501
|
Keck S, Nitsch R, Grune T, Ullrich O. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease. J Neurochem 2003; 85:115-22. [PMID: 12641733 DOI: 10.1046/j.1471-4159.2003.01642.x] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is characterized neuropathologically by intracellular neurofibrillary tangles (NFTs) formed of tau-based paired helical filaments (PHFs) and extracellular beta-amyloid plaques. The degree of Alzheimer dementia correlates with the severity of PHFs and NFTs. As an intraneuronal accumulation of oxidatively damaged proteins has been found in the brains of patients with AD, a dysfunction of the proteasomal system, which degrades damaged proteins, has been assumed to cause protein aggregation and therefore neurodegeneration in AD. In this study, we revealed that such proteasome dysfunction in AD brain results from the inhibitory binding of PHF-tau to proteasomes. We analysed the proteasome activity in brains from patients with AD and age-matched controls, and observed a significant decrease to 56% of the control level in the straight gyrus of patients with AD. This loss of activity was not associated with a decrease in the proteasome protein. PHF-tau co-precipitated during proteasome immunoprecipitation and proteasome subunits could be co-isolated during isolation of PHFs from AD brain. Furthermore, the proteasome activity in human brains strongly correlated with the amount of co-precipitated PHF-tau during immunoprecipitation of proteasome. Incubation of isolated proteasomes with PHF-tau isolated from AD brain, and with PHFs after in vitro assembly from human recombinant tau protein, resulted in a distinct inhibition of proteasome activity by PHF-tau. As this inhibition of proteasome activity was sufficient to induce neuronal degeneration and death, we suggest that PHF-tau is able directly to induce neuronal damage in the AD brain.
Collapse
Affiliation(s)
- Susi Keck
- Department of Cell and Neurobiology, Institute of Anatomy and Neuroscience Research Centre, Medical Faculty (Charité), Humboldt-University Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
502
|
Yang Y, Nishimura I, Imai Y, Takahashi R, Lu B. Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron 2003; 37:911-24. [PMID: 12670421 DOI: 10.1016/s0896-6273(03)00143-0] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Parkin, an E3 ubiquitin ligase that degrades proteins with aberrant conformations, is associated with autosomal recessive juvenile Parkinsonism (AR-JP). The molecular basis of selective neuronal death in AR-JP is unknown. Here we show in an organismal system that panneuronal expression of Parkin substrate Pael-R causes age-dependent selective degeneration of Drosophila dopaminergic (DA) neurons. Coexpression of Parkin degrades Pael-R and suppresses its toxicity, whereas interfering with endogenous Drosophila Parkin function promotes Pael-R accumulation and augments its toxicity. Furthermore, overexpression of Parkin can mitigate alpha-Synuclein-induced neuritic pathology and suppress its toxicity. Our study implicates Parkin as a central player in the molecular pathway of Parkinson's disease (PD) and suggests that manipulating Parkin expression may provide a novel avenue of PD therapy.
Collapse
Affiliation(s)
- Yufeng Yang
- Laboratory of Developmental Neurobiology, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
503
|
Staropoli JF, McDermott C, Martinat C, Schulman B, Demireva E, Abeliovich A. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 2003; 37:735-49. [PMID: 12628165 DOI: 10.1016/s0896-6273(03)00084-9] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations in parkin, which encodes a RING domain protein associated with ubiquitin ligase activity, lead to autosomal recessive Parkinson's disease characterized by midbrain dopamine neuron loss. Here we show that parkin functions in a multiprotein ubiquitin ligase complex that includes the F-box/WD repeat protein hSel-10 and Cullin-1. HSel-10 serves to target the parkin ubiquitin ligase activity to cyclin E, an hSel-10-interacting protein previously implicated in the regulation of neuronal apoptosis. Consistent with the notion that cyclin E is a substrate of the parkin ubiquitin ligase complex, parkin deficiency potentiates the accumulation of cyclin E in cultured postmitotic neurons exposed to the glutamatergic excitotoxin kainate and promotes their apoptosis. Furthermore, parkin overexpression attenuates the accumulation of cyclin E in toxin-treated primary neurons, including midbrain dopamine neurons, and protects them from apoptosis.
Collapse
Affiliation(s)
- John F Staropoli
- Department of Pathology, Center for Neurobiology and Behavior, Taub Institute, College of Physicians and Surgeons, Columbia University, 15-403, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
504
|
Barzilai A, Melamed E. Molecular mechanisms of selective dopaminergic neuronal death in Parkinson's disease. Trends Mol Med 2003; 9:126-32. [PMID: 12657434 DOI: 10.1016/s1471-4914(03)00020-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological disease caused by selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). Although PD has been heavily researched, the precise etiology of nigral cell loss is still unknown and, consequently, treatment is largely symptomatic rather than preventive. There are conflicting data regarding the mode of dopaminergic cell death in PD and, hence, this remains controversial. Several mutations in specific genes have recently been linked with hereditary forms of PD. Although none of these mutations are seen in idiopathic disease cases, the elucidation of these genetic defects sheds light on the nature of idiopathic PD. It is possible that dopaminergic neurogenesis also contributes to the etiology of idiopathic PD. In addition, intracellular as well as extracellular substances found in the SNc are believed to function as damaging pathogenetic factors. These factors, and the interactions among them, might hold the secret to the underlying causes of the selective death of dopaminergic neurons in PD.
Collapse
Affiliation(s)
- Ari Barzilai
- Dept of Neurobiochemistry, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
505
|
Abstract
Kindreds with Mendelian inheritance of Parkinson disease (PD) have been known since a long time ago. Nine loci have been mapped in familial PD by linkage study and four causative genes have been cloned. This paper discusses Park 1 and Park 2, the identification of which has brought about many advances in the studies on pathomechanism of PD. Investigations of these genes in familial PD have expanded their clinical and pathological phenotypes. However, to clarify the effect of mutations on these phenotypes, additional post-mortem neuropathological studies are required.
Collapse
Affiliation(s)
- Hideo Mori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | |
Collapse
|
506
|
Abstract
Juvenile parkinsonism (JP) is a clinically and etiologically heterogeneous entity. Unlike in the adult form, secondary causes, hereditary and metabolic conditions, are the predominant causes of JP. Idiopathic Parkinson's disease is very rare in this age group. In most cases of JP, parkinsonism is accompanied by other neurologic features, such as dystonia, cognitive impairment, seizures, oculomotor and visual dysfunction, and ataxia. Systemic findings, such as liver dysfunction or hepatosplenomegaly, may be present depending on the cause. This review article describes the clinical characteristics, classification, genetic basis, pathophysiology, biochemistry, pathology, and treatment of JP.
