501
|
Dias E Silva D, Chung V. Neoadjuvant treatment for pancreatic cancer: Controversies and advances. Cancer Treat Res Commun 2024; 39:100804. [PMID: 38508132 DOI: 10.1016/j.ctarc.2024.100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/22/2024]
Abstract
Despite the advancements in the treatment of localized pancreatic cancer, several unresolved issues persist in clinical practice, especially in the neoadjuvant setting. These include determining the criteria for selecting patients for treatment, identifying the most effective chemotherapy regimens, understanding the role of radiotherapy, and accurately assessing how patients respond to treatment. Current strategies for assessing patients before surgery involve thoroughly evaluating their overall health status, analyzing tumor markers, and using advanced imaging techniques. However, existing methods for staging the disease still have limitations when it comes to accurately detecting metastatic cancer. The ongoing debate between performing surgery upfront or administering neoadjuvant therapy highlights the need for robust clinical evidence to guide treatment decisions effectively. This review analyzes the evidence regarding controversial topics in neoadjuvant pancreatic cancer treatment and discusses further research efforts to enhance patient outcomes. To improve the outcomes found with surgery alone, multimodal treatment with chemotherapy.
Collapse
Affiliation(s)
| | - Vincent Chung
- City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, United States.
| |
Collapse
|
502
|
Zhang H, Li Y, Kang H, Lan J, Hou L, Chen Z, Li F, Liu Y, Zhao J, Li N, Wan Y, Zhu Y, Zhao Z, Zhang H, Zhuang J, Huang X. Genetically engineered membrane-based nanoengagers for immunotherapy of pancreatic cancer. J Nanobiotechnology 2024; 22:104. [PMID: 38468289 PMCID: PMC10926568 DOI: 10.1186/s12951-024-02369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Modulating macrophages presents a promising avenue in tumor immunotherapy. However, tumor cells have evolved mechanisms to evade macrophage activation and phagocytosis. Herein, we introduced a bispecific antibody-based nanoengager to facilitate the recognition and phagocytosis of tumor cells by macrophages. Specifically, we genetically engineered two single chain variable fragments (scFv) onto cell membrane: anti-CD40 scFv for engaging with macrophages and anti-Claudin18.2 (CLDN18.2) scFv for interacting with tumor cells. These nanoengagers were further constructed by coating scFv-anchored membrane into PLGA nanoparticle core. Our developed nanoengagers significantly boosted immune responses, including increased recognition and phagocytosis of tumor cells by macrophages, enhanced activation and antigen presentation, and elevated cytotoxic T lymphocyte activity. These combined benefits resulted in enhancing antitumor efficacy against highly aggressive "cold" pancreatic cancer. Overall, this study offers a versatile nanoengager design for immunotherapy, achieved through genetically engineering to incorporate antibody-anchored membrane.
Collapse
Affiliation(s)
- Haoqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Helong Kang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jingping Lan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Lin Hou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Zhengbang Chen
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Fan Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yanqin Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jiliang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Na Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yajuan Wan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yiping Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Zhen Zhao
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jie Zhuang
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xinglu Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
503
|
Xu Q, Jia C, Ou Y, Zeng C, Jia Y. Dark horse target Claudin18.2 opens new battlefield for pancreatic cancer. Front Oncol 2024; 14:1371421. [PMID: 38511141 PMCID: PMC10951399 DOI: 10.3389/fonc.2024.1371421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Pancreatic cancer is one of the deadliest malignant tumors, which is a serious threat to human health and life, and it is expected that pancreatic cancer may be the second leading cause of cancer death in developed countries by 2030. Claudin18.2 is a tight junction protein expressed in normal gastric mucosal tissues, which is involved in the formation of tight junctions between cells and affects the permeability of paracellular cells. Claudin18.2 is highly expressed in pancreatic cancer and is associated with the initiation, progression, metastasis and prognosis of cancer, so it is considered a potential therapeutic target. Up to now, a number of clinical trials for Claudin18.2 are underway, including solid tumors such as pancreatic cancers and gastric cancers, and the results of these trials have not yet been officially announced. This manuscript briefly describes the Claudia protein, the dual roles of Cluadin18 in cancers, and summarizes the ongoing clinical trials targeting Claudin18.2 with a view to integrating the research progress of Claudin18.2 targeted therapy. In addition, this manuscript introduces the clinical research progress of Claudin18.2 positive pancreatic cancer, including monoclonal antibodies, bispecific antibodies, antibody-drug conjugates, CAR-T cell therapy, and hope to provide feasible ideas for the clinical treatment of Claudin18.2 positive pancreatic cancer.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Caiyan Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yan Ou
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chuanxiu Zeng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
504
|
Kim J, Lee TS, Lee MH, Cho IR, Ryu JK, Kim YT, Lee SH, Paik WH. Pancreatic Cancer Treatment Targeting the HGF/c-MET Pathway: The MEK Inhibitor Trametinib. Cancers (Basel) 2024; 16:1056. [PMID: 38473413 DOI: 10.3390/cancers16051056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic cancer is characterized by fibrosis/desmoplasia in the tumor microenvironment, which is primarily mediated by pancreatic stellate cells and cancer-associated fibroblasts. HGF/c-MET signaling, which is instrumental in embryonic development and wound healing, is also implicated for its mitogenic and motogenic properties. In pancreatic cancer, this pathway, along with its downstream signaling pathways, is associated with disease progression, prognosis, metastasis, chemoresistance, and other tumor-related factors. Other features of the microenvironment in pancreatic cancer with the HGF/c-MET pathway include hypoxia, angiogenesis, metastasis, and the urokinase plasminogen activator positive feed-forward loop. All these attributes critically influence the initiation, progression, and metastasis of pancreatic cancer. Therefore, targeting the HGF/c-MET signaling pathway appears promising for the development of innovative drugs for pancreatic cancer treatment. One of the primary downstream effects of c-MET activation is the MAPK/ERK (Ras, Ras/Raf/MEK/ERK) signaling cascade, and MEK (Mitogen-activated protein kinase kinase) inhibitors have demonstrated therapeutic value in RAS-mutant melanoma and lung cancer. Trametinib is a selective MEK1 and MEK2 inhibitor, and it has evolved as a pivotal therapeutic agent targeting the MAPK/ERK pathway in various malignancies, including BRAF-mutated melanoma, non-small cell lung cancer and thyroid cancer. The drug's effectiveness increases when combined with agents like BRAF inhibitors. However, resistance remains a challenge, necessitating ongoing research to counteract the resistance mechanisms. This review offers an in-depth exploration of the HGF/c-MET signaling pathway, trametinib's mechanism, clinical applications, combination strategies, and future directions in the context of pancreatic cancer.
Collapse
Affiliation(s)
- Junyeol Kim
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae Seung Lee
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Myeong Hwan Lee
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - In Rae Cho
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ji Kon Ryu
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong-Tae Kim
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang Hyub Lee
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Woo Hyun Paik
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
505
|
Wilbur HC, Azad NS. Immunotherapy for the treatment of biliary tract cancer: an evolving landscape. Ther Adv Med Oncol 2024; 16:17588359241235799. [PMID: 38449562 PMCID: PMC10916472 DOI: 10.1177/17588359241235799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Biliary tract cancers (BTCs), consisting of intrahepatic and extrahepatic cholangiocarcinoma and gallbladder cancer, are an aggressive, heterogeneous malignancy. They are most often diagnosed in the locally advanced or metastatic setting, at which point treatment consists of systemic therapy or best supportive care. Our understanding of the tumor microenvironment and the molecular classification has led to the identification of targetable mutations, such as isocitrate dehydrogenase 1 and fibroblast growth factor receptor 2. Despite the identification of these genomic alterations, until recently, little advancement had been made in the first-line setting for advanced BTC. While immunotherapy (IO) has revolutionized the treatment of many malignancies, the use of IO in BTC had yielded limited results prior to TOPAZ-1. In this review, we discuss the systemic therapeutic advances for BTC over the past decade, the rationale for immunotherapy in BTC, prior trials utilizing IO in BTC, and current and emerging immune-based therapeutic options. We further analyze the culmination of these advances, which resulted in the approval of durvalumab with gemcitabine and cisplatin for the first-line treatment of BTC per TOPAZ-1. We also discuss the results of KEYNOTE-966, which similarly reported improved clinical outcomes with the use of pembrolizumab in combination with gemcitabine and cisplatin.
Collapse
Affiliation(s)
- Helen Catherine Wilbur
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Nilofer S. Azad
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 N. Broadway, Baltimore, MD 21287, USA
| |
Collapse
|
506
|
Tindall RR, Bailey-Lundberg JM, Cao Y, Ko TC. The TGF-β superfamily as potential therapeutic targets in pancreatic cancer. Front Oncol 2024; 14:1362247. [PMID: 38500662 PMCID: PMC10944957 DOI: 10.3389/fonc.2024.1362247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
The transforming growth factor (TGF)-β superfamily has important physiologic roles and is dysregulated in many pathologic processes, including pancreatic cancer. Pancreatic cancer is one of the most lethal cancer diagnoses, and current therapies are largely ineffective due to tumor resistance and late-stage diagnosis with poor prognosis. Recent efforts are focused on the potential of immunotherapies in improving therapeutic results for patients with pancreatic cancer, among which TGF-β has been identified as a promising target. This review focuses on the role of TGF-β in the diseased pancreas and pancreatic cancer. It also aims to summarize the current status of therapies targeting the TGF-β superfamily and postulate potential future directions in targeting the TGF-β signaling pathways.
Collapse
Affiliation(s)
- Rachel R. Tindall
- McGovern Medical School, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jennifer M. Bailey-Lundberg
- McGovern Medical School, Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yanna Cao
- McGovern Medical School, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tien C. Ko
- McGovern Medical School, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
507
|
Spore LM, Dencker EE, Kvanner EA, Hansen CP, Burgdorf SK, Krohn PS, Kollbeck SLG, Storkholm JH, Sillesen M. Perioperative factors associated with survival following surgery for pancreatic cancer - a nationwide analysis of 473 cases from Denmark. BMC Surg 2024; 24:76. [PMID: 38431571 PMCID: PMC10908011 DOI: 10.1186/s12893-024-02369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers worldwide, with an overall 5-year survival rate of only 5%. The effect of perioperative treatment factors including duration of surgery, blood transfusions as well as choice of anesthesia and analgesia techniques on overall survival (OS) following pancreatic resections for PDAC, is currently not well known. We hypothesized that these perioperative factors might be associated with OS after pancreatic resections for PDAC. METHODS This is a retrospective study from a nationwide cohort of patients who underwent surgery for PDAC in Denmark from 2011 to 2020. Kaplan-Meier 1, 2 and 5-year survival estimates were 73%, 49% and 22%, respectively. Data were obtained by joining the national Danish Pancreatic Cancer Database (DPCD) and the Danish Anaesthesia Database (DAD). Associations between the primary endpoint (OS) and perioperative factors including duration of surgery, type of anesthesia (intravenous, inhalation or mixed), use of epidural analgesia and perioperative blood transfusions were assessed using Hazard Ratios (HRs). These were calculated by Cox regression, controlling for relevant confounders identified through an assessment of the current literature. These included demographics, comorbidities, perioperative information, pre and postoperative chemotherapy, tumor staging and free resection margins. RESULTS Overall, data from 473 resected PDAC patients were available. Multivariate Cox regression indicated that perioperative blood transfusions were associated with shorter OS (HR 2.53, p = 0.005), with survival estimates of 8.8% in transfused vs. 28.0% in non-transfused patients at 72 months after surgery. No statistically significant associations were identified for the duration of surgery or anesthesia/analgesia techniques. CONCLUSION In this study, the use of perioperative blood transfusions was associated with shorter OS.
Collapse
Affiliation(s)
- Laura Marr Spore
- Department of Organ Surgery and Transplantation, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Emilie Even Dencker
- Department of Organ Surgery and Transplantation, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Eske Aasvang Kvanner
- Department of Anesthesia, Copenhagen University Hospital, Rigshospitalet, Denmark
- Institute of Clinical Medicine, University of Copenhagen Medical School, Copenhagen, Denmark
| | - Carsten Palnaes Hansen
- Department of Organ Surgery and Transplantation, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Stefan Kobbelgaard Burgdorf
- Department of Organ Surgery and Transplantation, Copenhagen University Hospital, Rigshospitalet, Denmark
- Institute of Clinical Medicine, University of Copenhagen Medical School, Copenhagen, Denmark
| | - Paul Suno Krohn
- Department of Organ Surgery and Transplantation, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | - Jan Henrik Storkholm
- Department of Organ Surgery and Transplantation, Copenhagen University Hospital, Rigshospitalet, Denmark
- Department of Surgery, Imperial College NHS Trust, Hammersmith Hospital, London, UK
| | - Martin Sillesen
- Department of Organ Surgery and Transplantation, Copenhagen University Hospital, Rigshospitalet, Denmark.
- Institute of Clinical Medicine, University of Copenhagen Medical School, Copenhagen, Denmark.
| |
Collapse
|
508
|
Ye X, Yu Y, Zheng X, Ma H. Clinical immunotherapy in pancreatic cancer. Cancer Immunol Immunother 2024; 73:64. [PMID: 38430289 PMCID: PMC10908626 DOI: 10.1007/s00262-024-03632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/09/2024] [Indexed: 03/03/2024]
Abstract
Pancreatic cancer remains a challenging disease with limited treatment options, resulting in high mortality rates. The predominant approach to managing pancreatic cancer patients continues to be systemic cytotoxic chemotherapy. Despite substantial advancements in immunotherapy strategies for various cancers, their clinical utility in pancreatic cancer has proven less effective and durable. Whether administered as monotherapy, employing immune checkpoint inhibitors, tumor vaccines, chimeric antigen receptors T cells, or in combination with conventional chemoradiotherapy, the clinical outcomes remain underwhelming. Extensive preclinical experiments and clinical trials in the realm of pancreatic cancer have provided valuable insights into the complexities of immunotherapy. Chief among the hurdles are the immunosuppressive tumor microenvironment, limited immunogenicity, and the inherent heterogeneity of pancreatic cancer. In this comprehensive review, we provide an overview and critical analysis of current clinical immunotherapy strategies for pancreatic cancer, emphasizing their endeavors to overcome immunotherapy resistance. Particular focus is placed on strategies aimed at reshaping the immunosuppressive microenvironment and enhancing T cell-mediated tumor cell killing. Ultimately, through deeper elucidation of the underlying pathogenic mechanisms of pancreatic cancer and the refinement of therapeutic approaches, we anticipate breakthroughs that will pave the way for more effective treatments in this challenging disease.
Collapse
Affiliation(s)
- Xiaorong Ye
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China
| | - Yue Yu
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China.
| | - Xiaohu Zheng
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China.
- Hefei National Research Center for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China.
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.
| | - Hongdi Ma
- Hefei National Research Center for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China.
