10.3390/cancers9040038] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023] Open
Abstract
Epithelial mesenchymal transition (EMT), the adoption by epithelial cells of a mesenchymal-like phenotype, is a process co-opted by carcinoma cells in order to initiate invasion and metastasis. In addition, it is becoming clear that is instrumental to both the development of drug resistance by tumour cells and in the generation and maintenance of cancer stem cells. EMT is thus a pivotal process during tumour progression and poses a major barrier to the successful treatment of cancer. Non-coding RNAs (ncRNA) often utilize epigenetic programs to regulate both gene expression and chromatin structure. One type of ncRNA, called long non-coding RNAs (lncRNAs), has become increasingly recognized as being both highly dysregulated in cancer and to play a variety of different roles in tumourigenesis. Indeed, over the last few years, lncRNAs have rapidly emerged as key regulators of EMT in cancer. In this review, we discuss the lncRNAs that have been associated with the EMT process in cancer and the variety of molecular mechanisms and signalling pathways through which they regulate EMT, and finally discuss how these EMT-regulating lncRNAs impact on both anti-cancer drug resistance and the cancer stem cell phenotype.
Collapse
Affiliation(s)
- Richard Heery
- Thoracic Oncology Research Group, Rm 2.09, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- Masters in Translational Oncology Program, Department of Surgery, Trinity College Dublin, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
| | - Stephen P Finn
- Department of Histopathology & Morbid Anatomy, Trinity College Dublin, Dublin D08 RX0X, Ireland.
| | - Sinead Cuffe
- HOPE Directorate, St. James's Hospital, Dublin D08 RT2X, Ireland.
| | - Steven G Gray
- Thoracic Oncology Research Group, Rm 2.09, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- HOPE Directorate, St. James's Hospital, Dublin D08 RT2X, Ireland.
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin D02 R590, Ireland.
- Labmed Directorate, St. James's Hospital, Dublin D08 K0Y5, Ireland.
| |
Collapse
|
502
|
Nobili L, Ronchetti D, Taiana E, Neri A. Long non-coding RNAs in B-cell malignancies: a comprehensive overview. Oncotarget 2017; 8:60605-60623. [PMID: 28947998 PMCID: PMC5601166 DOI: 10.18632/oncotarget.17303] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/16/2017] [Indexed: 01/06/2023] Open
Abstract
B-cell malignancies constitute a large part of hematological neoplasias. They represent a heterogeneous group of diseases, including Hodgkin's lymphoma, most non-Hodgkin's lymphomas (NHL), some leukemias and myelomas. B-cell malignancies reflect defined stages of normal B-cell differentiation and this represents the major basis for their classification. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts longer than 200 nucleotides, for which many recent studies have demonstrated a function in regulating gene expression, cell biology and carcinogenesis. Deregulated expression levels of lncRNAs have been observed in various types of cancers including hematological malignancies. The involvement of lncRNAs in cancer initiation and progression and their attractive features both as biomarker and for therapeutic research are becoming increasingly evident. In this review, we summarize the recent literature to highlight the status of the knowledge of lncRNAs role in normal B-cell development and in the pathogenesis of B-cell tumors.
Collapse
Affiliation(s)
- Lucia Nobili
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Hematology, Fondazione Cà Granda IRCCS Policlinico, Milano, Italy
| | - Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Hematology, Fondazione Cà Granda IRCCS Policlinico, Milano, Italy
| | - Elisa Taiana
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Hematology, Fondazione Cà Granda IRCCS Policlinico, Milano, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Hematology, Fondazione Cà Granda IRCCS Policlinico, Milano, Italy
| |
Collapse
|
503
|
LincRNa-p21: function and mechanism in cancer. Med Oncol 2017; 34:98. [PMID: 28425074 DOI: 10.1007/s12032-017-0959-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/12/2017] [Indexed: 12/29/2022]
Abstract
In view of the rapid development of gene chips and high-throughput sequencing technology, noncoding RNAs (ncRNas) form a high percentage of the mammalian genome. Two major subgroups of ncRNAs that have been identified are the long ncRNAs (lncRNas) and the microRNAs. A number of studies in the past few years have showed crucial functions for lncRNas in cancer. LincRNa-p21 as a p53-dependent transcriptional target gene and a potential diagnostic marker is involved in proliferation, cell cycle, metabolism and reprogramming. In addition, more researches revealed that lincRNa-p21 is associated with cancer progression and contributed to the treatment and prognosis of cancer. In this review, we briefly summarize the function and molecular mechanisms of lincRNa-p21 in cancer and its regulation for the genes expression .
Collapse
|
504
|
Rao AKDM, Rajkumar T, Mani S. Perspectives of long non-coding RNAs in cancer. Mol Biol Rep 2017; 44:203-218. [PMID: 28391434 DOI: 10.1007/s11033-017-4103-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/31/2017] [Indexed: 01/17/2023]
Abstract
A recent advance in transcriptomics has spawned the 'Decade of non-coding RNAs' by potentiating the growing numbers of long non-coding RNA in cancer. LncRNA involvement in cancer denotes its significance beyond our perception as they participate in tumor suppression and promoting oncogenesis, which raises them as a mighty class of effectors or regulators. Aberrantly expressed lncRNAs interact with major protein and coding partners, which ultimately deregulate normal cellular processes and drive the cell towards malignant state. Identification of theses interactions are utmost important as lncRNAs can be ideal targets for therapy. Dysregulation of lncRNAs by genomic alterations like single nucleotide variations and gene fusions are also potential modulators of their secondary structure. In this review, we discuss the various molecular interactions of lncRNAs with major bio-molecules and genetic variations in lncRNA genes and their importance in cancer. This systematic review outlines the vivid role of lncRNAs in cancer context and opens up future conceptual applications.
Collapse
Affiliation(s)
| | - Thangarajan Rajkumar
- Department of Molecular Oncology, Cancer Institute (WIA), No:38, Sardar Patel Road, Adyar, Chennai, Tamil Nadu, 600036, India
| | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (WIA), No:38, Sardar Patel Road, Adyar, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
505
|
Shi C, Zhang L, Qin C. Long non-coding RNAs in brain development, synaptic biology, and Alzheimer's disease. Brain Res Bull 2017; 132:160-169. [PMID: 28347717 DOI: 10.1016/j.brainresbull.2017.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
Abstract
Long non-coding RNAs (lncRNAs), which are long transcripts without apparent protein-coding roles, interfere with gene expression and signaling events at various stages. Increasing evidence has suggested that lncRNAs function in the regulation of tissue homeostasis and under pathophysiologic conditions. In the nervous system, the expression of lncRNAs has been detected and characterized under normal physiologic conditions and in disease states. Some lncRNAs regulate brain development and synaptic plasticity. In Alzheimer's disease (AD), several lncRNAs have been demonstrated to regulate β-amyloid production/generation, synaptic impairment, neurotrophin depletion, inflammation, mitochondrial dysfunction, and stress responses. This review summarizes data on lncRNA expression and focuses on neural lncRNAs that may function in AD. Although our understanding of lncRNAs remains in its infancy, this review provides insight into the contribution of lncRNAs to AD.
Collapse
Affiliation(s)
- Changhua Shi
- Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Ling Zhang
- Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Chuan Qin
- Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Beijing, China.
| |
Collapse
|
506
|
Profiling of long non-coding RNAs identifies LINC00958 and LINC01296 as candidate oncogenes in bladder cancer. Sci Rep 2017; 7:395. [PMID: 28341852 PMCID: PMC5428251 DOI: 10.1038/s41598-017-00327-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/21/2017] [Indexed: 12/26/2022] Open
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs) has been regarded as a critical component in bladder cancer (BC) and lncRNAs have been associated with BC development and progression although their overall expression and functional significance is still unclear. The aim of our study was to identify novel lncRNAs with a functional role in BC carcinogenesis. RNA-sequencing was used to identify aberrantly expressed lncRNAs in 8 normal and 72 BC samples. We identified 89 lncRNAs that were significantly dys-regulated in BC. Five lncRNAs; LINC00958, LINC01296, LINC00355, LNC-CMC1-1 and LNC-ALX1-2 were selected for further analyses. Silencing of LINC00958 or LINC01296 in vitro reduced both cell viability and migration. Knock-down of LINC00958 also affected invasion and resistance to anoikis. These cellular effects could be linked to direct/indirect regulation of protein coding mRNAs involved in cell death/survival, proliferation and cellular movement. Finally, we showed that LINC00958 binds proteins involved in regulation and initiation of translation and in post-transcriptional modification of RNA, including Metadherin, which has previously been associated with BC. Our analyses identified novel lncRNAs in BC that likely act as oncogenic drivers contributing to an aggressive cancerous phenotype likely through interaction with proteins involved in initiation of translation and/or post-transcriptional modification of RNA.
Collapse
|
507
|
Shen Y, Liu S, Fan J, Jin Y, Tian B, Zheng X, Fu H. Nuclear retention of the lncRNA SNHG1 by doxorubicin attenuates hnRNPC-p53 protein interactions. EMBO Rep 2017; 18:536-548. [PMID: 28264987 DOI: 10.15252/embr.201643139] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 01/08/2023] Open
Abstract
The protein p53 plays a crucial role in the regulation of cellular responses to diverse stresses. Thus, a major priority in cell biology is to define the mechanisms that regulate p53 activity in response to stresses or maintain it at basal levels under normal conditions. Moreover, further investigation is required to establish whether RNA participates in regulating p53's interaction with other proteins. Here, by conducting systematic experiments, we discovered a p53 interactor-hnRNPC-that directly binds to p53, destabilizes it, and prevents its activation under normal conditions. Upon doxorubicin treatment, the lncRNA SNHG1 is retained in the nucleus through its binding with nucleolin and it competes with p53 for hnRNPC binding, which upregulates p53 levels and promotes p53-dependent apoptosis by impairing hnRNPC regulation of p53 activity. Our results indicate that a balance between lncRNA SNHG1 and hnRNPC regulates p53 activity and p53-dependent apoptosis upon doxorubicin treatment, and further indicate that a change in lncRNA subcellular localization under specific circumstances is biologically significant.