Collapse
Affiliation(s)
- Ergun Y Uc
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246, USA
| | | |
Collapse
|
507
|
Sakata E, Yamaguchi Y, Kurimoto E, Kikuchi J, Yokoyama S, Yamada S, Kawahara H, Yokosawa H, Hattori N, Mizuno Y, Tanaka K, Kato K. Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep 2003; 4:301-6. [PMID: 12634850 PMCID: PMC1315892 DOI: 10.1038/sj.embor.embor764] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2002] [Revised: 12/05/2002] [Accepted: 12/17/2002] [Indexed: 11/08/2022] Open
Abstract
Parkin, a product of the causative gene of autosomal-recessive juvenile parkinsonism (AR-JP), is a RING-type E3 ubiquitin ligase and has an amino-terminal ubiquitin-like (Ubl) domain. Although a single mutation that causes an Arg to Pro substitution at position 42 of the Ubl domain (the Arg 42 mutation) has been identified in AR-JP patients, the function of this domain is not clear. In this study, we determined the three-dimensional structure of the Ubl domain of parkin by NMR, in particular by extensive use of backbone (15)N-(1)H residual dipolar-coupling data. Inspection of chemical-shift-perturbation data showed that the parkin Ubl domain binds the Rpn10 subunit of 26S proteasomes via the region of parkin that includes position 42. Our findings suggest that the Arg 42 mutation induces a conformational change in the Rpn10-binding site of Ubl, resulting in impaired proteasomal binding of parkin, which could be the cause of AR-JP.
Collapse
Affiliation(s)
- Eri Sakata
- Department of Structural Biology and Biomolecular Engineering, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Yoshiki Yamaguchi
- Department of Structural Biology and Biomolecular Engineering, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Eiji Kurimoto
- Department of Structural Biology and Biomolecular Engineering, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Jun Kikuchi
- Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shingo Yamada
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hiroyuki Kawahara
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hideyoshi Yokosawa
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Nobutaka Hattori
- Department of Neurology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshikuni Mizuno
- Department of Neurology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiji Tanaka
- Department of Molecular Oncology, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Koichi Kato
- Department of Structural Biology and Biomolecular Engineering, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Tel/Fax: +81 52 836 3447;
| |
Collapse
|
508
|
Kikuchi S, Shinpo K, Tsuji S, Takeuchi M, Yamagishi S, Makita Z, Niino M, Yabe I, Tashiro K. Effect of proteasome inhibitor on cultured mesencephalic dopaminergic neurons. Brain Res 2003; 964:228-36. [PMID: 12576183 DOI: 10.1016/s0006-8993(02)04030-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Proteasomal dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD). We examined the effect of a selective proteasomal inhibitor, epoxomicin, on primary cultured mesencephalic neurons. Exposing rat cultured mesencephalic neurons to epoxomicin for 24 h resulted in neurotoxicity in a dose-dependent manner. Epoxomicin caused mitochondrial dysfunction, reduction in reduced glutathione (GSH), and increased generation of free radicals. Neuronal damage was significantly blocked by antioxidative/GSH-augmenting agents. Epoxomicin also increased the expression of Bax and decreased that of Bcl-2, which may cause mitochondrial dysfunction and release of free radicals. Dopaminergic neurons were preferentially resistant to the toxicity of epoxomicin. Inhibiting the synthesis of tetrahydrobiopterin (BH(4)), which has been reported to have antioxidative function, increased the susceptibility of dopaminergic neurons, whereas increasing BH(4) levels protected non-dopaminergic neurons. These findings suggest that BH(4) is at least in part a contributing factor to grand the resistance to dopaminergic neurons against epoxomicin neurotoxicity. Our results suggest that proteasome inhibition causes the neurotoxicity in mesencephalic neurons, but that is not sufficient to reproduce the selective damage to dopaminergic neurons, such as that seen in PD.
Collapse
Affiliation(s)
- Seiji Kikuchi
- Department of Neurology, Hokkaido University School of Medicine, Kita 15, Nishi 7, Kita-ku, Hokkaido, Sapporo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
509
|
den Engelsman J, Keijsers V, de Jong WW, Boelens WC. The small heat-shock protein alpha B-crystallin promotes FBX4-dependent ubiquitination. J Biol Chem 2003; 278:4699-704. [PMID: 12468532 DOI: 10.1074/jbc.m211403200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AlphaB-crystallin is a small heat-shock protein in which three serine residues (positions 19, 45, and 59) can be phosphorylated under various conditions. We describe here the interaction of alphaB-crystallin with FBX4, an F-box-containing protein that is a component of the ubiquitin-protein isopeptide ligase SCF (SKP1/CUL1/F-box). The interaction with FBX4 was enhanced by mimicking phosphorylation of alphaB-crystallin at both Ser-19 and Ser-45 (S19D/S45D), but not at other combinations. Ser-19 and Ser-45 are preferentially phosphorylated during the mitotic phase of the cell cycle. Also alphaB-crystallin R120G, a mutant found to co-segregate with a desmin-related myopathy, displayed increased interaction with FBX4. Both alphaB-crystallin S19D/S45D and R120G specifically translocated FBX4 to the detergent-insoluble fraction and stimulated the ubiquitination of one or a few yet unknown proteins. These findings implicate the involvement of alphaB-crystallin in the ubiquitin/proteasome pathway in a phosphorylation- and cell cycle-dependent manner and may provide new insights into the alphaB-crystallin-induced aggregation in desmin-related myopathy.
Collapse
Affiliation(s)
- John den Engelsman
- Department of Biochemistry, Nÿmegen Center for Molecular Life Sciences, University of Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
510
|
Dawson TM, Dawson VL. Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J Clin Invest 2003; 111:145-51. [PMID: 12531866 PMCID: PMC151882 DOI: 10.1172/jci17575] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Ted M Dawson
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | |
Collapse
|
511
|
Dawson TM, Dawson VL. Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J Clin Invest 2003. [DOI: 10.1172/jci200317575] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
512
|
Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K, Okawa M, Yamada N, Hatten ME, Snyder SH, Ross CA, Sawa A. Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci U S A 2003; 100:289-94. [PMID: 12506198 PMCID: PMC140954 DOI: 10.1073/pnas.0136913100] [Citation(s) in RCA: 318] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Disrupted-in-Schizophrenia-1 (DISC-1) is a gene whose mutant truncation is associated with major psychiatric illness with a predominance of schizophrenic symptomatology. We have cloned and characterized rodent DISC-1. DISC-1 expression displays pronounced developmental regulation with the highest levels in late embryonic life when the cerebral cortex develops. In yeast two-hybrid analyses, DISC-1 interacts with a variety of cytoskeletal proteins. One of these, NudE-like (NUDEL), is associated with cortical development and is linked to LIS-1, the disease gene for a form of lissencephaly, a disorder of cortical development. The disease mutant form of DISC-1 fails to bind NUDEL. Expression of mutant, but not wild-type, DISC-1 in PC12 cells reduces neurite extension. As schizophrenia is thought to reflect defects in cortical development that are determined by cytoskeletal protein activities, the cellular disturbances we observe with mutant DISC-1 may be relevant to psychopathologic mechanisms.
Collapse
Affiliation(s)
- Yuji Ozeki
- Division of Neurobiology and Department of Psychiatry, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
513
|
Abstract
The ubiquitin-proteasome system (UPS) plays a vital role in directing molecules to the 26S proteasome for degradation as well as other locales in the cell. Disrupting UPS function can lead to the aggregation of mutant or misfolded proteins, which disrupts normal cellular activity in diverse ways. Here we discuss how UPS dysfunction might contribute to a variety of neurological problems.