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China.
| |
Collapse
|
509
|
van Eijck CWF, Sabroso-Lasa S, Strijk GJ, Mustafa DAM, Fellah A, Koerkamp BG, Malats N, van Eijck CHJ. A liquid biomarker signature of inflammatory proteins accurately predicts early pancreatic cancer progression during FOLFIRINOX chemotherapy. Neoplasia 2024; 49:100975. [PMID: 38335839 PMCID: PMC10873733 DOI: 10.1016/j.neo.2024.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is often treated with FOLFIRINOX, a chemotherapy associated with high toxicity rates and variable efficacy. Therefore, it is crucial to identify patients at risk of early progression during treatment. This study aims to explore the potential of a multi-omics biomarker for predicting early PDAC progression by employing an in-depth mathematical modeling approach. METHODS Blood samples were collected from 58 PDAC patients undergoing FOLFIRINOX before and after the first cycle. These samples underwent gene (GEP) and inflammatory protein expression profiling (IPEP). We explored the predictive potential of exclusively IPEP through Stepwise (Backward) Multivariate Logistic Regression modeling. Additionally, we integrated GEP and IPEP using Bayesian Kernel Regression modeling, aiming to enhance predictive performance. Ultimately, the FOLFIRINOX IPEP (FFX-IPEP) signature was developed. RESULTS Our findings revealed that proteins exhibited superior predictive accuracy than genes. Consequently, the FFX-IPEP signature consisted of six proteins: AMN, BANK1, IL1RL2, ITGB6, MYO9B, and PRSS8. The signature effectively identified patients transitioning from disease control to progression early during FOLFIRINOX, achieving remarkable predictive accuracy with an AUC of 0.89 in an independent test set. Importantly, the FFX-IPEP signature outperformed the conventional CA19-9 tumor marker. CONCLUSIONS Our six-protein FFX-IPEP signature holds solid potential as a liquid biomarker for the early prediction of PDAC progression during toxic FOLFIRINOX chemotherapy. Further validation in an external cohort is crucial to confirm the utility of the FFX-IPEP signature. Future studies should expand to predict progression under different chemotherapies to enhance the guidance of personalized treatment selection in PDAC.
Collapse
Affiliation(s)
- Casper W F van Eijck
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Madrid, Spain.
| | - Sergio Sabroso-Lasa
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Madrid, Spain; Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), Madrid, Spain
| | - Gaby J Strijk
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dana A M Mustafa
- Department of Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Amine Fellah
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Madrid, Spain; Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), Madrid, Spain
| | - Casper H J van Eijck
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Madrid, Spain.
| |
Collapse
|
510
|
Sahin TK, Isik A, Guven DC, Ceylan F, Babaoglu B, Akyol A, Yalcin S, Dizdar O. The prognostic and predictive role of class III β-Tubulin and hENT1 expression in patients with advanced pancreatic ductal adenocarcinoma. Pancreatology 2024; 24:279-288. [PMID: 38272717 DOI: 10.1016/j.pan.2024.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND FOLFIRINOX and gemcitabine-nabpaclitaxel (GnP) are standard first-line treatment regimens for advanced pancreatic ductal adenocarcinoma (PDAC). However, currently, there is a lack of predictive biomarkers to aid in the treatment selection. We aimed to explore the prognostic and predictive value of class III β-Tubulin (TUBB3) and human equilibrative nucleoside transporter 1 (hENT1) expression, which have previously been shown to be associated with taxane and gemcitabine resistance in advanced PDAC. METHODS We conducted a retrospective analysis of 106 patients with advanced PDAC treated with GnP and/or FOLFIRINOX at our institution. TUBB3 and hENT1 immunohistochemical staining was performed on tumor specimens and subsequently evaluated based on the intensity and percentage of expression. RESULTS In patients who received the GnP regimen, a high combined score (TUBB3low/hENT1high) was associated with a higher DCR and longer PFS compared to those with intermediate (TUBB3high/hENT1high or TUBB3low/hENT1low) and low score (TUBB3high/hENT1low). In the multivariate analysis, a high combined score was an independent predictor of higher DCR (OR:11.96; 95 % CI:2.61-54.82; p = 0.001) and longer PFS (HR:0.33; 95%CI:0.18-0.60; p < 0.001). However, there was no difference in response rates or PFS based on TUBB3 and hENT1 expression among patients receiving the FOLFIRINOX regimen. CONCLUSION Our findings indicate that tumor TUBB3 and hENT1 expression may predict the efficacy of the GnP regimen, and low TUBB3 and high hENT1 expression (TUBB3low/hENT1high) are associated with a higher DCR and longer PFS in patients treated with GnP. Evaluating TUBB3 and hENT1 jointly can identify the patients most (as well as least) likely to benefit from GnP chemotherapy.
Collapse
Affiliation(s)
- T K Sahin
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - A Isik
- Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara, Turkey
| | - D C Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - F Ceylan
- Department of Medical Oncology, Ankara City Hospital, Ankara, Turkey
| | - B Babaoglu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - A Akyol
- Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara, Turkey; Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - S Yalcin
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - O Dizdar
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey.
| |
Collapse
|
511
|
Jiménez DJ, Javed A, Rubio-Tomás T, Seye-Loum N, Barceló C. Clinical and Preclinical Targeting of Oncogenic Pathways in PDAC: Targeted Therapeutic Approaches for the Deadliest Cancer. Int J Mol Sci 2024; 25:2860. [PMID: 38474109 DOI: 10.3390/ijms25052860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. It is commonly diagnosed in advanced stages and therapeutic interventions are typically constrained to systemic chemotherapy, which yields only modest clinical outcomes. In this review, we examine recent developments in targeted therapy tailored to address distinct molecular pathway alteration required for PDAC. Our review delineates the principal signaling pathways and molecular mechanisms implicated in the initiation and progression of PDAC. Subsequently, we provide an overview of prevailing guidelines, ongoing investigations, and prospective research trajectories related to targeted therapeutic interventions, drawing insights from randomized clinical trials and other pertinent studies. This review focus on a comprehensive examination of preclinical and clinical data substantiating the efficacy of these therapeutic modalities, emphasizing the potential of combinatorial regimens and novel therapies to enhance the quality of life for individuals afflicted with PDAC. Lastly, the review delves into the contemporary application and ongoing research endeavors concerning targeted therapy for PDAC. This synthesis serves to bridge the molecular elucidation of PDAC with its clinical implications, the evolution of innovative therapeutic strategies, and the changing landscape of treatment approaches.
Collapse
Affiliation(s)
- Diego J Jiménez
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Aadil Javed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ndioba Seye-Loum
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
512
|
Jeong HT, Kim HG, Han J. Efficacy and Toxicity of Palliative Chemotherapy in Elderly Patients With Advanced Pancreatic Cancer. Pancreas 2024; 53:e268-e273. [PMID: 38300837 PMCID: PMC11882178 DOI: 10.1097/mpa.0000000000002299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/04/2023] [Indexed: 02/03/2024]
Abstract
OBJECTIVES We aimed to compare the efficacy and toxicity of palliative chemotherapy in elderly patients with pancreatic ductal adenocarcinoma (PDAC) with those in younger patients. METHODS A total of 60 patients with locally advanced or metastatic PDAC who received FOLFIRINOX or nab-paclitaxel plus gemcitabine at our institution from January 2014 to December 2021 were analyzed. Patients 70 years or older were classified into an elderly group. RESULTS The elderly group included 16 patients (26.7%). In the elderly group, nab-paclitaxel plus gemcitabine was used more than FOLFIRINOX compared with the young group (75.0% and 25.0% vs 34.1% and 64.9%, respectively; P = 0.008). The overall survival was not significantly different between the 2 groups (15.6 vs 13.4 months, P = 0.259). However, the elderly group showed better progression-free survival (11.4 vs 7.4 months, P = 0.034). The incidence of adverse events including neutropenia (75.0% vs 81.8%, P = 0.716), thrombocytopenia (25.0% vs 31.3%, P = 0.743), and anemia (50.0% vs 43.2%, P = 0.771) was not different between the 2 groups. Peripheral neuropathy was more common in the elderly group (18.3% vs 2.3%, P = 0.054), though not statistically significant. CONCLUSION The efficacy and toxicity of chemotherapy in elderly patients with advanced PDAC were comparable with those in younger patients.
Collapse
|
513
|
Labori KJ, Bratlie SO, Andersson B, Angelsen JH, Biörserud C, Björnsson B, Bringeland EA, Elander N, Garresori H, Grønbech JE, Haux J, Hemmingsson O, Liljefors MG, Myklebust TÅ, Nymo LS, Peltola K, Pfeiffer P, Sallinen V, Sandström P, Sparrelid E, Stenvold H, Søreide K, Tingstedt B, Verbeke C, Öhlund D, Klint L, Dueland S, Lassen K. Neoadjuvant FOLFIRINOX versus upfront surgery for resectable pancreatic head cancer (NORPACT-1): a multicentre, randomised, phase 2 trial. Lancet Gastroenterol Hepatol 2024; 9:205-217. [PMID: 38237621 DOI: 10.1016/s2468-1253(23)00405-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND In patients undergoing resection for pancreatic cancer, adjuvant modified fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) improves overall survival compared with alternative chemotherapy regimens. We aimed to compare the efficacy and safety of neoadjuvant FOLFIRINOX with the standard strategy of upfront surgery in patients with resectable pancreatic ductal adenocarcinoma. METHODS NORPACT-1 was a multicentre, randomised, phase 2 trial done in 12 hospitals in Denmark, Finland, Norway, and Sweden. Eligible patients were aged 18 years or older, with a WHO performance status of 0 or 1, and had a resectable tumour of the pancreatic head radiologically strongly suspected to be pancreatic adenocarcinoma. Participants were randomly assigned (3:2 before October, 2018, and 1:1 after) to the neoadjuvant FOLFIRINOX group or upfront surgery group. Patients in the neoadjuvant FOLFIRINOX group received four neoadjuvant cycles of FOLFIRINOX (oxaliplatin 85 mg/m2, irinotecan 180 mg/m2, leucovorin 400 mg/m2, and fluorouracil 400 mg/m2 bolus then 2400 mg/m2 over 46 h on day 1 of each 14-day cycle), followed by surgery and adjuvant chemotherapy. Patients in the upfront surgery group underwent surgery and then received adjuvant chemotherapy. Initially, adjuvant chemotherapy was gemcitabine plus capecitabine (gemcitabine 1000 mg/m2 over 30 min on days 1, 8, and 15 of each 28-day cycle and capecitabine 830 mg/m2 twice daily for 3 weeks with 1 week of rest in each 28-day cycle; four cycles in the neoadjuvant FOLFIRINOX group, six cycles in the upfront surgery group). A protocol amendment was subsequently made to permit use of adjuvant modified FOLFIRINOX (oxaliplatin 85 mg/m2, irinotecan 150 mg/m2, leucovorin 400 mg/m2, and fluorouracil 2400 mg/m2 over 46 h on day 1 of each 14-day cycle; eight cycles in the neoadjuvant FOLFIRINOX group, 12 cycles in the upfront surgery group). Randomisation was performed with a computerised algorithm that stratified for each participating centre and used a concealed block size of two to six. Patients, investigators, and study team members were not masked to treatment allocation. The primary endpoint was overall survival at 18 months. Analyses were done in the intention-to-treat (ITT) and per-protocol populations. Safety was assessed in all patients who were randomly assigned and received at least one cycle of neoadjuvant or adjuvant therapy. This trial is registered with ClinicalTrials.gov, NCT02919787, and EudraCT, 2015-001635-21, and is ongoing. FINDINGS Between Feb 8, 2017, and April 21, 2021, 77 patients were randomly assigned to receive neoadjuvant FOLFIRINOX and 63 to undergo upfront surgery. All patients were included in the ITT analysis. For the per-protocol analysis, 17 (22%) patients were excluded from the neoadjuvant FOLFIRINOX group (ten did not receive neoadjuvant therapy, four did not have pancreatic ductal adenocarcinoma, and three received another neoadjuvant regimen), and eight (13%) were excluded from the upfront surgery group (seven did not have pancreatic ductal adenocarcinoma and one did not undergo surgical exploration). 61 (79%) of 77 patients in the neoadjuvant FOLFIRINOX group received neoadjuvant therapy. The proportion of patients alive at 18 months by ITT was 60% (95% CI 49-71) in the neoadjuvant FOLFIRINOX group versus 73% (62-84) in the upfront surgery group (p=0·032), and median overall survival by ITT was 25·1 months (95% CI 17·2-34·9) versus 38·5 months (27·6-not reached; hazard ratio [HR] 1·52 [95% CI 1·00-2·33], log-rank p=0·050). The proportion of patients alive at 18 months in per-protocol analysis was 57% (95% CI 46-67) in the neoadjuvant FOLFIRINOX group versus 70% (55-83) in the upfront surgery group (p=0·14), and median overall survival in per-protocol population was 23·0 months (95% CI 16·2-34·9) versus 34·4 months (19·4-not reached; HR 1·46 [95% CI 0·99-2·17], log-rank p=0·058). In the safety population, 42 (58%) of 73 patients in the neoadjuvant FOLFIRINOX group and 19 (40%) of 47 patients in the upfront surgery group had at least one grade 3 or worse adverse event. 63 (82%) of 77 patients in the neoadjuvant group and 56 (89%) of 63 patients in the upfront surgery group had resection (p=0·24). One sudden death of unknown cause and one COVID-19-related death occurred after the first cycle of neoadjuvant FOLFIRINOX. Adjuvant chemotherapy was initiated in 51 (86%) of 59 patients with resected pancreatic ductal adenocarcinoma in the neoadjuvant FOLFIRINOX group and 44 (90%) of 49 patients with resected pancreatic ductal adenocarcinoma in the upfront surgery group (p=0·56). Adjuvant modified FOLFIRINOX was given to 13 (25%) patients in the neoadjuvant FOLFIRINOX group and 19 (43%) patients in the upfront surgery group. During adjuvant chemotherapy, neutropenia (11 [22%] patients in the neoadjuvant FOLFIRINOX group and five [11%] in the upfront surgery group) was the most common grade 3 or worse adverse event. INTERPRETATION This phase 2 trial did not show a survival benefit from neoadjuvant FOLFIRINOX in resectable pancreatic ductal adenocarcinoma compared with upfront surgery. Implementation of neoadjuvant FOLFIRINOX was challenging. Future trials on treatment sequencing in resectable pancreatic ductal adenocarcinoma should be biomarker driven. FUNDING Norwegian Cancer Society, South Eastern Norwegian Health Authority, The Sjöberg Foundation, and Helsinki University Hospital Research Grants.