Collapse
Affiliation(s)
- Yuan Shen
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shanshan Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.,Key Laboratory for Molecular Enzymology and Engineering (The Ministry of Education), College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Jiao Fan
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.,Institute of Geriatrics, Chinese PLA General Hospital, Beijing, China
| | - Yinghua Jin
- Key Laboratory for Molecular Enzymology and Engineering (The Ministry of Education), College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Baolei Tian
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaofei Zheng
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hanjiang Fu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
508
|
Xu Z, Yan Y, Qian L, Gong Z. Long non-coding RNAs act as regulators of cell autophagy in diseases (Review). Oncol Rep 2017; 37:1359-1366. [PMID: 28184916 PMCID: PMC5364869 DOI: 10.3892/or.2017.5416] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/27/2017] [Indexed: 02/07/2023] Open
Abstract
Identification of long non-coding RNAs (lncRNAs) has provided a substantial increase in our understanding of the non-coding transcriptome. Studies have revealed a crucial function of lncRNAs in the modulation of cell autophagy in vitro and in vivo, further contributing to the hallmarks of disease phenotypes. These findings have profoundly altered our understanding of disease pathobiology, and may lead to the emergence of new biological concepts underlying autophagy-associated diseases, such as the carcinomas. Studies on the molecular mechanism of the lncRNA-autophagy axis may offer additional avenues for therapeutic intervention and biomarker assessment. In this review, we discuss recent findings on the multiple molecular roles of regulatory lncRNAs in the signaling pathways of cell autophagy. The emerging knowledge in this rapidly advancing field will offer novel insights into human diseases, especially cancers.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
- Department of Pathology, School of Basic Medicine, Changsha, Hunan 410008, P.R. China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
- Institute of Hospital Pharmacy, Central South University, Changsha, Hunan 410008, P.R. China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
- Institute of Hospital Pharmacy, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
- Institute of Hospital Pharmacy, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
509
|
Li CQ, Huang GW, Wu ZY, Xu YJ, Li XC, Xue YJ, Zhu Y, Zhao JM, Li M, Zhang J, Wu JY, Lei F, Wang QY, Li S, Zheng CP, Ai B, Tang ZD, Feng CC, Liao LD, Wang SH, Shen JH, Liu YJ, Bai XF, He JZ, Cao HH, Wu BL, Wang MR, Lin DC, Koeffler HP, Wang LD, Li X, Li EM, Xu LY. Integrative analyses of transcriptome sequencing identify novel functional lncRNAs in esophageal squamous cell carcinoma. Oncogenesis 2017; 6:e297. [PMID: 28194033 PMCID: PMC5337622 DOI: 10.1038/oncsis.2017.1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/17/2016] [Accepted: 12/23/2016] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have a critical role in cancer initiation and progression, and thus may mediate oncogenic or tumor suppressing effects, as well as be a new class of cancer therapeutic targets. We performed high-throughput sequencing of RNA (RNA-seq) to investigate the expression level of lncRNAs and protein-coding genes in 30 esophageal samples, comprised of 15 esophageal squamous cell carcinoma (ESCC) samples and their 15 paired non-tumor tissues. We further developed an integrative bioinformatics method, denoted URW-LPE, to identify key functional lncRNAs that regulate expression of downstream protein-coding genes in ESCC. A number of known onco-lncRNA and many putative novel ones were effectively identified by URW-LPE. Importantly, we identified lncRNA625 as a novel regulator of ESCC cell proliferation, invasion and migration. ESCC patients with high lncRNA625 expression had significantly shorter survival time than those with low expression. LncRNA625 also showed specific prognostic value for patients with metastatic ESCC. Finally, we identified E1A-binding protein p300 (EP300) as a downstream executor of lncRNA625-induced transcriptional responses. These findings establish a catalog of novel cancer-associated functional lncRNAs, which will promote our understanding of lncRNA-mediated regulation in this malignancy.
Collapse
Affiliation(s)
- C-Q Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - G-W Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Z-Y Wu
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Y-J Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - X-C Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Y-J Xue
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Y Zhu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - J-M Zhao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - M Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - J Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - J-Y Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - F Lei
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Q-Y Wang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - S Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - C-P Zheng
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - B Ai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Z-D Tang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - C-C Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - L-D Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - S-H Wang
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - J-H Shen
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Y-J Liu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - X-F Bai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - J-Z He
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - H-H Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - B-L Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - M-R Wang
- Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - D-C Lin
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, CA, USA
| | - H P Koeffler
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, CA, USA
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- National University Cancer Institute of Singapore, National University Health System and National University Hospital, Singapore, Singapore
| | - L-D Wang
- Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - X Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China. E-mail:
| | - E-M Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China. E-mail:
| | - L-Y Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China. E-mail:
| |
Collapse
|
510
|
Zhang B, Han S, Feng B, Chu X, Chen L, Wang R. Hepatitis B virus X protein-mediated non-coding RNA aberrations in the development of human hepatocellular carcinoma. Exp Mol Med 2017; 49:e293. [PMID: 28186085 PMCID: PMC5336563 DOI: 10.1038/emm.2016.177] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/03/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) has an important role in the development of human hepatocellular carcinoma (HCC). Accumulated evidence has shown that HBV-encoded X protein (HBx) can induce both genetic alterations in tumor suppressor genes and oncogenes, as well as epigenetic aberrations in HCC pathogens. Non-coding RNAs (ncRNAs) mainly include microRNAs and long non-coding RNAs (lncRNAs). Although ncRNAs cannot code proteins, growing evidence has shown that they have various important biological functions in cell proliferation, cell cycle control, anti-apoptosis, epithelial–mesenchymal transition, tumor invasion and metastasis. This review summarizes the current knowledge regarding the mechanisms and emerging roles of ncRNAs in the pathogenesis of HBV-related HCC. Accumulated data have shown that ncRNAs regulated by HBx have a crucial role in HBV-associated hepatocarcinogenesis. The findings of these studies will contribute to more clinical applications of HBV-related ncRNAs as potential diagnostic markers or as molecular therapeutic targets to prevent and treat HBV-related HCC.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
511
|
Cancer-Related Triplets of mRNA-lncRNA-miRNA Revealed by Integrative Network in Uterine Corpus Endometrial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3859582. [PMID: 28280730 PMCID: PMC5320387 DOI: 10.1155/2017/3859582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/28/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
The regulation of transcriptome expression level is a complex process involving multiple-level interactions among molecules such as protein coding RNA (mRNA), long noncoding RNA (lncRNA), and microRNA (miRNA), which are essential for the transcriptome stability and maintenance and regulation of body homeostasis. The availability of multilevel expression data enables a comprehensive view of the regulatory network. In this study, we analyzed the coding and noncoding gene expression profiles of 301 patients with uterine corpus endometrial carcinoma (UCEC). A new method was proposed to construct a genome-wide integrative network based on variance inflation factor (VIF) regression method. The cross-regulation relations of mRNA, lncRNA, and miRNA were then selected based on clique-searching algorithm from the network, when any two molecules of the three were shown as interacting according to the integrative network. Such relation, which we call the mRNA-lncRNA-miRNA triplet, demonstrated the complexity in transcriptome regulation process. Finally, six UCEC-related triplets were selected in which the mRNA participates in endometrial carcinoma pathway, such as CDH1 and TP53. The multi-type RNAs are proved to be cross-regulated as to each of the six triplets according to literature. All the triplets demonstrated the association with the initiation and progression of UCEC. Our method provides a comprehensive strategy for the investigation of transcriptome regulation mechanism.
Collapse
|
512
|
The crosstalk between long non-coding RNAs and PI3K in cancer. Med Oncol 2017; 34:39. [PMID: 28176240 DOI: 10.1007/s12032-017-0897-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 01/27/2017] [Indexed: 12/21/2022]
Abstract
Long non-coding RNAs (lncRNAs) are able to positively or negatively regulate other genes expression in cis or in trans. Their effect can be achieved through RNA-protein, RNA-DNA, or RNA-RNA interactions. They can recruit transcription factors and act as scaffolds or guides for chromatin-modifying enzymes. PI3K kinases transform external stimuli to intracellular signals regulating cell growth, differentiation, proliferation, survival, intracellular trafficking, cytoskeletal changes, cell migration and motility, and metabolism. PI3K is activated in cancer and affects several aspects of oncogenesis. LncRNAs and PI3K have been shown to be interconnected in several different cancer subtypes enhancing aberrant cell proliferation, epithelial-to-mesenchymal transition, migration and invasion, and also cancer cell metabolism. In this review, we have assembled recent data describing the interaction between lncRNAs and PI3K and the results of such interaction.
Collapse
|
513
|
Zhang L, Yang Z, Trottier J, Barbier O, Wang L. Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay. Hepatology 2017; 65:604-615. [PMID: 27770549 PMCID: PMC5258819 DOI: 10.1002/hep.28882] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Bile acids (BAs) play critical physiological functions in cholesterol homeostasis, and deregulation of BA metabolism causes cholestatic liver injury. The long noncoding RNA maternally expressed gene 3 (MEG3) was recently shown as a potential tumor suppressor; however, its basic hepatic function remains elusive. Using RNA pull-down with biotin-labeled sense or anti-sense MEG 3RNA followed by mass spectrometry, we identified RNA-binding protein polypyrimidine tract-binding protein 1 (PTBP1) as a MEG3 interacting protein and validated their interaction by RNA immunoprecipitation (RIP). Bioinformatics analysis revealed putative binding sites for PTBP1 within the coding region (CDS) of small heterodimer partner (SHP), a key repressor of BA biosynthesis. Forced expression of MEG3 in hepatocellular carcinoma cells guided and facilitated PTBP1 binding to the Shp CDS, resulting in Shp mRNA decay. Transient overexpression of MEG3 RNA in vivo in mouse liver caused rapid Shp mRNA degradation and cholestatic liver injury, which was accompanied by the disruption of BA homeostasis, elevation of liver enzymes, as well as dysregulation of BA synthetic enzymes and metabolic genes. Interestingly, RNA sequencing coupled with quantitative PCR (qPCR) revealed a drastic induction of MEG3 RNA in Shp-/- liver. SHP inhibited MEG3 gene transcription by repressing cAMP response element-binding protein (CREB) transactivation of the MEG3 promoter. In addition, the expression of MEG3 and PTBP1 was activated in human fibrotic and cirrhotic livers. CONCLUSION MEG3 causes cholestasis by serving as a guide RNA scaffold to recruit PTBP1 to destabilize Shp mRNA. SHP in turn represses CREB-mediated activation of MEG3 expression in a feedback-regulatory fashion. (Hepatology 2017;65:604-615).