Collapse
Affiliation(s)
- Richard J Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | |
Collapse
|
514
|
Petrucelli L, O'Farrell C, Lockhart PJ, Baptista M, Kehoe K, Vink L, Choi P, Wolozin B, Farrer M, Hardy J, Cookson MR. Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 2002; 36:1007-19. [PMID: 12495618 DOI: 10.1016/s0896-6273(02)01125-x] [Citation(s) in RCA: 436] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
One hypothesis for the etiology of Parkinson's disease (PD) is that subsets of neurons are vulnerable to a failure in proteasome-mediated protein turnover. Here we show that overexpression of mutant alpha-synuclein increases sensitivity to proteasome inhibitors by decreasing proteasome function. Overexpression of parkin decreases sensitivity to proteasome inhibitors in a manner dependent on parkin's ubiquitin-protein E3 ligase activity, and antisense knockdown of parkin increases sensitivity to proteasome inhibitors. Mutant alpha-synuclein also causes selective toxicity to catecholaminergic neurons in primary midbrain cultures, an effect that can be mimicked by the application of proteasome inhibitors. Parkin is capable of rescuing the toxic effects of mutant alpha-synuclein or proteasome inhibition in these cells. Therefore, parkin and alpha-synuclein are linked by common effects on a pathway associated with selective cell death in catecholaminergic neurons.
Collapse
Affiliation(s)
- Leonard Petrucelli
- Neurogenetics Laboratory, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
515
|
Junn E, Lee SS, Suhr UT, Mouradian MM. Parkin accumulation in aggresomes due to proteasome impairment. J Biol Chem 2002; 277:47870-7. [PMID: 12364339 DOI: 10.1074/jbc.m203159200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra and by the presence of ubiquitinated cytoplasmic inclusions known as Lewy bodies. Alpha-synuclein and Parkin are two of the proteins associated with inherited forms of PD and are found in Lewy bodies. Whereas numerous reports indicate the tendency of alpha-synuclein to aggregate both in vitro and in vivo, no information is available about similar physical properties for Parkin. Here we show that overexpression of Parkin in the presence of proteasome inhibitors leads to the formation of aggresome-like perinuclear inclusions. These eosinophilic inclusions share many characteristics with Lewy bodies, including a core and halo organization, immunoreactivity to ubiquitin, alpha-synuclein, synphilin-1, Parkin, molecular chaperones, and proteasome subunit as well as staining of some with thioflavin S. We propose that the process of Lewy body formation may be akin to that of aggresome-like structures. The tendency of wild-type Parkin to aggregate and form inclusions may have implications for the pathogenesis of sporadic PD.
Collapse
Affiliation(s)
- Eunsung Junn
- Genetic Pharmacology Unit, Experimental Therapeutics Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892-1406, USA
| | | | | | | |
Collapse
|
516
|
Lotharius J, Brundin P. Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 2002; 3:932-42. [PMID: 12461550 DOI: 10.1038/nrn983] [Citation(s) in RCA: 887] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Julie Lotharius
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, BMC A10, 221 84 Lund, Sweden.
| | | |
Collapse
|
517
|
Zhen X, Torres C, Cai G, Friedman E. Inhibition of protein tyrosine/mitogen-activated protein kinase phosphatase activity is associated with D2 dopamine receptor supersensitivity in a rat model of Parkinson's disease. Mol Pharmacol 2002; 62:1356-63. [PMID: 12435803 DOI: 10.1124/mol.62.6.1356] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous work demonstrated that stimulation of D(2) dopamine receptors (D(2)DRs) in the unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rat enhanced striatal extracellular signal-regulated kinase (ERK) activity ipsilateral to the lesion. The present work was designed to explore the mechanism underlying the activation of ERK in the denervated striatum. Stimulation of D(2)DR induced a 60% inhibition in protein tyrosine phosphatase (PTP) activity but not in PSP activity in lesioned striata. The D(2)DR antagonist spiperone blocked quinpirole-elicited PTP inhibition, and the D(1) receptor agonist 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine (SKF38393) did not inhibit PTP activity, indicating that PTP inhibition is a specific effect mediated by stimulation of D(2)DR. We further discovered that striatal mitogen-activated protein kinase phosphatase (MKP), a protein phosphatase that is responsible for ERK dephosphorylation, is inhibited in response to D(2)DR stimulation in 6-OHDA-lesioned rats. More specifically, MKP1 was identified to be the isozyme affected by D(2)DR stimulation. In PC12 cells that express D(2)DR, quinpirole elicited no change in PTP or MKP activity, whereas ERK was activated by D(2) dopamine receptor stimulation. The results indicate that 6-OHDA-induced striatal denervation leads to abnormal coupling between D(2)DR and PTP/MKP pathway. Moreover, unilateral inhibition of striatal PTP by an intrastriatal injection of vanadate induced contralateral rotation in control rats in response to D(2)DR stimulation, thus mimicking the response observed in the unilateral 6-OHDA-lesioned rat. The results indicate that attenuation of the PTP/MKP pathway may be responsible for the development of D(2)DR supersensitivity.
Collapse
Affiliation(s)
- Xuechu Zhen
- Department of Physiology and Pharmacology, City University of New York Medical School, New York, New York 10031, USA.
| | | | | | | |
Collapse
|
518
|
Söti C, Csermely P. Chaperones and aging: role in neurodegeneration and in other civilizational diseases. Neurochem Int 2002; 41:383-9. [PMID: 12213225 DOI: 10.1016/s0197-0186(02)00043-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chaperones are highly conserved proteins responsible for the preservation and repair of the correct conformation of cellular macromolecules, such as proteins, RNAs, etc. Environmental stress leads to chaperone (heat-shock protein, stress protein) induction reflecting the protective role of chaperones as a key factor for cell survival and in repairing cellular damage after stress. The present review summarizes our current knowledge about the chaperone-deficiency in the aging process, as well as the possible involvement of chaperones in neurodegenerative diseases, such as in Alzheimer's, Parkinson's, Huntington- and prion-related diseases. We also summarize a recent theory implying chaperones as "buffers" of variations in the human genome, which role probably increased during the last 200 years of successful medical practice minimizing natural selection. Chaperone-buffered, silent mutations may be activated during the aging process, which leads to the phenotypic exposure of previously hidden features and might contribute to the onset of polygenic diseases, such as atherosclerosis, cancer, diabetes and several neurodegenerative diseases.
Collapse
Affiliation(s)
- Csaba Söti
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 8 Budapest, Hungary
| | | |
Collapse
|
519
|
Ledesma MD, Galvan C, Hellias B, Dotti C, Jensen PH. Astrocytic but not neuronal increased expression and redistribution of parkin during unfolded protein stress. J Neurochem 2002; 83:1431-40. [PMID: 12472897 DOI: 10.1046/j.1471-4159.2002.01253.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parkin is a ubiquitin ligase that facilitates proteasomal protein degradation and is involved in a common autosomal recessive form of Parkinson's disease. Its expression is part of the unfolded protein response in cell lines where its overexpression protects against unfolded protein stress. How parkin expression is regulated in brain primary cells under stress situations is however, less well established. Here, the cellular and subcellular localization of parkin under basal conditions and during unfolded protein stress was investigated in primary cultures of rat astrocytes and hippocampal neurons. Immunofluorescense microscopy and biochemical analysis demonstrated that parkin is mainly associated with the endoplasmic reticulum (ER) in hippocampal neurons while it is associated with Golgi membranes, the nuclei and light vesicles in astrocytes. The constitutive parkin expression was high in neurons as compared with astrocytes. However, unfolded protein stress elicited a selective increase in astrocytic parkin expression and a change in distribution, whereas neuronal parkin remained largely unmodified. The cell specific differences argue in favour of different cellular binding sites and substrates for the protein and a pathogenic role for astrocytes in Parkinson's disease caused by parkin dysfunction.