Collapse
Affiliation(s)
- Knut Jørgen Labori
- Department of Hepato Pancreato Biliary Surgery, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Svein Olav Bratlie
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Surgery, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bodil Andersson
- Department of Clinical Sciences Lund, Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jon-Helge Angelsen
- Department of Gastrointestinal Surgery, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christina Biörserud
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Surgery, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bergthor Björnsson
- Department of Surgery in Linköping, Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Erling Audun Bringeland
- Department of Gastrointestinal Surgery, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nils Elander
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | - Herish Garresori
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Jon Erik Grønbech
- Department of Gastrointestinal Surgery, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Johan Haux
- Department of Oncology, Skaraborg Hospital Skövde, Skövde, Sweden; School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Oskar Hemmingsson
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Maria Gustafsson Liljefors
- Division of Surgery and Oncology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tor Åge Myklebust
- Department of Registration, Cancer Registry of Norway, Oslo, Norway; Department of Research and Innovation, Møre and Romsdal Hospital Trust, Ålesund, Norway
| | - Linn Såve Nymo
- Department of Gastrointestinal Surgery, University Hospital of North Norway, Tromsø, Norway; Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
| | - Katriina Peltola
- Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Per Pfeiffer
- Department of Medical Oncology, Odense University Hospital, Odense, Denmark
| | - Ville Sallinen
- Gastroenterological Surgery/ Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Per Sandström
- Department of Surgery in Linköping, Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ernesto Sparrelid
- Division of Surgery and Oncology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Helge Stenvold
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Kjetil Søreide
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Bobby Tingstedt
- Department of Clinical Sciences Lund, Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Caroline Verbeke
- Department of Pathology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Daniel Öhlund
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Leif Klint
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Kristoffer Lassen
- Department of Hepato Pancreato Biliary Surgery, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
514
|
Stephens K, Philips PP, Egger ME, Scoggins CR, McMasters KM, Martin RCG. Multi-institutional review of adverse events associated with irreversible electroporation in the treatment of locally advanced pancreatic cancer. Surgery 2024; 175:704-711. [PMID: 37852831 DOI: 10.1016/j.surg.2023.08.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Irreversible electroporation is a novel approach for treating locally advanced pancreatic adenocarcinoma. However, this ablative technique is not without risk and has the potential to precipitate adverse events. The aim of this study was to delineate risk factors that increase this risk, as well as to elucidate the risk profile associated with irreversible electroporation in the setting of locally advanced pancreatic adenocarcinoma. METHODS A review of our prospective multi-institutional database from December 2015 to March 2022 of patients with locally advanced pancreatic adenocarcinoma who underwent irreversible electroporation was analyzed for adverse events. These were then compared with a control population of patients undergoing pancreatectomy for adenocarcinoma. RESULTS Adverse events occurred in 51 patients of the 201 patients treated with irreversible electroporation compared with 78 of the 200 patients treated with pancreatectomy. The irreversible electroporation group had a significantly greater incidence of postoperative ascites in stage 3C patients. The most common complications in the irreversible electroporation group were infectious (n = 13), gastrointestinal bleed (n = 11), and ascites (n = 7). Multivariate analysis demonstrated increased risk of severe (grade ≥3) adverse events in the irreversible electroporation cohort who received high dose, neoadjuvant radiation (hazard ratio, 2.4; 95% confidence interval, 1.4-5.4), irreversible electroporation electrodes bracketing the superior mesenteric artery, superior mesenteric vein, and portal venous vein (hazard ratio, 1.9; 95% confidence interval, 1.3-3.4), and who had a bile duct stent in place for >6 months (hazard ratio, 1.7; 95% confidence interval, 1.2-5.6). There were similar rates of 90-day mortality in both groups, irreversible electroporation 2.4% vs pancreatectomy 2.8%. CONCLUSION This study revealed a 25% rate of adverse events associated with irreversible electroporation in locally advanced pancreatic adenocarcinoma, which was significantly less (P = .004) than the 39% rate of adverse events associated with pancreatectomy in early-stage disease. Certain unique adverse events in the irreversible electroporation group have been established and should be understood in the care of these patients.
Collapse
Affiliation(s)
- Kyle Stephens
- The Hiram C. Polk, Jr., MD Department of Surgery, Division of Surgical Oncology, University of Louisville School of Medicine, Louisville, KY
| | - Prejesh P Philips
- The Hiram C. Polk, Jr., MD Department of Surgery, Division of Surgical Oncology, University of Louisville School of Medicine, Louisville, KY
| | - Michael E Egger
- The Hiram C. Polk, Jr., MD Department of Surgery, Division of Surgical Oncology, University of Louisville School of Medicine, Louisville, KY
| | - Charles R Scoggins
- The Hiram C. Polk, Jr., MD Department of Surgery, Division of Surgical Oncology, University of Louisville School of Medicine, Louisville, KY
| | - Kelly M McMasters
- The Hiram C. Polk, Jr., MD Department of Surgery, Division of Surgical Oncology, University of Louisville School of Medicine, Louisville, KY
| | - Robert C G Martin
- The Hiram C. Polk, Jr., MD Department of Surgery, Division of Surgical Oncology, University of Louisville School of Medicine, Louisville, KY.
| |
Collapse
|
515
|
Mikalsen IM, Breder S, Medhus AW, Folseraas T, Aabakken L, Ånonsen KV. ERCP for the initial management of malignant biliary obstruction - real world data on 596 procedures. Scand J Gastroenterol 2024; 59:369-377. [PMID: 37994406 DOI: 10.1080/00365521.2023.2282375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
AIMS To evaluate outcomes of ERCP as first-line management in patients with malignant biliary obstruction (MBO) of all causes and stages, reflecting a real-life setting. METHODS Retrospective observational study of patients with ERCP as the first-line management of MBO at Oslo University Hospital between 2015 and 2021. Primary outcome measure was a ≥ 50% decrease from the pre-procedural bilirubin within 30 days after ERCP. Secondary outcome measures were technical success of ERCP, complications and overall mortality. RESULTS A total of 596 patients were included, median age 70 years. ASA score was ≥ III in 67% of patients. The most common cancers causing MBO were pancreatic cancer (52%), metastatic lesions (20%) and cholangiocarcinoma (16%). The primary outcome measure was achieved in 62% of patients. With endoscopic access, overall technical success was 80% with 85% for the distal extrahepatic group, 71% for the perihilar, 40% for the intrahepatic and 53% for multiple level MBOs. Reinterventions were performed in 27% of the patients. Complications occurred in 15% of the patients, including post-ERCP pancreatitis in 9%. Most complications were of minor/moderate severity (81%). Overall mortality was 33% within the first 90 days. Patients deceased by the end of the study period (83%) had median survival of 146 days (range 1-2,582 days). CONCLUSIONS ERCP has a high rate of clinical effect and technical success in the management of both distal extrahepatic and perihilar MBO. Our data indicate that ERCP is a valid option in the first-line management of MBO.
Collapse
Affiliation(s)
- I M Mikalsen
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| | - S Breder
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - A W Medhus
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - T Folseraas
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - L Aabakken
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - K V Ånonsen
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
516
|
Shimoyama R, Imamura Y, Uryu K, Mase T, Shiragami M, Fujimura Y, Hayashi M, Ohtaki M, Ohtani K, Shinozaki N, Minami H. Inflammation‑based prognostic markers of metastatic pancreatic cancer using real‑world data in Japan: The Tokushukai REAl‑world Data (TREAD) project. Oncol Lett 2024; 27:136. [PMID: 38357476 PMCID: PMC10865166 DOI: 10.3892/ol.2024.14269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Inflammation-based prognostic markers based on a combination of blood-based parameters, including the modified Glasgow prognostic score (mGPS), have been associated with clinical outcomes in patients with various types of cancer. The present study aimed to evaluate and compare the accuracy of these previously reported markers in patients with metastatic pancreatic cancer receiving first-line chemotherapy. A total of 846 patients were identified between April 2010 and March 2020 as part of a nationwide real-world study from 46 Tokushukai medical group hospitals in Japan. Blood laboratory data collected within 14 days of starting first-line chemotherapy assessed 17 inflammation-based prognostic markers. Information from patients with no missing data was used to compare the accuracy and performance of the inflammation-based prognostic markers. A total of 487 patients were eligible for this supplemental analysis. The 17 inflammation-based markers demonstrated significant prognostic value. Among them, the concordance rate with overall survival (OS) was highest for mGPS. The median OS time of patients with mGPS 0, 1 and 2 was 8.2, 6.0 and 2.9 months, respectively. Compared with mGPS 0, mGPS 1 and 2 showed hazard ratios of 1.39 (95% confidence interval, 1.07-1.81) and 2.63 (2.00-3.45), respectively. The present real-world data analysis showed that various previously reported inflammation-based markers had significant prognostic value in patients with metastatic pancreatic cancer. Among these markers, the mGPS demonstrated the highest level of accuracy. This trial has been registered in the University Hospital Medical Information Network Clinical Trials Registry as UMIN000050590 on April 1, 2023.
Collapse
Affiliation(s)
- Rai Shimoyama
- Department of General Surgery, Shonan Kamakura General Hospital, Kamakura, Kanagawa 247-8533, Japan
| | - Yoshinori Imamura
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Kiyoaki Uryu
- Department of Medical Oncology, Yao Tokushukai General Hospital, Osaka 581-0011, Japan
| | - Takahiro Mase
- Department of Breast Surgery, Ogaki Tokushukai Hospital, Ogaki, Gifu 503-0015, Japan
| | | | | | - Maki Hayashi
- Mirai Iryo Research Center Inc., Tokyo 102-0074, Japan
| | - Megu Ohtaki
- deCult Co., Ltd., Hatsukaichi, Hiroshima 739-0413, Japan
| | - Keiko Ohtani
- deCult Co., Ltd., Hatsukaichi, Hiroshima 739-0413, Japan
| | - Nobuaki Shinozaki
- Department of General Surgery, Shonan Kamakura General Hospital, Kamakura, Kanagawa 247-8533, Japan
| | - Hironobu Minami
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
- Cancer Center, Kobe University Hospital, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
517
|
Wang F, Wang Y, Ren C, Li X, Qiu M, Li Y, Luo H, Peng R, Quan Q, Jiang Q, Li S, Guo G. Phase II study of SOXIRI (S-1/oxaliplatin/irinotecan) chemotherapy in patients with unresectable pancreatic ductal adenocarcinoma. Pancreatology 2024; 24:241-248. [PMID: 38195328 DOI: 10.1016/j.pan.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND To provide data on the safety and efficacy of a combination chemotherapy regimen consisting of S-1, oxaliplatin, and irinotecan (SOXIRI) as a first-line therapy in unresectable pancreatic ductal adenocarcinoma (UPDA) patients. METHODS Patients with UPDA and no prior treatment chemotherapy in the UPDA setting were enrolled. The primary endpoint was the objective response rate (ORR). Secondary endpoints were overall survival (OS), progression-free survival (PFS) and adverse events. Patients received 80 mg/m2 S-1 twice a day for 2 weeks in an alternate-day administration cycle, 85 mg/m2 oxaliplatin on Day 1, and 150 mg/m2 irinotecan on Day 1 of a 2-week cycle. RESULTS In these 62 enrolled patients, the ORR was 27.4 %, median OS was 12.1 months, and median PFS was 6.5 months. Major grade 3 or 4 toxicity included neutropenia (22.3 %), leucopenia (16.1 %), nausea (9.7 %), vomiting (9.7 %), thrombocytopenia (6.5 %), anorexia (8.5 %), anemia (4.8 %), and diarrhea (1.6 %). No treatment-related deaths occurred. In addition, the analysis of 32 patients suffering pain revealed that the rate of pain relief was 34.4 %. CONCLUSION SOXIRI might be a standard regimen with an acceptable toxicity profile and favorable efficacy for use as chemotherapy in patients with UPDA.
Collapse
Affiliation(s)
- Fenghua Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Yixing Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Chao Ren
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Xujia Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; VIP Department, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Miaozhen Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Yuhong Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Huiyan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Ruojun Peng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; VIP Department, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Qi Quan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; VIP Department, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Qi Jiang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; VIP Department, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Department of Pancreaticobilliary Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China.
| | - Guifang Guo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China; VIP Department, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China.
| |
Collapse
|
518
|
Agnihotri N, Ambavane A, Fan L, Li W, Yoo H, Joo S, Muston D. Modeling health outcomes associated with BRCA testing and treatment strategies for patients with metastatic pancreatic cancer. Pancreatology 2024; 24:271-278. [PMID: 38286712 DOI: 10.1016/j.pan.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/08/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Germline BRCA mutations (gBRCAm) occur in 4%-8% patients with metastatic pancreatic cancer (mPC); guidelines recommend platinum-based chemotherapies and olaparib maintenance in this population. We evaluated, through modeling, the role of treatments and gBRCA testing on health outcomes of mPC patients. METHODS A decision tree/partitioned survival model was developed to assess lifetime health outcomes for four strategies: 1) no testing; 2) early testing/no olaparib maintenance; 3) early testing (i.e., before 1L treatment)/olaparib maintenance; and 4) late testing/olaparib maintenance. Treatment patterns were assumed to follow current practice in the United States. Overall survival and progression-free survival curves were extrapolated from pivotal trials, including POLO trial for outcomes from olaparib maintenance after at least 16 weeks of platinum-based chemotherapy. RESULTS Among patients with gBRCAm, almost twice as many patients received platinum-based regimens in strategies involving early testing compared to when early testing was not employed (78.7 % vs 40.2 %). Health outcomes were highest in the strategy with early testing and available olaparib treatment whether considering progression-free life years (PF LYs, 1.27 vs 0.55-0.87), LYs (1.82 vs 0.95-1.27) or quality adjusted life years (QALYs, 1.15 vs 0.73-0.92 for others). Consistent patterns of results were observed in the overall cohort of mPC patients (i.e., irrespective of gBRCAm). CONCLUSION Patients with mPC achieved longest health outcomes (as measured by mean PF LYs, LYs and QALYs) with a scenario of early gBRCA testing and availability of olaparib maintenance. The results were primarily driven by improved health outcomes associated with higher efficacy of platinum-based chemotherapies and olaparib used in gBRCAm patients.
Collapse
Affiliation(s)
| | | | - Lin Fan
- Merck & Co., Inc, Rahway, NJ, USA
| | | | | | | | | |
Collapse
|
519
|
Qiu L, Liu C, Li H. Successful immunotherapy with PD-1 Iinhibitor for advanced pancreatic cancer: report of two cases and review of literature. Anticancer Drugs 2024; 35:263-270. [PMID: 38194502 DOI: 10.1097/cad.0000000000001546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Pancreatic cancer is a highly malignant tumor, and most patients are diagnosed at an advanced stage. Unfortunately, due to the immunosuppressive tumor microenvironment of pancreatic cancer, the benefits of immunotherapy for patients with advanced pancreatic cancer are still unclear. Here, we present two cases of advanced pancreatic cancer being controlled by immunotherapy, with pathological diagnoses of ductal adenocarcinoma and acinar cell carcinoma, respectively. Next-generation sequencing (NGS) of both patients is high tumor mutation burden (tumor mutation burden-High) and microsatellite stable. The patient with pancreatic ductal adenocarcinoma was diagnosed as a locally advanced disease (stage III). She received irreversible electroporation, used the programmed death receptor-1 (PD-1) inhibitor (pembrolizumab) combined with chemotherapy (S-1), and then used only the PD-1 inhibitor as a maintenance treatment. As a result, the patient's lesion was significantly reduced, with a partial response time of up to 31 months. The patient with acinar cell carcinoma was diagnosed as a metastatic disease (stage IV), next-generation sequencing revealed mutations in SMAD4 and KMT2D, and two chemotherapy regimens were used unsuccessfully. Then, the combination of chemotherapy with PD-1 (tislelizumab) and vascular endothelial growth factor/vascular endothelial growth factor receptor (anlotinib) inhibitors were used, and the lesions of the patient were significantly reduced, and the progression-free survival after immunotherapy was 19 months. In advanced pancreatic cancer, a prognosis of this magnitude is rare. Our cases reveal the potential of immunotherapy as a cornerstone treatment in the management of advanced pancreatic cancer.
