501
|
Kim HB, Lee KT, Kim MJ, Lee JS, Kim KS. Identification and characterization of a novel KG42 xylanase (GH10 family) isolated from the black goat rumen-derived metagenomic library. Carbohydr Res 2018; 469:1-9. [PMID: 30170217 DOI: 10.1016/j.carres.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 11/18/2022]
Abstract
This study was conducted to isolate and functionally characterize a novel xylan-degrading enzyme from the microbial metagenomes of black goat rumens. A novel gene, KG42, was isolated from one of the 17 xylan-degrading metagenomic fosmid clones obtained from black goat rumens. The KG42 gene, comprising a 1107 bp open reading frame, encodes a protein composed of 368 amino acids (41 kDa) with a glycosyl hydrolase family 10 (GH10) domain, consisting of a "salad-bowl" shaped tertiary structure (a typical 8-fold α/β barrel (α/β)8) and two catalytic residues. KG42 xylanase protein has at best 40% sequence identity with other homologous GH10 xylanase proteins. The enzyme displayed its optimum activity at pH 5.0 and 50 °C. The enzyme was thermally stable at pH and temperature ranges of 5.0-10.0 and 20-60 °C, respectively. Substrate specificity and hydrolytic patterns implied that the KG42 xylanase functions as an endo-β-1,4-xylanase (EC 3.2.1.8). The KG42 xylanase was also used for the preparation of bifidogenic xylan hydrolysates, demonstrating its potential applications toward preparing prebiotic xylooligosaccharides.
Collapse
Affiliation(s)
- Hye-Bin Kim
- Department of Food Science and Technology, Chung-Ang University, Ansung, 456-756, South Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 565-851, South Korea
| | - Min-Ju Kim
- Department of Food Science and Technology, Chung-Ang University, Ansung, 456-756, South Korea
| | - Jin-Sung Lee
- Department of Biological Sciences, Kyonggi University, Suwon, 442-760, South Korea
| | - Keun-Sung Kim
- Department of Food Science and Technology, Chung-Ang University, Ansung, 456-756, South Korea.
| |
Collapse
|
502
|
de Farias ST, Antonino D, Rêgo TG, José MV. Structural evolution of Glycyl-tRNA synthetases alpha subunit and its implication in the initial organization of the decoding system. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 142:43-50. [PMID: 30142371 DOI: 10.1016/j.pbiomolbio.2018.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/13/2018] [Accepted: 08/14/2018] [Indexed: 11/27/2022]
Abstract
The origin and evolution of the genetic code is a fundamental challenge in modern biology. At the center of this problem is the correct interaction between amino acids and tRNAs. Aminoacyl-tRNA synthetase is the enzyme responsible for the correct binding between amino acids and tRNAs. Among the 20 canonical amino acid, glycine was the most abundant in prebiotic condition and it must have been one of the first to be incorporated into the genetic code. In this work, we derive the ancestral sequence of Glycyl-tRNA synthetase (GlyRS) and predict its 3D-structure. We show, via molecular docking experiments, the capacity of ancestral GlyRS to bind the tRNA anticodon stem loop, cofactors and substrates. These bindings exhibit high affinity and specificity. We propose that the primordial function of these interactions was to stabilize both compounds to make possible the catalysis. In this context, the anticodon stem loop did contribute to the encoding system and just with the emergence of the mRNA it was co-opted for codification. Thus, we present a model for the origin of the genetic code in which the operational and the anticodon codes did not evolve independently.
Collapse
Affiliation(s)
- Savio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Daniel Antonino
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Thais Gaudêncio Rêgo
- Departamento de Informática, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México CDMX, C.P. 04510, Mexico.
| |
Collapse
|
503
|
Beg MA, Shivangi, Thakur SC, Meena LS. Structural Prediction and Mutational Analysis of Rv3906c Gene of Mycobacterium tuberculosis H 37Rv to Determine Its Essentiality in Survival. Adv Bioinformatics 2018; 2018:6152014. [PMID: 30186322 PMCID: PMC6114228 DOI: 10.1155/2018/6152014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/22/2018] [Accepted: 07/04/2018] [Indexed: 01/05/2023] Open
Abstract
The emergence of tuberculosis is at the peak; therefore to station it at its lower level we hereby try bioinformatics approach against Mycobacterium tuberculosis [M. tuberculosis] pathogenesis. Rv3906c is a conserved hypothetical gene of M. tuberculosis and contains many GTP binding protein motif DXXG which demonstrate that this gene might be processed in a GTP binding or in GTP hydrolyzing manner. This gene shows interaction with its adjacent genes as well as pcnA which is a polymerase and localized in the extracellular region and found to be a soluble protein. Rv3906c has binding pockets for calcium atom at various positions which prove that calcium might have some role during the process of this gene. GTP binding protein motif DXXG is present in various positions and calcium binds at this site with a C-score of 0.25. Mutational analysis on this motif shows the large decrease of stability after mutation of aspartate residue with glycine. Stress conditions like pH and temperature also change stability of the protein. A decrease in stability at this position might play a role in inhibition of survival of the pathogen. These computational studies of this gene might be a successful step towards drug development against tuberculosis.
Collapse
Affiliation(s)
- Md. Amjad Beg
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Shivangi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Laxman S. Meena
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| |
Collapse
|
504
|
Krivák R, Hoksza D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J Cheminform 2018; 10:39. [PMID: 30109435 PMCID: PMC6091426 DOI: 10.1186/s13321-018-0285-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 06/29/2018] [Indexed: 01/29/2023] Open
Abstract
Background Ligand binding site prediction from protein structure has many applications related to elucidation of protein function and structure based drug discovery. It often represents only one step of many in complex computational drug design efforts. Although many methods have been published to date, only few of them are suitable for use in automated pipelines or for processing large datasets.
These use cases require stability and speed, which disqualifies many of the recently introduced tools that are either template based or available only as web servers. Results We present P2Rank, a stand-alone template-free tool for prediction of ligand binding sites based on machine learning. It is based on prediction of ligandability of local chemical neighbourhoods that are centered on points placed on the solvent accessible surface of a protein.
We show that P2Rank outperforms several existing tools, which include two widely used stand-alone tools (Fpocket, SiteHound), a comprehensive consensus based tool (MetaPocket 2.0), and a recent deep learning based method (DeepSite). P2Rank belongs to the fastest available tools (requires under 1 s for prediction on one protein), with additional advantage of multi-threaded implementation. Conclusions P2Rank is a new open source software package for ligand binding site prediction from protein structure. It is available as a user-friendly stand-alone command line program and a Java library. P2Rank has a lightweight installation and does not depend on other bioinformatics tools or large structural or sequence databases. Thanks to its speed and ability to make fully automated predictions, it is particularly well suited for processing large datasets or as a component of scalable structural bioinformatics pipelines. Electronic supplementary material The online version of this article (10.1186/s13321-018-0285-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Radoslav Krivák
- Department of Software Engineering, Charles University, Prague, Czech Republic.
| | - David Hoksza
- Department of Software Engineering, Charles University, Prague, Czech Republic.