Collapse
Affiliation(s)
- Maria Dolores Ledesma
- Università degli Studi di Torino, Cavalieri Ottolenghi Scientific Institute, Torino, Italy
| | | | | | | | | |
Collapse
|
520
|
Abstract
Neurodegenerative disorders such as Parkinson's disease (PD) and 'dementia with Lewy bodies' (DLB) are characterized pathologically by selective neuronal death and the appearance of intracytoplasmic protein aggregates (Lewy bodies). The process by which these inclusions are formed and their role in the neurodegenerative process remain elusive. In this study, we demonstrate a close relationship between Lewy bodies and aggresomes, which are cytoplasmic inclusions formed at the centrosome as a cytoprotective response to sequester and degrade excess levels of potentially toxic abnormal proteins within cells. We show that the centrosome/aggresome-related proteins gamma-tubulin and pericentrin display an aggresome-like distribution in Lewy bodies in PD and DLB. Lewy bodies also sequester the ubiquitin-activating enzyme (E1), the proteasome activators PA700 and PA28, and HSP70, all of which are recruited to aggresomes for enhanced proteolysis. Using novel antibodies that are specific and highly sensitive to ubiquitin-protein conjugates, we revealed the presence of numerous discrete ubiquitinated protein aggregates in neuronal soma and processes in PD and DLB. These aggregates appear to be being transported from peripheral sites to the centrosome where they are sequestered to form Lewy bodies in neurons. Finally, we have shown that inhibition of proteasomal function or generation of misfolded proteins cause the formation of aggresome/Lewy body-like inclusions and cytotoxicity in dopaminergic neurons in culture. These observations suggest that Lewy body formation may be an aggresome-related event in response to increasing levels of abnormal proteins in neurons. This phenomenon is consistent with growing evidence that altered protein handling underlies the etiopathogenesis of PD and related disorders.
Collapse
Affiliation(s)
- Kevin St P McNaught
- Department of Neurology, Mount Sinai School of Medicine, Annenberg 14-73, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
521
|
Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R, Larsen KE, Staal R, Tieu K, Schmitz Y, Yuan CA, Rocha M, Jackson-Lewis V, Hersch S, Sulzer D, Przedborski S, Burke R, Hen R. Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci U S A 2002; 99:14524-9. [PMID: 12376616 PMCID: PMC137916 DOI: 10.1073/pnas.172514599] [Citation(s) in RCA: 437] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) is most commonly a sporadic illness, and is characterized by degeneration of substantia nigra dopamine (DA) neurons and abnormal cytoplasmic aggregates of alpha-synuclein. Rarely, PD may be caused by missense mutations in alpha-synuclein. MPTP, a neurotoxin that inhibits mitochondrial complex I, is a prototype for an environmental cause of PD because it produces a pattern of DA neurodegeneration that closely resembles the neuropathology of PD. Here we show that alpha-synuclein null mice display striking resistance to MPTP-induced degeneration of DA neurons and DA release, and this resistance appears to result from an inability of the toxin to inhibit complex I. Contrary to predictions from in vitro data, this resistance is not due to abnormalities of the DA transporter, which appears to function normally in alpha-synuclein null mice. Our results suggest that some genetic and environmental factors that increase susceptibility to PD may interact with a common molecular pathway, and represent the first demonstration that normal alpha-synuclein function may be important to DA neuron viability.
Collapse
Affiliation(s)
- William Dauer
- Department of Neurology, Columbia University, New York, NY 10027, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
522
|
Lee G, Junn E, Tanaka M, Kim YM, Mouradian MM. Synphilin-1 degradation by the ubiquitin-proteasome pathway and effects on cell survival. J Neurochem 2002; 83:346-52. [PMID: 12423244 DOI: 10.1046/j.1471-4159.2002.01136.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parkinson's disease is characterized by loss of nigral dopaminergic neurons and the presence of cytoplasmic inclusions known as Lewy bodies. alpha-Synuclein and its interacting partner synphilin-1 are among constituent proteins in these aggregates. The presence of ubiquitin and proteasome subunits in these inclusions supports a role for this protein degradation pathway in the processing of proteins involved in this disease. To begin elucidating the kinetics of synphilin-1 in cells, we studied its degradation pathway in HEK293 cells that had been engineered to stably express FLAG-tagged synphilin-1. Pulse-chase experiments revealed that this protein is relatively stable with a half-life of about 16 h. Treatment with proteasome inhibitors resulted in attenuation of degradation and the accumulation of high molecular weight ubiquitinated synphilin-1 in immunoprecipitation/immunoblot experiments. Additionally, proteasome inhibitors stimulated the formation of peri-nuclear inclusions which were immunoreactive for synphilin-1, ubiquitin and alpha-synuclein. Cell viability studies revealed increased susceptibility of synphilin-1 over-expressing cells to proteasomal dysfunction. These observations indicate that synphilin-1 is ubiquitinated and degraded by the proteasome. Accumulation of ubiquitinated synphilin-1 due to impaired clearance results in its aggregation as peri-nuclear inclusions and in poor cell survival.
Collapse
Affiliation(s)
- Gwang Lee
- Genetic Pharmacology Unit, Experimental Therapeutics Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
523
|
Abstract
In idiopathic Parkinson's disease and familial parkinsonism, the limited number of overlapping clinical and pathological outcomes argue that a common underlying molecular pathway is perturbed. Genetic methods are a powerful approach to identify molecular components of disease. We summarize recent attempts to identify the genetic components of familial parkinsonism, without a priori assumptions about disease causation. Much effort has been expended on mapping in families with early-onset disease, in which parkinsonism appears inherited as a Mendelian trait. More recently, association methods have been employed in late-onset disease using affected sib-pairs and population isolates. These findings have been extrapolated to Parkinson's disease in the community with some success. We review the molecular synthesis now emerging from a genetic perspective.
Collapse
|
524
|
Niwa JI, Ishigaki S, Hishikawa N, Yamamoto M, Doyu M, Murata S, Tanaka K, Taniguchi N, Sobue G. Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity. J Biol Chem 2002; 277:36793-8. [PMID: 12145308 DOI: 10.1074/jbc.m206559200] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive paralytic disorder resulting from the degeneration of motor neurons in the cerebral cortex, brainstem, and spinal cord. The cytopathological hallmark in the remaining motor neurons of ALS is the presence of ubiquitylated inclusions consisting of insoluble protein aggregates. In this paper we report that Dorfin, a RING finger-type E3 ubiquitin ligase, is predominantly localized in the inclusion bodies of familial ALS with a copper/zinc superoxide dismutase (SOD1) mutation as well as sporadic ALS. Dorfin physically bound and ubiquitylated various SOD1 mutants derived from familial ALS patients and enhanced their degradation, but it had no effect on the stability of the wild-type SOD1. The overexpression of Dorfin protected against the toxic effects of mutant SOD1 on neural cells and reduced SOD1 inclusions. Our results indicate that Dorfin protects neurons by recognizing and then ubiquitylating mutant SOD1 proteins followed by targeting them for proteasomal degradation.