Collapse
Affiliation(s)
- Li Zhang
- Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Zhihong Yang
- Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269,Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Centre and Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Centre and Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - Li Wang
- Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269,Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516,Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,Address reprint requests to: Li Wang, Ph.D., 75 North Eagleville Rd., U3156, Storrs, CT 06269. ; Tel: 860-486-0857; Fax: 860-486-3303
| |
Collapse
|
514
|
Ramalho-Carvalho J, Fromm B, Henrique R, Jerónimo C. Deciphering the function of non-coding RNAs in prostate cancer. Cancer Metastasis Rev 2017; 35:235-62. [PMID: 27221068 DOI: 10.1007/s10555-016-9628-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The advent of next-generation sequencing methods is fuelling the discovery of multiple non-coding RNA transcripts with direct implication in cell biology and homeostasis. This new layer of biological regulation seems to be of particular importance in human pathogenesis, including cancer. The aberrant expression of ncRNAs is a feature of prostate cancer, as they promote tumor-suppressive or oncogenic activities, controlling multicellular events leading to carcinogenesis and tumor progression. From the small RNAs involved in the RNAi pathway to the long non-coding RNAs controlling chromatin remodeling, alternative splicing, and DNA repair, the non-coding transcriptome represents the significant majority of transcriptional output. As such, ncRNAs appear as exciting new diagnostic, prognostic, and therapeutic tools. However, additional work is required to characterize the RNA species, their functions, and their applicability to clinical practice in oncology. In this review, we summarize the most important features of ncRNA biology, emphasizing its relevance in prostate carcinogenesis and its potential for clinical applications.
Collapse
Affiliation(s)
- João Ramalho-Carvalho
- Cancer Biology & Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal.,Biomedical Sciences Graduate Program, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Bastian Fromm
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, N-0424, Oslo, Norway
| | - Rui Henrique
- Cancer Biology & Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal.,Departments of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal. .,Portuguese Oncology Institute of Porto, Research Center-LAB 3, F Bdg, 1st floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.
| |
Collapse
|
515
|
Tang Y, Cheung BB, Atmadibrata B, Marshall GM, Dinger ME, Liu PY, Liu T. The regulatory role of long noncoding RNAs in cancer. Cancer Lett 2017; 391:12-19. [PMID: 28111137 DOI: 10.1016/j.canlet.2017.01.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 02/09/2023]
Abstract
With the advances in genomic analysis technologies, especially next-generation RNA sequencing, a large number of new transcripts have been discovered, leading to better understanding of long noncoding RNAs (lncRNAs). Recent investigations have provided firm evidence for the critical roles of lncRNAs in chromatin modification, gene transcription, RNA splicing, RNA transport and translation. In vitro and in vivo studies have also proven that aberrant lncRNA expression is essential for the initiation and progression of cancers. Due to their unique tissue- and cancer-specific expression profiles, aberrant expression of lncRNAs can be used as reliable prognostic markers for cancer diagnoses and treatment stratification, and lncRNAs are novel therapeutic targets with high therapeutic windows.
Collapse
Affiliation(s)
- Ying Tang
- Children's Cancer Institute Australia for Medical Research, Randwick, Sydney, NSW 2031, Australia; The Electron Microscopy Laboratory, Kunming Medical University, 1168 Chunrongxi Road, Chenggong District, Kunming, Yunnan Province, China
| | - Belamy B Cheung
- Children's Cancer Institute Australia for Medical Research, Randwick, Sydney, NSW 2031, Australia
| | - Bernard Atmadibrata
- Children's Cancer Institute Australia for Medical Research, Randwick, Sydney, NSW 2031, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia for Medical Research, Randwick, Sydney, NSW 2031, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Medicine, UNSW Australia, Darlinghurst, NSW 2010, Australia
| | - Pei Y Liu
- Children's Cancer Institute Australia for Medical Research, Randwick, Sydney, NSW 2031, Australia.
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Randwick, Sydney, NSW 2031, Australia; UNSW Centre for Childhood Cancer Research, UNSW Australia, Kensington, Sydney, NSW 2052, Australia.
| |
Collapse
|
516
|
Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL, Gorospe M. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 2017; 14:361-369. [PMID: 28080204 DOI: 10.1080/15476286.2017.1279788] [Citation(s) in RCA: 643] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
HuR influences gene expression programs and hence cellular phenotypes by binding to hundreds of coding and noncoding linear RNAs. However, whether HuR binds to circular RNAs (circRNAs) and impacts on their function is unknown. Here, we have identified en masse circRNAs binding HuR in human cervical carcinoma HeLa cells. One of the most prominent HuR target circRNAs was hsa_circ_0031288, renamed CircPABPN1 as it arises from the PABPN1 pre-mRNA. Further analysis revealed that HuR did not influence CircPABPN1 abundance; interestingly, however, high levels of CircPABPN1 suppressed HuR binding to PABPN1 mRNA. Evaluation of PABPN1 mRNA polysomes indicated that PABPN1 translation was modulated positively by HuR and hence negatively by CircPABPN1. We propose that the extensive binding of CircPABPN1 to HuR prevents HuR binding to PABPN1 mRNA and lowers PABPN1 translation, providing the first example of competition between a circRNA and its cognate mRNA for an RBP that affects translation.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Amaresh C Panda
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Rachel Munk
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Ioannis Grammatikakis
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Dawood B Dudekula
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Supriyo De
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Jiyoung Kim
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Ji Heon Noh
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Kyoung Mi Kim
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Jennifer L Martindale
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Myriam Gorospe
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| |
Collapse
|
517
|
Abstract
The discovery of long noncoding RNAs (lncRNA) has provided a new perspective on gene regulation in diverse biological contexts. lncRNAs are remarkably versatile molecules that interact with RNA, DNA, or proteins to promote or restrain the expression of protein-coding genes. Activation of immune cells is associated with dynamic changes in expression of genes, the products of which combat infectious microorganisms, initiate repair, and resolve inflammatory responses in cells and tissues. Recent evidence indicates that lncRNAs play important roles in directing the development of diverse immune cells and controlling the dynamic transcriptional programs that are a hallmark of immune cell activation. The importance of these molecules is underscored by their newly recognized roles in inflammatory diseases. In this review, we discuss the contribution of lncRNAs in the development and activation of immune cells and their roles in immune-related diseases. We also discuss challenges faced in identifying biological functions for this large and complex class of genes.
Collapse
Affiliation(s)
- Maninjay K Atianand
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| | - Daniel R Caffrey
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| |
Collapse
|
518
|
Chandra Gupta S, Nandan Tripathi Y. Potential of long non-coding RNAs in cancer patients: From biomarkers to therapeutic targets. Int J Cancer 2016; 140:1955-1967. [DOI: 10.1002/ijc.30546] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/11/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Subash Chandra Gupta
- Laboratory for Translational Cancer Research; Department of Biochemistry, Institute of Science, Banaras Hindu University; Varanasi 221 005 India
| | - Yashoda Nandan Tripathi
- Laboratory for Translational Cancer Research; Department of Biochemistry, Institute of Science, Banaras Hindu University; Varanasi 221 005 India
| |
Collapse
|
519
|
Chaudhary R, Lal A. Long noncoding RNAs in the p53 network. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27990773 DOI: 10.1002/wrna.1410] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022]
Abstract
The tumor-suppressor protein p53 is activated in response to numerous cellular stresses including DNA damage. p53 functions primarily as a sequence-specific transcription factor that controls the expression of hundreds of protein-coding genes and noncoding RNAs, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). While the role of protein-coding genes and miRNAs in mediating the effects of p53 has been extensively studied, the physiological function and molecular mechanisms by which p53-regulated lncRNAs act is beginning to be understood. In this review, we discuss recent studies on lncRNAs that are directly or indirectly regulated by p53 and how they contribute to the biological outcomes of p53 activation. WIREs RNA 2017, 8:e1410. doi: 10.1002/wrna.1410 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ritu Chaudhary
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
520
|
Luo F, Sun B, Li H, Xu Y, Liu Y, Liu X, Lu L, Li J, Wang Q, Wei S, Shi L, Lu X, Liu Q, Zhang A. A MALAT1/HIF-2α feedback loop contributes to arsenite carcinogenesis. Oncotarget 2016; 7:5769-87. [PMID: 26735578 PMCID: PMC4868720 DOI: 10.18632/oncotarget.6806] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/05/2015] [Indexed: 02/07/2023] Open
Abstract
Arsenic is well established as a human carcinogen, but the molecular mechanisms leading to arsenic-induced carcinogenesis are complex and elusive. It is also not known if lncRNAs are involved in arsenic-induced liver carcinogenesis. We have found that MALAT1, a non-coding RNA, is over-expressed in the sera of people exposed to arsenite and in hepatocellular carcinomas (HCCs), and MALAT1 has a close relation with the clinicopathological characteristics of HCC. In addition, hypoxia-inducible factor (HIF)-2α is up-regulated in HCCs, and MALAT1 and HIF-2α have a positive correlation in HCC tissues. During the malignant transformation of human hepatic epithelial (L-02) cells induced by a low concentration (2.0 μM) of arsenite, MALAT1 and HIF-2α are increased. In addition, arsenite-induced MALAT1 causes disassociation of the von Hippel-Lindau (VHL) protein from HIF-2α, therefore, alleviating VHL-mediated HIF-2α ubiquitination, which causes HIF-2α accumulation. In turn, HIF-2α transcriptionally regulates MALAT1, thus forming a positive feedback loop to ensure expression of arsenite-induced MALAT1 and HIF-2α, which are involved in malignant transformation. Moreover, MALAT1 and HIF-2α promote the invasive and metastatic capacities of arsenite-induced transformed L-02 cells and in HCC-LM3 cells. The capacities of MALAT1 and HIF-2α to promote tumor growth are validated in mouse xenograft models. In mice, arsenite induces an inflammatory response, and MALAT1 and HIF-2α are over-expressed. Together, these findings suggest that the MALAT1/HIF-2α feedback loop is involved in regulation of arsenite-induced malignant transformation. Our results not only confirm a novel mechanism involving reciprocal regulation between MALAT1 and HIF-2α, but also expand the understanding of the carcinogenic potential of arsenite.