| |
Collapse
|
505
|
Rasool M, Malik A, Waquar S, Tul-Ain Q, Jafar TH, Rasool R, Kalsoom A, Ghafoor MA, Sehgal SA, Gauthaman K, Naseer MI, Al-Qahtani MH, Pushparaj PN. In-Silico Characterization and in-Vivo Validation of Albiziasaponin-A, Iso-Orientin, and Salvadorin Using a Rat Model of Alzheimer's Disease. Front Pharmacol 2018; 9:730. [PMID: 30123124 PMCID: PMC6085546 DOI: 10.3389/fphar.2018.00730] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by dementia, excessive acetylcholinesterase (AChE) activity, formation of neurotoxic amyloid plaque, and tau protein aggregation. Based on literature survey, we have shortlisted three important target proteins (AChE, COX2, and MMP8) implicated in the pathogenesis of AD and 20 different phytocompounds for molecular docking experiments with these three target proteins. The 3D-structures of AChE, COX2, and MMP8 were predicted by homology modeling by MODELLER and the threading approach by using ITASSER. Structure evaluations were performed using ERRAT, Verify3D, and Rampage softwares. The results based on molecular docking studies confirmed that there were strong interactions of these phytocompounds with AChE, COX2, and MMP8. The top three compounds namely Albiziasaponin-A, Iso-Orientin, and Salvadorin showed least binding energy and highest binding affinity among all the scrutinized compounds. Post-docking analyses showed the following free energy change for Albiziasaponin-A, Salvadorin, and Iso-Orientin (-9.8 to -15.0 kcal/mol) as compared to FDA approved drugs (donepezil, galantamine, and rivastigmine) for AD (-6.6 to -8.2 Kcal/mol) and interact with similar amino acid residues (Pro-266, Asp-344, Trp-563, Pro-568, Tyr-103, Tyr-155, Trp-317, and Tyr-372) with the target proteins. Furthermore, we have investigated the antioxidant and anticholinesterase activity of these top three phytochemicals namely, Albiziasaponin-A, Iso-Orientin, and Salvadorin in colchicine induced rat model of AD. Sprague Dawley (SD) rat model of AD were developed using bilateral intracerebroventricular (ICV) injection of colchicine (15 μg/rat). After the induction of AD, the rats were subjected to treatment with phytochemicals individually or in combination for 3 weeks. The serum samples were further analyzed for biomarkers such as 8-hydroxydeoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX-2), matrix metalloproteinase-8 (MMP-8), isoprostanes-2 alpha (isoP-2α), and acetylcholine esterase (AChE) using conventional Enzyme Linked Immunosorbent Assay (ELISA) method. Additionally, the status of lipid peroxidation was estimated calorimetrically by measuring thiobarbituric acid reactive substances (TBARS). Here, we observed a statistically significant reduction (P < 0.05) in the oxidative stress and inflammatory markers in the treatment groups receiving mono and combinational therapies using Albiziasaponin-A, Iso-Orientin, and Salvadorin as compared to colchicine alone group. Besides, the ADMET profiles of these phytocompounds were very promising and, hence, these potential neuroprotective agents may further be taken for preclinical studies either as mono or combinational therapy for AD.
Collapse
Affiliation(s)
- Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sulayman Waquar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Qura Tul-Ain
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Tassadaq H. Jafar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Aasia Kalsoom
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad A. Ghafoor
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sheikh A. Sehgal
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Kalamegam Gauthaman
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad I. Naseer
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H. Al-Qahtani
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter N. Pushparaj
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
506
|
Kumar A, Khan FI, Olaniran AO. Chloroacetaldehyde dehydrogenase from Ancylobacter aquaticus UV5: Cloning, expression, characterization and molecular modeling. Int J Biol Macromol 2018; 114:1117-1126. [PMID: 29605256 DOI: 10.1016/j.ijbiomac.2018.03.176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/07/2017] [Accepted: 03/29/2018] [Indexed: 10/17/2022]
Abstract
1,2-Dichloroethane (1,2-DCE) is oxidatively converted to a carcinogenic intermediate compound, chloroacetaldehyde by chloroacetaldehyde dehydrogenase (CAldA) during its biodegradation by many bacterial strains, including Xanthobacter autotrophicus and Ancylobacter aquaticus. In this study, a 55kDa NAD-dependent CAldA expressed by chromosomally encoded aldA gene, is reported in an indigenous Ancylobacter aquaticus UV5. A. aquaticus UV5 aldA gene was found to be 99% homologous to the plasmid (pXAU1) encoded aldA gene reported in X. autotrophicus GJ10. Pulse-field gel electrophoresis (PFGE) and PCR experiments revealed the absence of pXAU1 in A. aquaticus UV5 and that aldA was chromosomal encoded. A 6× His-tag fused CAldA cloned in pET15b, overexpressed and purified on Co-agarose affinity column using AKTA purification system showed Mr of 57,526. CAldA was active optimally at pH9 and 30°C. The Km and vmax for the substrate, acetaldehyde were found to be 115μM and 650mU/mg, respectively. CAldA substrate specificity was found to be low for chloroacetaldehyde, formaldehyde, propionaldehyde, butyraldehyde, benzaldehyde and glutaraldehyde as compared to acetaldehyde. Computational modeling revealed a predicted structure of CAldA consisting of five β-sheets that comprise seven antiparallel β-strands and 11 mix strands. The Molecular Dynamics and Docking studies showed that acetaldehyde bind to CaldA more tightly as compared to chloroacetaldehyde.
Collapse
Affiliation(s)
- Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Faez Iqbal Khan
- Department of Chemistry, Rhodes University, Grahamstown 6139, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa.
| |
Collapse
|
507
|
Pandey B, Grover A, Sharma P. Dynamics of Dof domain-DNA interaction in wheat: Insights from atomistic simulations and free energy landscape. J Cell Biochem 2018; 119:8818-8829. [PMID: 30004133 DOI: 10.1002/jcb.27132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 05/07/2018] [Indexed: 12/15/2022]
Abstract
DNA-binding one zinc finger protein (Dof) is a plant-specific transcription factor involved in numerous biological processes. In the current study, the plausible mechanism underlying Dof domain-DNA interaction in wheat was investigated using extensive molecular dynamics (MD) simulations analysis. We depicted that one key residue Lys29, possessing the ability to disturb the interaction between Dof domain-DNA upon substitution to Arg29. Frequent conformational changes were observed in Lys29Arg (K29R)-DNA complex during the entire MD simulation period, which significantly altered the interactions, thereby indicating the importance of Lys29 in complex stability. Principal component analysis and free energy landscape results also suggested strong affinity between wild-type Dof domain and DNA due to restricted atomic movement. Our study not only substantiates the structural and mechanistic insights of Dof transcription factor but also provides new avenues toward employment of these key amino acid residues in genetic engineering for development of abiotic stress tolerance crop plant.
Collapse
Affiliation(s)
- Bharati Pandey
- Plant Biotechnology Section, Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Pradeep Sharma
- Plant Biotechnology Section, Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|
508
|
Wu Q, Peng Z, Zhang Y, Yang J. COACH-D: improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking. Nucleic Acids Res 2018; 46:W438-W442. [PMID: 29846643 PMCID: PMC6030866 DOI: 10.1093/nar/gky439] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 01/01/2023] Open
Abstract
The identification of protein-ligand binding sites is critical to protein function annotation and drug discovery. The consensus algorithm COACH developed by us represents one of the most efficient approaches to protein-ligand binding sites prediction. One of the most commonly seen issues with the COACH prediction are the low quality of the predicted ligand-binding poses, which usually have severe steric clashes to the protein structure. Here, we present COACH-D, an enhanced version of COACH by utilizing molecular docking to refine the ligand-binding poses. The input to the COACH-D server is the amino acid sequence or the three-dimensional structure of a query protein. In addition, the users can also submit their own ligand of interest. For each job submission, the COACH algorithm is first used to predict the protein-ligand binding sites. The ligands from the users or the templates are then docked into the predicted binding pockets to build their complex structures. Blind tests show that the algorithm significantly outperforms other ligand-binding sites prediction methods. Benchmark tests show that the steric clashes between the ligand and the protein structures in the COACH models are reduced by 85% after molecular docking in COACH-D. The COACH-D server is freely available to all users at http://yanglab.nankai.edu.cn/COACH-D/.
Collapse
Affiliation(s)
- Qi Wu
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| | - Zhenling Peng
- Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218, USA
| | - Jianyi Yang
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
509
|
Toti D, Macari G, Polticelli F. Protein-ligand binding site detection as an alternative route to molecular docking and drug repurposing. BIO-ALGORITHMS AND MED-SYSTEMS 2018. [DOI: 10.1515/bams-2018-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
After the onset of the genomic era, the detection of ligand binding sites in proteins has emerged over the last few years as a powerful tool for protein function prediction. Several approaches, both sequence and structure based, have been developed, but the full potential of the corresponding tools has not been exploited yet. Here, we describe the development and classification of a large, almost exhaustive, collection of protein-ligand binding sites to be used, in conjunction with the Ligand Binding Site Recognition Application Web Application developed in our laboratory, as an alternative to virtual screening through molecular docking simulations to identify novel lead compounds for known targets. Ligand binding sites derived from the Protein Data Bank have been clustered according to ligand similarity, and given a known ligand, the binding mode of related ligands to the same target can be predicted. The collection of ligand binding sites contains more than 200,000 sites corresponding to more than 20,000 different ligands. Furthermore, the ligand binding sites of all Food and Drug Administration-approved drugs have been classified as well, allowing to investigate the possible binding of each of them (and related compounds) to a given target for drug repurposing and redesign initiatives. Sample usage cases are also described to demonstrate the effectiveness of this approach.