Collapse
Affiliation(s)
- Jun-Ichi Niwa
- Department of Neurology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
525
|
Chin LS, Vavalle JP, Li L. Staring, a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation. J Biol Chem 2002; 277:35071-9. [PMID: 12121982 DOI: 10.1074/jbc.m203300200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syntaxin 1 is an essential component of the neurotransmitter release machinery, and regulation of syntaxin 1 expression levels is thought to contribute to the mechanism underlying learning and memory. However, the molecular events that control the degradation of syntaxin 1 remain undefined. Here we report the identification and characterization of a novel RING finger protein, Staring, that interacts with syntaxin 1. Staring is expressed throughout the brain, where it exists in both cytosolic and membrane-associated pools. Staring binds and recruits the brain-enriched E2 ubiquitin-conjugating enzyme UbcH8 to syntaxin 1 and facilitates the ubiquitination and proteasome-dependent degradation of syntaxin 1. These findings suggest that Staring is a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Lih-Shen Chin
- Department of Pharmacology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322-3090, USA
| | | | | |
Collapse
|
526
|
Abstract
One of the most surprising discoveries of the past decade (at least in the field of neurodegeneration) was that protein misfolding underlies several seemingly disparate neurological diseases. Animal models were crucial to this discovery. In this article, we will discuss the CAG repeat diseases, the tauopathies and Parkinson disease, highlighting how mouse and fly models have contributed to our understanding of pathogenesis. In each case, we will stress what has been learned about the role of protein clearance and the questions that remain about how misfolded proteins acquire their toxicity.
Collapse
Affiliation(s)
- Huda Y Zoghbi
- Depts of Pediatrics, Neurology, and Molecular and Human Genetics, and Howard Hughes Medical Institute, Baylor College of Medicine, 77030, Houston, TX, USA
| | | |
Collapse
|
527
|
Abstract
The recent identification of several genes and gene loci linked to familial forms of Parkinson's disease (PD) has contributed significantly to our understanding of the genetic contribution in PD. Although the etiology of sporadic PD remains unknown, it is currently assumed that genetic susceptibilities may be involved. The advent of genome-wide scanning techniques has now made it possible to conduct complete genome screens for linkage in PD in multigenerational parkinsonian kindreds. Such studies undoubtedly will be instrumental in establishing the susceptibility genes involved in idiopathic PD. This article reviews the recent advances in the genetics of PD.
Collapse
Affiliation(s)
- Kah Leong Lim
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Carnegie 214, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
528
|
Sakamoto M, Uchihara T, Hayashi M, Nakamura A, Kikuchi E, Mizutani T, Mizusawa H, Hirai S. Heterogeneity of nigral and cortical Lewy bodies differentiated by amplified triple-labeling for alpha-synuclein, ubiquitin, and thiazin red. Exp Neurol 2002; 177:88-94. [PMID: 12429213 DOI: 10.1006/exnr.2002.7961] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alpha-synuclein(alpha-S) and ubiquitin(Ub) are constituents of the Lewy bodies (LBs), composed of fibrillary structures. To clarify morphological heterogeneity of LBs, we looked for localization of these epitopes in relation to fibrillary structure possibly detectable by a fluorochrome, thiazin red (TR). On the sections of the substantia nigra (SN) and the cingulate gyrus (CG) obtained from Parkinson's disease brains, double amplification by CARD fluorescent immunohistochemistry with anti-alpha-S monoclonal (LB509) and anti-Ub polyclonal antibodies was performed, followed by staining with TR. These triple-labeled images were captured by a confocal laser microscope and subsequently stained with Campbell-Switzer method, a silver staining specific for LBs. Staining profiles of LBs were different between those in the SN and in the CG. Immunolabeling either with the anti-alpha-S or anti-Ub antibody was diffuse without halo structure in LBs of CG. In addition to this diffuse staining, a lot of LBs of SN exhibited a halo structure immunopositive for alpha-S and Ub, probably representing later stages of LB evolution. Irrespective of the presence of this halo structure, the TR signal was always concentrated in the center of LBs, as the silver-stained material was, suggesting that fibrillary components in the central portion of LBs undergo some conformational changes detectable by TR and the silver-staining. This technique reveals different epitopes in relation to LB evolution in vivo. Heterogeneity in staining profile of LBs, as clarified by this method, may represent evolutional changes of LBs, related to conformational states of their constituents.
Collapse
|
529
|
Abstract
Parkinson's disease is a complex disorder in which the genetic aspects are only just being realized. The underlying cause for the degeneration of dopaminergic substantia nigra neurons and the formation of Lewy bodies in Parkinson's disease is unknown. The identification of clear inherited forms of the disease has provided important clues as to how this complex process may be occurring. Mutations have now been identified in the alpha-synuclein (4q21.3-23), parkin (6q25.2-27), and ubiquitin carboxy terminal hydrolase-L1 (4p16.3) genes in families with Parkinson's disease. Four additional chromosomal locations; 2p13, 4p14-15, 1p35-36, and 12p11.2-q13.1 have been linked to Parkinson's disease families but no pathologic gene mutations have been identified to date. As additional Parkinson's disease loci are mapped and their genes identified we will continue to add to our understating of the critical biochemical pathways involved and be able to develop effective disease altering treatments.
Collapse
Affiliation(s)
- D A Grimes
- Parkinson's Disease and Movement Disorders Clinic, The Ottawa Hospital, Civic Campus, 1053 Carling Ave, K1Y 4E9, Ottawa, Ont, Canada.
| | | |
Collapse
|
530
|
Hyun DH, Lee M, Hattori N, Kubo SI, Mizuno Y, Halliwell B, Jenner P. Effect of wild-type or mutant Parkin on oxidative damage, nitric oxide, antioxidant defenses, and the proteasome. J Biol Chem 2002; 277:28572-7. [PMID: 12034719 DOI: 10.1074/jbc.m200666200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in Parkin (a ubiquitin protein ligase) are involved in autosomal recessive juvenile parkinsonism, but it is not known how they cause nigral cell death. We examined the effect of Parkin overexpression on cellular levels of oxidative damage, antioxidant defenses, nitric oxide production, and proteasomal enzyme activity. Increasing expression of Parkin by gene transfection in NT-2 and SK-N-MC cells led to increased proteasomal activity, decreased levels of protein carbonyls, 3-nitrotyrosine-containing proteins, and a trend to a reduction in ubiquitinated protein levels. Transfection of these cells with DNA encoding three mutant Parkins associated with autosomal recessive juvenile parkinsonism (Del 3-5, T240R, and Q311X) gave smaller increases in proteasomal activity and led to elevated levels of protein carbonyls and lipid peroxidation. Turnover of the mutant proteins was slower than that of the wild-type protein, and both could be blocked by the proteasome inhibitor, lactacystin. A rise in levels of nitrated proteins and increased levels of NO2-/NO3- was also observed in cells transfected with mutant Parkins, apparently because of increased levels of neuronal nitric-oxide synthase. The presence of mutant Parkin in substantia nigra in juvenile parkinsonism may increase oxidative stress and nitric oxide production, sensitizing cells to death induced by other insults.
Collapse
Affiliation(s)
- Dong-Hoon Hyun
- Wolfson Centre for Age-related Diseases, GKT School of Biomedical Sciences, King's College London, London SE1 1UL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
531
|
Figueiredo-Pereira ME, Li Z, Jansen M, Rockwell P. N-acetylcysteine and celecoxib lessen cadmium cytotoxicity which is associated with cyclooxygenase-2 up-regulation in mouse neuronal cells. J Biol Chem 2002; 277:25283-9. [PMID: 11997384 DOI: 10.1074/jbc.m109145200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In many neurodegenerative disorders, aggregates of ubiquitinated proteins are detected in neuronal inclusions, but their role in neurodegeneration remains to be defined. To identify intracellular mechanisms associated with the appearance of ubiquitin-protein aggregates, mouse neuronal HT4 cells were treated with cadmium. This heavy metal is a potent cell poison that mediates oxidative stress and disrupts the ubiquitin/proteasome pathway. In the current studies, the following intracellular events were found to be also induced by cadmium: (i) a specific rise in cyclooxygenase-2 (COX-2) gene expression but not COX-1; (ii) an increase in the extracellular levels of the proinflammatory prostaglandin E2, a product of COX-2; and (iii) production of 4-hydroxy-2-nonenal-protein adducts, which result from lipid peroxidation. In addition, cadmium treatment led to the accumulation of high molecular weight ubiquitin-COX-2 conjugates and perturbed COX-2 glycosylation. The thiol-reducing antioxidant N-acetylcysteine, and, to a lesser extent, the COX-2 inhibitor celecoxib, attenuated the loss of cell viability induced by cadmium demonstrating that oxidative stress and COX-2 activation contribute to cadmium cytotoxicity. These findings establish that disruption of the ubiquitin/proteasome pathway is not the only event triggered by cadmium. This oxidative stressor also activates COX-2 function. Both events could be triggered by formation of 4-hydroxy-2-nonenal as a result of cadmium-induced lipid peroxidation. Proinflammatory responses stimulated by oxidative stressors that mimic the cadmium effects may, therefore, be important initiators of the neurodegenerative process and exacerbate its progress.
Collapse
|
532
|
Iseki E, Takayama N, Furukawa Y, Marui W, Nakai T, Miura S, Uéda K, Kosaka K. Immunohistochemical study of synphilin-1 in brains of patients with dementia with Lewy bodies - synphilin-1 is non-specifically implicated in the formation of different neuronal cytoskeletal inclusions. Neurosci Lett 2002; 326:211-5. [PMID: 12095658 DOI: 10.1016/s0304-3940(02)00418-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dementia with Lewy bodies brains were immunohistochemically investigated using anti-synphilin-1 antibodies. The alpha-synuclein-positive brainstem type and well-defined cortical type Lewy bodies (LB) were positive for synphilin-1, while ill-defined LB and LB-related neurites were negative, suggesting that synphilin-1 does not directly associate with alpha-synuclein. Synphilin-1-positive LB were double-positive for phosphorylated neurofilament. In addition, tau-positive neurofibrillary tangles (NFT) were positive for synphilin-1, while neuropil threads were negative. Immunoelectron microscopically, synphilin-1 was located on filamentous components in cortical type LB and on paired helical filaments in NFT. It is likely that synphilin-1 accumulates in the cell body according to the axonal transport blockage, and associates with abnormal cytoskeltons during the formation of LB or NFT, suggesting that synphilin-1 is non-specifically implicated in the formation of different neuronal cytoskeletal inclusions.
Collapse
Affiliation(s)
- Eizo Iseki
- Department of Psychiatry, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
533
|
Pankratz N, Nichols WC, Uniacke SK, Halter C, Rudolph A, Shults C, Conneally PM, Foroud T. Genome screen to identify susceptibility genes for Parkinson disease in a sample without parkin mutations. Am J Hum Genet 2002; 71:124-35. [PMID: 12058349 PMCID: PMC384969 DOI: 10.1086/341282] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2002] [Accepted: 04/15/2002] [Indexed: 11/03/2022] Open
Abstract
Parkinson disease (PD) is a common neurodegenerative disorder characterized by bradykinesia, resting tremor, muscular rigidity, and postural instability, as well as by a clinically significant response to treatment with levodopa. Mutations in the alpha-synuclein gene have been found to result in autosomal dominant PD, and mutations in the parkin gene produce autosomal recessive juvenile-onset PD. We have studied 203 sibling pairs with PD who were evaluated by a rigorous neurological assessment based on (a) inclusion criteria consisting of clinical features highly associated with autopsy-confirmed PD and (b) exclusion criteria highly associated with other, non-PD pathological diagnoses. Families with positive LOD scores for a marker in an intron of the parkin gene were prioritized for parkin-gene testing, and mutations in the parkin gene were identified in 22 families. To reduce genetic heterogeneity, these families were not included in subsequent genome-screen analysis. Thus, a total of 160 multiplex families without evidence of a parkin mutation were used in multipoint nonparametric linkage analysis to identify PD-susceptibility genes. Two models of PD affection status were considered: model I included only those individuals with a more stringent diagnosis of verified PD (96 sibling pairs from 90 families), whereas model II included all examined individuals as affected, regardless of their final diagnostic classification (170 sibling pairs from 160 families). Under model I, the highest LOD scores were observed on chromosome X (LOD score 2.1) and on chromosome 2 (LOD score 1.9). Analyses performed with all available sibling pairs (model II) found even greater evidence of linkage to chromosome X (LOD score 2.7) and to chromosome 2 (LOD score 2.5). Evidence of linkage was also found to chromosomes 4, 5, and 13 (LOD scores >1.5). Our findings are consistent with those of other linkage studies that have reported linkage to chromosomes 5 and X.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 4/genetics
- Chromosomes, Human, Pair 5/genetics
- Genetic Linkage
- Genetic Testing
- Genome, Human
- Humans
- Ligases/genetics
- Lod Score
- Models, Genetic
- Mutation
- Parkinson Disease/genetics
- Ubiquitin-Protein Ligases
- X Chromosome/genetics
Collapse
Affiliation(s)
- Nathan Pankratz
- Department of Medical and Molecular Genetics, Indiana University Medical Center, Indianapolis; Division of Human Genetics, Children’s Hospital Medical Center, Cincinnati; Department of Neurology, University of Rochester, Rochester, NY; and Department of Neurosciences, University of California, and Veterans Administration San Diego Healthcare System, San Diego
| | - William C. Nichols
- Department of Medical and Molecular Genetics, Indiana University Medical Center, Indianapolis; Division of Human Genetics, Children’s Hospital Medical Center, Cincinnati; Department of Neurology, University of Rochester, Rochester, NY; and Department of Neurosciences, University of California, and Veterans Administration San Diego Healthcare System, San Diego
| | - Sean K. Uniacke
- Department of Medical and Molecular Genetics, Indiana University Medical Center, Indianapolis; Division of Human Genetics, Children’s Hospital Medical Center, Cincinnati; Department of Neurology, University of Rochester, Rochester, NY; and Department of Neurosciences, University of California, and Veterans Administration San Diego Healthcare System, San Diego
| | - Cheryl Halter
- Department of Medical and Molecular Genetics, Indiana University Medical Center, Indianapolis; Division of Human Genetics, Children’s Hospital Medical Center, Cincinnati; Department of Neurology, University of Rochester, Rochester, NY; and Department of Neurosciences, University of California, and Veterans Administration San Diego Healthcare System, San Diego