Collapse
Affiliation(s)
- Fei Luo
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Huiqiao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Yuan Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yi Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Xinlu Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Lu Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jun Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Le Shi
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Xiaolin Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| |
Collapse
|
521
|
Wang X, Ruan Y, Wang X, Zhao W, Jiang Q, Jiang C, Zhao Y, Xu Y, Sun F, Zhu Y, Xia S, Xu D. Long intragenic non-coding RNA lincRNA-p21 suppresses development of human prostate cancer. Cell Prolif 2016; 50. [PMID: 27976428 DOI: 10.1111/cpr.12318] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Prostate cancer is one of the most frequent malignancies in men, worldwide, although its underlying mechanisms are not fully understood. Long non-coding RNAs participate in development of human cancers. In this invetsigation, we aimed to study the roles of lincRNA-p21 in development of human prostate cancer. MATERIALS AND METHODS Expression of lincRNA-p21 was assessed by real-time PCR in cell lines and in human tissues. Lentivirus carrying sh-lincRNA-p21, lincRNA-p21 or control constructs were used to determine their effects on cell proliferation and apoptosis. A mouse xenograft model was employed to explore the functions of lincRNA-p21 on cancer cell population growth in vivo. Relationships between p53 downstream genes and lincRNA-p21 levels were explored by real-time PCR, western blotting and chromatin immunoprecipitation. RESULTS LincRNA-p21 was found to be down-regulated in human prostate cancer, and low levels of lincRNA-p21 correlated with high disease stage and prediction of poor survival. We further showed that lincRNA-p21 inhibited prostate cancer cell proliferation and colony formation in vitro and reduced rate of prostate cancer cell population growth in vivo. Study of mechanisms involved revealed that lincRNA-p21 promoted apoptosis and induced expression of p53 downstream genes by regulating p53 binding to their promoters. Finally, we showed that expression of p53 downstream genes was reduced in the malignant prostate tissues, which correlated with lincRNA-p21 level. CONCLUSIONS Our findings indicated that lincRNA-p21 inhibited development of human prostate cancer partly by regulating p53 downstream gene expression and partly by apoptotic activation.
Collapse
Affiliation(s)
- Xiaohai Wang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xingjie Wang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhao
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Jiang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenyi Jiang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyang Zhao
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongzhi Xu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Sun
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiping Zhu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongliang Xu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
522
|
Evidence for a role of a lncRNA encoded from the p53 tumor suppressor gene in maintaining the undifferentiated state of human myeloid leukemias. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
523
|
Reon BJ, Anaya J, Zhang Y, Mandell J, Purow B, Abounader R, Dutta A. Expression of lncRNAs in Low-Grade Gliomas and Glioblastoma Multiforme: An In Silico Analysis. PLoS Med 2016; 13:e1002192. [PMID: 27923049 PMCID: PMC5140055 DOI: 10.1371/journal.pmed.1002192] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Each year, over 16,000 patients die from malignant brain cancer in the US. Long noncoding RNAs (lncRNAs) have recently been shown to play critical roles in regulating neurogenesis and brain tumor progression. To better understand the role of lncRNAs in brain cancer, we performed a global analysis to identify and characterize all annotated and novel lncRNAs in both grade II and III gliomas as well as grade IV glioblastomas (glioblastoma multiforme [GBM]). METHODS AND FINDINGS We determined the expression of all lncRNAs in over 650 brain cancer and 70 normal brain tissue RNA sequencing datasets from The Cancer Genome Atlas (TCGA) and other publicly available datasets. We identified 611 induced and 677 repressed lncRNAs in glial tumors relative to normal brains. Hundreds of lncRNAs were specifically expressed in each of the three lower grade glioma (LGG) subtypes (IDH1/2 wt, IDH1/2 mut, and IDH1/2 mut 1p19q codeletion) and the four subtypes of GBMs (classical, mesenchymal, neural, and proneural). Overlap between the subtype-specific lncRNAs in GBMs and LGGs demonstrated similarities between mesenchymal GBMs and IDH1/2 wt LGGs, with 2-fold higher overlap than would be expected by random chance. Using a multivariate Cox regression survival model, we identified 584 and 282 lncRNAs that were associated with a poor and good prognosis, respectively, in GBM patients. We developed a survival algorithm for LGGs based on the expression of 64 lncRNAs that was associated with patient prognosis in a test set (hazard ratio [HR] = 2.168, 95% CI = 1.765-2.807, p < 0.001) and validation set (HR = 1.921, 95% CI = 1.333-2.767, p < 0.001) of patients from TCGA. The main limitations of this study are that further work is needed to investigate the clinical relevance of our findings, and that validation in an independent dataset is needed to determine the robustness of our survival algorithm. CONCLUSIONS This work identifies a panel of lncRNAs that appear to be prognostic in gliomas and provides a critical resource for future studies examining the role of lncRNAs in brain cancers.
Collapse
Affiliation(s)
- Brian J. Reon
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biochemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jordan Anaya
- Department of Biochemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ying Zhang
- Division of Neuro-Oncology, Neurology Department, University of Virginia Health System, Old Medical School, Charlottesville, Virginia, United States of America
| | - James Mandell
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Benjamin Purow
- Division of Neuro-Oncology, Neurology Department, University of Virginia Health System, Old Medical School, Charlottesville, Virginia, United States of America
| | - Roger Abounader
- Division of Neuro-Oncology, Neurology Department, University of Virginia Health System, Old Medical School, Charlottesville, Virginia, United States of America
| | - Anindya Dutta
- Department of Biochemistry, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
524
|
Frank S, Aguirre A, Hescheler J, Kurian L. A lncRNA Perspective into (Re)Building the Heart. Front Cell Dev Biol 2016; 4:128. [PMID: 27882316 PMCID: PMC5101577 DOI: 10.3389/fcell.2016.00128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/26/2016] [Indexed: 11/30/2022] Open
Abstract
Our conception of the human genome, long focused on the 2% that codes for proteins, has profoundly changed since its first draft assembly in 2001. Since then, an unanticipatedly expansive functionality and convolution has been attributed to the majority of the genome that is transcribed in a cell-type/context-specific manner into transcripts with no apparent protein coding ability. While the majority of these transcripts, currently annotated as long non-coding RNAs (lncRNAs), are functionally uncharacterized, their prominent role in embryonic development and tissue homeostasis, especially in the context of the heart, is emerging. In this review, we summarize and discuss the latest advances in understanding the relevance of lncRNAs in (re)building the heart.
Collapse
Affiliation(s)
- Stefan Frank
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of CologneCologne, Germany; Institute for Neurophysiology, University of CologneCologne, Germany; Center for Molecular Medicine (CMMC), University of CologneCologne, Germany
| | - Aitor Aguirre
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego La Jolla, CA, USA
| | - Juergen Hescheler
- Institute for Neurophysiology, University of Cologne Cologne, Germany
| | - Leo Kurian
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of CologneCologne, Germany; Institute for Neurophysiology, University of CologneCologne, Germany; Center for Molecular Medicine (CMMC), University of CologneCologne, Germany
| |
Collapse
|
525
|
Liu Y, Zheng L, Wang Q, Hu YW. Emerging roles and mechanisms of long noncoding RNAs in atherosclerosis. Int J Cardiol 2016; 228:570-582. [PMID: 27875736 DOI: 10.1016/j.ijcard.2016.11.182] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/06/2016] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is the most common cause of heart attacks, strokes, and peripheral vascular disease. Atherosclerosis is predicted to be the primary cause of death in the world by 2020. Increasing evidence suggests that long non-protein-coding RNAs (lncRNAs) are important for the regulation of tissue homeostasis and pathophysiological conditions. Although knowledge about lncRNAs in atherosclerosis and other cardiovascular diseases is sparse, lncRNAs are clinically interesting because of their diagnostic and therapeutic value. This review summarizes knowledge about lncRNAs through their actions, related research methods and effects on atherosclerosis to provide helpful insights about how lncRNAs work and control atherosclerosis process and how lncRNA-related strategies could benefit human beings.
Collapse
Affiliation(s)
- Yao Liu
- The Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lei Zheng
- The Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qian Wang
- The Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yan-Wei Hu
- The Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
526
|
Abstract
The advent of next-generation sequencing has demonstrated that eukaryotic genomes are extremely complex than what were previously thought. Recent studies revealed that in addition to protein-coding genes, nonprotein-coding genes have allocated a large fraction of the genome. Long noncoding RNA (lncRNA) genes are classified as nonprotein-coding genes, serving as a molecular signal, decoy, guide and scaffold. They were suggested to play important roles in chromatin states, epigenetic and posttranscriptional regulation of genes. Aberrant expression of lncRNAs and changes in their structure are associated with a wide spectrum of diseases ranging from different types of cancer and neurodegeneration to ?-thalassaemia. The purpose of this study was to summarize the current progress in understanding the genomic bases and origin of lncRNAs. Moreover, this study focusses on the diverse functions of lncRNAs in normal cells as well as various types of disease to illustrate the potential impacts of lncRNAs on diverse biological processes and their therapeutic significance.
Collapse
|
527
|
Chillón I, Pyle AM. Inverted repeat Alu elements in the human lincRNA-p21 adopt a conserved secondary structure that regulates RNA function. Nucleic Acids Res 2016; 44:9462-9471. [PMID: 27378782 PMCID: PMC5100600 DOI: 10.1093/nar/gkw599] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/01/2016] [Accepted: 06/22/2016] [Indexed: 12/18/2022] Open
Abstract
LincRNA-p21 is a long intergenic non-coding RNA (lincRNA) involved in the p53-mediated stress response. We sequenced the human lincRNA-p21 (hLincRNA-p21) and found that it has a single exon that includes inverted repeat Alu elements (IRAlus). Sense and antisense Alu elements fold independently of one another into a secondary structure that is conserved in lincRNA-p21 among primates. Moreover, the structures formed by IRAlus are involved in the localization of hLincRNA-p21 in the nucleus, where hLincRNA-p21 colocalizes with paraspeckles. Our results underscore the importance of IRAlus structures for the function of hLincRNA-p21 during the stress response.