Collapse
Affiliation(s)
- Lijie Qiu
- Department of Oncology, Sun Yat-sen University First Affiliated Hospital
- Department of Radiology, Sun Yat-sen University Sixth Affiliated Hospital
| | - Chen Liu
- Department of Radiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Heping Li
- Department of Oncology, Sun Yat-sen University First Affiliated Hospital
| |
Collapse
|
520
|
Han F, Wang Y, Dong X, Lin Q, Wang Y, Gao W, Yun M, Li Y, Gao S, Huang H, Li N, Luo T, Luo X, Qiu M, Zhang D, Yan K, Li A, Liu Z. Clinical sonochemotherapy of inoperable pancreatic cancer using diagnostic ultrasound and microbubbles: a multicentre, open-label, randomised, controlled trial. Eur Radiol 2024; 34:1481-1492. [PMID: 37796294 DOI: 10.1007/s00330-023-10210-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVES Sonochemotherapy, which uses microbubble (MB)-assisted ultrasound (US) to deliver chemotherapeutic agents, has the potential to enhance tumour chemotherapy. The combination of US and MB has been demonstrated to prolong the survival of patients with pancreatic cancer. This phase 2 clinical trial aimed to determine the clinical efficacy and safety of sonochemotherapy for inoperable pancreatic ductal adenocarcinoma by using US and MB. METHODS Eighty-two patients with stage III or IV pancreatic cancer were recruited from July 2018 to March 2021 and followed up until September 2022. US treatment was performed with a modified diagnostic US scanner for 30 min after chemotherapeutic infusion. The primary endpoint was overall survival (OS), and the secondary endpoints were Eastern Cooperative Oncology Group (ECOG) status < 2, progression-free survival (PFS), disease control rate (DCR), and adverse events. RESULTS Seventy-eight patients were randomly allocated (40 to chemotherapy and 38 to sonochemotherapy). The median OS was longer with sonochemotherapy than with chemotherapy (9.10 vs. 6.10 months; p = 0.037). The median PFS with sonochemotherapy was 5.50 months, compared with 3.50 months (p = 0.080) for chemotherapy. The time of ECOG status < 2 was longer with sonochemotherapy (7.20 months) than with chemotherapy (5.00 months; p = 0.029). The DCR was 73.68% for sonochemotherapy compared with 42.50% for the control (p = 0.005). The incidence of overall adverse events was balanced between the two groups. CONCLUSIONS The use of sonochemotherapy can extend the survival and well-being time of stage III or IV pancreatic cancer patients without any increase in serious adverse events. TRIAL REGISTRATION ChineseClinicalTrials.gov ChiCTR2100044721 CLINICAL RELEVANCE STATEMENT: This multicentre, randomised, controlled trial has proven that sonochemotherapy, namely, the combination of diagnostic ultrasound, microbubbles, and chemotherapy, could extend the overall survival of patients with end-stage pancreatic ductal adenocarcinoma from 6.10 to 9.10 months without increasing any serious adverse events. KEY POINTS • This is the first multicentre, randomised, controlled trial of sonochemotherapy for clinical pancreatic cancer treatment using ultrasound and a commercial ultrasound contrast agent. • Sonochemotherapy extended the median overall survival from 6.10 (chemotherapy alone) to 9.10 months. • The disease control rate increased from 42.50% with chemotherapy to 73.68% with sonochemotherapy.
Collapse
Affiliation(s)
- Feng Han
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Yanjie Wang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 of Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xiaoxiao Dong
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qingguang Lin
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Yixi Wang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 of Fucheng Road, Haidian District, Beijing, 100142, China
| | - Wenhong Gao
- Department of Ultrasound, General Hospital of Central Theater, Wuhan, China
| | - Miao Yun
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Yan Li
- Department of Gastrointestinal Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shunji Gao
- Department of Ultrasound, General Hospital of Central Theater, Wuhan, China
| | - Huilong Huang
- Department of Ultrasound, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ningshan Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Tingting Luo
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiao Luo
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Miaozhen Qiu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dongsheng Zhang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kun Yan
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 of Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Anhua Li
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, 651 Dongfengdong Road, Guangzhou, 510060, China.
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
521
|
Jian CZ, Lin L, Hsu CL, Chen YH, Hsu C, Tan CT, Ou DL. A potential novel cancer immunotherapy: Agonistic anti-CD40 antibodies. Drug Discov Today 2024; 29:103893. [PMID: 38272173 DOI: 10.1016/j.drudis.2024.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
CD40, a novel immunomodulatory cancer therapy target, is expressed by B cells, macrophages, and dendritic cells (DCs) and mediates cytotoxic T cell priming through the CD40 ligand. Some tumors show promising responses to monotherapy or combination therapy with agonistic anti-CD40 antibodies. The development of improved anti-CD40 antibodies makes CD40 activation an innovative strategy in cancer immunotherapy. In this review, we trace the history of CD40 research and summarize preclinical and clinical findings. We emphasize the ongoing development of improved anti-CD40 antibodies and explore strategies for effective combination therapies. Guided by predictive biomarkers, future research should identify patient populations benefiting the most from CD40 activation.
Collapse
Affiliation(s)
- Cheng-Zhe Jian
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Li Lin
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chia-Lang Hsu
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei 10051, Taiwan
| | - Yu-Hsin Chen
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Stem Cell Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chiun Hsu
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Department of Medical Oncology, National Taiwan University Cancer Center, Taipei 10051, Taiwan
| | - Ching-Ting Tan
- Stem Cell Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei 10051, Taiwan; Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302, Taiwan.
| | - Da-Liang Ou
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; YongLin Institute of Health, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
522
|
Fong ZV, Severs G, Moir J, White S, Qadan M, Tingle S. Calcium channel blockers are associated with improved survival in pancreatic cancer patients undergoing neoadjuvant chemotherapy and resection. HPB (Oxford) 2024; 26:418-425. [PMID: 38135550 DOI: 10.1016/j.hpb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/16/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Repurposing existing drugs for use in oncology is more efficient, cost-effective and safe than novel drug discovery. Calcium signalling is increasingly recognised to have a key role in chemoresistance. This study assessed the impact of calcium channel blockers (CCB) in pancreatic cancer. METHODS Retrospective population study of patients undergoing resection (curative intent) of pancreatic ductal adenocarcinoma (SEER-Medicare, 2007-2017). Cox models were built to assess the impact on overall survival. As laboratory studies suggest a chemosensitising effect, the impact of CCB was assessed separately in patients receiving neoadjuvant chemotherapy. RESULTS 6,223 patients were included, of whom 660 were prescribed CCB. In total, 591 received neoadjuvant chemotherapy; in this cohort CCB prescription was associated with improved overall survival when adjusting for multiple prognostic factors (aHR = 0.715, 0.514-0.996, P = 0.047). This effect was not observed in patients not receiving neoadjuvant chemotherapy (aHR = 1.082, 0.982-1.191, P = 0.112). CONCLUSION CCB prescription was associated with improved overall survival in patients receiving neoadjuvant chemotherapy prior to pancreatic cancer resection. The association was specific to the group of patients receiving neoadjuvant chemotherapy, mirroring the chemosensitising effect in laboratory studies. This defines patients receiving neoadjuvant chemotherapy as a target population for prospective clinical trials of CCB in pancreatic cancer.
Collapse
Affiliation(s)
- Zhi V Fong
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - George Severs
- Department of HPB Surgery, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK
| | - John Moir
- Department of HPB Surgery, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK
| | - Steve White
- Department of HPB Surgery, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel Tingle
- Department of HPB Surgery, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
523
|
Riviere D, Aarntzen E, van Geenen E, Chang D, de Geus-Oei LF, Brosens L, van Laarhoven K, Gotthardt M, Hermans J. Qualitative flow metabolic phenotype of pancreatic cancer. A new prognostic biomarker? HPB (Oxford) 2024; 26:389-399. [PMID: 38114400 DOI: 10.1016/j.hpb.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Retrospective analysis to investigate the relationship between the flow-metabolic phenotype and overall survival (OS) of pancreatic ductal adenocarcinoma (PDAC) and its potential clinical utility. METHODS Patients with histopathologically proven PDAC between 2005 and 2014 using tumor attenuation on routine pre-operative CECT as a surrogate for the vascularity and [18F]FDG-uptake as a surrogate for metabolic activity on [18F]FDG-PET. RESULTS In total, 93 patients (50 male, 43 female, median age 63) were included. Hypoattenuating PDAC with high [18F]FDG-uptake has the poorest prognosis (median OS 7 ± 1 months), compared to hypoattenuating PDAC with low [18F]FDG-uptake (median OS 11 ± 3 months; p = 0.176), iso- or hyperattenuating PDAC with high [18F]FDG-uptake (median OS 15 ± 5 months; p = 0.004) and iso- or hyperattenuating PDAC with low [18F]FDG-uptake (median OS 23 ± 4 months; p = 0.035). In multivariate analysis, surgery combined with tumor differentiation, tumor stage, systemic therapy and flow metabolic phenotype remained independent predictors for overall survival. DISCUSSION The novel qualitative flow-metabolic phenotype of PDAC using a combination of CECT and [18F]FDG-PET features, predicted significantly worse survival for hypoattenuating-high uptake pancreatic cancers compared to the other phenotypes.
Collapse
Affiliation(s)
- Deniece Riviere
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Erik Aarntzen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erwin van Geenen
- Department of Gastroenterology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David Chang
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, United Kingdom; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, Scotland, United Kingdom
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lodewijk Brosens
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kees van Laarhoven
- Department of Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - John Hermans
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
524
|
Gugulothu KN, Anvesh Sai P, Suraparaju S, Karuturi SP, Pendli G, Kamma RB, Nimmagadda K, Modepalli A, Mamilla M, Vashist S. WT1 Cancer Vaccine in Advanced Pancreatic Cancer: A Systematic Review. Cureus 2024; 16:e56934. [PMID: 38665761 PMCID: PMC11043900 DOI: 10.7759/cureus.56934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Advanced pancreatic cancer is one of the prominent contributors to cancer-related mortality globally. Chemotherapy, especially gemcitabine, is generally used for the treatment of advanced pancreatic cancer. Despite the treatment, the fatality rate for advanced pancreatic cancer is alarmingly high. Thus, the dire need for better treatment alternatives has drawn focus to cancer vaccinations. The Wilms tumor gene (WT1), typically associated with Wilms tumor, is found to be excessively expressed in some cancers, such as pancreatic cancer. This characteristic feature is harvested to develop cancer vaccines against WT1. This review aims to systematically summarize the clinical trials investigating the efficacy and safety of WT1 vaccines in patients with advanced pancreatic cancer. An extensive literature search was conducted on databases Medline, Web of Science, ScienceDirect, and Google Scholar using the keywords "Advanced pancreatic cancer," "Cancer vaccines," "WT1 vaccines," and "Pulsed DC vaccines," and the results were exclusively studied to construct this review. WT1 vaccines work by introducing peptides from the WT1 protein to trigger an immune response involving cytotoxic T lymphocytes via antigen-presenting cells. Upon activation, these lymphocytes induce apoptosis in cancer cells by specifically targeting those with increased WT1 levels. WT1 vaccinations, which are usually given in addition to chemotherapy, have demonstrated clinically positive results and minimal side effects. However, there are several challenges to their widespread use, such as the immunosuppressive nature of tumors and heterogeneity in expression. Despite these limitations, the risk-benefit profile of cancer vaccines is encouraging, especially for the WT1 vaccine in the treatment of advanced pancreatic cancer. Considering the fledgling status of their development, large multicentric, variables-matched, extensive analysis across diverse demographics is considered essential.
Collapse
Affiliation(s)
| | | | - Sonika Suraparaju
- Internal Medicine, Sri Padmavathi Medical College for Women, Tirupati, IND
| | | | - Ganesh Pendli
- Internal Medicine, PES Institute of Medical Sciences and Research, Kuppam, IND
| | - Ravi Babu Kamma
- Internal Medicine, Sri Venkata Sai (SVS) Medical College, Mahabubnagar, IND
| | | | - Alekhya Modepalli
- Internal Medicine, Sri Padmavathi Medical College for Women, Tirupati, IND
| | - Mahesh Mamilla
- Internal Medicine, Sri Venkateswara Medical College, Tirupati, IND
| | | |
Collapse
|
525
|
Reni M, Peretti U, Macchini M, Orsi G, Militello A, Briccolani A, Falconi M, Cascinu S. Cyclophosphamide maintenance to extend combination chemotherapy-free interval in metastatic pancreatic ductal adenocarcinoma. Dig Liver Dis 2024; 56:509-513. [PMID: 37586911 DOI: 10.1016/j.dld.2023.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Administering chemotherapy until progression to metastatic pancreatic ductal adenocarcinoma (PDAC) patients lacks of supporting evidence and causes cumulative toxicity. We explored the role of cyclophosphamide as maintenance therapy. METHODS PDAC germline BRCA1-2 wild-type patients who were progression-free after ≥6 months of any regimen and line of chemotherapy and received maintenance cyclophosphamide (mCTX) (50 mg/day), were included in the analysis. RESULTS 42 patients were included in the analysis. Thirty-nine patients had progression of disease. Median PFS was 3.5 (range 1.0-31+) months. PFS rates at 6 and 12 months were 26.2% and 11.9%. At a median follow-up of 20.0 months (range 12.1-31.0 months), 20 patients died and 22 are alive. Median OS was 20.0 months (range 2.2-31.0+). OS at 6 and 12 months was 97.6% (95%CI: 93.4-100), and 73.8% (95% CI: 61.1-86.5), respectively. Only 2 patients receiving mCTX had Grade 3 toxicity. CONCLUSIONS mCTX therapy yielded promising PFS and OS outcome in PDAC patients who were progression-free after induction chemotherapy, with unremarkable toxicity. Accordingly, this approach warrants further investigation.