| | - Alice Rudolph
- Department of Medical and Molecular Genetics, Indiana University Medical Center, Indianapolis; Division of Human Genetics, Children’s Hospital Medical Center, Cincinnati; Department of Neurology, University of Rochester, Rochester, NY; and Department of Neurosciences, University of California, and Veterans Administration San Diego Healthcare System, San Diego
| | - Cliff Shults
- Department of Medical and Molecular Genetics, Indiana University Medical Center, Indianapolis; Division of Human Genetics, Children’s Hospital Medical Center, Cincinnati; Department of Neurology, University of Rochester, Rochester, NY; and Department of Neurosciences, University of California, and Veterans Administration San Diego Healthcare System, San Diego
| | - P. Michael Conneally
- Department of Medical and Molecular Genetics, Indiana University Medical Center, Indianapolis; Division of Human Genetics, Children’s Hospital Medical Center, Cincinnati; Department of Neurology, University of Rochester, Rochester, NY; and Department of Neurosciences, University of California, and Veterans Administration San Diego Healthcare System, San Diego
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University Medical Center, Indianapolis; Division of Human Genetics, Children’s Hospital Medical Center, Cincinnati; Department of Neurology, University of Rochester, Rochester, NY; and Department of Neurosciences, University of California, and Veterans Administration San Diego Healthcare System, San Diego
| | | |
Collapse
|
534
|
Fishman PS, Oyler GA. Significance of the parkin gene and protein in understanding Parkinson's disease. Curr Neurol Neurosci Rep 2002; 2:296-302. [PMID: 12044248 DOI: 10.1007/s11910-002-0004-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mutations in the parkin gene cause autosomal recessive inherited juvenile parkinsonism (ARJP) and account for the majority of cases of inherited Parkinson's disease (PD) of young onset (<45 years of age). Patients with parkin mutations commonly have atypical clinical features such as dystonia at onset, hyper-reflexia, diurnal fluctuations, and sleep benefit; however, parkin mutation patients with both typical PD symptoms and older age of onset have been identified. Parkin is a ubiquitin protein ligase (E3), a component in the pathway that attaches ubiquitin to specific proteins, designating them for degradation by the proteasome. Several substrates for parkin have been identified (CDCrel-1, o-glycosylated alpha-synuclein, parkin associated endothelin-like cell receptor, and synphilin). The role of these substrates in the pathogenesis of ARJP is under active study. Most patients with parkin mutations lack Lewy bodies, suggesting that functional parkin is involved in the formation of these highly ubiquitinated inclusions. Furthermore, the recognition that parkin mutations can lead to a disorder clinically similar to sporadic PD, but presumably lacking Lewy bodies, calls into question the necessity of Lewy bodies for the diagnosis of PD and nigral cell death. Studies of parkin are increasing the focus on the role of the ubiquitin-proteasome system in the pathogenesis of both familial and sporadic PD.
Collapse
Affiliation(s)
- Paul S Fishman
- Department of Neurology, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
535
|
Zerovnik E. Amyloid-fibril formation. Proposed mechanisms and relevance to conformational disease. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3362-71. [PMID: 12135474 DOI: 10.1046/j.1432-1033.2002.03024.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The phenomenon of the transformation of proteins into amyloid-fibrils is of interest, firstly, because it is closely connected to the so-called conformational diseases, many of which are hitherto incurable, and secondly, because it remains to be explained in physical terms (energetically and structurally). The process leads to fibrous aggregates in the form of extracellular amyloid plaques, neuro-fibrillary tangles and other intracytoplasmic or intranuclear inclusions. In this review, basic principles common to the field of amyloid fibril formation and conformational disease are underlined. Existing models for the mechanism need to be tested by experiment. The kinetic and energetic bases of the process are reviewed. The main controversial issue remains the coexistence of more than one protein conformation. The possible role of oligomeric intermediates, and of domain-swapping is also discussed. Mechanisms for cellular defence and novel therapies are considered.
Collapse
Affiliation(s)
- Eva Zerovnik
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
536
|
Ribeiro CS, Carneiro K, Ross CA, Menezes JRL, Engelender S. Synphilin-1 is developmentally localized to synaptic terminals, and its association with synaptic vesicles is modulated by alpha-synuclein. J Biol Chem 2002; 277:23927-33. [PMID: 11956199 DOI: 10.1074/jbc.m201115200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha-synuclein is the major component of Lewy bodies in patients with Parkinson's disease, and mutations in the alpha-synuclein gene are responsible for some familial forms of the disease. alpha-Synuclein is enriched in the presynapse, but its synaptic targets are unknown. Synphilin-1 associates in vivo with alpha-synuclein promoting the formation of intracellular inclusions. Additionally synphilin-1 has been found to be an intrinsic component of Lewy bodies in patients with Parkinson's disease. To understand the role of synphilin-1 in Parkinson's disease, we sought to define its localization and function in the brain. We now report that, like alpha-synuclein, synphilin-1 was enriched in neurons. In young rats, synphilin-1 was prominent in neuronal cell bodies but gradually migrated to neuropil during development. Immunoelectron microscopy of adult rat cerebral cortex demonstrated that synphilin-1 was highly enriched in presynaptic nerve terminals. Synphilin-1 co-immunoprecipitated with synaptic vesicles, indicating a strong association with these structures. In vitro binding experiments demonstrated that the N terminus of synphilin-1 robustly associated with synaptic vesicles and that this association was resistant to high salt washing but was abolished by inclusion of alpha-synuclein in the incubation medium. Our data indicated that synphilin-1 is a synaptic partner of alpha-synuclein, and it may mediate synaptic roles attributed to alpha-synuclein.
Collapse
Affiliation(s)
- Cátia S Ribeiro
- Department of Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro 21491-590, Brazil
| | | | | | | | | |
Collapse
|
537
|
Abstract
A broad range of neurodegenerative disorders is characterized by neuronal damage that may be caused by toxic, aggregation-prone proteins. As genes are identified for these disorders and cell culture and animal models are developed, it has become clear that a major effect of mutations in these genes is the abnormal processing and accumulation of misfolded protein in neuronal inclusions and plaques. Increased understanding of the cellular mechanisms for disposal of abnormal proteins and of the effects of toxic protein accumulation on neuronal survival may allow the development of rational, effective treatment for these disorders.
Collapse
Affiliation(s)
- J Paul Taylor
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
538
|
Abstract
DLB is a complex disorder with important associations with PD and AD. As clinicians, it is important for us to identify these patients because of their unique responses to medical interventions and to help patients and caregivers more fully understand this disease process and its implications. Further research is needed to improve our understanding of the pathophysiology of this important dementing disorder, with the ultimate goal of improving clinical management of this disease.
Collapse
Affiliation(s)
- James B Leverenz
- Department of Veterans Affairs, Northwest Network Mental Illness and Parkinson's Disease Research, Education and Clinical Centers, Seattle, WA, 98108 USA.
| | | |
Collapse
|
539
|
|
540
|
Krüger R, Eberhardt O, Riess O, Schulz JB. Parkinson's disease: one biochemical pathway to fit all genes? Trends Mol Med 2002; 8:236-40. [PMID: 12067634 DOI: 10.1016/s1471-4914(02)02333-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although originally discounted, hereditary factors have emerged as the focus of research in Parkinson's disease (PD). Genetic studies have identified mutations in alpha-synuclein and ubiquitin C-terminal hydrolase as rare causes of autosomal dominant PD and mutations in parkin as a cause of autosomal recessive PD. Functional characterization of the identified disease genes implicates the ubiquitin-mediated protein degradation pathway in these hereditary forms of PD and also in the more common sporadic forms of PD. Subsequent identification of further loci in familial PD and diverse genetic factors modulating the risk for sporadic PD point to substantial genetic heterogeneity in the disease. Thus, new candidate genes are expected to encode proteins either involved in ubiquitin-mediated protein degradation or sequestrated in intracytoplasmic protein aggregations. Future identification of disease genes is required to confirm this hypothesis, thereby unifying the clinical and genetic heterogeneity of PD, including the common sporadic form of the disease, by one biochemical pathway.
Collapse
Affiliation(s)
- Rejko Krüger
- Dept of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
541
|
Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1655-67. [PMID: 12000718 PMCID: PMC1850875 DOI: 10.1016/s0002-9440(10)61113-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mutations in alpha-synuclein (alpha S) and parkin cause heritable forms of Parkinson disease (PD). We hypothesized that neuronal parkin, a known E3 ubiquitin ligase, facilitates the formation of Lewy bodies (LBs), a pathological hallmark of PD. Here, we report that affinity-purified parkin antibodies labeled classical LBs in substantia nigra sections from four related human disorders: sporadic PD, inherited alphaS-linked PD, dementia with LBs (DLB), and LB-positive, parkin-linked PD. Anti-parkin antibodies also detected LBs in entorhinal and cingulate cortices from DLB brain and alphaS inclusions in sympathetic gangliocytes from sporadic PD. Double labeling with confocal microscopy of DLB midbrain sections revealed that approximately 90% of anti-alpha S-reactive LBs were also detected by a parkin antibody to amino acids 342 to 353. Accordingly, parkin proteins, including the 53-kd mature isoform, were present in affinity-isolated LBs from DLB cortex. Fluorescence resonance energy transfer and immunoelectron microscopy showed that alphaS and parkin co-localized within brainstem and cortical LBs. Biochemically, parkin appeared most enriched in cytosolic and postsynaptic fractions of adult rat brain, but also in purified, alpha S-rich presynaptic elements that additionally contained parkin's E2-binding partner, UbcH7. We conclude that parkin and UbcH7 are present with alphaS in subcellular compartments of normal brain and that parkin frequently co-localizes with alpha S aggregates in the characteristic LB inclusions of PD and DLB. These results suggest that functional parkin proteins may be required during LB formation.
Collapse
|
542
|
Hedrich K, Marder K, Harris J, Kann M, Lynch T, Meija-Santana H, Pramstaller PP, Schwinger E, Bressman SB, Fahn S, Klein C. Evaluation of 50 probands with early-onset Parkinson's disease for Parkin mutations. Neurology 2002; 58:1239-46. [PMID: 11971093 DOI: 10.1212/wnl.58.8.1239] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Early onset PD has been associated with different mutations in the Parkin gene, including exon deletions and duplications. METHODS The authors performed an extensive mutational analysis on 50 probands with onset of PD at younger than 50 years of age. Thirteen probands were ascertained from a registry of familial PD and 37 probands by age at onset at younger than 50 years, blind to family history. Mutational analysis was undertaken on the probands and available family members and included conventional techniques (single strand conformation polymorphism analysis and sequencing) and a newly developed method of quantitative duplex PCR to detect alterations of gene dosage (exon deletions and duplications) in PARKIN: RESULTS Using this new technique, the authors detected eight alterations of gene dosage in the probands, whereas 12 mutations were found by conventional methods among the probands and another different mutation in an affected family member. In total, the authors identified compound heterozygous mutations in 14%, heterozygous mutations in 12%, and no Parkin mutation in 74% of the 50 probands. We expanded the occurrence of Parkin mutations to another ethnic group (African-American). CONCLUSION The authors systematically screened all 12 Parkin exons by quantitative PCR and conventional methods in 50 probands. Eight mutations were newly reported, 2 of which are localized in exon 1, and 38% of the mutations were gene dosage alterations. These results underline the need to screen all exons and to undertake gene dosage studies. Furthermore, this study reveals a frequency of heterozygous mutation carriers that may signify a unique mode of inheritance and expression of the Parkin gene.
Collapse
Affiliation(s)
- K Hedrich
- Department of Neurology, Medical University of Lübeck, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
543
|
O'Farrell C, Pickford F, Vink L, McGowan E, Cookson MR. Sequence conservation between mouse and human synphilin-1. Neurosci Lett 2002; 322:9-12. [PMID: 11958831 DOI: 10.1016/s0304-3940(02)00068-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Synphilin-1 has been shown to interact with alpha-synuclein, which in turn is associated with Parkinson's disease. However, the function of synphilin-1 is unknown. We have cloned mouse synphilin in an attempt to describe conserved and therefore likely functional domains. The deduced amino acid sequence of the protein shows extensive homology with its human counterpart, with greatest similarities in those regions that contain ankyrin-like motifs and the coiled-coil domain. Expression of mouse synphilin-1 across tissues is similar to its human counterpart and not limited to brain. The results show that the synphilin-1 sequence and expression patterns are conserved across species.
Collapse
Affiliation(s)
- Casey O'Farrell
- Neurogenetics Laboratory, Mayo Clinic Jacksonville, FL 32224, USA
| | | | | | | | | |
Collapse
|
544
|
Abstract
SUMMARY Synucleins are small, soluble proteins expressed primarily in neural tissue and in certain tumors. The family includes three known proteins: alpha-synuclein, beta-synuclein, and gamma-synuclein. All synucleins have in common a highly conserved alpha-helical lipid-binding motif with similarity to the class-A2 lipid-binding domains of the exchangeable apolipoproteins. Synuclein family members are not found outside vertebrates, although they have some conserved structural similarity with plant 'late-embryo-abundant' proteins. The alpha- and beta-synuclein proteins are found primarily in brain tissue, where they are seen mainly in presynaptic terminals. The gamma-synuclein protein is found primarily in the peripheral nervous system and retina, but its expression in breast tumors is a marker for tumor progression. Normal cellular functions have not been determined for any of the synuclein proteins, although some data suggest a role in the regulation of membrane stability and/or turnover. Mutations in alpha-synuclein are associated with rare familial cases of early-onset Parkinson's disease, and the protein accumulates abnormally in Parkinson's disease, Alzheimer's disease, and several other neurodegenerative illnesses. The current challenge is to understand the normal cellular function of these proteins and how they might contribute to the development of human disease.
Collapse
Affiliation(s)
- Julia M George
- Department of Cell and Structural Biology, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
545
|
|
546
|
|
547
|
Baderman N, Clough J, Milburn J, Owens J. News in brief. Drug Discov Today 2001. [DOI: 10.1016/s1359-6446(01)02064-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
548
|
Chung KK, Dawson VL, Dawson TM. The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. Trends Neurosci 2001. [DOI: 10.1016/s0166-2236(01)00003-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
549
|
|