Collapse
Affiliation(s)
- Isabel Chillón
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Anna M Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
528
|
Long Noncoding RNAs in Metabolic Syndrome Related Disorders. Mediators Inflamm 2016; 2016:5365209. [PMID: 27881904 PMCID: PMC5110871 DOI: 10.1155/2016/5365209] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/05/2016] [Indexed: 02/06/2023] Open
Abstract
Ribonucleic acids (RNAs) are very complex and their all functions have yet to be fully clarified. Noncoding genes (noncoding RNA, sequences, and pseudogenes) comprise 67% of all genes and they are represented by housekeeping noncoding RNAs (transfer RNA (tRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), and small nucleolar RNA (snoRNA)) that are engaged in basic cellular processes and by regulatory noncoding RNA (short and long noncoding RNA (ncRNA)) that are important for gene expression/transcript stability. In this review, we summarize data concerning the significance of long noncoding RNAs (lncRNAs) in metabolic syndrome related disorders, focusing on adipose tissue and pancreatic islands.
Collapse
|
529
|
DeMicco A, Reich T, Arya R, Rivera-Reyes A, Fisher MR, Bassing CH. Lymphocyte lineage-specific and developmental stage specific mechanisms suppress cyclin D3 expression in response to DNA double strand breaks. Cell Cycle 2016; 15:2882-2894. [PMID: 27327568 PMCID: PMC5105912 DOI: 10.1080/15384101.2016.1198861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022] Open
Abstract
Mammalian cells are thought to protect themselves and their host organisms from DNA double strand breaks (DSBs) through universal mechanisms that restrain cellular proliferation until DNA is repaired. The Cyclin D3 protein drives G1-to-S cell cycle progression and is required for proliferation of immature T and B cells and of mature B cells during a T cell-dependent immune response. We demonstrate that mouse thymocytes and pre-B cells, but not mature B cells, repress Cyclin D3 protein levels in response to DSBs. This response requires the ATM protein kinase that is activated by DSBs. Cyclin D3 protein loss in thymocytes coincides with decreased association of Cyclin D3 mRNA with the HuR RNA binding protein that ATM regulates. HuR inactivation reduces basal Cyclin D3 protein levels without affecting Cyclin D3 mRNA levels, indicating that thymocytes repress Cyclin D3 expression via ATM-dependent inhibition of Cyclin D3 mRNA translation. In contrast, ATM-dependent transcriptional repression of the Cyclin D3 gene represses Cyclin D3 protein levels in pre-B cells. Retrovirus-driven Cyclin D3 expression is resistant to transcriptional repression by DSBs; this prevents pre-B cells from suppressing Cyclin D3 protein levels and from inhibiting DNA synthesis to the normal extent following DSBs. Our data indicate that immature B and T cells use lymphocyte lineage- and developmental stage-specific mechanisms to inhibit Cyclin D3 protein levels and thereby help prevent cellular proliferation in response to DSBs. We discuss the relevance of these cellular context-dependent DSB response mechanisms in restraining proliferation, maintaining genomic integrity, and suppressing malignant transformation of lymphocytes.
Collapse
Affiliation(s)
- Amy DeMicco
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tyler Reich
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rahul Arya
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adrian Rivera-Reyes
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Megan R. Fisher
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Craig H. Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
530
|
Du C, Shen Z, Zang R, Xie H, Li H, Chen P, Hang B, Xu X, Tang W, Xia Y. Negative feedback circuitry between MIR143HG and RBM24 in Hirschsprung disease. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:2127-2136. [PMID: 27565737 DOI: 10.1016/j.bbadis.2016.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 12/19/2022]
Abstract
Hirschsprung disease (HSCR) is a genetic disorder of neural crest development. It is also believed that epigenetic changes plays a role in the progression of this disease. Here we show that the MIR143 host gene (MIR143HG), the precursor of miR-143 and miR-145, decreased cell proliferation and migration and forms a negative feedback loop with RBM24 in HSCR. As RBM24 mRNA is a target of miR-143, upregulation of RBM24 upon an increase in the level of MIR143HG could be attributed to sequestration of miR-143 by MIR143HG (sponge effect). The RBM24 protein was shown to bind to MIR143HG, and subsequently, accelerated its degradation by destabilizing its transcript and facilitating its interaction with Ago2, thus forming a negative feedback between MIR143HG and RBM24. In addition, experiments using siRNA against DROSHA indicated that RBM24 could promote the biogenesis of miR-143. This feedback loop we describe here represents a novel mode of autoregulation, with implications in HSCR pathogenesis.
Collapse
Affiliation(s)
- Chunxia Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Ziyang Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Rujin Zang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Hua Xie
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Hongxing Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Pingfa Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Bo Hang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xiaoqun Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Weibing Tang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, China.
| |
Collapse
|
531
|
Huang S, Lu W, Ge D, Meng N, Li Y, Su L, Zhang S, Zhang Y, Zhao B, Miao J. A new microRNA signal pathway regulated by long noncoding RNA TGFB2-OT1 in autophagy and inflammation of vascular endothelial cells. Autophagy 2016; 11:2172-83. [PMID: 26565952 DOI: 10.1080/15548627.2015.1106663] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
TGFB2-OT1 (TGFB2 overlapping transcript 1) is a newly discovered long noncoding RNA (lncRNA) derived from the 3'UTR of TGFB2. It can regulate autophagy in vascular endothelial cells (VECs). However, the mechanisms of TGFB2-OT1 action are unclear, and whether it is involved in VECs dysfunction needs investigation. Here, the level of TGFB2-OT1 was markedly increased by lipopolysaccharide and oxidized low-density lipoprotein, 2 VECs inflammation triggers. A chemical small molecule, 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO) significantly decreased TGFB2-OT1 levels and inhibited the effect of LPS and oxLDL. The NUPR1 level was upregulated by the 2 inflammation inducers and modulated the TGFB2-OT1 level by promoting the expression of TIA1, responsible for TGFB2-OT1 processing. We focused on how TGFB2-OT1 regulated autophagy and inflammation. Use of miRNA chip assay, TGFB2-OT1 overexpression technology and 3BDO revealed that TGFB2-OT1 regulated the levels of 3 microRNAs, MIR3960, MIR4488 and MIR4459. Further studies confirmed that TGFB2-OT1 acted as a competing endogenous RNA, bound to MIR3960, MIR4488 and MIR4459, then regulated the expression of the miRNA targets CERS1 (ceramide synthase 1), NAT8L (N-acetyltransferase 8-like [GCN5-related, putative]), and LARP1 (La ribonucleoprotein domain family, member 1). CERS1 and NAT8L participate in autophagy by affecting mitochondrial function. TGFB2-OT1 increased the LARP1 level, which promoted SQSTM1 (sequestosome 1) expression, NFKB RELA and CASP1 activation, and then production of IL6, IL8 and IL1B in VECs. Thus, NUPR1 and TIA1 may control the level of TGFB2-OT1, and TGFB2-OT1 bound to MIR3960, MIR4488 and MIR4459, which targeted CERS1, NAT8L, and LARP1, respectively, the key proteins involved in autophagy and inflammation.
Collapse
Affiliation(s)
- ShuYa Huang
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Science; Shandong University ; Jinan , China
| | - Wei Lu
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Science; Shandong University ; Jinan , China
| | - Di Ge
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Science; Shandong University ; Jinan , China
| | - Ning Meng
- b Institute of Organic Chemistry; School of Chemistry and Chemical Engineering; Shandong University ; Jinan , China
| | - Ying Li
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Science; Shandong University ; Jinan , China
| | - Le Su
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Science; Shandong University ; Jinan , China
| | - ShangLi Zhang
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Science; Shandong University ; Jinan , China
| | - Yun Zhang
- c The Key Laboratory of Cardiovascular Remodeling and Function Research; Chinese Ministry of Education and Chinese Ministry of Health; Qilu Hospital; Shandong University ; Jinan , China
| | - BaoXiang Zhao
- b Institute of Organic Chemistry; School of Chemistry and Chemical Engineering; Shandong University ; Jinan , China
| | - JunYing Miao
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Science; Shandong University ; Jinan , China.,c The Key Laboratory of Cardiovascular Remodeling and Function Research; Chinese Ministry of Education and Chinese Ministry of Health; Qilu Hospital; Shandong University ; Jinan , China
| |
Collapse
|
532
|
Pan-cancer transcriptomic analysis associates long non-coding RNAs with key mutational driver events. Nat Commun 2016; 7:13197. [PMID: 28959951 PMCID: PMC5093340 DOI: 10.1038/ncomms13197] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 09/11/2016] [Indexed: 02/06/2023] Open
Abstract
Thousands of long non-coding RNAs (lncRNAs) lie interspersed with coding genes across the genome, and a small subset has been implicated as downstream effectors in oncogenic pathways. Here we make use of transcriptome and exome sequencing data from thousands of tumours across 19 cancer types, to identify lncRNAs that are induced or repressed in relation to somatic mutations in key oncogenic driver genes. Our screen confirms known coding and non-coding effectors and also associates many new lncRNAs to relevant pathways. The associations are often highly reproducible across cancer types, and while many lncRNAs are co-expressed with their protein-coding hosts or neighbours, some are intergenic and independent. We highlight lncRNAs with possible functions downstream of the tumour suppressor TP53 and the master antioxidant transcription factor NFE2L2. Our study provides a comprehensive overview of lncRNA transcriptional alterations in relation to key driver mutational events in human cancers.
Long non-coding RNAs are implicated in multiple aspects of tumourigenesis. Here, the authors generate a landscape of these macromolecules in a wide array of cancer types and examine which RNAs are transcriptionally altered in relation to somatic driver mutations in established coding cancer genes.