Collapse
Affiliation(s)
- Michele Reni
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Umberto Peretti
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Marina Macchini
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Orsi
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Annamaria Militello
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Assunta Briccolani
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Falconi
- Vita-Salute San Raffaele University, Milan, Italy; Division of Pancreatic Surgery, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
526
|
Affiliation(s)
- Eric C T Geijteman
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Evelien J M Kuip
- Department of Medical Oncology and Department of Anesthesiology, Pain and Palliative Care, Radboudumc, Nijmegen, The Netherlands
| | | | - Diana Lees
- Department of Respiratory Medicine, Liverpool University Foundation Teaching Hospital, United Kingdom
| | - Eduardo Bruera
- Department of Palliative Rehabilitation and Integrative Medicine, University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
527
|
Kim K, Park HC, Yu JI, Park JO, Hong JY, Lee KT, Lee KH, Lee JK, Park JK, Heo JS, Shin SH, Min JH, Kim K, Han IW. Impact and optimal timing of local therapy addition in borderline resectable or locally advanced pancreatic cancer after FOLFIRINOX chemotherapy. Clin Transl Radiat Oncol 2024; 45:100732. [PMID: 38317678 PMCID: PMC10840322 DOI: 10.1016/j.ctro.2024.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND To evaluate the efficacy and optimal timing of local treatment in patients with borderline resectable (BR) or locally advanced pancreatic cancer (LAPC) treated with upfront FOLFIRINOX. METHOD Between 2015 and 2020, 258 patients with pancreatic ductal adenocarcinoma (PDAC) were analysed. Treatment outcomes were compared between systemic treatment group (ST) and multimodality treatment groups (MT) using Kaplan-Meier curves and log-rank test. The MT were stratified as follows: FOLFIRINOX + radiation therapy (RT) (MT1), FOLFIRINOX + surgical resection (MT2), and FOLFIRINOX + RT + surgical resection (MT3). RESULTS With median follow-up period of 18 months, the 2-year overall survival (OS) for the ST was 22.0%, and it was significantly worse than MT (MT1, 46.3%; MT2, 65.7% and MT3; 90.2%; P < .001). The 2-year locoregional progression free survival (LRPFS) and overall PFS in ST were 10.7% and 7.0%, which were also significantly lower than those of MT (2-year LRPFS: MT1, 31.8%; MT2, 45.3%; MT3, 81.0%; 2-year overall PFS: MT1, 23.3%; MT2, 35.0%; MT3, 66.3%; P < .001). In time-varying multivariate Cox proportional hazard model, local treatment contributed to better treatment outcomes, with adjusted hazard ratios of 0.568 (95% confidence interval [CI], 0.398-0.811), 0.490 (95% CI, 0.331-0.726), and 0.656 (95% CI, 0.458-0.940) for OS, LRPFS, and overall PFS, respectively. The time window of 11-17 months after FOLFIRINOX appeared to demonstrate the maximal efficacy of local treatments in OS. CONCLUSIONS Adding local treatment in BR/LAPC patients treated with upfront FOLFIRINOX seemed to contribute in improved treatment outcomes, and it showed maximal efficacy in OS when applied 11-17 months after the initiation of FOLFIRINOX. We suggest that administration of sufficient period of upfront FOLFIRINOX may intensify the efficacy of local treatments, and well controlled prospective trials are expected.
Collapse
Affiliation(s)
- Kangpyo Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, 06351 Seoul, South Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, 06351 Seoul, South Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, 06351 Seoul, South Korea
| | - Joon Oh Park
- Divisions of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jung Yong Hong
- Divisions of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyu Taek Lee
- Divisions of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kwang Hyuck Lee
- Divisions of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong Kyun Lee
- Divisions of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joo Kyung Park
- Divisions of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jin Seok Heo
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, 06351 Seoul, South Korea
| | - Sang Hyun Shin
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, 06351 Seoul, South Korea
| | - Ji Hye Min
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyunga Kim
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Department of Data Convergence & Future Medicine, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - In Woong Han
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, 06351 Seoul, South Korea
| |
Collapse
|
528
|
Gueiderikh A, Tarabay A, Abdelouahab M, Smolenschi C, Tanguy ML, Valery M, Malka D, Pudlarz T, Fuerea A, Boige V, Hollebecque A, Ducreux M, Boilève A. Pancreatic adenocarcinoma third line systemic treatments: a retrospective cohort study. BMC Cancer 2024; 24:272. [PMID: 38408958 PMCID: PMC10898186 DOI: 10.1186/s12885-024-12016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Chemotherapy for metastatic pancreatic adenocarcinoma (PDAC) primarily relies on FOLFIRINOX (LV5FU- irinotecan - Oxaliplatine) and Gemcitabine - Nab-Paclitaxel in the first-line setting. However, second-lines remain less well-defined and there is limited data regarding third-line treatments. The objective of our study was to determine the proportion of patients advancing to third line chemotherapy, to outline the various third-line chemotherapy regimens used in routine practice and to evaluate their respective efficacy. METHODS A retrospective single-center cohort from 2010-2022 compiled baseline characteristics, treatment outcomes and survival of PDAC patients who received at least one chemotherapy line in a French tertiary-center. Overall survivals (OS) were analyzed using a Cox multivariable model. RESULTS In total, 676 patients were included, with a median follow-up time of 69.4 months, (Interquartile Range (IQR) = 72.1). Of these, 251 patients (37%) that proceeded to 3rd-line chemotherapy. The median PFS in 3rd line was 2.03 months, [CI95%: 1.83, 2.36]. The median 3rd line overall survival was 5.5 months, [CI95%: 4.8, 6.3]. In multivariable analysis erlotinib-based chemotherapy was found to be deleterious (HR=2.38, [CI95%: 1.30, 4.34], p=0.005) compared to fluoropyrimidine-based chemotherapy in terms of 3rd line overall survival while gemcitabine monotherapy showed a tendency towards negative outcomes. First and 2nd line chemotherapies sequence didn't influence 3rd line outcome. CONCLUSION In our cohort, one-third of treated patients proceeded to 3rd line chemotherapy resulting in a 5.5 months median 3rd line OS, consistent with treatments at advanced stage. Our results argue against the use of erlotinib and gemcitabine monotherapy.
Collapse
Affiliation(s)
- A Gueiderikh
- Département de médecine oncologique, Gustave Roussy, 94800, Villejuif, France
- Université Paris Saclay, 91471, Orsay, France
| | - A Tarabay
- Département de médecine oncologique, Gustave Roussy, 94800, Villejuif, France
| | - M Abdelouahab
- Département de statistiques, Gustave Roussy, 94800, Villejuif, France
| | - C Smolenschi
- Département de médecine oncologique, Gustave Roussy, 94800, Villejuif, France
- Gustave Roussy, DITEP, 94800, Villejuif, France
| | - M L Tanguy
- Département de statistiques, Gustave Roussy, 94800, Villejuif, France
| | - M Valery
- Département de médecine oncologique, Gustave Roussy, 94800, Villejuif, France
| | - D Malka
- Département d'oncologie médicale, Institut Mutualiste Montsouris, 75014, Paris, France
| | - T Pudlarz
- Département de médecine oncologique, Gustave Roussy, 94800, Villejuif, France
| | - A Fuerea
- Département de médecine oncologique, Gustave Roussy, 94800, Villejuif, France
| | - V Boige
- Département de médecine oncologique, Gustave Roussy, 94800, Villejuif, France
| | - A Hollebecque
- Département de médecine oncologique, Gustave Roussy, 94800, Villejuif, France
- Gustave Roussy, DITEP, 94800, Villejuif, France
| | - M Ducreux
- Département de médecine oncologique, Gustave Roussy, 94800, Villejuif, France
- Université Paris Saclay, 91471, Orsay, France
| | - A Boilève
- Département de médecine oncologique, Gustave Roussy, 94800, Villejuif, France.
- Université Paris Saclay, 91471, Orsay, France.
| |
Collapse
|
529
|
Zhang Z, Zhang Y, Hu F, Xie T, Liu W, Xiang H, Li X, Chen L, Zhou Z. Value of diffusion kurtosis MR imaging and conventional diffusion weighed imaging for evaluating response to first-line chemotherapy in unresectable pancreatic cancer. Cancer Imaging 2024; 24:29. [PMID: 38409049 PMCID: PMC10898033 DOI: 10.1186/s40644-024-00674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVE To investigate the diagnostic value of diffusion kurtosis magnetic resonance imaging (DKI) and conventional diffusion-weighted imaging (DWI) for evaluating the response to first-line chemotherapy in unresectable pancreatic cancer. MATERIALS AND METHODS We retrospectively analyzed 21 patients with clinically and pathologically confirmed unresected pancreatic cancer who received palliative chemotherapy. Three-tesla MRI examinations containing DWI sequences with b values of 0, 100, 700, 1400, and 2100 s/mm2 were performed before and after chemotherapy. Parameters included the apparent diffusion coefficient (ADC), mean diffusion coefficient (MD), and mean diffusional kurtosis (MK). The performances of the DWI and DKI parameters in distinguishing the response to chemotherapy were evaluated by the area under the curve (AUC) of the receiver operating characteristic (ROC) curve. Overall survival (OS) was calculated from the date of first treatment to the date of death or the latest follow-up date. RESULTS The ADCchange and MDchange were significantly higher in the responding group (PR group) than in the nonresponding group (non-PR group) (ADCchange: 0.21 ± 0.05 vs. 0.11 ± 0.09, P = 0.02; MDchange: 0.37 ± 0.24 vs. 0.10 ± 0.12, P = 0.002). No statistical significance was shown when comparing ADCpre, ADCpost, MKpre, MKpost, MKchange, MDpre, and MDpost between the PR and non-PR groups. The ROC curve analysis indicated that MDchange (AUC = 0.898, cutoff value = 0.7143) performed better than ADCchange (AUC = 0.806, cutoff value = 0.1369) in predicting the response to chemotherapy. CONCLUSION The ADCchange and MDchange demonstrated strong potential for evaluating the response to chemotherapy in unresectable pancreatic cancer. The MDchange showed higher specificity in the classification of PR and non-PR than the ADCchange. Other parameters, including ADCpre, ADCpost, MKpre, MKpost, MKchange, MDpre, and MDpost, are not suitable for response evaluation. The combined model SUMchange demonstrated superior performance compared to the individual DWI and DKI models. Further experiments are needed to evaluate the potential of DWI and DKI parameters in predicting the prognosis of patients with unresectable pancreatic cancer.
Collapse
Affiliation(s)
- Zehua Zhang
- Department of Radiology, Minhang Branch, Fudan University Shanghai Cancer Center, No. 106, Ruili Road, 201100, Shanghai, China
| | - Yuqin Zhang
- Department of Colorectal Surgery, Minhang Branch, Fudan University Shanghai Cancer Center, No. 106, Ruili Road, 201100, Shanghai, China
| | - Feixiang Hu
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270, Dongan Road, 200032, Shanghai, China
| | - Tiansong Xie
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270, Dongan Road, 200032, Shanghai, China
| | - Wei Liu
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270, Dongan Road, 200032, Shanghai, China
| | - Huijing Xiang
- Department of Radiology, Minhang Branch, Fudan University Shanghai Cancer Center, No. 106, Ruili Road, 201100, Shanghai, China
| | - Xiangxiang Li
- Nursing department, Minhang Branch, Fudan University Shanghai Cancer Center, No. 106. Ruili Road, 201100, Shanghai, China
| | - Lei Chen
- Department of Radiology, Minhang Branch, Fudan University Shanghai Cancer Center, No. 106, Ruili Road, 201100, Shanghai, China.
| | - Zhengrong Zhou
- Department of Radiology, Minhang Branch, Fudan University Shanghai Cancer Center, No. 106, Ruili Road, 201100, Shanghai, China.
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270, Dongan Road, 200032, Shanghai, China.
| |
Collapse
|
530
|
Tan YQ, Sun B, Zhang X, Zhang S, Guo H, Basappa B, Zhu T, Sethi G, Lobie PE, Pandey V. Concurrent inhibition of pBADS99 synergistically improves MEK inhibitor efficacy in KRAS G12D-mutant pancreatic ductal adenocarcinoma. Cell Death Dis 2024; 15:173. [PMID: 38409090 PMCID: PMC10897366 DOI: 10.1038/s41419-024-06551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
Therapeutic targeting of KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) has remained a significant challenge in clinical oncology. Direct targeting of KRAS has proven difficult, and inhibition of the KRAS effectors have shown limited success due to compensatory activation of survival pathways. Being a core downstream effector of the KRAS-driven p44/42 MAPK and PI3K/AKT pathways governing intrinsic apoptosis, BAD phosphorylation emerges as a promising therapeutic target. Herein, a positive association of the pBADS99/BAD ratio with higher disease stage and worse overall survival of PDAC was observed. Homology-directed repair of BAD to BADS99A or small molecule inhibition of BADS99 phosphorylation by NCK significantly reduced PDAC cell viability by promoting cell cycle arrest and apoptosis. NCK also abrogated the growth of preformed colonies of PDAC cells in 3D culture. Furthermore, high-throughput screening with an oncology drug library to identify potential combinations revealed a strong synergistic effect between NCK and MEK inhibitors in PDAC cells harboring either wild-type or mutant-KRAS. Mechanistically, both mutant-KRAS and MEK inhibition increased the phosphorylation of BADS99 in PDAC cells, an effect abrogated by NCK. Combined pBADS99-MEK inhibition demonstrated strong synergy in reducing cell viability, enhancing apoptosis, and achieving xenograft stasis in KRAS-mutant PDAC. In conclusion, the inhibition of BADS99 phosphorylation enhances the efficacy of MEK inhibition, and their combined inhibition represents a mechanistically based and potentially effective therapeutic strategy for the treatment of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Yan Qin Tan
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, 519087, Guangdong, People's Republic of China
| | - Bowen Sun
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Xi Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Shuwei Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Hui Guo
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
- Hefei National Laboratory for Physical Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
531
|
Imai H, Sakamoto Y, Takahashi S, Shibata H, Sato A, Otsuka K, Amagai K, Takahashi M, Yamaguchi T, Ishioka C. Efficacy of adding levofloxacin to gemcitabine and nanoparticle-albumin-binding paclitaxel combination therapy in patients with advanced pancreatic cancer: study protocol for a multicenter, randomized phase 2 trial (T-CORE2201). BMC Cancer 2024; 24:262. [PMID: 38402399 PMCID: PMC10893736 DOI: 10.1186/s12885-024-11973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Advanced pancreatic cancer is one of the leading causes of cancer-related deaths. For patients with advanced pancreatic cancer, gemcitabine and nanoparticle albumin-binding paclitaxel (nabPTX) combination (GEM/nabPTX) therapy is one of the recommended first-line treatments. Several retrospective studies have suggested that the addition of levofloxacin improves the efficacy of GEM/nabPTX therapy in patients with advanced pancreatic cancer. This prospective study aims to evaluate whether the addition of antibiotics improves the treatment efficacy of GEM/nabPTX as a first-line chemotherapy in patients with advanced pancreatic cancer. METHODS This multicenter, prospective, randomized, phase 2 trial will included 140 patients. Patients with advanced pancreatic cancer will be randomized in a 1:1 ratio to either the GEM/nabPTX therapy group or the GEM/nabPTX plus levofloxacin group. The primary endpoint for the two groups is median progression-free survival time (mPFS) for the full analysis set (FAS). The secondary endpoints for the two groups are median overall survival (mOS), response rate (RR), disease control rate (DCR), and adverse event (AE) for the FAS and mPFS, mOS, RR, DCR, and AE for the per-protocol set. This study will enroll patients treated with GEM/nabPTX as the first-line chemotherapy for stage IV pancreatic adenocarcinoma. DISCUSSION GEM/nabPTX is a standard first-line chemotherapy regimen for patients with advanced pancreatic cancer. Recently, the superiority of 5-fluorouracil, liposomal irinotecan, and oxaliplatin combination therapy (NALIRIFOX) to GEM/nabPTX as first-line therapy for pancreatic cancer has been reported. However, the efficacy of NALIRIFOX is inadequate. Based on previous retrospective studies, it is hypothesized that treatment efficacy will improve when levofloxacin is added to GEM/nabPTX therapy. If the AEs (such as leukopenia, neutropenia, and peripheral neuropathy) that occur at an increased rate with levofloxacin and GEM/nabPTX combination therapy can be carefully monitored and properly managed, this simple intervention can be expected to improve the prognosis of patients with advanced pancreatic cancer. TRIAL REGISTRATION This study was registered with the Japan Registry of Clinical Trials (jRCT; registry number: jRCTs021230005).