Collapse
|
510
|
Sharafshah A, Keshavarz P, Rezaei S, Farhadian N. Association and in silico studies of ENPP1 gene variants with type 2 diabetes mellitus in a Northern Iranian population. Gene 2018; 675:225-232. [PMID: 29958952 DOI: 10.1016/j.gene.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
In the current study, a sample population of Northern Iranians was selected to investigate the association of K121Q, rs1799774, rs7754561, and rs997509 ENPP1 gene variants and their haplotypes with T2DM. Genomic DNAs of 978 samples were extracted by Salting Out standard technique and then genotyped by the TaqMan assay. The results show significant differences between study groups for K121Q (p = 0.0004) under a Dominant and rs7754561 (p = 0.002) under a co-dominant hereditary model. Based on allele frequency, there was a significant difference between two study groups at K121Q and rs7754561 variants (p = 0.010 and p = 0.01, respectively). There was no evidence for an association between ENPP1 haplotypes and overall risk of T2DM. Genotype-phenotype sub-analyses showed no significant relationship of four studied polymorphisms with age, gender, FBS, and systolic and diastolic blood pressures. Homology modeling and molecular docking of ENPP1 in K173 and Q173 models with ATP, AMP, and 2'3'-cGAMP as ligands revealed that all ligands had a more binding affinity to Lys173 protein model, and 2'3'-cGAMP had a higher affinity to both ENPP1 protein models compared to ATP and AMP. These findings suggest that ENPP1 gene variants may have a potential impact on the occurrence of T2DM in Northern Iranians.
Collapse
Affiliation(s)
- Alireza Sharafshah
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvaneh Keshavarz
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Sajjad Rezaei
- Department of Psychology, University of Guilan, Rasht, Iran
| | - Nastaran Farhadian
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
511
|
Zhao Z, Peng Z, Yang J. Improving Sequence-Based Prediction of Protein–Peptide Binding Residues by Introducing Intrinsic Disorder and a Consensus Method. J Chem Inf Model 2018; 58:1459-1468. [DOI: 10.1021/acs.jcim.8b00019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Zijuan Zhao
- Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
| | - Zhenling Peng
- Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
| | - Jianyi Yang
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
512
|
Naveed M, Imran K, Mushtaq A, Mumtaz AS, Janjua HA, Khalid N. In silico functional and tumor suppressor role of hypothetical protein PCNXL2 with regulation of the Notch signaling pathway. RSC Adv 2018; 8:21414-21430. [PMID: 35539910 PMCID: PMC9080940 DOI: 10.1039/c8ra00589c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Since the last decade, various genome sequencing projects have led to the accumulation of an enormous set of genomic data; however, numerous protein-coding genes still need to be functionally characterized. These gene products are called "hypothetical proteins". The hypothetical protein pecanex-like protein 2 Homo sapiens (PCNXL2) is found to be mutated in colorectal carcinoma with microsatellite instability; therefore, annotation of the function of PCNXL2 in tumorigenesis is very important. In the present study, bioinformatics analysis of PCNXL2 was performed at the molecular level to assess its role in the progression of cancer for designing new anti-cancer drugs. The retrieved sequence of PCNXL2 was functionally and structurally characterized through the web tools Pfam, Batch CD (conserved domain) search, ExPASy, COACH and I-TASSER directed for pathway analysis and design to explore the intercellular interactions of PCNXL2 involved in cancer development. The present study has shown that PCNXL2 encodes multi-pass transmembrane proteins whose tumor suppressor function may involve regulating Notch signaling by transporting protons across the membrane to provide suitable membrane potential for γ secretase function, which may liberate the Notch intracellular domain NICD from the receptor to inside the cell. Furthermore, domain A of PCNXL2 may exhibit nuclear transport activity of NICD from the cytoplasm to the nucleus through interaction with a nuclear localization signal that may act as an activator for Notch signaling in the nucleus. Conclusively, the tumor suppressor role of PCNXL2 by regulation of the Notch signaling pathway and its functional and structural characteristics are important findings. However, further studies are required to validate the putative role of PCNXL2 as a cancer biomarker in cancer development.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab Lahore 5400 Pakistan +92 301 5524624
- Department of Biotechnology and Biochemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Komal Imran
- Department of Biotechnology and Biochemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Ayesha Mushtaq
- Department of Biotechnology and Biochemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Abdul Samad Mumtaz
- Department of Plant Sciences, Quaid-i-Azam University Islamabad 44500 Pakistan
| | - Hussnain A Janjua
- Department of Industrial Biotechnology, Att-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology H-12 Islamabad Pakistan
| | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology Lahore 54000 Pakistan +92 42 3518478 +92 333 5278329
| |
Collapse
|
513
|
Iuso A, Wiersma M, Schüller HJ, Pode-Shakked B, Marek-Yagel D, Grigat M, Schwarzmayr T, Berutti R, Alhaddad B, Kanon B, Grzeschik NA, Okun JG, Perles Z, Salem Y, Barel O, Vardi A, Rubinshtein M, Tirosh T, Dubnov-Raz G, Messias AC, Terrile C, Barshack I, Volkov A, Avivi C, Eyal E, Mastantuono E, Kumbar M, Abudi S, Braunisch M, Strom TM, Meitinger T, Hoffmann GF, Prokisch H, Haack TB, Brundel BJ, Haas D, Sibon OC, Anikster Y. Mutations in PPCS, Encoding Phosphopantothenoylcysteine Synthetase, Cause Autosomal-Recessive Dilated Cardiomyopathy. Am J Hum Genet 2018; 102:1018-1030. [PMID: 29754768 DOI: 10.1016/j.ajhg.2018.03.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/22/2018] [Indexed: 01/25/2023] Open
Abstract
Coenzyme A (CoA) is an essential metabolic cofactor used by around 4% of cellular enzymes. Its role is to carry and transfer acetyl and acyl groups to other molecules. Cells can synthesize CoA de novo from vitamin B5 (pantothenate) through five consecutive enzymatic steps. Phosphopantothenoylcysteine synthetase (PPCS) catalyzes the second step of the pathway during which phosphopantothenate reacts with ATP and cysteine to form phosphopantothenoylcysteine. Inborn errors of CoA biosynthesis have been implicated in neurodegeneration with brain iron accumulation (NBIA), a group of rare neurological disorders characterized by accumulation of iron in the basal ganglia and progressive neurodegeneration. Exome sequencing in five individuals from two unrelated families presenting with dilated cardiomyopathy revealed biallelic mutations in PPCS, linking CoA synthesis with a cardiac phenotype. Studies in yeast and fruit flies confirmed the pathogenicity of identified mutations. Biochemical analysis revealed a decrease in CoA levels in fibroblasts of all affected individuals. CoA biosynthesis can occur with pantethine as a source independent from PPCS, suggesting pantethine as targeted treatment for the affected individuals still alive.
Collapse
|
514
|
Lee MR, Yoo WG, Kim YJ, Chung EJ, Cho SH, Ju JW. Venom allergen-like protein 28 in Clonorchis sinensis: four epitopes on its surface and the potential role of Cys124 for its conformational stability. Parasitol Res 2018; 117:2521-2530. [PMID: 29876859 DOI: 10.1007/s00436-018-5941-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/23/2018] [Indexed: 11/26/2022]
Abstract
Venom allergen-like (VAL) proteins are important to host-parasite interactions. We previously demonstrated that a Clonorchis sinensis VAL (CsVAL) protein-derived synthetic peptide suppresses allergic and inflammatory responses. However, little is known regarding the physicochemical and antigenic properties of CsVAL proteins. Here, we identified a novel 194 amino acid VAL protein, named C. sinensis VAL 28 (CsVAL28), and characterized its functional motifs and structural details as a new member of the CAP superfamily. Unlike members of the Schistosoma mansoni VAL (SmVAL) family, CsVAL28 has a single CAP1 motif and six highly conserved disulfide bond-forming cysteines. Tertiary models of wild-type CsVAL28 and mutants were built using SmVAL4 as template via homology modeling. Normal mode analysis predicted that disulfide bond breaking by mutation of cysteine 124 to serine would greatly affect protein mobility. Four major immunoreactive linear epitopes were identified in the surface-exposed region or its vicinity via epitope mapping, using sera from clonorchiasis patients and healthy controls. Our findings provide in-depth knowledge on the structure-function properties of VAL proteins and may help determine highly antigenic regions for developing new diagnostic approaches.
Collapse
Affiliation(s)
- Myoung-Ro Lee
- Division of Vectors and Parasitic Diseases, Center for Laboratory control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Chungbuk, 28159, Republic of Korea
| | - Won Gi Yoo
- Division of Vectors and Parasitic Diseases, Center for Laboratory control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Chungbuk, 28159, Republic of Korea
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea
| | - Yu Jung Kim
- Division of Vectors and Parasitic Diseases, Center for Laboratory control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Chungbuk, 28159, Republic of Korea
| | - Eun Ju Chung
- Division of Vectors and Parasitic Diseases, Center for Laboratory control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Chungbuk, 28159, Republic of Korea
| | - Shin-Hyeong Cho
- Division of Vectors and Parasitic Diseases, Center for Laboratory control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Chungbuk, 28159, Republic of Korea
| | - Jung-Won Ju
- Division of Vectors and Parasitic Diseases, Center for Laboratory control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Chungbuk, 28159, Republic of Korea.
| |
Collapse
|
515
|
Ouertani A, Chaabouni I, Mosbah A, Long J, Barakat M, Mansuelle P, Mghirbi O, Najjari A, Ouzari HI, Masmoudi AS, Maresca M, Ortet P, Gigmes D, Mabrouk K, Cherif A. Two New Secreted Proteases Generate a Casein-Derived Antimicrobial Peptide in Bacillus cereus Food Born Isolate Leading to Bacterial Competition in Milk. Front Microbiol 2018; 9:1148. [PMID: 29915567 PMCID: PMC5994558 DOI: 10.3389/fmicb.2018.01148] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/14/2018] [Indexed: 02/05/2023] Open
Abstract
Milk and dairy products harbor a wide variety of bacterial species that compete for both limited resources and space. Under these competitive conditions, bacteria develop specialized mechanisms to protect themselves during niche colonization and nutrient acquisition processes. The bacterial antagonism mechanisms include the production of antimicrobial agents or molecules that facilitate competitor dispersal. In the present work, a bacterial strain designated RC6 was isolated from Ricotta and identified as Bacillus cereus. It generates antimicrobial peptide (AMP) when grown in the presence of casein. The AMP was active against several species of Bacillus and Listeria monocytogenes. MALDI-TOF analysis of the RP-HPLC purified fractions and amino acid sequencing revealed a molecular mass of 751 Da comprised of a 6-residue sequence, YPVEPF. BLAST analysis showed that the AMP corresponds to the fractions 114-119 of bovine β-casein and represents the product of a specific proteolysis. Analysis of the purified proteolytic fractions from the B. cereus RC6 culture supernatant indicated that the presence of at least two different endoproteases is crucial for the generation of the AMP. Indeed, we were able to identify two new candidate endoproteases by means of genome sequencing and functional assignment using a 3D structural model and molecular docking of misannotated hypothetical proteins. In this light, the capacity of B. cereus RC6 to generate antimicrobial peptides from casein, through the production of extracellular enzymes, presents a new model of antagonistic competition leading to niche colonization. Hence, as a dairy product contaminant, this strategy may enable proteolytic B. cereus RC6 niche specialization in milk matrices.
Collapse
Affiliation(s)
- Awatef Ouertani
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
- Aix Marseille University, Centre National de la Recherche Scientifique, ICR UMR 7273, Marseille, France
| | - Ines Chaabouni
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Amor Mosbah
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Justine Long
- Aix-Marseille University, CEA, Centre National de la Recherche Scientifique, LEMiRE, UMR 7265, BIAM, Saint-Paul-lez-Durance, France
| | - Mohamed Barakat
- Aix-Marseille University, CEA, Centre National de la Recherche Scientifique, LEMiRE, UMR 7265, BIAM, Saint-Paul-lez-Durance, France
| | - Pascal Mansuelle
- Aix Marseille Univ, Centre National de la Recherche Scientifique, IMM, Plate-Forme Protéomique, MaP IBiSA Labelled, Marseille, France
| | - Olfa Mghirbi
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
- Aix Marseille University, Centre National de la Recherche Scientifique, ICR UMR 7273, Marseille, France
| | - Afef Najjari
- Université Tunis El Manar, FST, LMBA (LR03ES03), Campus Universitaire, Tunis, Tunisia
| | - Hadda-Imene Ouzari
- Université Tunis El Manar, FST, LMBA (LR03ES03), Campus Universitaire, Tunis, Tunisia
| | - Ahmed S. Masmoudi
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Marc Maresca
- Aix-Marseille University, Centre National de la Recherche Scientifique, Centrale Marseille, iSm2, Marseille, France
| | - Philippe Ortet
- Aix-Marseille University, CEA, Centre National de la Recherche Scientifique, LEMiRE, UMR 7265, BIAM, Saint-Paul-lez-Durance, France
| | - Didier Gigmes
- Aix Marseille University, Centre National de la Recherche Scientifique, ICR UMR 7273, Marseille, France
| | - Kamel Mabrouk
- Aix Marseille University, Centre National de la Recherche Scientifique, ICR UMR 7273, Marseille, France
| | - Ameur Cherif
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| |
Collapse
|
516
|
Phage display-derived antibody fragments against conserved regions of VacA toxin of Helicobacter pylori. Appl Microbiol Biotechnol 2018; 102:6899-6913. [PMID: 29862446 DOI: 10.1007/s00253-018-9068-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022]
Abstract
Infection with Helicobacter pylori may result in the emergence of gastric adenocarcinoma. Among various toxins assisting pathogenesis of H. pylori, the vacuolating cytotoxin A (VacA) is one of the most potent toxins known as the major cause of the peptic ulcer and gastric adenocarcinoma. To isolate single-chain variable fragments (scFvs) against two conserved regions of VacA, we capitalized on the phage display technology and a solution-phase biopanning (SPB). Characterization of scFvs was carried out by enzyme-linked immunosorbent assay (ELISA), immunoblotting, and surface plasmon resonance (SPR). Bioinformatics analyses were also performed in order to characterize the structural and functional properties of the isolated scFvs and the interaction(s) between the isolated antibodies (Ab)-antigen (Ag). After four rounds of biopanning, the positive colonies detected by scFv ELISA were harvested to extract the plasmids and perform sequencing. Of several colonies, three colonies showed high affinity to the VacA1 and two colonies for the VacA2. Further complementary examinations (e.g., sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), western blot, SPR, and flow cytometry) displayed the high affinity and specificity of the isolated scFvs to the VacA. Docking results revealed the interaction of the complementarity-determining regions (CDRs) with the VacA peptide. In conclusion, for the first time, we report on the isolation of several scFvs against conserved residues of VacA toxin with high affinity and specificity, which may be used as novel diagnostic/therapeutic tool in the H. pylori infection.
Collapse
|
517
|
Palacios-Pérez M, Andrade-Díaz F, José MV. A Proposal of the Ur-proteome. ORIGINS LIFE EVOL B 2018; 48:245-258. [PMID: 29127550 DOI: 10.1007/s11084-017-9553-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/24/2017] [Indexed: 11/25/2022]
Abstract
Herein we outline a plausible proteome, encoded by assuming a primeval RNY genetic code. We unveil the primeval phenotype by using only the RNA genotype; it means that we recovered the most ancestral proteome, mostly made of the 8 amino acids encoded by RNY triplets. By looking at those fragments, it is noticeable that they are positioned, not at catalytic sites, but in the cofactor binding sites. It implies that the stabilization of a molecule appeared long before its catalytic activity, and therefore the Ur-proteome comprised a set of proteins modules that corresponded to Cofactor Stabilizing Binding Sites (CSBSs), which we call the primitive bindome. With our method, we reconstructed the structures of the "first protein modules" that Sobolevsky and Trifonov (2006) found by using only RMSD. We also examine the probable cofactors that bound to them. We discuss the notion of CSBSs as the first proteins modules in progenotes in the context of several proposals about the primitive forms of life.
Collapse
Affiliation(s)
- Miryam Palacios-Pérez
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México CDMX, Mexico
| | - Fernando Andrade-Díaz
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México CDMX, Mexico
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México CDMX, Mexico.
| |
Collapse
|
518
|
Alghamedy F, Bopaiah J, Jones D, Zhang X, Weiss HL, Ellingson SR. Incorporating Protein Dynamics Through Ensemble Docking in Machine Learning Models to Predict Drug Binding. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2018; 2017:26-34. [PMID: 29888034 PMCID: PMC5961778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Drug discovery is an expensive, lengthy, and sometimes dangerous process. The ability to make accurate computational predictions of drug binding would greatly improve the cost-effectiveness and safety of drug discovery and development. This study incorporates ensemble docking, the use of multiple protein conformations extracted from a molecular dynamics trajectory to perform docking calculations, with additional biomedical data sources and machine learning algorithms to improve the prediction of drug binding. We found that we can greatly increase the classification accuracy of an active vs a decoy compound using these methods over docking scores alone. The best results seen here come from having an individual protein conformation that produces binding features that correlate well with the active vs. decoy classification, in which case we achieve over 99% accuracy. The ability to confidently make accurate predictions on drug binding would allow for computational polypharamacological networks with insights into side-effect prediction, drug-repurposing, and drug efficacy.
Collapse
|
519
|
Basit A, Akhtar MW. Truncation of the processive Cel5A ofThermotoga maritimaresults in soluble expression and several fold increase in activity. Biotechnol Bioeng 2018; 115:1675-1684. [DOI: 10.1002/bit.26602] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/16/2018] [Accepted: 03/19/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Abdul Basit
- School of Biological Sciences; University of the Punjab; Lahore Pakistan
| | - Muhammad W. Akhtar
- School of Biological Sciences; University of the Punjab; Lahore Pakistan
| |
Collapse
|
520
|
Younus A, Munawar S, Bhatti MF, Ikram A, Awan FM, Jabeen I, Virk N, Janjua HA, Arshad M. Structure-Function Mutational Analysis and Prediction of the Potential Impact of High Risk Non-Synonymous Single-Nucleotide Polymorphism on Poliovirus 2A Protease Stability Using Comprehensive Informatics Approaches. Genes (Basel) 2018; 9:228. [PMID: 29701718 PMCID: PMC5977168 DOI: 10.3390/genes9050228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022] Open
Abstract
Polio viral proteinase 2A performs several essential functions in genome replication. Its inhibition prevents viral replication, thus making it an excellent substrate for drug development. In this study, the three-dimensional structure of 2A protease was determined and optimized by homology modelling. To predict the molecular basis of the interaction of small molecular agonists, docking simulations were performed on a structurally diverse dataset of poliovirus 2A protease (PV2Apr°) inhibitors. Docking results were employed to identify high risk missense mutations that are highly damaging to the structure, as well as the function, of the protease. Intrinsic disorder regions (IDRs), drug binding sites (DBS), and protein stability changes upon mutations were also identified among them. Our results demonstrated dominant roles for Lys 15, His 20, Cys 55, Cys 57, Cys 64, Asp 108, Cys 109 and Gly 110, indicating the presence of various important drug binding sites of the protein. Upon subjecting these sites to single-nucleotide polymorphism (SNP) analysis, we observed that out of 155 high risk SNPs, 139 residues decrease the protein stability. We conclude that these missense mutations can affect the functionality of the 2A protease, and that identified protein binding sites can be directed for the attachment and inhibition of the target proteins.
Collapse
Affiliation(s)
- Amna Younus
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan.
| | - Saba Munawar
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan.
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan.
| | - Aqsa Ikram
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan.
| | - Faryal Mehwish Awan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan.
| | - Ishrat Jabeen
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan.
| | - Nasar Virk
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan.
| | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan.
| | - Muhammad Arshad
- Department of Bioinformatics and Biotechnology, International Islamic University, Sector H-10, Islamabad 44000, Pakistan.
| |
Collapse
|
521
|
Annotation and De Novo Sequence Characterization of Extracellular β-Fructofuranosidase from Penicillium chrysogenum Strain HKF42. Indian J Microbiol 2018; 58:227-233. [PMID: 29651183 DOI: 10.1007/s12088-017-0704-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022] Open
Abstract
The genome of a fungal strain Penicillium chrysogenum strain HKF42, which can grow on 20% sucrose has been annotated for 7595 protein coding sequences. On mining of CAZymes, we could annotate a β-fructofuranosidase gene responsible for fructo-oligosaccharides (FOS) synthesis which is a known prebiotic. The enzyme activity was demonstrated and validated with the generation of FOS as kestose and nystose.
Collapse
|
522
|
Hou L, Huang H, Li H, Wang S, Ju J, Li W. Overexpression of a type III PKS gene affording novel violapyrones with enhanced anti-influenza A virus activity. Microb Cell Fact 2018; 17:61. [PMID: 29650021 PMCID: PMC5898002 DOI: 10.1186/s12934-018-0908-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type III polyketide synthases (PKSs) are simple homodimer ketosynthases that distribute across plants, fungi, and bacteria, catalyzing formation of pyrone- and resorcinol-types aromatic polyketides with various bioactivities. The broad substrate promiscuity displayed by type III PKSs makes them wonderful candidates for expanding chemical diversity of polyketides. RESULTS Violapyrone B (VLP B, 10), an α-pyrone compound produced by deepsea-derived Streptomyces somaliensis SCSIO ZH66, is encoded by a type III PKS VioA. We overexpressed VioA in three different hosts, including Streptomyces coelicolor M1146, Streptomyces sanyensis FMA as well as the native producer S. somaliensis SCSIO ZH66, leading to accumulation of different violapyrone compounds. Among them, S. coelicolor M1146 served as the host producing the most abundant violapyrones, from which five new (2-4, 7 and 12) and nine known (1, 5, 6, 8-11, 13 and 14) compounds were identified. Anti-influenza A (H1N1) virus activity of these compounds was then evaluated using ribavirin as a positive control (IC50 = 112.9 μM), revealing that compounds 11-14 showed considerable activity with IC50 values of 112.7, 26.9, 106.7 and 28.8 μM, respectively, which are significantly improved as compared to that of VLP B (10) (IC50 > 200 μM). The productions of 10 and 13 were increased by adding P450 inhibitor metyrapone. In addition, site-directed mutagenesis experiment led to demonstration of the residue S242 to be essential for the activity of VioA. CONCLUSIONS Biological background of the expression hosts is an important factor impacting on the encoding products of type III PKSs. By using S. coelicolor M1146 as cell factory, we were able to generate fourteen VLPs compounds. Anti-H1N1 activity assay suggested that the lipophilic nature of the alkyl chains of VLPs plays an important role for the activity, providing valuable guidance for further structural optimization of VLPs.
Collapse
Affiliation(s)
- Lukuan Hou
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Huiming Huang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shuyao Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jianhua Ju
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China, Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
523
|
Khan MT, Dalvin S, Waheed Q, Nilsen F, Male R. Molecular characterization of the lipophorin receptor in the crustacean ectoparasite Lepeophtheirus salmonis. PLoS One 2018; 13:e0195783. [PMID: 29649335 PMCID: PMC5897026 DOI: 10.1371/journal.pone.0195783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
The Salmon louse (Lepeophtheirus salmonis) is a marine ectoparasite of salmonid fish in the Northern Hemisphere and considered as a major challenge in aquaculture and a threat to wild populations of salmonids. Adult female lice produce a large number of lipid-rich eggs, however, the mechanism of maternal lipid transport into developing eggs during salmon louse reproduction has not been described. In the present study, a full-length L. salmonis lipophorin receptor (LsLpR) consisting of 16 exons was obtained by RACE and RT-PCR. The predicted ORF was 952 amino acids and structural analysis showed five functional domains that are similar to LpR of insects and decapods. Phylogenetic analysis placed the LsLpR together with LpRs from decapods and insects. Expression analysis revealed that the relative abundance of LsLpR transcripts was highest in the larvae and adult female lice. In adult females, the LsLpR transcripts and protein were found in the ovary and vitellogenic oocytes whereas, in larvae, the LsLpR transcripts were found in the neuronal somata of the brain and the intestine. Oil Red O stain results revealed that storage of neutral lipids was found in vitellogenic oocytes and ovaries of adult females, and in the yolk of larvae. Moreover, RNA interference (RNAi) was conducted to demonstrate the function of LsLpR in reproduction and lipid metabolism in L. salmonis. In larvae, the transcription of LsLpR was decreased by 44–54% while in an experiment LsLpR knockdown female lice produced 72% less offspring than control lice.
Collapse
Affiliation(s)
- Muhammad Tanveer Khan
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sussie Dalvin
- Sea Lice Research Centre, Institute of Marine Research, Bergen, Norway
| | - Qaiser Waheed
- Computational Biology Unit, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Rune Male
- Computational Biology Unit, Department of Biological Sciences, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
524
|
DeCicco RePass MA, Bhat N, Heimburg-Molinaro J, Bunnell S, Cummings RD, Ward HD. Molecular cloning, expression, and characterization of UDP N-acetyl-α-d-galactosamine: Polypeptide N-acetylgalactosaminyltransferase 4 from Cryptosporidium parvum. Mol Biochem Parasitol 2018; 221:56-65. [PMID: 29581010 DOI: 10.1016/j.molbiopara.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 01/06/2023]
Abstract
Cryptosporidium spp. are the causative agents of diarrheal disease worldwide, but effective treatments are lacking. Cryptosporidium employs mucin-like glycoproteins with O-glycans to attach to and infect host intestinal epithelial cells. The Tn antigen (GalNAcα1-Ser/Thr) is an O-glycan essential for these processes, as Tn-specific lectins and a Tn-specific monoclonal antibody block attachment to and infection of host cells in vitro. The enzymes in Cryptosporidium catalyzing their synthesis, however, have not been studied. Previously, we identified four genes encoding putative UDP N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) in the genomes of three Cryptosporidium spp. Here we report the in silico analysis, cloning, expression, purification, and characterization of one of the four enzymes Cryptosporidium parvum (Cp)-ppGalNAc-T4. This enzyme contains the characteristic domains and motifs conserved in ppGalNAc-Ts and is expressed at multiple time points during in vitro infection. Recombinant soluble Cp-ppGalNAc-T4 was enzymatically active against an unmodified EA2 peptide suggesting that it may function as an "initiating" ppGalNAc-T. Cp-ppGalNAc-T4 also exhibited a strong preference for UDP-GalNAc over other nucleotide sugar donors and was active against unmodified and O-glycosylated versions of the C. parvum gp40-derived peptide, with a preference for the former, suggesting it may play a role in modifying this glycoprotein in vivo. Given the importance of mucin-type O-glycosylation in Cryptosporidium spp., the enzymes that catalyze their synthesis may serve as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Stephen Bunnell
- Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Richard D Cummings
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Honorine D Ward
- Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA, USA; Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
525
|
Zhang C, Zheng W, Freddolino PL, Zhang Y. MetaGO: Predicting Gene Ontology of Non-homologous Proteins Through Low-Resolution Protein Structure Prediction and Protein-Protein Network Mapping. J Mol Biol 2018. [PMID: 29534977 DOI: 10.1016/j.jmb.2018.03.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Homology-based transferal remains the major approach to computational protein function annotations, but it becomes increasingly unreliable when the sequence identity between query and template decreases below 30%. We propose a novel pipeline, MetaGO, to deduce Gene Ontology attributes of proteins by combining sequence homology-based annotation with low-resolution structure prediction and comparison, and partner's homology-based protein-protein network mapping. The pipeline was tested on a large-scale set of 1000 non-redundant proteins from the CAFA3 experiment. Under the stringent benchmark conditions where templates with >30% sequence identity to the query are excluded, MetaGO achieves average F-measures of 0.487, 0.408, and 0.598, for Molecular Function, Biological Process, and Cellular Component, respectively, which are significantly higher than those achieved by other state-of-the-art function annotations methods. Detailed data analysis shows that the major advantage of the MetaGO lies in the new functional homolog detections from partner's homology-based network mapping and structure-based local and global structure alignments, the confidence scores of which can be optimally combined through logistic regression. These data demonstrate the power of using a hybrid model incorporating protein structure and interaction networks to deduce new functional insights beyond traditional sequence homology-based referrals, especially for proteins that lack homologous function templates. The MetaGO pipeline is available at http://zhanglab.ccmb.med.umich.edu/MetaGO/.
Collapse
Affiliation(s)
- Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
526
|
Excavating chikungunya genome to design B and T cell multi-epitope subunit vaccine using comprehensive immunoinformatics approach to control chikungunya infection. INFECTION GENETICS AND EVOLUTION 2018. [PMID: 29535024 DOI: 10.1016/j.meegid.2018.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chikungunya infection has been a cause of countless deaths worldwide. Due to lack of permanent treatment and prevention of this disease, the mortality rate remains very high. Therefore, we followed an immunoinformatics approach for the development of multi-epitope subunit vaccine which is able to elucidate humoral, cell-mediated and innate immune responses inside the host body. Both structural and non-structural proteins of chikungunya virus were utilized for prediction of B-cell and T-cell binding epitopes along with interferon-γ (IFN-γ) inducing epitopes. The vaccine construct is composed of β-defensin as an adjuvant at the N-terminal followed by Cytotoxic T-Lymphocytes (CTL) and Helper T-Lymphocyte (HTL) epitopes. The same vaccine construct was also utilized for the prediction of B-cell binding epitopes and IFN-γ inducing epitopes. This was followed by the 3D model generation, refinement and validation of the vaccine construct. Later on, the interaction of modeled vaccine with the innate immune receptor (TLR-3) was explored by performing molecular docking and molecular dynamics simulation studies. Also to check the efficiency of expression of this vaccine construct in an expression vector, in silico cloning was performed at the final stage of vaccine development. Further, designed multi-epitope subunit vaccine necessitates experimental and clinical investigation to develop as an immunogenic vaccine candidate.
Collapse
|
527
|
Abstract
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme involved in folate metabolism and plays a central role in DNA methylation and biosynthesis. MTHFR mutations may alter the cellular folate supply which in turn affects nucleic acid synthesis, DNA methylation and chromosomal damage. The identification of number of SNPs in the human genome growing nowadays and hence, the evaluation of functional & structural consequences of these SNPs is very laborious by means of experimental analysis. Therefore, in the present study, recently developed various computational algorithms have been used which can predict the functional and structural consequences of the SNPs. Various computational tools like SIFT, PolyPhen2, PROVEAN, SNAP2, nsSNPAnalyzer, SNPs&GO, PhD-SNP, PMut, I-Mutant, iPTREE-STAB and MUpro were used to predict most deleterious SNPs. Additionally, ConSurf was used to find amino acids conservation and NCBI conserved domain search tool to find conserved domains in MTHFR. Post translational modification sites were predicted using ModPred. SPARKS-X was used to generate 3D structure of the native and mutant MTHFR protein, ModRefiner for further refinement, Varify3D and RAMPAGE to validate structure. Ligand binding sites were predicted using FTsite, RaptorX binding and COACH. Three SNPs i.e. R157Q, L323P and W500C predicted the most deleterious in all the tools used for functional and stability analysis. Moreover, both residues R157, L323 and W500 were predicted highly conserved, buried and structural residues by ConSurf. Post translational modification sites were also predicted at R157 and W500. The ligand binding sites were predicted at R157, L323 and W500.
Collapse
Affiliation(s)
- Mansi Desai
- P. G. Department of Genetics, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Science (ARIBAS), New Vallabh Vidyanagar, Affiliated to Sardar Patel University, India.
| | - J B Chauhan
- P. G. Department of Genetics, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Science (ARIBAS), New Vallabh Vidyanagar, Affiliated to Sardar Patel University, India.
| |
Collapse
|
528
|
Kinyanyi D, Obiero G, Obiero GFO, Amwayi P, Mwaniki S, Wamalwa M. In silico structural and functional prediction of African swine fever virus protein-B263R reveals features of a TATA-binding protein. PeerJ 2018; 6:e4396. [PMID: 29492339 PMCID: PMC5825884 DOI: 10.7717/peerj.4396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/30/2018] [Indexed: 11/26/2022] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of ASF, a fatal hemorrhagic fever that affects domestic pigs. There is currently no vaccine against ASFV, making it a significant threat to the pork industry. The ASFV genome sequence has been published; however, about half of ASFV open reading frames have not been characterized in terms of their structure and function despite being essential for our understanding of ASFV pathogenicity. The present study reports the three-dimensional structure and function of uncharacterized protein, pB263R (NP_042780.1), an open reading frame found in all ASFV strains. Sequence-based profiling and hidden Markov model search methods were used to identify remote pB263R homologs. Iterative Threading ASSEmbly Refinement (I-TASSER) was used to model the three-dimensional structure of pB263R. The posterior probability of fold family assignment was calculated using TM-fold, and biological function was assigned using TM-site, RaptorXBinding, Gene Ontology, and TM-align. Our results suggests that pB263R has the features of a TATA-binding protein and is thus likely to be involved in viral gene transcription.
Collapse
Affiliation(s)
- Dickson Kinyanyi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, Nairobi, Kenya
| | - George Obiero
- Center for Biotechnology and Bioinformatics, University Of Nairobi, Nairobi, Kenya
| | - George F O Obiero
- Department of Biochemistry and Biotechnology, Technical University of Kenya, Nairobi, Kenya
| | - Peris Amwayi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, Nairobi, Kenya
| | - Stephen Mwaniki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, Nairobi, Kenya
| | - Mark Wamalwa
- Department of Biochemistry and Biotechnology, Kenyatta University, Ruiru, Kenya
| |
Collapse
|
529
|
Hu J, Li Y, Zhang Y, Yu DJ. ATPbind: Accurate Protein-ATP Binding Site Prediction by Combining Sequence-Profiling and Structure-Based Comparisons. J Chem Inf Model 2018; 58:501-510. [PMID: 29361215 DOI: 10.1021/acs.jcim.7b00397] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein-ATP interactions are ubiquitous in a wide variety of biological processes. Correctly locating ATP binding sites from protein information is an important but challenging task for protein function annotation and drug discovery. However, there is no method that can optimally identify ATP binding sites for different proteins. In this study, we report a new composite predictor, ATPbind, for ATP binding sites by integrating the outputs of two template-based predictors (i.e., S-SITE and TM-SITE) and three discriminative sequence-driven features of proteins: position specific scoring matrix, predicted secondary structure, and predicted solvent accessibility. In ATPbind, we assembled multiple support vector machines (SVMs) based on a random undersampling technique to cope with the serious imbalance phenomenon between the numbers of ATP binding sites and of non-ATP binding sites. We also constructed a new gold-standard benchmark data set consisting of 429 ATP binding proteins from the PDB database to evaluate and compare the proposed ATPbind with other existing predictors. Starting from a query sequence and predicted I-TASSER models, ATPbind can achieve an average accuracy of 72%, covering 62% of all ATP binding sites while achieving a Matthews correlation coefficient value that is significantly higher than that of other state-of-the-art predictors.
Collapse
Affiliation(s)
- Jun Hu
- School of Computer Science and Engineering, Nanjing University of Science and Technology , Xiaolingwei 200, Nanjing, 210094, P. R. China.,Department of Computational Medicine and Bioinformatics, University of Michigan , 100 Washtenaw, Ann Arbor, Michigan 48109-2218, United States
| | - Yang Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology , Xiaolingwei 200, Nanjing, 210094, P. R. China.,Department of Computational Medicine and Bioinformatics, University of Michigan , 100 Washtenaw, Ann Arbor, Michigan 48109-2218, United States
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan , 100 Washtenaw, Ann Arbor, Michigan 48109-2218, United States
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology , Xiaolingwei 200, Nanjing, 210094, P. R. China
| |
Collapse
|
530
|
Chen WN, Otting G. Using tert-Butyl Groups in a Ligand To Identify Its Binding Site on a Protein. ACS Med Chem Lett 2018; 9:109-113. [PMID: 29456797 DOI: 10.1021/acsmedchemlett.7b00464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/12/2018] [Indexed: 01/16/2023] Open
Abstract
Few methods allow determining the binding site of tightly binding ligands. We show that ligands containing a tert-butyl (e.g., Boc) group produce easily observable nuclear Overhauser effects (NOE) with the target protein even when the tert-butyl group is not highly solvent exposed. NOEs with methyl groups of the target protein are readily assigned by selectively isotope labeling, presenting a practical and quick way to pinpoint the location of the ligand without any prior specific nuclear magnetic resonance assignments of the protein. The approach works for nonexchanging ligands as well as for weakly binding ligands.
Collapse
Affiliation(s)
- Wan-Na Chen
- Research
School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- College
of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gottfried Otting
- Research
School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
531
|
Screening of Potential Inhibitor against Coat Protein of Apple Chlorotic Leaf Spot Virus. Cell Biochem Biophys 2018; 76:273-278. [DOI: 10.1007/s12013-017-0836-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
|
532
|
Puthusseri B, Divya P, Lokesh V, Kumar G, Savanur MA, Neelwarne B. Novel Folate Binding Protein in Arabidopsis Expressed during Salicylic Acid-Induced Folate Accumulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:505-511. [PMID: 29231735 DOI: 10.1021/acs.jafc.7b04236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Increasing the quantity of natural folates in plant foods is recently gaining significant interest, owing to their acute deficiencies in various populations. This study observed that foliar salicylic acid treatment enhanced the accumulation of folates in Arabidopsis, which correlated with the increase in a folate binding protein (FBP) and the expression of mRNA of a putative folate binding protein At5G27830. A protein band corresponding to ∼43 kDa was observed after resolving the affinity-purified protein on SDS-PAGE, and the partial amino acid sequence indicated that the protein is indeed At5G27830. Docking studies performed with At5G27830 confirmed specific binding of folic acid to predicted site. Heterologous expression of At5G27830 in the yeast resulted in significant uptake and accumulation of folic acid in cells. This novel study of a plant FBP will be useful for folate metabolic engineering of a wide range of crops.
Collapse
Affiliation(s)
- Bijesh Puthusseri
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute , Mysore 570020, India
| | - Peethambaran Divya
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute , Mysore 570020, India
| | - Veeresh Lokesh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute , Mysore 570020, India
| | - Gyanendra Kumar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute , Mysore 570020, India
| | | | - Bhagyalakshmi Neelwarne
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute , Mysore 570020, India
| |
Collapse
|
533
|
Vijayababu P, Samykannu G, Antonyraj CB, Thomas J, Narayanan S, Basheer Ahamed SI, Piramanayagam S. Patulin interference with ATP binding cassette transferring auto inducer −2 in Salmonella typhi and biofilm inhibition via quorum sensing. INFORMATICS IN MEDICINE UNLOCKED 2018. [DOI: 10.1016/j.imu.2018.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
534
|
Substrate specificities in Salmonella typhi outer membrane protease (PgtE) from Omptin family – An in silico proteomic approach. INFORMATICS IN MEDICINE UNLOCKED 2018. [DOI: 10.1016/j.imu.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
535
|
Glucovanillin: A potent inhibitor of lipase from Acinetobacter radioresistens. INFORMATICS IN MEDICINE UNLOCKED 2018. [DOI: 10.1016/j.imu.2018.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
536
|
Suryanarayanan V, Panwar U, Chandra I, Singh SK. De Novo Design of Ligands Using Computational Methods. Methods Mol Biol 2018; 1762:71-86. [PMID: 29594768 DOI: 10.1007/978-1-4939-7756-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
De novo design technique is complementary to high-throughput virtual screening and is believed to contribute in pharmaceutical development of novel drugs with desired properties at a very low cost and time-efficient manner. In this chapter, we outline the basic de novo design concepts based on computational methods with an example.
Collapse
Affiliation(s)
- Venkatesan Suryanarayanan
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Umesh Panwar
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Ishwar Chandra
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
537
|
Jaén-Luchoro D, Aliaga-Lozano F, Gomila RM, Gomila M, Salvà-Serra F, Lalucat J, Bennasar-Figueras A. First insights into a type II toxin-antitoxin system from the clinical isolate Mycobacterium sp. MHSD3, similar to epsilon/zeta systems. PLoS One 2017; 12:e0189459. [PMID: 29236773 PMCID: PMC5728571 DOI: 10.1371/journal.pone.0189459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/28/2017] [Indexed: 01/21/2023] Open
Abstract
A putative type II toxin-antitoxin (TA) system was found in the clinical isolate Mycobacterium sp. MHSD3, a strain closely related to Mycobacterium chelonae. Further analyses of the protein sequences of the two genes revealed the presence of domains related to a TA system. BLAST analyses indicated the presence of closely related proteins in the genomes of other recently published M. chelonae strains. The functionality of both elements of the TA system was demonstrated when expressed in Escherichia coli cells, and the predicted structure of the toxin is very similar to those of well-known zeta-toxins, leading to the definition of a type II TA system similar to epsilon/zeta TA systems in strains that are closely related to M. chelonae.
Collapse
Affiliation(s)
- Daniel Jaén-Luchoro
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Francisco Aliaga-Lozano
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
- Laboratorio de Biología Molecular, Clínica Rotger, Palma de Mallorca, Spain
| | - Rosa Maria Gomila
- Serveis Cientifico-Tècnics, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Margarita Gomila
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Francisco Salvà-Serra
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Jorge Lalucat
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
- Institut Mediterrani d’Estudis Avançats (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Antoni Bennasar-Figueras
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
- Area de Enfermedades Infecciosas, Instituto Universitario de Investigaciones en Ciencias de la Salud (IUNICS-UIB), Universitat de les Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|
538
|
Structure-based prediction of ligand-protein interactions on a genome-wide scale. Proc Natl Acad Sci U S A 2017; 114:13685-13690. [PMID: 29229851 DOI: 10.1073/pnas.1705381114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report a template-based method, LT-scanner, which scans the human proteome using protein structural alignment to identify proteins that are likely to bind ligands that are present in experimentally determined complexes. A scoring function that rapidly accounts for binding site similarities between the template and the proteins being scanned is a crucial feature of the method. The overall approach is first tested based on its ability to predict the residues on the surface of a protein that are likely to bind small-molecule ligands. The algorithm that we present, LBias, is shown to compare very favorably to existing algorithms for binding site residue prediction. LT-scanner's performance is evaluated based on its ability to identify known targets of Food and Drug Administration (FDA)-approved drugs and it too proves to be highly effective. The specificity of the scoring function that we use is demonstrated by the ability of LT-scanner to identify the known targets of FDA-approved kinase inhibitors based on templates involving other kinases. Combining sequence with structural information further improves LT-scanner performance. The approach we describe is extendable to the more general problem of identifying binding partners of known ligands even if they do not appear in a structurally determined complex, although this will require the integration of methods that combine protein structure and chemical compound databases.
Collapse
|
539
|
Sproles AE, Kirk NL, Kitchen SA, Oakley CA, Grossman AR, Weis VM, Davy SK. Phylogenetic characterization of transporter proteins in the cnidarian-dinoflagellate symbiosis. Mol Phylogenet Evol 2017; 120:307-320. [PMID: 29233707 DOI: 10.1016/j.ympev.2017.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 10/22/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Metabolic exchange between cnidarians and their symbiotic dinoflagellates is central to maintaining their mutualistic relationship. Sugars are translocated to the host, while ammonium and nitrate are utilized by the dinoflagellates (Symbiodinium spp.). We investigated membrane protein sequences of each partner to identify potential transporter proteins that move sugars into cnidarian cells and nitrogen products into Symbiodinium cells. We examined the facilitated glucose transporters (GLUT), sodium/glucose cotransporters (SGLT), and aquaporin (AQP) channels in the cnidarian host as mechanisms for sugar uptake, and the ammonium and high-affinity nitrate transporters (AMT and NRT2, respectively) in the algal symbiont as mechanisms for nitrogen uptake. Homologous protein sequences were used for phylogenetic analysis and tertiary structure deductions. In cnidarians, we identified putative glucose transporters of the GLUT family and glycerol transporting AQP proteins, as well as sodium monocarboxylate transporters and sodium myo-inositol cotransporters homologous to SGLT proteins. We hypothesize that cnidarians use GLUT proteins as the primary mechanism for glucose uptake, while glycerol moves into cells by passive diffusion. We also identified putative AMT proteins in several Symbiodinium clades and putative NRT2 proteins only in a single clade. We further observed an upregulation of expressed putative AMT proteins in Symbiodinium, which may have emerged as an adaptation to conditions experienced inside the host cell. This study is the first to identify transporter sequences from a diversity of cnidarian species and Symbiodinium clades, which will be useful for future experimental analyses of the host-symbiont proteome and the nutritional exchange of Symbiodinium cells in hospite.
Collapse
Affiliation(s)
- Ashley E Sproles
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Nathan L Kirk
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Sheila A Kitchen
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
| |
Collapse
|
540
|
In Silico Analysis for Determination and Validation of Human CD20 Antigen 3D Structure. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9654-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
541
|
Malikanti R, Vadija R, Veeravarapu H, Mustyala KK, Malkhed V, Vuruputuri U. Identification of small molecular ligands as potent inhibitors of fatty acid metabolism in Mycobacterium tuberculosis. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
542
|
Discovery of potential Zika virus RNA polymerase inhibitors by docking-based virtual screening. Comput Biol Chem 2017; 71:144-151. [DOI: 10.1016/j.compbiolchem.2017.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/14/2017] [Accepted: 10/18/2017] [Indexed: 11/20/2022]
|
543
|
A novel soxO gene, encoding a glutathione disulfide reductase, is essential for tetrathionate oxidation in Advenella kashmirensis. Microbiol Res 2017; 205:1-7. [DOI: 10.1016/j.micres.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/19/2017] [Accepted: 08/05/2017] [Indexed: 11/30/2022]
|
544
|
Dai F, Yoo WG, Lee JY, Lu Y, Pak JH, Sohn WM, Hong SJ. Multidrug resistance-associated protein 4 is a bile transporter of Clonorchis sinensis simulated by in silico docking. Parasit Vectors 2017; 10:578. [PMID: 29157307 PMCID: PMC5697364 DOI: 10.1186/s13071-017-2523-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/05/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multidrug resistance-associated protein 4 (MRP4) is a member of the C subfamily of the ABC family of ATP-binding cassette (ABC) transporters. MRP4 regulates ATP-dependent efflux of various organic anionic substrates and bile acids out of cells. Since Clonorchis sinensis lives in host's bile duct, accumulation of bile juice can be toxic to the worm's tissues and cells. Therefore, C. sinensis needs bile transporters to reduce accumulation of bile acids within its body. RESULTS We cloned MRP4 (CsMRP4) from C. sinensis and obtained a cDNA encoding an open reading frame of 1469 amino acids. Phylogenetic analysis revealed that CsMRP4 belonged to the MRP/SUR/CFTR subfamily. A tertiary structure of CsMRP4 was generated by homology modeling based on multiple structures of MRP1 and P-glycoprotein. CsMRP4 had two membrane-spanning domains (MSD1 & 2) and two nucleotide-binding domains (NBD1 & 2) as common structural folds. Docking simulation with nine bile acids showed that CsMRP4 transports bile acids through the inner cavity. Moreover, it was found that CsMRP4 mRNA was more abundant in the metacercariae than in the adults. Mouse immune serum, generated against the CsMRP4-NBD1 (24.9 kDa) fragment, localized CsMRP4 mainly in mesenchymal tissues and oral and ventral suckers of the metacercariae and the adults. CONCLUSIONS Our findings shed new light on MRPs and their homologs and provide a platform for further structural and functional investigations on the bile transporters and parasites' survival.
Collapse
Affiliation(s)
- Fuhong Dai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, South Korea
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, South Korea
| | - Ji-Yun Lee
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, South Korea
| | - Yanyan Lu
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, South Korea
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52828, South Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, South Korea.
| |
Collapse
|
545
|
Ding Y, Tang J, Guo F. