501
|
Nanotechnology-applied curcumin for different diseases therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:394264. [PMID: 24995293 PMCID: PMC4066676 DOI: 10.1155/2014/394264] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/21/2014] [Accepted: 04/25/2014] [Indexed: 02/08/2023]
Abstract
Curcumin is a lipophilic molecule with an active ingredient in the herbal remedy and dietary spice turmeric. It is used by different folks for treatment of many diseases. Recent studies have discussed poor bioavailability of curcumin because of poor absorption, rapid metabolism, and rapid systemic elimination. Nanotechnology is an emerging field that is potentially changing the way we can treat diseases through drug delivery with curcumin. The recent investigations established several approaches to improve the bioavailability, to increase the plasma concentration, and to enhance the cellular permeability processes of curcumin. Several types of nanoparticles have been found to be suitable for the encapsulation or loading of curcumin to improve its therapeutic effects in different diseases. Nanoparticles such as liposomes, polymeric nanoparticles, micelles, nanogels, niosomes, cyclodextrins, dendrimers, silvers, and solid lipids are emerging as one of the useful alternatives that have been shown to deliver therapeutic concentrations of curcumin. This review shows that curcumin's therapeutic effects may increase to some extent in the presence of nanotechnology. The presented board of evidence focuses on the valuable special effects of curcumin on different diseases and candidates it for future clinical studies in the realm of these diseases.
Collapse
|
502
|
Can hyperthermic intraperitoneal chemotherapy efficiency be improved by blocking the DNA repair factor COP9 signalosome? Int J Colorectal Dis 2014; 29:673-80. [PMID: 24728517 DOI: 10.1007/s00384-014-1861-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2014] [Indexed: 02/04/2023]
Abstract
PURPOSE A frequently used chemotherapeutic agent in hyperthermic intraperitoneal chemotherapy (HIPEC) is mitomycin C (MMC) which induces DNA damage and apoptosis in tumor cells. In addition, MMC activates DNA damage response (DDR) leading to repair mechanisms counteracting the effect of chemotherapy. COP9 signalosome (CSN) positively influences the DDR pathway by its intrinsic deneddylating and associated kinase activities. In an in vitro HIPEC model, we studied the impact of curcumin, an inhibitor of CSN-associated kinases, and of the microRNA (miRNA) let-7a-1, an inhibitor of CSN subunit expression, on the MMC-induced apoptosis in human HT29 colon cancer cells. METHODS Cells were incubated at 37 °C and indicated concentrations of MMC in a medium preheated to 42 °C as under HIPEC conditions for 1 or 4 h. HT29 cells were cotreated with 50 μM curcumin or transfected with let-7a-1 miRNA mimic. After incubation, cells were analyzed by Western blotting, densitometry, and caspase-3 ELISA. RESULTS An increase of CSN subunits in response to MMC treatment was detected. Apoptosis was only measured after 4 h with 50 μM MMC. MMC-induced apoptosis was elevated by cotreatment with curcumin. Transfection of HT29 cells with let-7a-1 reduced the expression of tested CSN subunits associated with the accumulation of the pro-apoptotic factors p27 and p53. CONCLUSIONS In response to MMC treatment, the CSN is elevated as a regulator of DDR retarding apoptosis in tumor cells. The therapeutic effect of HIPEC can be increased by inhibiting CSN-associated kinases via curcumin or by blocking CSN expression with let-7a-1 miRNA.
Collapse
|
503
|
Henrotin Y, Gharbi M, Dierckxsens Y, Priem F, Marty M, Seidel L, Albert A, Heuse E, Bonnet V, Castermans C. Decrease of a specific biomarker of collagen degradation in osteoarthritis, Coll2-1, by treatment with highly bioavailable curcumin during an exploratory clinical trial. Altern Ther Health Med 2014; 14:159. [PMID: 24886572 PMCID: PMC4032499 DOI: 10.1186/1472-6882-14-159] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 04/30/2014] [Indexed: 01/06/2023]
Abstract
Background The management of osteoarthritis (OA) remains a challenge. There is a need not only for safe and efficient treatments but also for accurate and reliable biomarkers that would help diagnosis and monitoring both disease activity and treatment efficacy. Curcumin is basically a spice that is known for its anti-inflammatory properties. In vitro studies suggest that curcumin could be beneficial for cartilage in OA. The aim of this exploratory, non-controlled clinical trial was to evaluate the effects of bio-optimized curcumin in knee OA patients on the serum levels of specific biomarkers of OA and on the evaluation of pain. Methods Twenty two patients with knee OA were asked to take 2x3 caps/day of bio-optimized curcumin (Flexofytol®) for 3 months. They were monitored after 7, 14, 28 and 84 days of treatment. Pain over the last 24 hours and global assessment of disease activity by the patient were evaluated using a visual analog scale (100 mm). The serum levels of Coll-2-1, Coll-2-1NO2, Fib3-1, Fib3-2, CRP, CTX-II and MPO were determined before and after 14 and 84 days of treatment. Results The treatment with curcumin was globally well tolerated. It significantly reduced the serum level of Coll2-1 (p < 0.002) and tended to decrease CRP. No other significant difference was observed with the other biomarkers. In addition, curcumin significantly reduced the global assessment of disease activity by the patient. Conclusion This study highlighted the potential effect of curcumin in knee OA patient. This effect was reflected by the variation of a cartilage specific biomarker, Coll2-1 that was rapidly affected by the treatment. These results are encouraging for the qualification of Coll2-1 as a biomarker for the evaluation of curcumin in OA treatment. Trial registration NCT01909037 at clinicaltrials.gov
Collapse
|
504
|
Lee KH, Abas F, Mohamed Alitheen NB, Shaari K, Lajis NH, Israf DA, Syahida A. Chemopreventive effects of a curcumin-like diarylpentanoid [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] in cellular targets of rheumatoid arthritis in vitro. Int J Rheum Dis 2014; 18:616-27. [PMID: 24832356 DOI: 10.1111/1756-185x.12341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIM Synovial fibroblast has emerged as a potential cellular target in progressive joint destruction in rheumatoid arthritis development. In this study, BDMC33 (2,6-bis[2,5-dimethoxybenzylidene]cyclohexanone), a curcumin analogue with enhanced anti-inflammatory activity has been synthesized and the potency of BDMC33 on molecular and cellular basis of synovial fibroblasts (SF) were evaluated in vitro. METHODS Synovial fibroblast cells (HIG-82) were cultured in vitro and induced by phorbol-12-myristate acetate (PMA) to stimulate the expression of matrix metalloproteinase (MMPs) and pro-inflammatory cytokines. The protective effects of BDMC33 were evaluated toward MMP activities, pro-inflammatory cytokine expression and nuclear factor kappa-B (NF-κB) activation by using various bioassay methods, including zymography, Western blotting, reverse transcription polymerase chain reaction, immunofluorescense microscopy and electrophoretic mobility shift assay. RESULTS The results showed that BDMC33 significantly inhibited the pro-gelatinase B (pro-MMP-9) and collagenase activities via suppression of MMP-1 in activated SF. In addition, BDMC33 strongly suppressed MMP-3 gene expression as well as inhibited COX-2 and IL-6 pro-inflammatory gene expression. We also demonstrated that BDMC33 abolished the p65 NF-κB nuclear translocation and NF-κB DNA binding activity in PMA-stimulated SF. CONCLUSIONS BDMC33 represents an effective chemopreventive agent and could be used as a promising lead compound for further development of rheumatoid arthritis therapeutic intervention.
Collapse
Affiliation(s)
- Ka-Heng Lee
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Faridah Abas
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Food Science and Technology, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | | | - Khozirah Shaari
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Science, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Nordin Haji Lajis
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Science, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Daud Ahmad Israf
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Ahmad Syahida
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| |
Collapse
|
505
|
Hardman WE. Diet components can suppress inflammation and reduce cancer risk. Nutr Res Pract 2014; 8:233-40. [PMID: 24944766 PMCID: PMC4058555 DOI: 10.4162/nrp.2014.8.3.233] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 12/24/2022] Open
Abstract
Epidemiology studies indicate that diet or specific dietary components can reduce the risk for cancer, cardiovascular disease and diabetes. An underlying cause of these diseases is chronic inflammation. Dietary components that are beneficial against disease seem to have multiple mechanisms of action and many also have a common mechanism of reducing inflammation, often via the NFκB pathway. Thus, a plant based diet can contain many components that reduce inflammation and can reduce the risk for developing all three of these chronic diseases. We summarize dietary components that have been shown to reduce cancer risk and two studies that show that dietary walnut can reduce cancer growth and development. Part of the mechanism for the anticancer benefit of walnut was by suppressing the activation of NFκB. In this brief review, we focus on reduction of cancer risk by dietary components and the relationship to suppression of inflammation. However, it should be remembered that most dietary components have multiple beneficial mechanisms of action that can be additive and that suppression of chronic inflammation should reduce the risk for all three chronic diseases.
Collapse
Affiliation(s)
- W Elaine Hardman
- Department of Biochemistry and Microbiology, Marshall University Joan C. Edwards School of Medicine, 1600 Medical Center Dr., Huntington, West Virginia 25701-3655, USA
| |
Collapse
|
506
|
Thuillier R, Allain G, Giraud S, Saintyves T, Delpech PO, Couturier P, Billault C, Marchand E, Vaahtera L, Parkkinen J, Hauet T. Cyclodextrin curcumin formulation improves outcome in a preclinical pig model of marginal kidney transplantation. Am J Transplant 2014; 14:1073-83. [PMID: 24618351 DOI: 10.1111/ajt.12661] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/27/2013] [Accepted: 12/29/2013] [Indexed: 01/25/2023]
Abstract
Decreasing organ quality is prompting research toward new methods to alleviate ischemia reperfusion injury (IRI). Oxidative stress and nuclear factor kappa beta (NF-κB) activation are well-described elements of IRI. We added cyclodextrin-complexed curcumin (CDC), a potent antioxidant and NF-κB inhibitor, to University of Wisconsin (UW) solution (Belzer's Solution, Viaspan), one of the most effective clinically approved preservative solutions. The effects of CDC were evaluated on pig endothelial cells and in an autologous donation after circulatory death (DCD) kidney transplantation model in large white pigs. CDC allowed rapid and lasting uptake of curcumin into cells. In vitro, CDC decreased mitochondrial loss of function, improved viability and lowered endothelial activation. In vivo, CDC improved function recovery, lowered histological injury and doubled animal survival (83.3% vs. 41.7%). At 3 months, immunohistochemical staining for epithelial-to-mesenchymal transition (EMT) and fibrosis markers was intense in UW grafts while it remained limited in the UW + CDC group. Transcriptional analysis showed that CDC treatment protected against up-regulation of several pathophysiological pathways leading to inflammation, EMT and fibrosis. Thus, use of CDC in a preclinical transplantation model with stringent IRI rescued kidney grafts from an unfavorable prognosis. As curcumin has proved well tolerated and nontoxic, this strategy shows promise for translation to the clinic.
Collapse
Affiliation(s)
- R Thuillier
- Inserm U1082, Faculté de Medecine et Pharmacie, Université de Poitiers, Poitiers, France; Département de Biochimie, CHU de Poitiers, Poitiers, France; FLIRT: Fédération pour L'étude de l'Ischémie Reperfusion en Transplantation, Poitiers, France; COPE: Consortium for Organ Preservation in Europe
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
507
|
Pharmacokinetics, tissue distribution, excretion and plasma protein binding studies of wogonin in rats. Molecules 2014; 19:5538-49. [PMID: 24786691 PMCID: PMC6270787 DOI: 10.3390/molecules19055538] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 11/17/2022] Open
Abstract
Wogonin is a natural anticancer candidate. The purpose of this study was to explore the pharmacokinetic profiles, tissue distribution, excretion and plasma protein binding of wogonin in Sprague—Dawley rats. A rapid, sensitive, and specific LC-MS/MS method has been developed for the determination of wogonin in different rat biological samples. After i.v. dosing of wogonin at different levels (10, 20 and 40 mg/kg) the elimination half-life was approximately 14 min, the AUC0-∞ increased in a dose disproportional manner from 112.13 mg/L·min for 10 mg/kg to 758.19 mg/L·min for 40 mg/kg, indicating a non linear pharmacokinetic profile. After i.g. dosing at 100 mg/kg, plasma levels of wogonin peaked at 28 min with a Cmax value of 300 ng/mL and a very low oral bioavailability (1.10%). Following i.v. single dose (20 mg/kg), wogonin was detected in all examined tissues (including testis) with the highest levels in kidney and liver. Approximately 21% of the administered dose was excreted as unchanged drug (mainly via non-biliairy fecal route (16.33%). Equilibrium dialysis was used to evaluate plasma protein binding of wogonin at three concentrations (0.1, 0.5 and 2 µg/mL). Results indicated a very high protein binding degree (over 90%), reducing substantially the free fraction of the compound.
Collapse
|
508
|
Deng Y, Lu X, Wang L, Li T, Ding Y, Cao H, Zhang Y, Guo X, Yu G. Curcumin inhibits the AKT/NF-κB signaling via CpG demethylation of the promoter and restoration of NEP in the N2a cell line. AAPS JOURNAL 2014; 16:649-57. [PMID: 24756894 DOI: 10.1208/s12248-014-9605-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/01/2014] [Indexed: 01/01/2023]
Abstract
Curcumin (CUR), a non-toxic polyphenol from Curcuma longa, has been investigated as a potential therapy with anti-inflammatory and anti-oxidative effects for Alzheimer's disease (AD), which depicts features of chronic inflammatory environment resulting in cellular death. However, it remains largely unknown whether the anti-inflammatory effect of CUR in AD is associated with its property of CpG demethylation, which is another function of CUR with the most research interest during recent years. Neprilysin (NEP, EP24.11), a zinc-dependent metallopeptidase expressed relatively low in the brain, is emerging as a potent inhibitor of AKT/Protein Kinase B. In addition, hypermethylated promoter of NEP has been reported to be associated with decreases in NEP expression. In the present study, using bisulfite-sequencing PCR (BSP) assay, we showed that the CpG sites in NEP gene were hypermethylated both in wild-type mouse neuroblastoma N2a cells (N2a/wt) and N2a cells stably expressing human Swedish mutant amyloid precursor protein (APP) (N2a/APPswe) associated with familial early onset AD. CUR treatment induced restoration of NEP gene via CpG demethylation. This CUR-mediated upregulation of NEP expression was also concomitant with the inhibition of AKT, subsequent suppression of nuclear transcription factor-κB (NF-κB) and its downstream pro-inflammatory targets including COX-2, iNOS in N2a/APPswe cells. This study represents the first evidence on a link between CpG demethylation effect on NEP and anti-inflammation ability of CUR that may provide a novel mechanistic insight into the anti-inflammatory actions of CUR as well as new basis for using CUR as a therapeutic intervention for AD.
Collapse
Affiliation(s)
- Yushuang Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
509
|
Seo BR, Min KJ, Cho IJ, Kim SC, Kwon TK. Curcumin significantly enhances dual PI3K/Akt and mTOR inhibitor NVP-BEZ235-induced apoptosis in human renal carcinoma Caki cells through down-regulation of p53-dependent Bcl-2 expression and inhibition of Mcl-1 protein stability. PLoS One 2014; 9:e95588. [PMID: 24743574 PMCID: PMC3990719 DOI: 10.1371/journal.pone.0095588] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/27/2014] [Indexed: 12/26/2022] Open
Abstract
The PI3K/Akt and mTOR signaling pathways are important for cell survival and growth, and they are highly activated in cancer cells compared with normal cells. Therefore, these signaling pathways are targets for inducing cancer cell death. The dual PI3K/Akt and mTOR inhibitor NVP-BEZ235 completely inhibited both signaling pathways. However, NVP-BEZ235 had no effect on cell death in human renal carcinoma Caki cells. We tested whether combined treatment with natural compounds and NVP-BEZ235 could induce cell death. Among several chemopreventive agents, curcumin, a natural biologically active compound that is extracted from the rhizomes of Curcuma species, markedly induced apoptosis in NVP-BEZ235-treated cells. Co-treatment with curcumin and NVP-BEZ235 led to the down-regulation of Mcl-1 protein expression but not mRNA expression. Ectopic expression of Mcl-1 completely inhibited curcumin plus NVP-NEZ235-induced apoptosis. Furthermore, the down-regulation of Bcl-2 was involved in curcumin plus NVP-BEZ235-induced apoptosis. Curcumin or NVP-BEZ235 alone did not change Bcl-2 mRNA or protein expression, but co-treatment reduced Bcl-2 mRNA and protein expression. Combined treatment with NVP-BEZ235 and curcumin reduced Bcl-2 expression in wild-type p53 HCT116 human colon carcinoma cells but not p53-null HCT116 cells. Moreover, Bcl-2 expression was completely reversed by treatment with pifithrin-α, a p53-specific inhibitor. Ectopic expression of Bcl-2 also inhibited apoptosis in NVP-BE235 plus curcumin-treated cells. In contrast, NVP-BEZ235 combined with curcumin did not have a synergistic effect on normal human skin fibroblasts and normal human mesangial cells. Taken together, combined treatment with NVP-BEZ235 and curcumin induces apoptosis through p53-dependent Bcl-2 mRNA down-regulation at the transcriptional level and Mcl-1 protein down-regulation at the post-transcriptional level.
Collapse
Affiliation(s)
- Bo Ram Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Kyoung-jin Min
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Il Je Cho
- College of Oriental Medicine, Daegu Haany University, Gyeongsan, Korea
- Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Korea
| | - Sang Chan Kim
- College of Oriental Medicine, Daegu Haany University, Gyeongsan, Korea
- Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Korea
- * E-mail: (SCK); (TKK)
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
- * E-mail: (SCK); (TKK)
| |
Collapse
|
510
|
Noorafshan A, Asadi-Golshan R, Abdollahifar MA, Karbalay-Doust S. Protective role of curcumin against sulfite-induced structural changes in rats' medial prefrontal cortex. Nutr Neurosci 2014; 18:248-55. [PMID: 24694040 DOI: 10.1179/1476830514y.0000000123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Sodium metabisulfite as a food preservative can affect the central nervous system. Curcumin, the main ingredient of turmeric has neuroprotective activity. This study was designed to evaluate the effects of sulfite and curcumin on the medial prefrontal cortex (mPFC) using stereological methods. METHODS Thirty rats were randomly divided into five groups. The rats in groups I-V received distilled water, olive oil, curcumin (100 mg/kg/day), sodium metabisulfite (25 mg/kg/day), and sulfite + curcumin, respectively, for 8 weeks. The brains were subjected to the stereological methods. Cavalieri and optical disector techniques were used to estimate the total volume of mPFC and the number of neurons and glial cells. Intersections counting were applied on the thick vertical uniform random sections to estimate the dendrites length, and classify the spines. Non-parametric tests were used to analyze the data. RESULTS The mean mPFC volume, neurons number, glia number, dendritic length, and total spines per neuron were 3.7 mm(3), 365,000, 180,000, 1820 µm, and 1700 in distilled water group, respectively. A reduction was observed in the volume of mPFC (∼8%), number of neurons (∼15%), and number of glia (∼14%) in mPFC of the sulfite group compared to the control groups (P < 0.005). Beside, dendritic length per neuron (∼10%) and the total spines per neuron (mainly mushroom spines) (∼25%) were reduced in the sulfite group (P < 0.005). DISCUSSION The sulfite-induced structural changes in mPFC and curcumin had a protective role against the changes in the rats.
Collapse
|
511
|
Hao H, Zheng X, Wang G. Insights into drug discovery from natural medicines using reverse pharmacokinetics. Trends Pharmacol Sci 2014; 35:168-77. [DOI: 10.1016/j.tips.2014.02.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 01/21/2014] [Accepted: 02/02/2014] [Indexed: 01/01/2023]
|
512
|
Pharmacological evidence for the participation of NO-cGMP-KATP pathway in the gastric protective effect of curcumin against indomethacin-induced gastric injury in the rat. Eur J Pharmacol 2014; 730:102-6. [PMID: 24607410 DOI: 10.1016/j.ejphar.2014.02.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/05/2014] [Accepted: 02/16/2014] [Indexed: 01/29/2023]
Abstract
Curcumin, main compound obtained from rizhoma of Curcuma longa, shows antitumoral, antioxidant, anticarcinogenic and gastric protective properties. Recently, it has been demonstrated that curcumin exerts its gastric protective action due to an increase in gastric nitric oxide (NO) levels. However, it is unknown whether these increased NO levels are associated with activation of intracellular signaling pathways. Thus, the purpose of this study was to investigate the role of NO-cGMP-KATP pathway in the gastric protective effect of curcumin during indomethacin-induced gastric injury in the rat. Adult female Wistar rats were gavaged with curcumin (3-300mg/kg, p.o.) or omeprazole (30mg/kg, p.o.) 30min before indomethacin insult (30mg/kg, p.o.). Other groups of rats were administered L-NAME (70mg/kg, i.p.; inhibitor of nitric oxide synthase), ODQ (10mg/kg, i.p.; inhibitor of soluble guanylate cyclase) or glibenclamide (1mg/kg, i.p.; blocker of ATP-sensitive potassium (KATP) channels) 30min before curcumin (30mg/kg, p.o.). 3h after indomethacin administration, rats were sacrificed and gastric injury was evaluated by determining total damaged area. A sample of gastric tissue was harvested and processed to quantify organic nitrite levels. Curcumin significantly protected against indomethacin-induced gastric injury and this effect was comparable to gastroprotective effect by omeprazole. L-NAME, ODQ and glibenclamide significantly prevented the curcumin-mediated gastric protective effect in the indomethacin-induced gastric injury model. Furthermore, curcumin administration induced a significant increase in gastric nitric oxide levels as compared to vehicle administration. Our results show for the first time that curcumin activates NO/cGMP/KATP pathway during its gastro protective action.
Collapse
|
513
|
Inhibitory effect of tetrahydrocurcumin on dimethylnitrosamine-induced liver fibrosis in rats. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.01.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
514
|
Kang N, Wang MM, Wang YH, Zhang ZN, Cao HR, Lv YH, Yang Y, Fan PH, Qiu F, Gao XM. Tetrahydrocurcumin induces G2/M cell cycle arrest and apoptosis involving p38 MAPK activation in human breast cancer cells. Food Chem Toxicol 2014; 67:193-200. [PMID: 24593988 DOI: 10.1016/j.fct.2014.02.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 02/06/2014] [Accepted: 02/11/2014] [Indexed: 01/10/2023]
Abstract
Curcumin (CUR) is a major naturally-occurring polyphenol of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. In recent years, it has been reported that CUR exhibits significant anti-tumor activity in vivo. However, the pharmacokinetic features of CUR have indicated poor oral bioavailability, which may be related to its extensive metabolism. The CUR metabolites might be responsible for the antitumor pharmacological effects in vivo. Tetrahydrocurcumin (THC) is one of the major metabolites of CUR. In the present study, we examined the efficacy and associated mechanism of action of THC in human breast cancer MCF-7 cells for the first time. Here, THC exhibited significant cell growth inhibition by inducing MCF-7 cells to undergo mitochondrial apoptosis and G2/M arrest. Moreover, co-treatment of MCF-7 cells with THC and p38 MAPK inhibitor, SB203580, effectively reversed the dissipation in mitochondrial membrane potential (Δψm), and blocked THC-mediated Bax up-regulation, Bcl-2 down-regulation, caspase-3 activation as well as p21 up-regulation, suggesting p38 MAPK might mediate THC-induced apoptosis and G2/M arrest. Taken together, these results indicate THC might be an active antitumor form of CUR in vivo, and it might be selected as a potentially effective agent for treatment of human breast cancer.
Collapse
Affiliation(s)
- Ning Kang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China; Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Miao-Miao Wang
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Ying-Hui Wang
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Zhe-Nan Zhang
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Hong-Rui Cao
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Yuan-Hao Lv
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Peng-Hui Fan
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Feng Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China.
| | - Xiu-Mei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China.
| |
Collapse
|
515
|
Pu HL, Chiang WL, Maiti B, Liao ZX, Ho YC, Shim MS, Chuang EY, Xia Y, Sung HW. Nanoparticles with dual responses to oxidative stress and reduced ph for drug release and anti-inflammatory applications. ACS NANO 2014; 8:1213-21. [PMID: 24386907 DOI: 10.1021/nn4058787] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Oxidative stress and reduced pH are involved in many inflammatory diseases. This study describes a nanoparticle-based system that is responsive to both oxidative stress and reduced pH in an inflammatory environment to effectively release its encapsulated curcumin, an immune-modulatory agent with potent anti-inflammatory and antioxidant capabilities. Because of the presence of Förster resonance energy transfer between curcumin and the carrier, this system also allowed us to monitor the intracellular release behavior. The curcumin released upon triggering could efficiently reduce the excess oxidants produced by the lipopolysaccharide (LPS)-stimulated macrophages. The feasibility of using the curcumin-loaded nanoparticles for anti-inflammatory applications was further validated in a mouse model with ankle inflammation induced by LPS. The results of these studies demonstrate that the proposed nanoparticle system is promising for treating oxidative stress-related diseases.
Collapse
Affiliation(s)
- Hsiao-Lan Pu
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan (ROC)
| | | | | | | | | | | | | | | | | |
Collapse
|
516
|
Ormond DR, Shannon C, Oppenheim J, Zeman R, Das K, Murali R, Jhanwar-Uniyal M. Stem cell therapy and curcumin synergistically enhance recovery from spinal cord injury. PLoS One 2014; 9:e88916. [PMID: 24558450 PMCID: PMC3928327 DOI: 10.1371/journal.pone.0088916] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/13/2014] [Indexed: 01/11/2023] Open
Abstract
Acute traumatic spinal cord injury (SCI) is marked by the enhanced production of local cytokines and pro-inflammatory substances that induce gliosis and prevent reinnervation. The transplantation of stem cells is a promising treatment strategy for SCI. In order to facilitate functional recovery, we employed stem cell therapy alone or in combination with curcumin, a naturally-occurring anti-inflammatory component of turmeric (Curcuma longa), which potently inhibits NF-κB. Spinal cord contusion following laminectomy (T9–10) was performed using a weight drop apparatus (10 g over a 12.5 or 25 mm distance, representing moderate or severe SCI, respectively) in Sprague-Dawley rats. Neural stem cells (NSC) were isolated from subventricular zone (SVZ) and transplanted at the site of injury with or without curcumin treatment. Functional recovery was assessed by BBB score and body weight gain measured up to 6 weeks following SCI. At the conclusion of the study, the mass of soleus muscle was correlated with BBB score and body weight. Stem cell therapy improved recovery from moderate SCI, however, it had a limited effect on recovery after severe SCI. Curcumin stimulated NSC proliferation in vitro, and in combination with stem cell therapy, induced profound recovery from severe SCI as evidenced by improved functional locomotor recovery, increased body weight, and soleus muscle mass. These findings demonstrate that curcumin in conjunction with stem cell therapy synergistically improves recovery from severe SCI. Furthermore, our results indicate that the effect of curcumin extends beyond its known anti-inflammatory properties to the regulation of stem cell proliferation.
Collapse
Affiliation(s)
- D. Ryan Ormond
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
| | - Craig Shannon
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
| | - Julius Oppenheim
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
| | - Richard Zeman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, United States of America
| | - Kaushik Das
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
| | - Raj Murali
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
| | - Meena Jhanwar-Uniyal
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
517
|
Li WC, Lee PL, Chou IC, Chang WJ, Lin SC, Chang KW. Molecular and cellular cues of diet-associated oral carcinogenesis-with an emphasis on areca-nut-induced oral cancer development. J Oral Pathol Med 2014; 44:167-77. [DOI: 10.1111/jop.12171] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Wan-Chun Li
- Department of Dentistry; School of Dentistry; National Yang-Ming University; Taipei Taiwan
- Institute of Oral Biology; School of Dentistry; National Yang-Ming University; Taipei Taiwan
- Department of Education and Research; Taipei City Hospital; Taipei Taiwan
| | - Pei-Lun Lee
- Institute of Oral Biology; School of Dentistry; National Yang-Ming University; Taipei Taiwan
| | - I-Chiang Chou
- Department of Dentistry; School of Dentistry; National Yang-Ming University; Taipei Taiwan
- Department of Dentistry; Zhong-Xiao Branch; Taipei City Hospital; Taipei Taiwan
| | - Wan-Jung Chang
- Institute of Oral Biology; School of Dentistry; National Yang-Ming University; Taipei Taiwan
| | - Shu-Chun Lin
- Department of Dentistry; School of Dentistry; National Yang-Ming University; Taipei Taiwan
- Institute of Oral Biology; School of Dentistry; National Yang-Ming University; Taipei Taiwan
- Department of Stomatology; Taipei Veterans General Hospital; Taipei Taiwan
| | - Kuo-Wei Chang
- Department of Dentistry; School of Dentistry; National Yang-Ming University; Taipei Taiwan
- Institute of Oral Biology; School of Dentistry; National Yang-Ming University; Taipei Taiwan
- Department of Stomatology; Taipei Veterans General Hospital; Taipei Taiwan
| |
Collapse
|
518
|
Lüer SC, Goette J, Troller R, Aebi C. Synthetic versus natural curcumin: bioequivalence in an in vitro oral mucositis model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:53. [PMID: 24517289 PMCID: PMC3927628 DOI: 10.1186/1472-6882-14-53] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 01/30/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND Curcumin (CUR) is a dietary spice and food colorant (E100). Its potent anti-inflammatory activity by inhibiting the activation of Nuclear Factor-κB is well established. METHODS The aim of this study was to compare natural purified CUR (nCUR) with synthetically manufactured CUR (sCUR) with respect to their capacity to inhibit detrimental effects in an in vitro model of oral mucositis. The hypothesis was to demonstrate bioequivalence of nCUR and sCUR. RESULTS The purity of sCUR was HPLC-confirmed. Adherence and invasion assays for bacteria to human pharyngeal epithelial cells demonstrated equivalence of nCUR and sCUR. Standard assays also demonstrated an identical inhibitory effect on pro-inflammatory cytokine/chemokine secretion (e.g., interleukin-8, interleukin-6) by Detroit pharyngeal cells exposed to bacterial stimuli. There was bioequivalence of sCUR and nCUR with respect to their antibacterial effects against various pharyngeal species. CONCLUSION nCUR and sCUR are equipotent in in vitro assays mimicking aspects of oral mucositis. The advantages of sCUR include that it is odorless and tasteless, more easily soluble in DMSO, and that it is a single, highly purified molecule, lacking the batch-to-batch variation of CUR content in nCUR. sCUR is a promising agent for the development of an oral anti-mucositis agent.
Collapse
|
519
|
Bansal SS, Kausar H, Vadhanam MV, Ravoori S, Pan J, Rai SN, Gupta RC. Curcumin implants, not curcumin diet, inhibit estrogen-induced mammary carcinogenesis in ACI rats. Cancer Prev Res (Phila) 2014; 7:456-65. [PMID: 24501322 DOI: 10.1158/1940-6207.capr-13-0248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Curcumin is widely known for its antioxidant, anti-inflammatory, and antiproliferative activities in cell-culture studies. However, poor oral bioavailability limited its efficacy in animal and clinical studies. Recently, we developed polymeric curcumin implants that circumvent oral bioavailability issues, and tested their potential against 17β-estradiol (E2)-mediated mammary tumorigenesis. Female Augustus Copenhagen Irish (ACI) rats were administered curcumin either via diet (1,000 ppm) or via polymeric curcumin implants (two 2 cm; 200 mg each; 20% drug load) 4 days before grafting a subcutaneous E2 silastic implant (1.2 cm, 9 mg E2). Curcumin implants were changed after 4.5 months to provide higher curcumin dose at the appearance of palpable tumors. The animals were euthanized after 3 weeks, 3 months, and after the tumor incidence reached >80% (~6 months) in control animals. The curcumin administered via implants resulted in significant reduction in both the tumor multiplicity (2 ± 1 vs. 5 ± 3; P = 0.001) and tumor volume (184 ± 198 mm(3) vs. 280 ± 141 mm(3); P = 0.0283); the dietary curcumin, however, was ineffective. Dietary curcumin increased hepatic CYP1A and CYP1B1 activities without any effect on CYP3A4 activity, whereas curcumin implants increased both CYP1A and CYP3A4 activities but decreased CYP1B1 activity in the presence of E2. Because CYP1A and CYP3A4 metabolize most of the E2 to its noncarcinogenic 2-OH metabolite, and CYP1B1 produces potentially carcinogenic 4-OH metabolite, favorable modulation of these CYPs via systemically delivered curcumin could be one of the potential mechanisms. The analysis of plasma and liver by high-performance liquid chromatography showed substantially higher curcumin levels via implants versus the dietary route despite substantially higher dose administered.
Collapse
Affiliation(s)
- Shyam S Bansal
- 580 South Preston Street, Delia Baxter II, Room 304E, University of Louisville, Louisville, KY 40202.
| | | | | | | | | | | | | |
Collapse
|
520
|
Sato H, Chuang VTG, Yamasaki K, Yamaotsu N, Watanabe H, Nagumo K, Anraku M, Kadowaki D, Ishima Y, Hirono S, Otagiri M, Maruyama T. Differential effects of methoxy group on the interaction of curcuminoids with two major ligand binding sites of human serum albumin. PLoS One 2014; 9:e87919. [PMID: 24498401 PMCID: PMC3912132 DOI: 10.1371/journal.pone.0087919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/01/2014] [Indexed: 01/30/2023] Open
Abstract
Curcuminoids are a group of compounds with a similar chemical backbone structure but containing different numbers of methoxy groups that have therapeutic potential due to their anti-inflammatory and anti-oxidant properties. They mainly bind to albumin in plasma. These findings influence their body disposition and biological activities. Spectroscopic analysis using site specific probes on human serum albumin (HSA) clearly indicated that curcumin (Cur), demethylcurcumin (Dmc) and bisdemethoxycurcumin (Bdmc) bind to both Site I (sub-site Ia and Ib) and Site II on HSA. At pH 7.4, the binding constants for Site I were relatively comparable between curcuminoids, while the binding constants for Site II at pH 7.4 were increased in order Cur < Dmc < Bdmc. Binding experiments using HSA mutants showed that Trp214 and Arg218 at Site I, and Tyr411 and Arg410 at Site II are involved in the binding of curcuminoids. The molecular docking of all curcuminoids to the Site I pocket showed that curcuminoids stacked with Phe211 and Trp214, and interacted with hydrophobic and aromatic amino acid residues. In contrast, each curcuminoid interacted with Site II in a different manner depending whether a methoxy group was present or absent. A detailed analysis of curcuminoids-albumin interactions would provide valuable information in terms of understanding the pharmacokinetics and the biological activities of this class of compounds.
Collapse
Affiliation(s)
- Hiroki Sato
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Center for Clinical Pharmaceutical Science, Kumamoto University, Kumamoto, Japan
| | - Victor Tuan Giam Chuang
- School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, DDS Research Institute, Sojo University, Kumamoto, Japan
| | | | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Center for Clinical Pharmaceutical Science, Kumamoto University, Kumamoto, Japan
| | - Kohei Nagumo
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Center for Clinical Pharmaceutical Science, Kumamoto University, Kumamoto, Japan
| | - Makoto Anraku
- Faculty of Pharmaceutical Sciences, DDS Research Institute, Sojo University, Kumamoto, Japan
| | - Daisuke Kadowaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Center for Clinical Pharmaceutical Science, Kumamoto University, Kumamoto, Japan
| | - Yu Ishima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Center for Clinical Pharmaceutical Science, Kumamoto University, Kumamoto, Japan
| | | | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, DDS Research Institute, Sojo University, Kumamoto, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Center for Clinical Pharmaceutical Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
521
|
Ratanavaraporn J, Kanokpanont S, Damrongsakkul S. The development of injectable gelatin/silk fibroin microspheres for the dual delivery of curcumin and piperine. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:401-410. [PMID: 24186150 DOI: 10.1007/s10856-013-5082-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/20/2013] [Indexed: 06/02/2023]
Abstract
The objective of this study was to develop the microspheres from gelatin (G) and silk fibroin (SF) aimed to be applied for the controlled release of curcumin and piperine. The glutaraldehyde-crosslinked G/SF microspheres at various weight blending ratios (100/0, 70/30, 50/50, and 30/70) were successfully fabricated by water in oil emulsion technique. The microspheres prepared from all compositions were in a round shape with homogeneous size distribution both in the dried (194-217 μm) and swollen states (297-367 μm). When subjected in collagenase solution at physiological condition, the G microspheres gradually degraded within 14 days while the blended G/SF microspheres, particularly at 50/50 and 30/70, were not degraded. For the release application, the microspheres were loaded with curcumin and/or piperine. It was found that the microspheres composed of SF tended to entrap curcumin and piperine with the high entrapment and loading efficiencies, possibly due to their hydrophobic interactions. The G/SF microspheres, particularly at the ratios of 50/50 and 30/70, released curcumin and piperine in a sustained manner both for the single and dual release systems. The controlled dual release of curcumin and piperine from the G/SF microspheres would prolong their half-life, provide the optimal concentrations for therapeutic effects at a target site, and improve the bioavailability of curcumin. These novel injectable microspheres dually releasing curcumin and piperine would be introduced for the treatment of diseases without the need of operation.
Collapse
Affiliation(s)
- Juthamas Ratanavaraporn
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, PhayaThai Road, Pathumwan, Bangkok, 10330, Thailand
| | | | | |
Collapse
|
522
|
Li Y, Zhang T. Targeting cancer stem cells by curcumin and clinical applications. Cancer Lett 2014; 346:197-205. [PMID: 24463298 DOI: 10.1016/j.canlet.2014.01.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/14/2014] [Accepted: 01/19/2014] [Indexed: 02/07/2023]
Abstract
Curcumin is a well-known dietary polyphenol derived from the rhizomes of turmeric, an Indian spice. The anticancer effect of curcumin has been demonstrated in many cell and animal studies, and recent research has shown that curcumin can target cancer stem cells (CSCs). CSCs are proposed to be responsible for initiating and maintaining cancer, and contribute to recurrence and drug resistance. A number of studies have suggested that curcumin has the potential to target CSCs through regulation of CSC self-renewal pathways (Wnt/β-catenin, Notch, sonic hedgehog) and specific microRNAs involved in acquisition of epithelial-mesenchymal transition (EMT). The potential impact of curcumin, alone or in combination with other anticancer agents, on CSCs was evaluated as well. Furthermore, the safety and tolerability of curcumin have been well-established by numerous clinical studies. Importantly, the low bioavailability of curcumin has been dramatically improved through the use of structural analogues or special formulations. More clinical trials are underway to investigate the efficacy of this promising agent in cancer chemoprevention and therapy. In this article, we review the effects of curcumin on CSC self-renewal pathways and specific microRNAs, as well as its safety and efficacy in recent human studies. In conclusion, curcumin could be a very promising adjunct to traditional cancer treatments.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Health and Nutrition Sciences, Montclair State University, University Hall 4190, 1 Normal Ave., Montclair, NJ 07043, USA.
| | - Tao Zhang
- Drug Metabolism and Pharmacokinetics, Novartis Institute for Biomedical Research, Novartis Pharmaceutical Corporation, East Hanover, NJ 07936, USA.
| |
Collapse
|
523
|
Rubió L, Motilva MJ, Romero MP. Recent advances in biologically active compounds in herbs and spices: a review of the most effective antioxidant and anti-inflammatory active principles. Crit Rev Food Sci Nutr 2014; 53:943-53. [PMID: 23768186 DOI: 10.1080/10408398.2011.574802] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spices, like vegetables, fruit, and medicinal herbs, are known to possess a variety of antioxidant effects and other biological activities. Phenolic compounds in these plant materials are closely associated with their antioxidant activity, which is mainly due to their redox properties and their capacity to block the production of reactive oxygen species. More recently, their ability to interfere with signal transduction pathways involving various transcription factors, protein kinases, phosphatases, and other metabolic enzymes has also been demonstrated. Many of the spice-derived compounds which are potent antioxidants are of great interest to biologists and clinicians because they may help protect the human body against oxidative stress and inflammatory processes. It is important to study the bioactive compounds that can modulate target functions related to defence against oxidative stress, and that might be used to achieve health benefits individually. In the present review, an attempt has been made to summarize the most current scientific evidence about the in vitro and in vivo effects of the bioactive compounds derived from herbs and spices, focused on anti-inflammatory and antioxidant effects, in order to provide science-based evidence for the traditional uses and develop either functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Laura Rubió
- Department of Food Technology, XaRTA-UTPV, Escola Tècnica Superior d'Enginyeria Agrària, Universitat de Lleida, Avda/Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | | | | |
Collapse
|
524
|
Yu CW, Wei CC, Liao VHC. Curcumin-mediated oxidative stress resistance in Caenorhabditis elegans is modulated by age-1, akt-1, pdk-1, osr-1, unc-43, sek-1, skn-1, sir-2.1, and mev-1. Free Radic Res 2014; 48:371-9. [PMID: 24313805 DOI: 10.3109/10715762.2013.872779] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Curcumin (diferuloylmethane), a pharmacologically active substance derived from turmeric, exhibits anti-inflammatory, anticarcinogenic, and antioxidant properties. We examined the modulation of oxidative-stress resistance and associated regulatory mechanisms by curcumin in a Caenorhabditis elegans model. Our results showed that curcumin-treated wild-type C. elegans exhibited increased survival during juglone-induced oxidative stress compared with the control treatment. In addition, curcumin reduced the levels of intracellular reactive oxygen species in C. elegans. Moreover, curcumin induced the expression of the gst-4 and hsp-16.2 stress response genes. Lastly, our findings from the mechanistic study in this investigation suggest that the antioxidative effect of curcumin is mediated via regulation of age-1, akt-1, pdk-1, osr-1, unc-43, sek-1, skn-1, sir-2.1, and mev-1. Our study elucidates the diverse modes of action and signaling pathways that underlie the antioxidant activity exhibited by curcumin in vivo.
Collapse
Affiliation(s)
- C-W Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University , Taipei , Taiwan
| | | | | |
Collapse
|
525
|
Anthwal A, Singh K, Rawat MSM, Tyagi AK, Aggarwal BB, Rawat DS. C5-curcuminoid-dithiocarbamate based molecular hybrids: synthesis and anti-inflammatory and anti-cancer activity evaluation. RSC Adv 2014. [DOI: 10.1039/c4ra03655g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The C5-curcumin-dithiocarbamate analogues were synthesized in search of new molecules with anti-proliferation potential against cancer cells. These new compounds demonstrated higher anti-proliferation and anti-inflammatory activity against cancer cell lines in comparison to curcumin.
Collapse
Affiliation(s)
- Amit Anthwal
- Department of Chemistry
- University of Delhi
- Delhi-110007, India
- Department of Chemistry
- H. N. B. Garhwal University (A Central University)
| | - Kundan Singh
- Department of Chemistry
- University of Delhi
- Delhi-110007, India
| | - M. S. M. Rawat
- Department of Chemistry
- H. N. B. Garhwal University (A Central University)
- , India
| | - Amit K. Tyagi
- Cytokine Research Laboratory and Pharmaceutical Development Center
- Department of Experimental Therapeutics
- The University of Texas M. D. Anderson Cancer Center
- Houston, USA
| | - Bharat B. Aggarwal
- Cytokine Research Laboratory and Pharmaceutical Development Center
- Department of Experimental Therapeutics
- The University of Texas M. D. Anderson Cancer Center
- Houston, USA
| | - Diwan S. Rawat
- Department of Chemistry
- University of Delhi
- Delhi-110007, India
| |
Collapse
|
526
|
Prasad SN. Neuroprotective effect of geraniol and curcumin in an acrylamide model of neurotoxicity in Drosophila melanogaster: relevance to neuropathy. JOURNAL OF INSECT PHYSIOLOGY 2014; 60:7-16. [PMID: 24231732 DOI: 10.1016/j.jinsphys.2013.10.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Abstract
Chronic exposure of acrylamide (ACR) leads to neuronal damage in both experimental animals and humans. The primary focus of this study was to assess the ameliorative effect of geraniol, (a natural monoterpene) against ACR-induced oxidative stress, mitochondrial dysfunction and neurotoxicity in a Drosophila model and compare its efficacy to that of curcumin, a spice active principle with pleiotropic biological activity. Adult male flies (8-10 days) were exposed (7 days) to ACR (5 mM) with or without geraniol and curcumin (5-10 μM) in the medium. Both phytoconstituents significantly reduced the incidence of ACR-induced mortality, rescued the locomotor phenotype and alleviated the enhanced levels of oxidative stress markers in head/body regions. The levels of reduced glutathione (GSH) and total thiols (TSH) resulting from ACR exposure was also restored with concomitant elevation in the activities of detoxifying enzymes. Interestingly, ACR induced mitochondrial dysfunctions (MTT reduction, activities of SDH and citrate synthase enzymes) were alleviated by both phytoconstituents. While ACR elevated the activity of acetylcholinesterase in head/body regions, marked diminution in enzyme activity ensued with co-exposure to phytoconstituents suggesting their potency to mitigate cholinergic function. Furthermore, phytoconstituents also restored the dopamine levels in head/body regions. The neuroprotective effect of geraniol was comparable to curcumin in terms of phenotypic and biochemical markers. Based on our evidences in fly model we hypothesise that geraniol possess significant neuromodulatory propensity and may be exploited for therapeutic application in human pathophysiology associated with neuropathy. However, the precise mechanism/s by which geraniol offers neuroprotection needs to be investigated in appropriate neuronal cell models.
Collapse
Affiliation(s)
- Sathya N Prasad
- Department of Biochemistry and Nutrition, CSIR- Central Food Technological Research Institute (CFTRI), Mysore 570020, Karnataka, India
| |
Collapse
|
527
|
Kumar H, Kim IS, More SV, Kim BW, Choi DK. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep 2014; 31:109-39. [DOI: 10.1039/c3np70065h] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
528
|
Debata PR, Curcio GM, Mukherjee S, Banerjee P. Causal Factors for Brain Tumor and Targeted Strategies. SPRINGER PROCEEDINGS IN PHYSICS 2014. [DOI: 10.1007/978-3-319-02207-9_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
529
|
Nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, Nabavi SM. Curcumin and Liver Disease: from Chemistry to Medicine. Compr Rev Food Sci Food Saf 2013; 13:62-77. [DOI: 10.1111/1541-4337.12047] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/23/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center; Baqiyatallah Univ. of Medical Sciences; Tehran Iran
| | - Maria Daglia
- Dept. of Drug Sciences; Univ. of Pavia, Medicinal Chemistry and Pharmaceutical Technology Section; via Taramelli 12 27100 Pavia Italy
| | - Akbar Hajizadeh Moghaddam
- Amol Univ. of Special Modern Technologies; Amol Iran
- Dept. of Biology; Faculty of basic science; Univ. of Mazandaran; Babolsar Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories; Medway School of Science, Univ. of Greenwich; Central Ave. Chatham-Maritime Kent ME4 4TB U.K
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center; Baqiyatallah Univ. of Medical Sciences; Tehran Iran
| |
Collapse
|
530
|
Ali Hussei S, El-Said Az M, Kamal El-S S. Protective Effect of Curcumin on Antioxidant Defense System and Oxidative Stress in Liver Tissue of Iron Overloading Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ajcn.2014.1.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
531
|
Antoine F, Simard JC, Girard D. Curcumin inhibits agent-induced human neutrophil functions in vitro and lipopolysaccharide-induced neutrophilic infiltration in vivo. Int Immunopharmacol 2013; 17:1101-7. [DOI: 10.1016/j.intimp.2013.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/18/2013] [Accepted: 09/30/2013] [Indexed: 12/23/2022]
|
532
|
Canfrán-Duque A, Pastor Ó, Quintana-Portillo R, Lerma M, de la Peña G, Martín-Hidalgo A, Fernández-Hernando C, Lasunción MA, Busto R. Curcumin promotes exosomes/microvesicles secretion that attenuates lysosomal cholesterol traffic impairment. Mol Nutr Food Res 2013; 58:687-97. [DOI: 10.1002/mnfr.201300350] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/10/2013] [Accepted: 09/20/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Alberto Canfrán-Duque
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
| | - Óscar Pastor
- Servicio de Bioquímica-Clínica; Hospital Universitario Ramón y Cajal; IRyCIS; Madrid Spain
| | - Rocío Quintana-Portillo
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
| | - Milagros Lerma
- Servicio de Bioquímica-Clínica; Hospital Universitario Ramón y Cajal; IRyCIS; Madrid Spain
| | - Gema de la Peña
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
| | - Antonia Martín-Hidalgo
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn); ISCIII; Spain
| | - Carlos Fernández-Hernando
- Marc and Ruti Bell Vascular Biology and Disease Program; Leon H. Charney Division of Cardiology; Departments of Medicine and Cell Biology; New York University School of Medicine; New York NY USA
| | - Miguel A. Lasunción
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn); ISCIII; Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn); ISCIII; Spain
| |
Collapse
|
533
|
Kenakin T, Bylund DB, Toews ML, Mullane K, Winquist RJ, Williams M. Replicated, replicable and relevant-target engagement and pharmacological experimentation in the 21st century. Biochem Pharmacol 2013; 87:64-77. [PMID: 24269285 DOI: 10.1016/j.bcp.2013.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 02/06/2023]
Abstract
A pharmacological experiment is typically conducted to: i) test or expand a hypothesis regarding the potential role of a target in the mechanism(s) underlying a disease state using an existing drug or tool compound in normal and/or diseased tissue or animals; or ii) characterize and optimize a new chemical entity (NCE) targeted to modulate a specific disease-associated target to restore homeostasis as a potential drug candidate. Hypothesis testing necessitates an intellectually rigorous, null hypothesis approach that is distinct from a high throughput fishing expedition in search of a hypothesis. In conducting an experiment, the protocol should be transparently defined along with its powering, design, appropriate statistical analysis and consideration of the anticipated outcome (s) before it is initiated. Compound-target interactions often involve the direct study of phenotype(s) unique to the target at the cell, tissue or animal/human level. However, in vivo studies are often compromised by a lack of sufficient information on the compound pharmacokinetics necessary to ensure target engagement and also by the context-free analysis of ubiquitous cellular signaling pathways downstream from the target. The use of single tool compounds/drugs at one concentration in engineered cell lines frequently results in reductionistic data that have no physiologically relevance. This overview, focused on trends in the peer-reviewed literature, discusses the execution and reporting of experiments and the criteria recommended for the physiologically-relevant assessment of target engagement to identify viable new drug targets and facilitate the advancement of translational studies.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - David B Bylund
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Myron L Toews
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Raymond J Winquist
- Department of Integrated Biology, Vertex Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Michael Williams
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
534
|
Mohammadi R, Mahmoodi H. Improvement of peripheral nerve regeneration following nerve repair by silicone tube filled with curcumin: A preliminary study in the rat model. Int J Surg 2013; 11:819-25. [DOI: 10.1016/j.ijsu.2013.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/22/2013] [Accepted: 08/18/2013] [Indexed: 12/11/2022]
|
535
|
Piccolella M, Crippa V, Messi E, Tetel MJ, Poletti A. Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells. Pharmacol Res 2013; 79:13-20. [PMID: 24184124 DOI: 10.1016/j.phrs.2013.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 11/16/2022]
Abstract
In the initial stages, human prostate cancer (PC) is an androgen-sensitive disease, which can be pharmacologically controlled by androgen blockade. This therapy often induces selection of androgen-independent PC cells with increased invasiveness. We recently demonstrated, both in cells and mice, that a testosterone metabolite locally synthetized in prostate, the 5α-androstane-3β, 17β-diol (3β-Adiol), inhibits PC cell proliferation, migration and invasion, acting as an anti-proliferative/anti-metastatic agent. 3β-Adiol is unable to bind androgen receptor (AR), but exerts its protection against PC by specifically interacting with estrogen receptor beta (ERβ). Because of its potential retro-conversion to androgenic steroids, 3β-Adiol cannot be used "in vivo", thus, the aims of this study were to investigate the capability of four ligands of ERβ (raloxifen, tamoxifen, genistein and curcumin) to counteract PC progression by mimicking the 3β-Adiol activity. Our results demonstrated that raloxifen, tamoxifen, genistein and curcumin decreased DU145 and PC3 cell proliferation in a dose-dependent manner; in addition, all four compounds significantly decreased the detachment of cells seeded on laminin or fibronectin. Moreover, raloxifen, tamoxifen, genistein and curcumin-treated DU145 and PC3 cells showed a significant decrease in cell migration. Notably, all these effects were reversed by the anti-estrogen, ICI 182,780, suggesting that their actions are mediated by the estrogenic pathway, via the ERβ, the only isoform present in these PCs. In conclusion, these data demonstrate that by selectively activating the ERβ, raloxifen, tamoxifen, genistein and curcumin inhibit human PC cells proliferation and migration favoring cell adesion. These synthetic and natural modulators of ER action may exert a potent protective activity against the progression of PC even in its androgen-independent status.
Collapse
Affiliation(s)
- Margherita Piccolella
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Italy
| | - Valeria Crippa
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Italy
| | - Elio Messi
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Italy
| | - Marc J Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | - Angelo Poletti
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Italy.
| |
Collapse
|
536
|
Mullane K, Winquist RJ, Williams M. Translational paradigms in pharmacology and drug discovery. Biochem Pharmacol 2013; 87:189-210. [PMID: 24184503 DOI: 10.1016/j.bcp.2013.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 12/15/2022]
Abstract
The translational sciences represent the core element in enabling and utilizing the output from the biomedical sciences and to improving drug discovery metrics by reducing the attrition rate as compounds move from preclinical research to clinical proof of concept. Key to understanding the basis of disease causality and to developing therapeutics is an ability to accurately diagnose the disease and to identify and develop safe and effective therapeutics for its treatment. The former requires validated biomarkers and the latter, qualified targets. Progress has been hampered by semantic issues, specifically those that define the end product, and by scientific issues that include data reliability, an overt reductionistic cultural focus and a lack of hierarchically integrated data gathering and systematic analysis. A necessary framework for these activities is represented by the discipline of pharmacology, efforts and training in which require recognition and revitalization.
Collapse
Affiliation(s)
- Kevin Mullane
- Profectus Pharma Consulting Inc., San Jose, CA, United States.
| | - Raymond J Winquist
- Department of Pharmacology, Vertex Pharmaceuticals Inc., Cambridge, MA, United States
| | - Michael Williams
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
537
|
Yosifov DY, Kaloyanov KA, Guenova ML, Prisadashka K, Balabanova MB, Berger MR, Konstantinov SM. Alkylphosphocholines and curcumin induce programmed cell death in cutaneous T-cell lymphoma cell lines. Leuk Res 2013; 38:49-56. [PMID: 24225136 DOI: 10.1016/j.leukres.2013.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 10/07/2013] [Accepted: 10/15/2013] [Indexed: 11/25/2022]
Abstract
While most patients with early-stage cutaneous T-cell lymphomas (CTCL) have a very good prognosis, the survival of patients with extensive tumour stage and visceral involvement remains extremely poor and necessitates the development of more effective treatment modalities. In this study, we evaluated the in vitro effects of two alkylphosphocholines (APCs, miltefosine and erufosine) and the polyphenolic compound curcumin on 5 human CTCL cell lines (Hut-78, HH, MJ, My-La CD4+ and My-La CD8+). All tested drugs showed considerable cytotoxic activity, as determined by the MTT dye reduction assay. The IC50 values of both APCs ranged from the low micromolar level (Hut-78 cells) to 60-80μM (HH cells). The IC50 values of curcumin ranged from 12 to 24μM. All tested drugs induced apoptosis, as ascertained by morphological changes, DNA fragmentation and activation of caspase cascades. Miltefosine and erufosine induced dephosphorylation of Akt in My-La CD8+ cells and phosphorylation of JNK in Hut-78 and My-La CD8+ cells. APCs increased the level of the autophagic marker LC3B in Hut-78 and MJ cells. Results from co-treatment with autophagy modulators suggested that the cytotoxicity of APCs in CTCL cells is mediated, at least in part, by induction of autophagy.
Collapse
Affiliation(s)
- Deyan Y Yosifov
- Laboratory for Experimental Chemotherapy, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria; Center of Excellence - Translational Research in Haematology, National Specialised Hospital for Active Treatment of Haematological Diseases, Sofia, Bulgaria.
| | - Kaloyan A Kaloyanov
- Laboratory for Experimental Chemotherapy, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Margarita L Guenova
- Center of Excellence - Translational Research in Haematology, National Specialised Hospital for Active Treatment of Haematological Diseases, Sofia, Bulgaria; Laboratory of Haematopathology and Immunology, National Specialised Hospital for Active Treatment of Haematological Diseases, Sofia, Bulgaria
| | - Kamelia Prisadashka
- Department of Dermatology and Venereology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Maria B Balabanova
- Department of Dermatology and Venereology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Spiro M Konstantinov
- Laboratory for Experimental Chemotherapy, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria; Center of Excellence - Translational Research in Haematology, National Specialised Hospital for Active Treatment of Haematological Diseases, Sofia, Bulgaria
| |
Collapse
|
538
|
Chakraborti S, Dhar G, Dwivedi V, Das A, Poddar A, Chakraborti G, Basu G, Chakrabarti P, Surolia A, Bhattacharyya B. Stable and potent analogues derived from the modification of the dicarbonyl moiety of curcumin. Biochemistry 2013; 52:7449-60. [PMID: 24063255 DOI: 10.1021/bi400734e] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Curcumin has shown promising therapeutic utilities for many diseases, including cancer; however, its clinical application is severely limited because of its poor stability under physiological conditions. Here we find that curcumin also loses its activity instantaneously in a reducing environment. Curcumin can exist in solution as a tautomeric mixture of keto and enol forms, and the enol form was found to be responsible for the rapid degradation of the compound. To increase the stability of curcumin, several analogues were synthesized in which the diketone moiety of curcumin was replaced by isoxazole (compound 2) and pyrazole (compound 3) groups. Isoxazole and pyrazole curcumins were found to be extremely stable at physiological pH, in addition to reducing atmosphere, and they can kill cancer cells under serum-depleted condition. Using molecular modeling, we found that both compounds 2 and 3 could dock to the same site of tubulin as the parent molecule, curcumin. Interestingly, compounds 2 and 3 also show better free radical scavenging activity than curcumin. Altogether, these results strongly suggest that compounds 2 and 3 could be good replacements for curcumin in future drug development.
Collapse
|
539
|
Wallace SJ, Kee TW, Huang DM. Molecular Basis of Binding and Stability of Curcumin in Diamide-Linked γ-Cyclodextrin Dimers. J Phys Chem B 2013; 117:12375-82. [DOI: 10.1021/jp406125x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Samuel J. Wallace
- School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Tak W. Kee
- School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia
| | - David M. Huang
- School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
540
|
Padilla-S L, Rodríguez A, Gonzales MM, Gallego-G JC, Castaño-O JC. Inhibitory effects of curcumin on dengue virus type 2-infected cells in vitro. Arch Virol 2013; 159:573-9. [DOI: 10.1007/s00705-013-1849-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022]
|
541
|
Ou JL, Mizushina Y, Wang SY, Chuang DY, Nadar M, Hsu WL. Structure-activity relationship analysis of curcumin analogues on anti-influenza virus activity. FEBS J 2013; 280:5829-40. [PMID: 24034558 DOI: 10.1111/febs.12503] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 01/24/2023]
Abstract
Curcumin (Cur) is a commonly used colouring agent and spice in food. Previously, we reported that Cur inhibits type A influenza virus (IAV) infection by interfering with viral haemagglutination (HA) activity. To search for a stable Cur analogue with potent anti-IAV activity and to investigate the structure contributing to its anti-IAV activity, a comparative analysis of structural and functional analogues of Cur, such as tetrahydrocurcumin (THC) and petasiphenol (Pet), was performed. The result of time-of-drug addition tests indicated that these curcuminoids were able to inhibit IAV production in cell cultures. Noticeably, Pet and THC inhibit IAV to a lesser extent than Cur, which is in line with their effect on reducing plaque formation when IAV was treated with Cur analogues before infection. Unexpectedly, both THC and Pet did not harbour any HA inhibitory effect. It should be noted that the structure of Pet and THC differs from Cur with respect to the number of double bonds present in the central seven-carbon chain, and structure modelling of Cur analogues indicates that the conformations of THC and Pet are distinct from that of Cur. Moreover, simulation docking of Cur with the HA structure revealed that Cur binds to the region constituting sialic acid anchoring residues, supporting the results obtained by the inhibition of HA activity assay. Collectively, structure-activity relationship analyses indicate that the presence of the double bonds in the central seven-carbon chain enhanced the Cur -dependent anti-IAV activity and also that Cur might interfere with IAV entry by its interaction with the receptor binding region of viral HA protein.
Collapse
Affiliation(s)
- Jun-Lin Ou
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
542
|
Trujillo J, Chirino YI, Molina-Jijón E, Andérica-Romero AC, Tapia E, Pedraza-Chaverrí J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol 2013; 1:448-56. [PMID: 24191240 PMCID: PMC3814973 DOI: 10.1016/j.redox.2013.09.003] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/05/2013] [Indexed: 01/17/2023] Open
Abstract
For years, there have been studies based on the use of natural compounds plant-derived as potential therapeutic agents for various diseases in humans. Curcumin is a phenolic compound extracted from Curcuma longa rhizome commonly used in Asia as a spice, pigment and additive. In traditional medicine of India and China, curcumin is considered as a therapeutic agent used in several foods. Numerous studies have shown that curcumin has broad biological functions particularly antioxidant and antiinflammatory. In fact, it has been established that curcumin is a bifunctional antioxidant; it exerts antioxidant activity in a direct and an indirect way by scavenging reactive oxygen species and inducing an antioxidant response, respectively. The renoprotective effect of curcumin has been evaluated in several experimental models including diabetic nephropathy, chronic renal failure, ischemia and reperfusion and nephrotoxicity induced by compounds such as gentamicin, adriamycin, chloroquine, iron nitrilotriacetate, sodium fluoride, hexavalent chromium and cisplatin. It has been shown recently in a model of chronic renal failure that curcumin exerts a therapeutic effect; in fact it reverts not only systemic alterations but also glomerular hemodynamic changes. Another recent finding shows that the renoprotective effect of curcumin is associated to preservation of function and redox balance of mitochondria. Taking together, these studies attribute the protective effect of curcumin in the kidney to the induction of the master regulator of antioxidant response nuclear factor erythroid-derived 2 (Nrf2), inhibition of mitochondrial dysfunction, attenuation of inflammatory response, preservation of antioxidant enzymes and prevention of oxidative stress. The information presented in this paper identifies curcumin as a promising renoprotective molecule against renal injury. Curcumin prevents mitochondrial dysfunction in nephrotoxicity. Curcumin prevents renal hemodynamic alterations in chronic renal failure. Curcumin is a therapeutic agent in chronic renal failure. Curcumin induces renal Nrf2 translocation. Curcumin is an antiinflammatory agent in renal injury.
Collapse
Affiliation(s)
- Joyce Trujillo
- Department of Biology, Facultad de Química, UNAM, Ciudad Universitaria, 04510 México, DF, Mexico
| | | | | | | | | | | |
Collapse
|
543
|
Lee MF, Tsai ML, Sun PP, Chien LL, Cheng AC, Ma NJL, Ho CT, Pan MH. Phyto-power dietary supplement potently inhibits dimethylnitrosamine-induced liver fibrosis in rats. Food Funct 2013; 4:470-5. [PMID: 23291610 DOI: 10.1039/c2fo30306j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Curcumin has been extensively studied for its therapeutic effects in a variety of disorders. Fermented soy consumption is associated with a low incidence rate of chronic diseases in many Asian countries. The aim of this study was to investigate the potential underlying mechanisms of the effect of a phyto-power dietary supplement on liver fibrosis. Sprague-Dawley rats were intraperitoneally injected with dimethylnitrosamine (DMN; 10 mg kg(-1)) three times a week for four consecutive weeks. A phyto-power dietary supplement (50 or 100 mg kg(-1)) was administered by oral gavage daily for four weeks. Liver morphology, function, and fibrotic status were examined in DMN induced hepatic fibrogenesis. However, a phyto-power dietary supplement alleviated liver damage as indicated by histopathological examination of the α-smooth muscle actin (α-SMA) and collagen I, accompanied by the concomitant reduction of transforming growth factor-β1 (TGF-β1) and matrix metalloproteinase 2 (MMP2). These data indicate that the phyto-power dietary supplement may inhibit the TGF-β1/Smad signaling and relieve liver damage in experimental fibrosis.
Collapse
Affiliation(s)
- Ming-Fen Lee
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
544
|
Bukhari SNA, Jantan IB, Jasamai M, Ahmad W, Amjad MWB. Synthesis and Biological Evaluation of Curcumin Analogues. JOURNAL OF MEDICAL SCIENCES 2013. [DOI: 10.3923/jms.2013.501.513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
545
|
Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. Eur J Pharmacol 2013; 715:381-94. [DOI: 10.1016/j.ejphar.2013.04.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 11/18/2022]
|
546
|
Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion. Food Chem Toxicol 2013; 59:739-47. [DOI: 10.1016/j.fct.2013.07.032] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 12/30/2022]
|
547
|
Cui M, Naczynski D, Zevon M, Griffith CK, Sheihet L, Poventud-Fuentes I, Chen S, Roth CM, Moghe PV. Multifunctional albumin nanoparticles as combination drug carriers for intra-tumoral chemotherapy. Adv Healthc Mater 2013; 2:1236-45. [PMID: 23495216 PMCID: PMC5720860 DOI: 10.1002/adhm.201200467] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Indexed: 01/23/2023]
Abstract
Current cancer therapies are challenged by weakly soluble drugs and by drug combinations that exhibit non-uniform biodistribution and poor bioavailability. In this study, we have presented a new platform of advanced healthcare materials based on albumin nanoparticles (ANPs) engineered as tumor penetrating, delivery vehicles of combinatorially applied factors to solid tumors. These materials were designed to overcome three sequential key barriers: tissue level transport across solid tumor matrix; uptake kinetics into individual cancer cells; therapeutic resistance to single chemotherapeutic drugs. The ANPs were designed to penetrate deeper into solid tumor matrices using collagenase decoration and evaluated using a three-dimensional multicellular melanoma tumor spheroid model. Collagenase modified ANPs exhibited 1-2 orders of magnitude greater tumor penetration than unmodified ANPs into the spheroid mass after 96 hours, and showed preferential uptake into individual cancer cells for smaller sized ANPs (<100 nm). For enhanced efficacy, collagenase coated ANPs were modified with two therapeutic agents, curcumin and riluzole, with complementary mechanisms of action for combined cell cycle arrest and apoptosis in melanoma. The collagenase coated, drug loaded nanoparticles induced significantly more cell death within 3-D tumor models than the unmodified, dual drug loaded ANP particles and the kinetics of cytotoxicity was further influenced by the ANP size. Thus, multifunctional nanoparticles can be imbued with complementary size and protease activity features that allow them to penetrate solid tumors and deliver combinatorial therapeutic payload with enhanced cancer cytotoxicity but minimal collateral damage to healthy primary cells.
Collapse
Affiliation(s)
- Mingjie Cui
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Dominik Naczynski
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Margot Zevon
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Craig K. Griffith
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ 08854, USA
| | - Larisa Sheihet
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Suzie Chen
- Department of Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Charles M. Roth
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
548
|
Dey S, Sreenivasan K. Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin. Carbohydr Polym 2013; 99:499-507. [PMID: 24274536 DOI: 10.1016/j.carbpol.2013.08.067] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/12/2013] [Accepted: 08/23/2013] [Indexed: 11/27/2022]
Abstract
Curcumin is a potential drug for various diseases including cancer. Prime limitations associated with curcumin are low water solubility, rapid hydrolytic degradation and poor bioavailability. In order to redress these issues we developed Alginate-Curcumin (Alg-Ccm) conjugate which was characterized by FTIR and (1)H NMR spectroscopy. The conjugate self-assembled in aqueous solution forming micelles with an average hydrodynamic diameter of 459 ± 0.32 nm and negative zeta potential. The spherical micelles were visualized by TEM. The critical micelle concentration (CMC) of Alg-Ccm conjugate was determined. A significant enhancement in the aqueous solubility of curcumin was observed upon conjugation with alginate. Formation of micelles improved the stability of curcumin in water at physiological pH. The cytotoxic activity of Alg-Ccm was quantified by MTT assay using L-929 fibroblast cells and it was found to be potentially cytotoxic. Hence, Alg-Ccm could be a promising drug conjugate as well as a nanosized delivery vehicle.
Collapse
Affiliation(s)
- Soma Dey
- Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695012, India
| | | |
Collapse
|
549
|
Anti-proliferative, anti-inflammatory and antioxidant effects of curcumin analogue A₂. Arch Pharm Res 2013; 36:1204-10. [PMID: 23888334 DOI: 10.1007/s12272-013-0216-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/07/2011] [Indexed: 12/17/2022]
Abstract
In the present study, we determined the anti-proliferative, anti-inflammatory and antioxidant effects of a curcumin analogue, 2,6-bis(3,4-dihydroxybenzylidene) cyclohexanone (designated as A2). In vitro studies showed that A2 had a stronger inhibitory effect on the growth of mouse macrophage RAW 264.7 cells than curcumin. A2 also showed a stronger inhibitory effect than curcumin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced increases in NF-κB activation and IL-1β expression as well as in aldose reductase activity. A2 was a stronger antioxidant than curcumin as determined by inhibition of lipid peroxidation, inhibition of 1,1-diphenyl-2-picryl-hydrazyl free radical formation, and inhibition of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical formation. In vivo studies indicated that A2 was more potent than curcumin for inhibiting TPA-induced ear edema and TPA-induced increases in IL-1β. In addition, oral administration of A2 at a dose of 2,000 mg/kg body weight did not cause acute toxicity in mice. Taken together, the results of our study indicate that the curcumin analogue A2 has stronger anti-proliferative, anti-inflammatory and antioxidant activities than curcumin.
Collapse
|
550
|
Ahmed T, Gilani AH. Therapeutic potential of turmeric in Alzheimer's disease: curcumin or curcuminoids? Phytother Res 2013; 28:517-25. [PMID: 23873854 DOI: 10.1002/ptr.5030] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. There is limited choice in modern therapeutics, and drugs available have limited success with multiple side effects in addition to high cost. Hence, newer and alternate treatment options are being explored for effective and safer therapeutic targets to address AD. Turmeric possesses multiple medicinal uses including treatment for AD. Curcuminoids, a mixture of curcumin, demethoxycurcumin, and bisdemethoxycurcumin, are vital constituents of turmeric. It is generally believed that curcumin is the most important constituent of the curcuminoid mixture that contributes to the pharmacological profile of parent curcuminoid mixture or turmeric. A careful literature study reveals that the other two constituents of the curcuminoid mixture also contribute significantly to the effectiveness of curcuminoids in AD. Therefore, it is emphasized in this review that each component of the curcuminoid mixture plays a distinct role in making curcuminoid mixture useful in AD, and hence, the curcuminoid mixture represents turmeric in its medicinal value better than curcumin alone. The progress in understanding the disease etiology demands a multiple-site-targeted therapy, and the curcuminoid mixture of all components, each with different merits, makes this mixture more promising in combating the challenging disease.
Collapse
Affiliation(s)
- Touqeer Ahmed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, H-12 Kashmir Highway, Islamabad, 44000, Pakistan
| | | |
Collapse
|