Collapse
Affiliation(s)
- Hiroo Imai
- Department of Medical Oncology, Tohoku University Hospital, Sendai City, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai City, Japan
| | - Yasuhiro Sakamoto
- Department of Medical Oncology, Osaki Citizen Hospital, Osaki City, Japan
| | - Shin Takahashi
- Chemotherapeutic Center, Sendai Kousei Hospital, Sendai City, Japan
| | - Hiroyuki Shibata
- Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita City, Japan
| | - Atsushi Sato
- Department of Medical Oncology, Hirosaki University Graduate School of Medicine, Hirosaki City, Japan
| | - Kazunori Otsuka
- Department of Medical Oncology, Miyagi Cancer Center, Natori City, Japan
| | - Kenji Amagai
- Department of Gastroenterology and Medical Oncology, Ibaraki Prefectural Central Hospital, Kasama City, Japan
| | - Masanobu Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai City, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai City, Japan
| | - Takuhiro Yamaguchi
- Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai City, Japan
| | - Chikashi Ishioka
- Department of Medical Oncology, Tohoku University Hospital, Sendai City, Japan.
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai City, Japan.
| |
Collapse
|
532
|
Suda A, Umaru BA, Yamamoto Y, Shima H, Saiki Y, Pan Y, Jin L, Sun J, Low YLC, Suzuki C, Abe T, Igarashi K, Furukawa T, Owada Y, Kagawa Y. Polyunsaturated fatty acids-induced ferroptosis suppresses pancreatic cancer growth. Sci Rep 2024; 14:4409. [PMID: 38388563 PMCID: PMC10884029 DOI: 10.1038/s41598-024-55050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and no early clinical sign as well as the unique resistance to anti-cancer chemotherapy. Current numerous investigations have suggested that ferroptosis, which is a programed cell death driven by lipid oxidation, is an attractive therapeutic in different tumor types including pancreatic cancer. Here, we first demonstrated that linoleic acid (LA) and α-linolenic acid (αLA) induced cell death with necroptotic morphological change in MIA-Paca2 and Suit 2 cell lines. LA and αLA increased lipid peroxidation and phosphorylation of RIP3 and MLKL in pancreatic cancers, which were negated by ferroptosis inhibitor, ferrostatin-1, restoring back to BSA control levels. Similarly, intraperitoneal administration of LA and αLA suppresses the growth of subcutaneously transplanted Suit-2 cells and ameliorated the decreased survival rate of tumor bearing mice, while co-administration of ferrostatin-1 with LA and αLA negated the anti-cancer effect. We also demonstrated that LA and αLA partially showed ferroptotic effects on the gemcitabine-resistant-PK cells, although its effect was exerted late compared to treatment on normal-PK cells. In addition, the trial to validate the importance of double bonds in PUFAs in ferroptosis revealed that AA and EPA had a marked effect of ferroptosis on pancreatic cancer cells, but DHA showed mild suppression of cancer proliferation. Furthermore, treatment in other tumor cell lines revealed different sensitivity of PUFA-induced ferroptosis; e.g., EPA induced a ferroptotic effect on colorectal adenocarcinoma, but LA or αLA did not. Collectively, these data suggest that PUFAs can have a potential to exert an anti-cancer effect via ferroptosis in both normal and gemcitabine-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Akane Suda
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Banlanjo Abdulaziz Umaru
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Yui Yamamoto
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yuriko Saiki
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Yijun Pan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Liang Jin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jiaqi Sun
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Yi Ling Clare Low
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Chitose Suzuki
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takaaki Abe
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiteru Kagawa
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
533
|
Feng L, Tang X, You Z. Undifferentiated sarcomatoid carcinoma of the pancreas-a single-institution experience with 23 cases. BMC Cancer 2024; 24:250. [PMID: 38389041 PMCID: PMC10885366 DOI: 10.1186/s12885-024-11988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The clinical course and surgical outcomes of undifferentiated sarcomatoid carcinoma of the pancreas (USCP) remain poorly characterized owing to its rarity. This study aimed to describe the histology, clinicopathologic features, perioperative outcomes, and overall survival (OS) of 23 resected USCP patients. METHODS We retrospectively described the histology, clinicopathologic features, perioperative outcomes and OS of patients who underwent pancreatectomy with a final diagnosis of USCP in a single institution. RESULTS A total of 23 patients were included in this study. Twelve patients were male, the median age at diagnosis was 61.5 ± 13.0 years (range: 35-89). Patients with USCP had no specific symptoms and characteristic imaging findings. The R0 resection was achieved in 21 cases. The En bloc resection and reconstruction of mesenteric-portal axis was undertaken in 9 patients. There were no deaths attributed to perioperative complications in this study. The intraoperative tumor-draining lymph nodes (TDLNs) dissection was undergone in 14 patients. The 1-, 3- and 5-year survival rates were 43.5%, 4.8% and 4.8% in the whole study, the median survival was 9.0 months. Only 1 patient had survived more than 5 years and was still alive at last follow-up. The presence of distant metastasis (p = 0.004) and the presence of pathologically confirmed mesenteric-portal axis invasion (p = 0.007) was independently associated with poor OS. CONCLUSIONS USCP was a rare subgroup of pancreatic malignancies with a bleak prognosis. To make a diagnose of USCP by imaging was quite difficult because of the absence of specific manifestations. Accurate diagnosis depended on pathological biopsy, and the IHC profile of USCP was mainly characterized by co-expression of epithelial and mesenchymal markers. A large proportion of patients have an early demise, especially for patients with distant metastasis and pathologically confirmed mesenteric-portal axis invasion. Long-term survival after radical resection of USCPs remains rare.
Collapse
Affiliation(s)
- Lei Feng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, China
| | - Xiaojuan Tang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, China
| | - Zhen You
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, China.
| |
Collapse
|
534
|
Zhukova LG, Bordin DS, Dubtsova EA, Ilin MA, Kiriukova MA, Feoktistova PS, Egorov VI. How a significant increase in survival in pancreatic cancer is achieved. The role of nutritional status and supportive care: A review. JOURNAL OF MODERN ONCOLOGY 2024; 25. [DOI: 10.26442/18151434.2023.4.202541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Pancreatic cancer (PC) is a serious public health problem. The mortality rate of patients with PC remains one of the highest among cancers. Early diagnosis of PC is challenging, so it is often diagnosed in the later stages. Current treatment approaches, including surgery, neoadjuvant and adjuvant chemotherapy, chemoradiotherapy, and supportive care, have demonstrated improved outcomes. A significant problem remains exocrine pancreatic insufficiency (EPI) in patients with PC, which requires enzyme replacement therapy. However, this is not given due attention in the Russian literature. This review addresses the survival trends of patients with PC, current therapies, and enzyme replacement therapy as an integral part of supportive care and improvement of nutritional status; also, the issues of routing patients with PC are addressed. It is emphasized that the diagnosis and treatment of EPI are mandatory to improve and maintain the nutritional status and quality of life; failure to treat EPI renders antitumor treatment ineffective.
Collapse
|
535
|
Ahn ER, Rothe M, Mangat PK, Garrett-Mayer E, Calfa CJ, Alva AS, Suhag V, Alese OB, Dotan E, Hamid O, Yang ES, Marr AS, Palmer MC, Thompson FL, Yost KJ, Gregory A, Grantham GN, Hinshaw DC, Halabi S, Schilsky RL. Olaparib in Patients With Pancreatic Cancer With BRCA1/ 2 Mutations: Results From the Targeted Agent and Profiling Utilization Registry Study. JCO Precis Oncol 2024; 8:e2300240. [PMCID: PMC10896473 DOI: 10.1200/po.23.00240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 12/04/2023] [Indexed: 03/29/2025] Open
Abstract
PURPOSE Targeted Agent and Profiling Utilization Registry (TAPUR) is a phase II basket trial evaluating the antitumor activity of commercially available targeted agents in patients with advanced cancer and genomic alterations known to be drug targets. Results of a cohort of patients with advanced pancreatic cancer with BRCA1 /2 mutations treated with olaparib are reported. METHODS Eligible patients had advanced pancreatic cancer, measurable disease, Eastern Cooperative Oncology Group performance status 0-2, adequate organ function, and no standard treatment options available. Genomic testing was performed in Clinical Laboratory Improvement Amendments–certified, College of American Pathologists-accredited site selected laboratories. Simon's two-stage design was used with a primary end point of disease control (DC), defined as objective response (OR) or stable disease of at least 16 weeks duration (SD16+) according to RECIST v1.1. Secondary end points included OR, progression-free survival (PFS), overall survival (OS), duration of response, duration of stable disease, and safety. RESULTS Thirty patients with BRCA1 /2 mutations were enrolled from November 2016 to August 2019. The median number of reported previous therapies was 3 (range, 1-10). Two patients were not evaluable and excluded from efficacy analyses. Two patients with complete response, three with partial response and three with SD16+, were observed for DC and OR rates of 31% (90% CI, 18 to 40; P = .04) and 18% (95% CI, 6 to 37), respectively. The median PFS was 8 (95% CI, 8 to 15) weeks, and the median OS was 38 (95% CI, 21 to 65) weeks. Three patients had at least one drug-related grade 3 adverse event or serious adverse event of anemia, fever, or oral mucositis. CONCLUSION Olaparib showed antitumor activity in patients with advanced pancreatic cancer with BRCA1 /2 mutations extending findings of recent studies of olaparib in patients with this disease.
Collapse
Affiliation(s)
| | - Michael Rothe
- American Society of Clinical Oncology, Alexandria, VA
| | - Pam K. Mangat
- American Society of Clinical Oncology, Alexandria, VA
| | | | - Carmen J. Calfa
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Ajjai S. Alva
- University of Michigan Rogel Comprehensive Cancer Center, Ann Arbor, MI
| | - Vijay Suhag
- Sutter Health Roseville Cancer Center, Roseville, CA
| | | | | | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, CA
| | - Eddy S. Yang
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | | | | | | | | | | | | | | | | | | |
Collapse
|
536
|
Pacheco-Barcia V, Custodio-Cabello S, Carrasco-Valero F, Palka-Kotlowska M, Mariño-Mendez A, Carmona-Bayonas A, Gallego J, Martín AJM, Jimenez-Fonseca P, Cabezon-Gutierrez L. Systemic Inflammation Response Index and weight loss as prognostic factors in metastatic pancreatic cancer: A concept study from the PANTHEIA-SEOM trial. World J Gastrointest Oncol 2024; 16:386-397. [PMID: 38425396 PMCID: PMC10900150 DOI: 10.4251/wjgo.v16.i2.386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The prognostic value of the Systemic Inflammation Response Index (SIRI) in advanced pancreatic cancer is recognized, but its correlation with patients´ nutritional status and outcomes remains unexplored. AIM To study the prognostic significance of SIRI and weight loss in metastatic pancreatic cancer. METHODS The PANTHEIA-Spanish Society of Medical Oncology (SEOM) study is a multicentric (16 Spanish hospitals), observational, longitudinal, non-interventional initiative, promoted by the SEOM Real World-Evidence work group. This pilot study sought to analyze the association between weight loss and inflammatory status as defined by SIRI. The cohort stems from a proof-of-concept pilot study conducted at one of the coordinating centers. Patients with pathologically confirmed metastatic pancreatic adenocarcinoma, treated from January 2020 to January 2023, were included. The index was calculated using the product of neutrophil and monocyte counts, divided by lymphocyte counts, obtained within 15 days before initiation chemotherapy. This study evaluated associations between overall survival (OS), SIRI and weight loss. RESULTS A total of 50 patients were included. 66% of these patients were male and the median age was 66 years. Metastasis sites: 36% liver, 12% peritoneal carcinomatosis, 10% lung, and 42% multiple locations. Regarding the first line palliative chemotherapy treatments: 50% received gemcitabine plus nab-paclitaxel; 28%, modified fluorouracil, leucovorin, irinotecan and oxaliplatin, and 16% were administered gemcitabine. 42% had a weight loss > 5% in the three months (mo) preceding diagnosis. 21 patients with a SIRI ≥ 2.3 × 103/L exhibited a trend towards a lower median OS compared to those with a SIRI < 2.3 × 103/L (4 vs 18 mo; P < 0.000). Among 21 patients with > 5% weight loss before diagnosis, the median OS was 6 mo, in contrast to 19 mo for those who did not experience such weight loss (P = 0.003). Patients with a weight loss > 5% showed higher SIRI levels. This difference was statistically significant (P < 0.000). For patients with a SIRI < 2.3 × 103/L, those who did not lose > 5% of their weight had an OS of 20 mo, compared to 11 mo for those who did (P < 0.001). No association was found between carbohydrate antigen 19-9 levels ≥ 1000 U/mL and weight loss. CONCLUSION A higher SIRI was correlated with decreased survival rates in patients with metastatic pancreatic cancer and associated with weight loss. An elevated SIRI is suggested as a predictor of survival, emphasizing the need for prospective validation in the upcoming PANTHEIA-SEOM study.
Collapse
Affiliation(s)
- Vilma Pacheco-Barcia
- Department of Medical Oncology, Hospital Universitario de Torrejon, Madrid 28850, Spain
| | - Sara Custodio-Cabello
- Department of Medical Oncology, Hospital Universitario de Torrejon, Madrid 28850, Spain
| | - Fatima Carrasco-Valero
- Department of Internal Medicine, Hospital Universitario de Torrejon, Madrid 28850, Spain
| | - Magda Palka-Kotlowska
- Department of Medical Oncology, Hospital Universitario de Torrejon, Madrid 28850, Spain
| | - Axel Mariño-Mendez
- Department of Medical Oncology, Hospital Universitario Central de Asturias, Oviedo 33011, Spain
| | - Alberto Carmona-Bayonas
- Department of Medical Oncology, Hospital Universitario Morales Meseguer, University of Murcia, Murcia 30001, Spain
| | - Javier Gallego
- Department of Medical Oncology, Hospital General Universitario de Elche, Elche 03202, Spain
| | - A J Muñoz Martín
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Universidad Complutense Madrid, Madrid 28007, Spain
| | - Paula Jimenez-Fonseca
- Department of Medical Oncology, Hospital Universitario Central de Asturias, Oviedo 33011, Spain
| | - Luis Cabezon-Gutierrez
- Department of Medical Oncology, Hospital Universitario de Torrejon, Madrid 28850, Spain
- Universidad Francisco de Vitoria, Madrid 28223, Spain
| |
Collapse
|
537
|
Li D, Weng S, Zeng K, Xu H, Wang W, Shi J, Chen J, Chen C. Long non-coding RNAs and tyrosine kinase-mediated drug resistance in pancreatic cancer. Gene 2024; 895:148007. [PMID: 37981080 DOI: 10.1016/j.gene.2023.148007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Pancreatic cancer (PC) is one of the most malignant tumors with a dismal survival rate, this is primarily due to inevitable chemoresistance. Dysfunctional tyrosine kinases (TKs) and long non-coding RNAs (lncRNAs) affect the drug resistance and prognosis of PC. Here, we summarize the mechanisms by which TKs or lncRNAs mediate drug resistance and other malignant phenotypes. We also discuss that lncRNAs play oncogenic or tumor suppressor roles and different mechanisms including lncRNA-proteins/microRNAs to mediate drug resistance. Furthermore, we highlight that lncRNAs serve as upstream regulators of TKs mediating drug resistance. Finally, we display the clinical significance of TKs (AXL, EGFR, IGF1R, and MET), clinical trials, and lncRNAs (LINC00460, PVT1, HIF1A-AS1). In the future, TKs and lncRNAs may become diagnostic and prognostic biomarkers or drug targets to overcome the drug resistance of PC.
Collapse
Affiliation(s)
- Dangran Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210029, China
| | - Shiting Weng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Kai Zeng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hanmiao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wenyueyang Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Chen Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
538
|
Kpeglo D, Haddrick M, Knowles MA, Evans SD, Peyman SA. Modelling and breaking down the biophysical barriers to drug delivery in pancreatic cancer. LAB ON A CHIP 2024; 24:854-868. [PMID: 38240720 DOI: 10.1039/d3lc00660c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The pancreatic ductal adenocarcinoma (PDAC) stroma and its inherent biophysical barriers to drug delivery are central to therapeutic resistance. This makes PDAC the most prevalent pancreatic cancer with poor prognosis. The chemotherapeutic drug gemcitabine is used against various solid tumours, including pancreatic cancer, but with only a modest effect on patient survival. The growing PDAC tumour mass with high densities of cells and extracellular matrix (ECM) proteins, i.e., collagen, results in high interstitial pressure, leading to vasculature collapse and a dense, hypoxic, mechanically stiff stroma with reduced interstitial flow, critical to drug delivery to cells. Despite this, most drug studies are performed on cellular models that neglect these biophysical barriers to drug delivery. Microfluidic technology offers a promising platform to emulate tumour biophysical characteristics with appropriate flow conditions and transport dynamics. We present a microfluidic PDAC culture model, encompassing the disease's biophysical barriers to therapeutics, to evaluate the use of the angiotensin II receptor blocker losartan, which has been found to have matrix-depleting properties, on improving gemcitabine efficacy. PDAC cells were seeded into our 5-channel microfluidic device for a 21-day culture to mimic the rigid, collagenous PDAC stroma with reduced interstitial flow, which is critical to drug delivery to the cancer cells, and for assessment with gemcitabine and losartan treatment. With losartan, our culture matrix was more porous with less collagen, resulting in increased hydraulic conductivity of the culture interstitial space and improved gemcitabine effect. We demonstrate the importance of modelling tumour biophysical barriers to successfully assess new drugs and delivery methods.
Collapse
Affiliation(s)
- Delanyo Kpeglo
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK.
| | - Malcolm Haddrick
- Medicines Discovery Catapult, Block 35, Mereside Alderley Park, Alderley Edge, SK10 4TG, UK
| | - Margaret A Knowles
- Leeds Institute of Medical Research at St James's (LIMR), School of Medicine, University of Leeds, LS2 9 JT, UK
| | - Stephen D Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK.
| | - Sally A Peyman
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK.
- Leeds Institute of Medical Research at St James's (LIMR), School of Medicine, University of Leeds, LS2 9 JT, UK
| |
Collapse
|
539
|
Li X, Xiao C, Li R, Zhang P, Yang H, Cao D. Case report: Diverse immune responses in advanced pancreatic ductal adenocarcinoma treated with immune checkpoint inhibitor-based conversion therapies. Front Immunol 2024; 15:1326556. [PMID: 38415262 PMCID: PMC10896900 DOI: 10.3389/fimmu.2024.1326556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at an advanced stage, presenting limited therapeutic options and a grim prognosis due to its aggressive nature. Despite ongoing exploration of various combination therapies, a standardized treatment approach after the first-line treatment progress remains elusive. This report details the cases of two patients with unresectable advanced PDAC who underwent distinct conversion treatment regimens involving immune checkpoint inhibitors (ICIs). Remarkably, both patients became eligible for surgery following different anti-PD-1 antibody-based conversion therapies, ultimately achieving R0 resection. In essence, our findings highlight the efficacy of the anti-PD-1 antibody combined with a tyrosine kinase inhibitor (TKI) regimen and chemotherapy alongside anti-PD-1 antibody as viable conversion therapies for preoperative advanced PDAC. Tumor immune microenvironment (TIME) analysis underscores the intratumoral and intertumoral heterogeneity observed in the postoperative immune landscape of surgical specimens. This insight contributes to a deeper understanding of the potential benefits of these conversion therapies in addressing the challenging landscape of advanced PDAC.
Collapse
Affiliation(s)
- Xiaoying Li
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Ruizhen Li
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei Zhang
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Heqi Yang
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Cao
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
540
|
Yousef A, Yousef M, Chowdhury S, Abdilleh K, Knafl M, Edelkamp P, Alfaro-Munoz K, Chacko R, Peterson J, Smaglo BG, Wolff RA, Pant S, Lee MS, Willis J, Overman M, Doss S, Matrisian L, Hurd MW, Snyder R, Katz MHG, Wang H, Maitra A, Shen JP, Zhao D. Impact of KRAS mutations and co-mutations on clinical outcomes in pancreatic ductal adenocarcinoma. NPJ Precis Oncol 2024; 8:27. [PMID: 38310130 PMCID: PMC10838312 DOI: 10.1038/s41698-024-00505-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/05/2024] [Indexed: 02/05/2024] Open
Abstract
The relevance of KRAS mutation alleles to clinical outcome remains inconclusive in pancreatic adenocarcinoma (PDAC). We conducted a retrospective study of 803 patients with PDAC (42% with metastatic disease) at MD Anderson Cancer Center. Overall survival (OS) analysis demonstrated that KRAS mutation status and subtypes were prognostic (p < 0.001). Relative to patients with KRAS wildtype tumors (median OS 38 months), patients with KRASG12R had a similar OS (median 34 months), while patients with KRASQ61 and KRASG12D mutated tumors had shorter OS (median 20 months [HR: 1.9, 95% CI 1.2-3.0, p = 0.006] and 22 months [HR: 1.7, 95% CI 1.3-2.3, p < 0.001], respectively). There was enrichment of KRASG12D mutation in metastatic tumors (34% vs 24%, OR: 1.7, 95% CI 1.2-2.4, p = 0.001) and enrichment of KRASG12R in well and moderately differentiated tumors (14% vs 9%, OR: 1.7, 95% CI 1.05-2.99, p = 0.04). Similar findings were observed in the external validation cohort (PanCAN's Know Your Tumor® dataset, n = 408).
Collapse
Affiliation(s)
- Abdelrahman Yousef
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mahmoud Yousef
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kawther Abdilleh
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Mark Knafl
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Edelkamp
- Department of Data Engineering & Analytics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin Alfaro-Munoz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ray Chacko
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Peterson
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandon G Smaglo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael S Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Willis
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sudheer Doss
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Lynn Matrisian
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Mark W Hurd
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca Snyder
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Zhao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
541
|
Khalaf N, Ali B, Liu Y, Kramer JR, El-Serag H, Kanwal F, Singh H. Emergency Presentations Predict Worse Outcomes Among Patients with Pancreatic Cancer. Dig Dis Sci 2024; 69:603-614. [PMID: 38103105 DOI: 10.1007/s10620-023-08207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Emergency presentation (EP) of cancer, a new cancer diagnosis made following an emergency department (ED) visit, is associated with worse patient outcomes and greater organizational stress on healthcare systems. Pancreatic cancer has the highest rate of EPs among European studies but remains understudied in the U.S. AIMS To evaluate the association between pancreatic cancer EPs and cancer stage, treatment, and survival. METHODS We conducted a retrospective cohort study among patients with pancreatic adenocarcinoma diagnosed from 2007 to 2019 at a tertiary-care Veterans Affairs medical center. Electronic health records were reviewed to identify EP cases, defined as a new pancreatic cancer diagnosis made within 30 days of an ED visit where cancer was suspected. We used multivariate logistic regression models and Cox proportional hazards models to examine the associations between EPs and cancer stage, treatment, and survival. RESULTS Of 243 pancreatic cancer patients, 66.7% had EPs. There was no difference in stage by EP status. However, patients diagnosed through EPs were 72% less likely to receive cancer treatment compared to non-emergency presenters (adjusted OR 0.28; 95% CI 0.13-0.57). Patients with EPs also had a 73% higher mortality risk (adjusted HR 1.73; 95% CI 1.29-2.34). This difference in mortality remained statistically significant after adjusting for cancer stage and receipt of cancer treatment (adjusted HR 1.47; 95% CI 1.09-1.99). CONCLUSIONS Pancreatic cancer EPs are common and independently associated with lower treatment rates and survival. Enhanced understanding of process breakdowns that lead to EPs can help identify care gaps and inform future quality improvement efforts.
Collapse
Affiliation(s)
- Natalia Khalaf
- Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey Veterans Affairs Medical Center, 2002 Holcombe Blvd. MS:111-D, Houston, TX, 77030, USA.
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Basim Ali
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yan Liu
- Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey Veterans Affairs Medical Center, 2002 Holcombe Blvd. MS:111-D, Houston, TX, 77030, USA
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer R Kramer
- Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey Veterans Affairs Medical Center, 2002 Holcombe Blvd. MS:111-D, Houston, TX, 77030, USA
- Section of Health Services Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Hashem El-Serag
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Fasiha Kanwal
- Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey Veterans Affairs Medical Center, 2002 Holcombe Blvd. MS:111-D, Houston, TX, 77030, USA
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Hardeep Singh
- Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey Veterans Affairs Medical Center, 2002 Holcombe Blvd. MS:111-D, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
542
|
Stoop TF, Theijse RT, Seelen LWF, Groot Koerkamp B, van Eijck CHJ, Wolfgang CL, van Tienhoven G, van Santvoort HC, Molenaar IQ, Wilmink JW, Del Chiaro M, Katz MHG, Hackert T, Besselink MG. Preoperative chemotherapy, radiotherapy and surgical decision-making in patients with borderline resectable and locally advanced pancreatic cancer. Nat Rev Gastroenterol Hepatol 2024; 21:101-124. [PMID: 38036745 DOI: 10.1038/s41575-023-00856-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Surgical resection combined with systemic chemotherapy is the cornerstone of treatment for patients with localized pancreatic cancer. Upfront surgery is considered suboptimal in cases with extensive vascular involvement, which can be classified as either borderline resectable pancreatic cancer or locally advanced pancreatic cancer. In these patients, FOLFIRINOX or gemcitabine plus nab-paclitaxel chemotherapy is currently used as preoperative chemotherapy and is eventually combined with radiotherapy. Thus, more patients might reach 5-year overall survival. Patient selection for chemotherapy, radiotherapy and subsequent surgery is based on anatomical, biological and conditional parameters. Current guidelines and clinical practices vary considerably regarding preoperative chemotherapy and radiotherapy, response evaluation, and indications for surgery. In this Review, we provide an overview of the clinical evidence regarding disease staging, preoperative therapy, response evaluation and surgery in patients with borderline resectable pancreatic cancer or locally advanced pancreatic cancer. In addition, a clinical work-up is proposed based on the available evidence and guidelines. We identify knowledge gaps and outline a proposed research agenda.
Collapse
Affiliation(s)
- Thomas F Stoop
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Division of Surgical Oncology, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Rutger T Theijse
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Leonard W F Seelen
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht and St. Antonius Hospital Nieuwegein, Utrecht, Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Christopher L Wolfgang
- Division of Surgical Oncology, Department of Surgery, New York University Medical Center, New York City, NY, USA
| | - Geertjan van Tienhoven
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Radiation Oncology, Amsterdam, Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht and St. Antonius Hospital Nieuwegein, Utrecht, Netherlands
| | - I Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht and St. Antonius Hospital Nieuwegein, Utrecht, Netherlands
| | - Johanna W Wilmink
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, Netherlands
| | - Marco Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Marc G Besselink
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands.
- Cancer Center Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
543
|
Xu J, Roe J, Lee E, Tonelli C, Ji KY, Younis OW, Somervile TD, Yao M, Milazzo JP, Tiriac H, Kolarzyk AM, Lee E, Grem JL, Lazenby AJ, Grunkemeyer JA, Hollingsworth MA, Grandgenett PM, Borowsky AD, Park Y, Vakoc CR, Tuveson DA, Hwang C. Engrailed-1 Promotes Pancreatic Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308537. [PMID: 38110836 PMCID: PMC10853725 DOI: 10.1002/advs.202308537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 12/20/2023]
Abstract
Engrailed-1 (EN1) is a critical homeodomain transcription factor (TF) required for neuronal survival, and EN1 expression has been shown to promote aggressive forms of triple negative breast cancer. Here, it is reported that EN1 is aberrantly expressed in a subset of pancreatic ductal adenocarcinoma (PDA) patients with poor outcomes. EN1 predominantly repressed its target genes through direct binding to gene enhancers and promoters, implicating roles in the activation of MAPK pathways and the acquisition of mesenchymal cell properties. Gain- and loss-of-function experiments demonstrated that EN1 promoted PDA transformation and metastasis in vitro and in vivo. The findings nominate the targeting of EN1 and downstream pathways in aggressive PDA.