Collapse
|
533
|
ASBEL-TCF3 complex is required for the tumorigenicity of colorectal cancer cells. Proc Natl Acad Sci U S A 2016; 113:12739-12744. [PMID: 27791078 DOI: 10.1073/pnas.1605938113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wnt/β-catenin signaling plays a key role in the tumorigenicity of colon cancer. Furthermore, it has been reported that lncRNAs are dysregulated in several steps of cancer development. Here we show that β-catenin directly activates the transcription of the long noncoding RNA (lncRNA) ASBEL [antisense ncRNA in the ANA (Abundant in neuroepithelium area)/BTG3 (B-cell translocation gene 3) locus] and transcription factor 3 (TCF3), both of which are required for the survival and tumorigenicity of colorectal cancer cells. ASBEL interacts with and recruits TCF3 to the activating transcription factor 3 (ATF3) locus, where it represses the expression of ATF3. Furthermore, we demonstrate that ASBEL-TCF3-mediated down-regulation of ATF3 expression is required for the proliferation and tumorigenicity of colon tumor cells. ATF3, in turn, represses the expression of ASBEL Our results reveal a pathway involving an lncRNA and two transcription factors that plays a key role in Wnt/β-catenin-mediated tumorigenesis. These results may provide insights into the variety of biological and pathological processes regulated by Wnt/β-catenin signaling.
Collapse
|
534
|
Zhang FF, Luo YH, Wang H, Zhao L. Metastasis-associated long noncoding RNAs in gastrointestinal cancer: Implications for novel biomarkers and therapeutic targets. World J Gastroenterol 2016; 22:8735-8749. [PMID: 27818589 PMCID: PMC5075548 DOI: 10.3748/wjg.v22.i39.8735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/05/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), a newly discovered class of ncRNA molecules, have been widely accepted as crucial regulators of various diseases including cancer. Increasing numbers of studies have demonstrated that lncRNAs are involved in diverse physiological and pathophysiological processes, such as cell cycle progression, chromatin remodeling, gene transcription, and posttranscriptional processing. Aberrant expression of lncRNAs frequently occurs in gastrointestinal cancer and plays emerging roles in cancer metastasis. In this review, we focus on and outline the regulatory functions of recently identified metastasis-associated lncRNAs, and evaluate the potential roles of lncRNAs as novel diagnostic biomarkers and therapeutic targets in gastrointestinal cancer.
Collapse
|
535
|
Abstract
Recently an explosion in the discovery of long noncoding RNAs (lncRNAs) was obtained by high throughput sequencing. Genome-wide transcriptome analyses, in conjugation with research for epigenetic modifications of chromatins, identified a novel type of non-protein-coding transcripts longer than 200 nucleotides named lncRNAs. They are gradually emerging as functional and critical participants in many physiological processes. Here we give an overview of the characteristics, biological functions, and working mechanism for this new class of noncoding factors.
Collapse
|
536
|
Bevilacqua V, Gioia U, Di Carlo V, Tortorelli AF, Colombo T, Bozzoni I, Laneve P, Caffarelli E. Identification of linc-NeD125, a novel long non coding RNA that hosts miR-125b-1 and negatively controls proliferation of human neuroblastoma cells. RNA Biol 2016; 12:1323-37. [PMID: 26480000 DOI: 10.1080/15476286.2015.1096488] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human genome contains some thousands of long non coding RNAs (lncRNAs). Many of these transcripts are presently considered crucial regulators of gene expression and functionally implicated in developmental processes in Eukaryotes. Notably, despite a huge number of lncRNAs are expressed in the Central Nervous System (CNS), only a few of them have been characterized in terms of molecular structure, gene expression regulation and function. In the present study, we identify linc-NeD125 as a novel cytoplasmic, neuronal-induced long intergenic non coding RNA (lincRNA). Linc-NeD125 represents the host gene for miR-125b-1, a microRNA with an established role as negative regulator of human neuroblastoma cell proliferation. Here, we demonstrate that these two overlapping non coding RNAs are coordinately induced during in vitro neuronal differentiation, and that their expression is regulated by different mechanisms. While the production of miR-125b-1 relies on transcriptional regulation, linc-NeD125 is controlled at the post-transcriptional level, through modulation of its stability. We also demonstrate that linc-NeD125 functions independently of the hosted microRNA, by reducing cell proliferation and activating the antiapoptotic factor BCL-2.
Collapse
Affiliation(s)
- Valeria Bevilacqua
- a Department of Biology and Biotechnology C. Darwin ; Sapienza University of Rome ; Rome , Italy.,f Present addresses Valeria Bevilacqua: Virology Program, INGM - Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy; Ubaldo Gioia: IFOM; the FIRC Institute of Molecular Oncology; Milan, Italy; Valerio Di Carlo: Center for Genomic Regulation and UPF ; Barcelona , Spain.,g These authors equally contributed to this work
| | - Ubaldo Gioia
- a Department of Biology and Biotechnology C. Darwin ; Sapienza University of Rome ; Rome , Italy.,f Present addresses Valeria Bevilacqua: Virology Program, INGM - Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy; Ubaldo Gioia: IFOM; the FIRC Institute of Molecular Oncology; Milan, Italy; Valerio Di Carlo: Center for Genomic Regulation and UPF ; Barcelona , Spain.,g These authors equally contributed to this work
| | - Valerio Di Carlo
- a Department of Biology and Biotechnology C. Darwin ; Sapienza University of Rome ; Rome , Italy.,f Present addresses Valeria Bevilacqua: Virology Program, INGM - Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy; Ubaldo Gioia: IFOM; the FIRC Institute of Molecular Oncology; Milan, Italy; Valerio Di Carlo: Center for Genomic Regulation and UPF ; Barcelona , Spain
| | - Anna F Tortorelli
- a Department of Biology and Biotechnology C. Darwin ; Sapienza University of Rome ; Rome , Italy
| | - Teresa Colombo
- b Institute for Computing Applications "Mauro Picone," National Research Council ; Rome , Italy
| | - Irene Bozzoni
- a Department of Biology and Biotechnology C. Darwin ; Sapienza University of Rome ; Rome , Italy.,c Institute of Molecular Biology and Pathology, National Research Council, Sapienza University of Rome ; Rome , Italy.,d Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome ; Rome , Italy.,e Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia ; Rome , Italy
| | - Pietro Laneve
- e Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia ; Rome , Italy
| | - Elisa Caffarelli
- c Institute of Molecular Biology and Pathology, National Research Council, Sapienza University of Rome ; Rome , Italy.,e Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia ; Rome , Italy
| |
Collapse
|
537
|
Miki A, Galipon J, Sawai S, Inada T, Ohta K. RNA decay systems enhance reciprocal switching of sense and antisense transcripts in response to glucose starvation. Genes Cells 2016; 21:1276-1289. [PMID: 27723196 DOI: 10.1111/gtc.12443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/13/2016] [Indexed: 02/03/2023]
Abstract
Antisense RNA has emerged as a crucial regulator of opposite-strand protein-coding genes in the long noncoding RNA (lncRNA) category, but little is known about their dynamics and decay process in the context of a stress response. Antisense transcripts from the fission yeast fbp1 locus (fbp1-as) are expressed in glucose-rich conditions and anticorrelated with transcription of metabolic stress-induced lncRNA (mlonRNA) and mRNA on the sense strand during glucose starvation. Here, we investigate the localization and decay of antisense RNAs at fbp1 and other loci, and propose a model to explain the rapid switch between antisense and sense mlonRNA/mRNA transcription triggered by glucose starvation. We show that fbp1-as shares many features with mRNAs, such as a 5'-cap and poly(A)-tail, and that its decay partially depends upon Rrp6, a cofactor of the nuclear exosome complex involved in 3'-5' degradation of RNA. Fluorescence in situ hybridization and polysome fractionation show that the majority of remaining fbp1-as localizes to the cytoplasm and binds to polyribosomes in glucose-rich conditions. Furthermore, fbp1-as and antisense RNA at other stress-responsive loci are promptly degraded via the cotranslational nonsense-mediated decay (NMD) pathway. These results suggest NMD may potentiate the swift disappearance of antisense RNAs in response to cellular stress.
Collapse
Affiliation(s)
- Atsuko Miki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Josephine Galipon
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0035, Japan
| | - Satoshi Sawai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Kunihiro Ohta
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
538
|
Yuan C, Meng X, Li X, Illing N, Ingle RA, Wang J, Chen M. PceRBase: a database of plant competing endogenous RNA. Nucleic Acids Res 2016; 45:D1009-D1014. [PMID: 28053167 PMCID: PMC5210625 DOI: 10.1093/nar/gkw916] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 10/04/2016] [Indexed: 12/28/2022] Open
Abstract
Competition for microRNA (miRNA) binding between RNA molecules has emerged as a novel mechanism for the regulation of eukaryotic gene expression. Competing endogenous RNA (ceRNA) can act as decoys for miRNA binding, thereby forming a ceRNA network by regulating the abundance of other RNA transcripts which share the same or similar microRNA response elements. Although this type of RNA cross talk was first described in Arabidopsis, and was subsequently shown to be active in animal models, there is no database collecting potential ceRNA data for plants. We have developed a Plant ceRNA database (PceRBase, http://bis.zju.edu.cn/pcernadb/index.jsp) which contains potential ceRNA target-target, and ceRNA target-mimic pairs from 26 plant species. For example, in Arabidopsis lyrata, 311 candidate ceRNAs are identified which could affect 2646 target–miRNA–target interactions. Predicted pairing structure between miRNAs and their target mRNA transcripts, expression levels of ceRNA pairs and associated GO annotations are also stored in the database. A web interface provides convenient browsing and searching for specific genes of interest. Tools are available for the visualization and enrichment analysis of genes in the ceRNA networks. Moreover, users can use PceRBase to predict novel competing mimic-target and target–target interactions from their own data.
Collapse
Affiliation(s)
- Chunhui Yuan
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianwen Meng
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xue Li
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.,James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nicola Illing
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Robert A Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Jingjing Wang
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.,James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou 310058, China .,James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
539
|
Wang JY, Xiao L, Wang JY. Posttranscriptional regulation of intestinal epithelial integrity by noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27704722 DOI: 10.1002/wrna.1399] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/24/2022]
Abstract
Maintenance of the gut epithelial integrity under stressful environments requires epithelial cells to rapidly elicit changes in gene expression patterns to regulate their survival, adapt to stress, and keep epithelial homeostasis. Disruption of the intestinal epithelial integrity occurs commonly in patients with various critical illnesses, leading to the translocation of luminal toxic substances and bacteria to the blood stream. Recently, noncoding RNAs (ncRNAs) have emerged as a novel class of master regulators of gene expression and are fundamentally involved in many aspects of gut mucosal regeneration, protection, and epithelial barrier function. Here, we highlight the roles of several intestinal epithelial tissue-specific microRNAs, including miR-222, miR-29b, miR-503, and miR-195, and long ncRNAs such as H19 and SPRY4-IT1 in the regulation of cell proliferation, apoptosis, migration, and cell-to-cell interactions and also further analyze the mechanisms through which ncRNAs and their interactions with RNA-binding proteins modulate the stability and translation of target mRNAs. WIREs RNA 2017, 8:e1399. doi: 10.1002/wrna.1399 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jun-Yao Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
540
|
Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol Rev 2016; 96:1297-1325. [PMID: 27535639 DOI: 10.1152/physrev.00041.2015] [Citation(s) in RCA: 1320] [Impact Index Per Article: 146.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Advances in RNA-sequencing techniques have led to the discovery of thousands of non-coding transcripts with unknown function. There are several types of non-coding linear RNAs such as microRNAs (miRNA) and long non-coding RNAs (lncRNA), as well as circular RNAs (circRNA) consisting of a closed continuous loop. This review guides the reader through important aspects of non-coding RNA biology. This includes their biogenesis, mode of actions, physiological function, as well as their role in the disease context (such as in cancer or the cardiovascular system). We specifically focus on non-coding RNAs as potential therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Julia Beermann
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Maria-Teresa Piccoli
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Janika Viereck
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
541
|
Christensen LL, True K, Hamilton MP, Nielsen MM, Damas ND, Damgaard CK, Ongen H, Dermitzakis E, Bramsen JB, Pedersen JS, Lund AH, Vang S, Stribolt K, Madsen MR, Laurberg S, McGuire SE, Ørntoft TF, Andersen CL. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism. Mol Oncol 2016; 10:1266-82. [PMID: 27396952 PMCID: PMC5423192 DOI: 10.1016/j.molonc.2016.06.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/02/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023] Open
Abstract
It is well established that lncRNAs are aberrantly expressed in cancer where they have been shown to act as oncogenes or tumor suppressors. RNA profiling of 314 colorectal adenomas/adenocarcinomas and 292 adjacent normal colon mucosa samples using RNA-sequencing demonstrated that the snoRNA host gene 16 (SNHG16) is significantly up-regulated in adenomas and all stages of CRC. SNHG16 expression was positively correlated to the expression of Wnt-regulated transcription factors, including ASCL2, ETS2, and c-Myc. In vitro abrogation of Wnt signaling in CRC cells reduced the expression of SNHG16 indicating that SNHG16 is regulated by the Wnt pathway. Silencing of SNHG16 resulted in reduced viability, increased apoptotic cell death and impaired cell migration. The SNHG16 silencing particularly affected expression of genes involved in lipid metabolism. A connection between SNHG16 and genes involved in lipid metabolism was also observed in clinical tumors. Argonaute CrossLinking and ImmunoPrecipitation (AGO-CLIP) demonstrated that SNHG16 heavily binds AGO and has 27 AGO/miRNA target sites along its length, indicating that SNHG16 may act as a competing endogenous RNA (ceRNA) "sponging" miRNAs off their cognate targets. Most interestingly, half of the miRNA families with high confidence targets on SNHG16 also target the 3'UTR of Stearoyl-CoA Desaturase (SCD). SCD is involved in lipid metabolism and is down-regulated upon SNHG16 silencing. In conclusion, up-regulation of SNHG16 is a frequent event in CRC, likely caused by deregulated Wnt signaling. In vitro analyses demonstrate that SNHG16 may play an oncogenic role in CRC and that it affects genes involved in lipid metabolism, possible through ceRNA related mechanisms.
Collapse
Affiliation(s)
- Lise Lotte Christensen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, University of Aarhus, Aarhus, Denmark.
| | - Kirsten True
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, University of Aarhus, Aarhus, Denmark.
| | - Mark P Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| | - Morten M Nielsen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, University of Aarhus, Aarhus, Denmark.
| | - Nkerorema D Damas
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | | | - Halit Ongen
- Department of Genetic Medicine and Development, Functional Population Genomics and Genetics of Complex Traits Lab, University of Geneva Medical School, Geneva, Switzerland.
| | - Emmanouil Dermitzakis
- Department of Genetic Medicine and Development, Functional Population Genomics and Genetics of Complex Traits Lab, University of Geneva Medical School, Geneva, Switzerland.
| | - Jesper B Bramsen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, University of Aarhus, Aarhus, Denmark.
| | - Jakob S Pedersen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, University of Aarhus, Aarhus, Denmark.
| | - Anders H Lund
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Søren Vang
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, University of Aarhus, Aarhus, Denmark.
| | - Katrine Stribolt
- Department of Pathology, Aarhus University Hospital, University of Aarhus, Aarhus, Denmark.
| | - Mogens R Madsen
- Surgical Research Unit, Herning Regional Hospital, Herning, Denmark.
| | - Søren Laurberg
- Department of Surgery, Aarhus University Hospital, University of Aarhus, Aarhus, Denmark.
| | - Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Torben F Ørntoft
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, University of Aarhus, Aarhus, Denmark.
| | - Claus L Andersen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, University of Aarhus, Aarhus, Denmark.
| |
Collapse
|
542
|
Jia M, Jiang L, Wang YD, Huang JZ, Yu M, Xue HZ. lincRNA-p21 inhibits invasion and metastasis of hepatocellular carcinoma through Notch signaling-induced epithelial-mesenchymal transition. Hepatol Res 2016; 46:1137-1144. [PMID: 27391793 DOI: 10.1111/hepr.12659] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/13/2016] [Accepted: 01/27/2016] [Indexed: 12/13/2022]
Abstract
AIM Emerging evidence has showed that long non-coding RNA (lncRNA) play an important role in the occurrence and development of various cancers. In the present study, the expression level of lincRNA-p21 was investigated in hepatocellular carcinoma (HCC), and its role in invasion of HCC was also explored. METHODS The lincRNA-p21 levels in human HCC tumor tissue and cell lines HepG2 and SMMC-7721 were determined by real-time polymerase chain reaction. Transfected HCC cells with pcDNA-lincRNA-p21 or si-lincRNA-p21 for overexpression or downregulation of lincRNA-p21, the Notch signaling and epithelial-mesenchymal transition (EMT)-related proteins and cell invasion were measured by western blot and Transwell assay, respectively. A tumor xenotransplant mouse model was also established to investigate the role of lincRNA-p21 in tumor metastasis in vivo. RESULTS The lincRNA-p21 expression was downregulated in HCC tissue and cells. Overexpression of lincRNA-p21 inhibited Notch singling and EMT, while its downregulation led to the reverse result. The invasion of HCC cell was also inhibited by pcDNA-lincRNA-p21, and activation of Notch signaling reversed this effect. In vivo, overexpression of lincRNA-p21 decreased the tumor metastasis, as well. CONCLUSION lincRNA-p21 was downregulated in HCC and lincRNA-p21 overexpression contributed to the inhibition of tumor invasion through mediating Notch signaling induced EMT.
Collapse
Affiliation(s)
- Meng Jia
- Department of Hepatobiliary and Pancreas Surgery, People's Hospital of Zhengzhou University, Henan Province People's Hospital, Zhengzhou, China
| | - Li Jiang
- Department of Hematology, People's Hospital of Zhengzhou University, Henan Province People's Hospital, Zhengzhou, China
| | - Ya-Dong Wang
- Department of Hepatobiliary and Pancreas Surgery, People's Hospital of Zhengzhou University, Henan Province People's Hospital, Zhengzhou, China
| | - Jin-Zhao Huang
- Department of Hepatobiliary and Pancreas Surgery, People's Hospital of Zhengzhou University, Henan Province People's Hospital, Zhengzhou, China
| | - Miao Yu
- Department of Hepatobiliary and Pancreas Surgery, People's Hospital of Zhengzhou University, Henan Province People's Hospital, Zhengzhou, China
| | - Huan-Zhou Xue
- Department of Hepatobiliary and Pancreas Surgery, People's Hospital of Zhengzhou University, Henan Province People's Hospital, Zhengzhou, China.
| |
Collapse
|
543
|
Deniz E, Erman B. Long noncoding RNA (lincRNA), a new paradigm in gene expression control. Funct Integr Genomics 2016; 17:135-143. [PMID: 27681237 DOI: 10.1007/s10142-016-0524-x] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/17/2022]
Abstract
Long intergenic non-coding RNAs (lincRNAs) are defined as RNA transcripts that are longer than 200 nucleotides. By definition, these RNAs must not have open reading frames that encode proteins. Many of these transcripts are encoded by RNA polymerase II, are spliced, and are poly-adenylated. This final fact indicates that there is a trove of information about lincRNAs in databases such as the Gene Expression Omnibus (GEO), which is a repository for RNAseq and microarray data. Recent experiments indicate that there are upwards of 15,000 lincRNAs encoded by the human genome. The term "intergenic" refers to the identification of these transcripts from regions of the genome that do not contain protein-encoding genes. These regions coincide with what was once labeled as the "junk DNA" portions of our genomes, which, upon careful examination by whole genome RNA sequencing experiments, clearly encode RNA transcripts. LincRNAs also contain promoter- or enhancer-associated RNAs that are gene proximal and can be either in the sense or antisense orientation, relative to the protein-coding gene with which they are associated. In this review, we describe the functions of lincRNAs playing roles in biological processes such as gene expression control, scaffold formation, and epigenetic control.
Collapse
Affiliation(s)
- Emre Deniz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Acibadem University, Istanbul, Turkey
| | - Batu Erman
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey.
| |
Collapse
|
544
|
Wang J, Lei ZJ, Guo Y, Wang T, Qin ZY, Xiao HL, Fan LL, Chen DF, Bian XW, Liu J, Wang B. miRNA-regulated delivery of lincRNA-p21 suppresses β-catenin signaling and tumorigenicity of colorectal cancer stem cells. Oncotarget 2016; 6:37852-70. [PMID: 26497997 PMCID: PMC4741970 DOI: 10.18632/oncotarget.5635] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) are key cellular targets for effective cancer therapy, due to their critical roles in cancer progression and chemo/radio-resistance. Emerging evidence demonstrates that long non-coding RNAs (lncRNAs) are important players in the biology of cancers. However, it remains unknown whether lncRNAs could be exploited to target CSCs. We report that large intergenic non-coding RNA p21 (lincRNA-p21) is a potent suppressor of stem-like traits of CSCs purified from both primary colorectal cancer (CRC) tissues and cell lines. A novel lincRNA-p21-expressing adenoviral vector, which was armed with miRNA responsive element (MRE) of miR-451 (Ad-lnc-p21-MRE), was generated to eliminate CRC CSCs. Integration of miR-451 MREs into the adenovirus efficiently delivered lincRNA-p21 into CSCs that contained low levels of miR-451. Moreover, lincRNA-p21 inhibited the activity of β-catenin signaling, thereby attenuating the viability, self-renewal, and glycolysis of CSCs in vitro. By limiting dilution and serial tumor formation assay, we demonstrated that Ad-lnc-p21-MRE significantly suppressed the self-renewal potential and tumorigenicity of CSCs in nude mice. Importantly, application of miR-451 MREs appeared to protect normal liver cells from off-target expression of lincRNA-p21 in both tumor-bearing and naïve mice. Taken together, these findings suggest that lncRNAs may be promising therapeutic molecules to eradicate CSCs and MREs of tumor-suppressor miRNAs, such as miR-451, may be exploited to ensure the specificity of CSC-targeting strategies.
Collapse
Affiliation(s)
- Jun Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zeng-jie Lei
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yan Guo
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Tao Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zhong-yi Qin
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hua-liang Xiao
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Li-lin Fan
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Dong-feng Chen
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiu-wu Bian
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jia Liu
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bin Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
545
|
White EJF, Matsangos AE, Wilson GM. AUF1 regulation of coding and noncoding RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27620010 DOI: 10.1002/wrna.1393] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 01/12/2023]
Abstract
AUF1 is a family of four RNA-binding proteins (RBPs) generated by alternative pre-messenger RNA (pre-mRNA) splicing, with canonical roles in controlling the stability and/or translation of mRNA targets based on recognition of AU-rich sequences within mRNA 3' untranslated regions. However, recent studies identifying AUF1 target sites across the transcriptome have revealed that these canonical functions are but a subset of its roles in posttranscriptional regulation of gene expression. In this review, we describe recent developments in our understanding of the RNA-binding properties of AUF1 together with their biochemical implications and roles in directing mRNA decay and translation. This is then followed by a survey of newly discovered activities for AUF1 proteins in control of miRNA synthesis and function, including miRNA assembly into microRNA (miRNA)-loaded RNA-induced silencing complexes (miRISCs), miRISC targeting to mRNA substrates, interplay with an expanding network of other cellular RBPs, and reciprocal regulatory relationships between miRNA and AUF1 synthesis. Finally, we discuss recently reported relationships between AUF1 and long noncoding RNAs and regulatory roles on viral RNA substrates. Cumulatively, these findings have significantly expanded our appreciation of the scope and diversity of AUF1 functions in the cell, and are prompting an exciting array of new questions moving forward. WIREs RNA 2017, 8:e1393. doi: 10.1002/wrna.1393 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Elizabeth J F White
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aerielle E Matsangos
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
546
|
A novel regulatory network among LncRpa, CircRar1, MiR-671 and apoptotic genes promotes lead-induced neuronal cell apoptosis. Arch Toxicol 2016; 91:1671-1684. [PMID: 27604105 PMCID: PMC5364257 DOI: 10.1007/s00204-016-1837-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/24/2016] [Indexed: 12/17/2022]
Abstract
Lead is a metal that has toxic effects on the developing nervous system. However, the mechanisms underlying lead-induced neurotoxicity are not well understood. Non-coding RNAs (ncRNAs) play an important role in epigenetic regulation, but few studies have examined the function of ncRNAs in lead-induced neurotoxicity. We addressed this in the present study by evaluating the functions of a long non-coding RNA (named lncRpa) and a circular RNA (named circRar1) in a mouse model of lead-induced neurotoxicity. High-throughput RNA sequencing showed that both lncRpa and circRar1 promoted neuronal apoptosis. We also found that lncRpa and circRar1 induced the upregulation of apoptosis-associated factors caspase8 and p38 at the mRNA and protein levels via modulation of their common target microRNA miR-671. This is the first report of a regulatory interaction among a lncRNA, circRNA, and miRNA mediating neuronal apoptosis in response to lead toxicity.
Collapse
|
547
|
Cerk S, Schwarzenbacher D, Adiprasito JB, Stotz M, Hutterer GC, Gerger A, Ling H, Calin GA, Pichler M. Current Status of Long Non-Coding RNAs in Human Breast Cancer. Int J Mol Sci 2016; 17:ijms17091485. [PMID: 27608009 PMCID: PMC5037763 DOI: 10.3390/ijms17091485] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023] Open
Abstract
Breast cancer represents a major health burden in Europe and North America, as recently published data report breast cancer as the second leading cause of cancer related death in women worldwide. Breast cancer is regarded as a highly heterogeneous disease in terms of clinical course and biological behavior and can be divided into several molecular subtypes, with different prognosis and treatment responses. The discovery of numerous non-coding RNAs has dramatically changed our understanding of cell biology, especially the pathophysiology of cancer. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts >200 nucleotides in length. Several studies have demonstrated their role as key regulators of gene expression, cell biology and carcinogenesis. Deregulated expression levels of lncRNAs have been observed in various types of cancers including breast cancer. lncRNAs are involved in cancer initiation, progression, and metastases. In this review, we summarize the recent literature to highlight the current status of this class of long non-coding lncRNAs in breast cancer.
Collapse
Affiliation(s)
- Stefanie Cerk
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz 8026, Austria.
- Research Unit of Non-coding RNA and Genome Editing in Cancer, Medical University of Graz, Graz 8036, Austria.
| | - Daniela Schwarzenbacher
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz 8026, Austria.
- Research Unit of Non-coding RNA and Genome Editing in Cancer, Medical University of Graz, Graz 8036, Austria.
| | - Jan Basri Adiprasito
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz 8026, Austria.
- Research Unit of Non-coding RNA and Genome Editing in Cancer, Medical University of Graz, Graz 8036, Austria.
| | - Michael Stotz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz 8026, Austria.
- Research Unit of Non-coding RNA and Genome Editing in Cancer, Medical University of Graz, Graz 8036, Austria.
| | - Georg C Hutterer
- Department of Urology, Medical University of Graz, Graz 8036, Austria.
| | - Armin Gerger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz 8026, Austria.
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz 8026, Austria.
- Research Unit of Non-coding RNA and Genome Editing in Cancer, Medical University of Graz, Graz 8036, Austria.
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
548
|
Motterle A, Sanchez-Parra C, Regazzi R. Role of long non-coding RNAs in the determination of β-cell identity. Diabetes Obes Metab 2016; 18 Suppl 1:41-50. [PMID: 27615130 DOI: 10.1111/dom.12714] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
Abstract
Pancreatic β-cells are highly specialized cells committed to secrete insulin in response to changes in the level of nutrients, hormones and neurotransmitters. Chronic exposure to elevated concentrations of glucose, fatty acids or inflammatory mediators can result in modifications in β-cell gene expression that alter their functional properties. This can lead to the release of insufficient amount of insulin to cover the organism's needs, and thus to the development of diabetes mellitus. Although most of the studies carried out in the last decades to elucidate the causes of β-cell dysfunction under disease conditions have focused on protein-coding genes, we now know that insulin-secreting cells also contain thousands of molecules of RNA that do not encode polypeptides but play key roles in the acquisition and maintenance of a highly differentiated state. In this review, we will highlight the involvement of long non-coding RNAs (lncRNAs), a particular class of non-coding transcripts, in the differentiation of β-cells and in the regulation of their specialized tasks. We will also discuss the crosstalk between the activities of lncRNAs and microRNAs and present the emerging evidence of a potential contribution of particular lncRNAs to the development of both type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- A Motterle
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| | - C Sanchez-Parra
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - R Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
549
|
Signal B, Gloss BS, Dinger ME. Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs. Trends Genet 2016; 32:620-637. [PMID: 27592414 DOI: 10.1016/j.tig.2016.08.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 02/09/2023]
Abstract
Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs. We propose that the application of these techniques provides valuable functional and mechanistic insight into lncRNAs, and is a crucial step for informing subsequent functional studies.
Collapse
Affiliation(s)
- Bethany Signal
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Brian S Gloss
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia.
| |
Collapse
|
550
|
Long noncoding RNA linc00598 regulates CCND2 transcription and modulates the G1 checkpoint. Sci Rep 2016; 6:32172. [PMID: 27572135 PMCID: PMC5004135 DOI: 10.1038/srep32172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/02/2016] [Indexed: 12/23/2022] Open
Abstract
Data derived from genomic and transcriptomic analyses have revealed that long noncoding RNAs (lncRNAs) have important roles in the transcriptional regulation of various genes. Recent studies have identified the mechanism underlying this function. To date, a variety of noncoding transcripts have been reported to function in conjunction with epigenetic regulator proteins. In this study, we investigated the function of linc00598, which is transcribed by a genomic sequence on chromosome 13, downstream of FoxO1 and upstream of COG6. Microarray analysis showed that linc00598 regulates the transcription of specific target genes, including those for cell cycle regulators. We discovered that linc00598 regulates CCND2 transcription through modulation of the transcriptional regulatory effect of FoxO1 on the CCND2 promoter. Moreover, we observed that knockdown of linc00598 induced G0/G1 cell cycle arrest and inhibited proliferation. These data indicate that linc00598 plays an important role in cell cycle regulation and proliferation through its ability to regulate the transcription of CCND2.
Collapse
|