Collapse
Affiliation(s)
- Jihao Xu
- Department of Microbiology and Molecular GeneticsUniversity of California DavisDavisCA95616USA
- Comprehensive Cancer CenterUniversity of California DavisSacramentoCA95817USA
| | - Jae‐Seok Roe
- Department of BiochemistryYonsei UniversitySeoul03722South Korea
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - EunJung Lee
- Department of Microbiology and Molecular GeneticsUniversity of California DavisDavisCA95616USA
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborNY11724USA
| | - Claudia Tonelli
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborNY11724USA
| | - Keely Y. Ji
- Department of Microbiology and Molecular GeneticsUniversity of California DavisDavisCA95616USA
| | - Omar W. Younis
- Department of Microbiology and Molecular GeneticsUniversity of California DavisDavisCA95616USA
| | | | - Melissa Yao
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborNY11724USA
| | | | - Herve Tiriac
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborNY11724USA
| | - Anna M. Kolarzyk
- Nancy E. and Peter C. Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | - Jean L. Grem
- Department of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Audrey J. Lazenby
- Department of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | | | | | | | - Alexander D. Borowsky
- Department of PathologySchool of MedicineUniversity of California DavisSacramentoCA95817USA
| | - Youngkyu Park
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborNY11724USA
| | | | - David A. Tuveson
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborNY11724USA
| | - Chang‐Il Hwang
- Department of Microbiology and Molecular GeneticsUniversity of California DavisDavisCA95616USA
- Comprehensive Cancer CenterUniversity of California DavisSacramentoCA95817USA
| |
Collapse
|
544
|
Gao Z, Azar J, Zhu H, Williams-Perez S, Kang SW, Marginean C, Rubinstein MP, Makawita S, Lee HS, Camp ER. Translational and oncologic significance of tertiary lymphoid structures in pancreatic adenocarcinoma. Front Immunol 2024; 15:1324093. [PMID: 38361928 PMCID: PMC10867206 DOI: 10.3389/fimmu.2024.1324093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is an aggressive tumor with poor survival and limited treatment options. PDAC resistance to immunotherapeutic strategies is multifactorial, but partially owed to an immunosuppressive tumor immune microenvironment (TiME). However, the PDAC TiME is heterogeneous and harbors favorable tumor-infiltrating lymphocyte (TIL) populations. Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that develop within non-lymphoid tissue under chronic inflammation in multiple contexts, including cancers. Our current understanding of their role within the PDAC TiME remains limited; TLS are complex structures with multiple anatomic features such as location, density, and maturity that may impact clinical outcomes such as survival and therapy response in PDAC. Similarly, our understanding of methods to manipulate TLS is an actively developing field of research. TLS may function as anti-tumoral immune niches that can be leveraged as a therapeutic strategy to potentiate both existing chemotherapeutic regimens and potentiate future immune-based therapeutic strategies to improve patient outcomes. This review seeks to cover anatomy, relevant features, immune effects, translational significance, and future directions of understanding TLS within the context of PDAC.
Collapse
Affiliation(s)
- Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Joseph Azar
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Huili Zhu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sophia Williams-Perez
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sung Wook Kang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Celia Marginean
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Mark P. Rubinstein
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Shalini Makawita
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - E. Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| |
Collapse
|
545
|
Gyawali B, Booth CM. Treatment of metastatic pancreatic cancer: 25 years of innovation with little progress for patients. Lancet Oncol 2024; 25:167-170. [PMID: 38301687 DOI: 10.1016/s1470-2045(23)00516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 02/03/2024]
Affiliation(s)
- Bishal Gyawali
- Division of Cancer Care and Epidemiology, Queen's University Cancer Research Institute, Kingston, ON K7L 3N6, Canada; Department of Oncology and Department of Public Health Sciences, Queen's University, Kingston, ON, Canada.
| | - Christopher M Booth
- Division of Cancer Care and Epidemiology, Queen's University Cancer Research Institute, Kingston, ON K7L 3N6, Canada; Department of Oncology and Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
546
|
Huguet F, Riou O, Pasquier D, Modesto A, Quéro L, Michalet M, Bordron A, Schipman B, Orthuon A, Lisbona A, Vendrely V, Jaksic N. Radiation therapy of the primary tumour and/or metastases of digestive metastatic cancers. Cancer Radiother 2024; 28:66-74. [PMID: 37806823 DOI: 10.1016/j.canrad.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 10/10/2023]
Abstract
Metastatic gastrointestinal cancer is not an uncommon situation, especially for pancreatic, gastric, and colorectal cancers. In this setting, few data are available on the impact of the treatment of the primary tumour. Oligometastatic disease is associated with longer survival in comparison with more advanced disease. Metastasis-directed therapy, such as stereotactic body radiotherapy, seems related to better outcomes, but the level of evidence is low. In most tumour locations, prospective data are very scarce and inclusion in ongoing trials is strongly recommended.
Collapse
Affiliation(s)
- F Huguet
- Service d'oncologie radiothérapie, hôpital Tenon, AP-HP, DMU Orphé, Sorbonne université, Paris, France; Laboratory of Cancer Biology and Therapeutics, centre de recherche Saint-Antoine, U938, Inserm, Paris, France.
| | - O Riou
- Institut de recherche en cancérologie de Montpellier, U1194, Inserm, université de Montpellier, Montpellier, France; Fédération universitaire d'oncologie radiothérapie d'Occitanie Méditerranée, ICM, institut régional du cancer de Montpellier, Montpellier, France
| | - D Pasquier
- Service d'oncologie radiothérapie, centre Oscar-Lambret, Lille, France; Université de Lille, CNRS, école centrale de Lille, UMR 9189 - CRIStAL, Lille, France
| | - A Modesto
- Département de radiothérapie, institut universitaire du cancer de Toulouse, Toulouse, France; Centre de recherche du cancer de Toulouse, UMR 1037, Inserm, université Toulouse-III Paul-Sabatier, Toulouse, France
| | - L Quéro
- Service de cancérologie-radiothérapie, hôpital Saint-Louis, AP-HP Nord, DMU Icare, Paris, France; Université Paris Cité, U1160, Inserm, Paris, France
| | - M Michalet
- Institut de recherche en cancérologie de Montpellier, U1194, Inserm, université de Montpellier, Montpellier, France; Fédération universitaire d'oncologie radiothérapie d'Occitanie Méditerranée, ICM, institut régional du cancer de Montpellier, Montpellier, France
| | - A Bordron
- Département de radiothérapie, centre hospitalier universitaire de Brest, Brest, France
| | - B Schipman
- Institut de cancérologie de Bourgogne, Dijon, France
| | - A Orthuon
- Institut de cancérologie de Bourgogne, Dijon, France
| | - A Lisbona
- Institut de cancérologie de l'Ouest, centre René-Gauducheau, Saint-Herblain, France
| | - V Vendrely
- Service d'oncologie radiothérapie, hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | - N Jaksic
- Institut de cancérologie et radiothérapie Brétillien, Saint-Malo, France
| |
Collapse
|
547
|
LaRose M, Manji GA, Bates SE. Beyond BRCA: Diagnosis and management of homologous recombination repair deficient pancreatic cancer. Semin Oncol 2024; 51:36-44. [PMID: 38171988 DOI: 10.1053/j.seminoncol.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Approximately 4%-7% of patients diagnosed with pancreatic adenocarcinoma (PDAC) are found to harbor deleterious germline mutations in BRCA1 and/or BRCA2. Loss of function of BRCA1 and/or BRCA2 results in deficiency in homologous recombination repair (HRR), a critical DNA repair pathway, and confers sensitivity to certain DNA damaging agents, including platinum chemotherapy and PARP inhibitors. The PARP inhibitor olaparib is food and drug administration (FDA) approved for use in pancreatic cancer based on the POLO trial, which found that maintenance olaparib significantly prolonged progression free survival compared to placebo among patients with germline BRCA1 or BRCA2 mutations and metastatic PDAC that had not progressed following frontline platinum-based chemotherapy. Recently, there has been considerable interest in identifying patients without BRCA inactivation whose tumors also exhibit properties of HRR deficiency and thus may be susceptible to therapies with proven benefit in cancers harboring BRCA mutations. Here, we discuss methods for identification of HRR-deficiency and review the management of HRR-deficient cancers with a focus on HRR-deficient PDAC.
Collapse
Affiliation(s)
- Meredith LaRose
- Columbia University Irving Medical Center, New York NY, USA.
| | - Gulam A Manji
- Columbia University Irving Medical Center, New York NY, USA
| | - Susan E Bates
- Columbia University Irving Medical Center, New York NY, USA
| |
Collapse
|
548
|
Carrato A, Pazo-Cid R, Macarulla T, Gallego J, Jiménez-Fonseca P, Rivera F, Cano MT, Rodriguez-Garrote M, Pericay C, Alés I, Layos L, Graña B, Iranzo V, Gallego I, Garcia-Carbonero R, de Mena IR, Guillén-Ponce C, Aranda E. Nab-Paclitaxel plus Gemcitabine and FOLFOX in Metastatic Pancreatic Cancer. NEJM EVIDENCE 2024; 3:EVIDoa2300144. [PMID: 38320486 DOI: 10.1056/evidoa2300144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
BACKGROUND: Sequential nab-paclitaxel plus gemcitabine followed by modified FOLFOX-6 (oxaliplatin, leucovorin, and 5-fluorouracil) (nab-P/Gem-mFOLFOX) showed a good safety and clinical profile in metastatic pancreatic ductal adenocarcinoma (mPDAC) in the phase I SEQUENCE trial. METHODS: The safety and efficacy of sequential nab-P/Gem-mFOLFOX was compared with standard nab-paclitaxel plus gemcitabine (nab-P/Gem) as first-line treatment in a multi-institutional, randomized, open-label, phase II trial in patients with untreated mPDAC. We randomly assigned patients in a 1:1 ratio to receive nab-P/Gem on days 1, 8, and 15 followed by mFOLFOX on day 29 of a 6-week cycle (experimental group) or nab-P/Gem on days 1, 8, and 15 of a 4-week cycle (control group). The primary end point was the 12-month overall survival rate. RESULTS: A total of 157 patients were randomly assigned: 78 to nab-P/Gem-mFOLFOX and 79 to nab-P/Gem. Patients receiving nab-P/Gem-mFOLFOX had a 12-month overall survival of 55.3% (95% confidence interval [CI], 44.2 to 66.5) versus 35.4% (95% CI, 24.9 to 46) in the control group (P=0.02). Similarly, the 24-month survival was 22.4% (95% CI, 13 to 31.8) with nab-P/Gem-mFOLFOX versus 7.6% (95% CI, 1.8 to 13.4) with control treatment. The median overall survival was 13.2 months (95% CI, 10.1 to 16.2) with nab-P/Gem-mFOLFOX and 9.7 months (95% CI, 7.5 to 12) with nab-P/Gem (hazard ratio for death, 0.68; 95% CI, 0.48 to 0.95). The safety profile showed a higher incidence of grade 3 or higher neutropenia (35 of 76 vs. 19 of 79 patients, P=0.004), grade 3 or higher thrombocytopenia (18 of 78 vs. 6 of 79 patients, P=0.007), and two treatment-related deaths (2.6%) with nab-P/Gem-mFOLFOX compared with none with control treatment. CONCLUSIONS: Sequential nab-P/Gem-mFOLFOX showed a significantly higher 12-month survival when compared with the standard nab-P/Gem treatment; this came with greater treatment toxicity. (Funded by Celgene; EuCT number, 2014-005350-19; ClinicalTrials.gov number, NCT02504333.)
Collapse
Affiliation(s)
- Alfredo Carrato
- Department of Medical Oncology, Alcalá University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Ramon y Cajal University Hospital, Madrid
- Pancreatic Cancer Europe, Brussels
| | - Roberto Pazo-Cid
- Department of Medical Oncology, Aragon Institute of Biomedical Research, Miguel Servet University Hospital, Zaragoza, Spain
| | - Teresa Macarulla
- Vall d'Hebrón Institute of Oncology, Vall d'Hebrón University Hospital, Barcelona
| | - Javier Gallego
- Department of Medical Oncology, Elche University Hospital, Alicante, Spain
| | - Paula Jiménez-Fonseca
- Department of Medical Oncology, Asturias Central University Hospital, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Fernando Rivera
- Department of Medical Oncology, Marques de Valdecilla University Hospital, Instituto de Investigación Valdecilla (IDIVAL), Santander, Spain
| | - Maria Teresa Cano
- Department of Medical Oncology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba University, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Reina Sofia University Hospital, Cordoba, Spain
| | - Mercedes Rodriguez-Garrote
- Department of Medical Oncology, University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Ramon y Cajal University Hospital, Madrid
| | - Carles Pericay
- Department of Medical Oncology, Sabadell University Hospital, Parc Tauli, Sabadell, Spain
| | - Inmaculada Alés
- Unidad de Gestión Clínica Intercentros (UGCI) Medical Oncology, University Regional and Virgen Victoria Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - Laura Layos
- Medical Oncology Department, Catalan Institute of Oncology (ICO), Badalona Applied Research Group in Oncology (B-ARGO), Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Begoña Graña
- Department of Medical Oncology, A Coruña University Hospital, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Vega Iranzo
- Department of Medical Oncology, University General Hospital Valencia, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Valencia University, Valencia, Spain
| | - Inmaculada Gallego
- Department of Medical Oncology, Virgen del Rocio University Hospital, Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain
| | - Rocio Garcia-Carbonero
- Department of Medical Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Universidad Complutense Madrid (UCM), Madrid
| | | | | | - Enrique Aranda
- Department of Medical Oncology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba University, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Reina Sofia University Hospital, Cordoba, Spain
| |
Collapse
|
549
|
Zhu WF, Fang S, Qiao JJ. Pancreatic panniculitis as the first presentation of pancreatic ductal adenocarcinoma. Hepatobiliary Pancreat Dis Int 2024; 23:106-108. [PMID: 37640576 DOI: 10.1016/j.hbpd.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Affiliation(s)
- Wei-Fang Zhu
- Department of Dermatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shan Fang
- Department of Dermatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jian-Jun Qiao
- Department of Dermatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
550
|
Omatsu R, Nakano Y, Esaka N, Moriyoshi K, Miyamoto S. Metastatic pancreatic cancer with multiple metastases confined to the large intestine: a case report and literature review. Clin J Gastroenterol 2024; 17:75-79. [PMID: 38038857 DOI: 10.1007/s12328-023-01878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/09/2023] [Indexed: 12/02/2023]
Abstract
The incidence and mortality rate of pancreatic cancer are increasing worldwide. Regional lymph nodes, liver, lung, and peritoneum are common sites of metastasis from pancreatic cancer, but the gastrointestinal tract is rare as a metastatic organ from pancreatic cancer. An 80-year-old man was referred to our department for a hypovascular pancreatic mass on contrast-enhanced computed tomography (CECT). Endoscopic ultrasound-guided fine needle aspiration revealed adenocarcinoma, and he was diagnosed with pancreatic cancer. No lymph nodes or distant metastases were detected by either CECT or gadolinium-enhanced magnetic resonance imaging, and we evaluated this case as borderline resectable. However, total colonoscopy for positive fecal occult blood tests revealed a reddish and hemorrhagic mucosal thickening in the ascending and sigmoid colon and rectum, which was inconsistent with primary colorectal cancer. Biopsy specimens from these sites revealed cytokeratin (CK)7-positive and CK20- and CDX2-negative adenocarcinoma, consistent with cancer of pancreatic origin. The patient underwent palliative chemotherapy with gemcitabine but died from COVID-19 infection eight months after diagnosis. Performing total colonoscopy as a preoperative screening is important for accurate cancer staging of patients with possible resectable pancreatic cancer.
Collapse
Affiliation(s)
- Risa Omatsu
- Department of Gastroenterology, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, Japan
| | - Yoshiko Nakano
- Department of Gastroenterology, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, Japan
| | - Naoki Esaka
- Department of Gastroenterology, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, Japan
| | - Koki Moriyoshi
- Department of Diagnostic Pathology, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, Japan
| | - Shin'ichi Miyamoto
- Department of Gastroenterology, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, Japan.
| |
Collapse
|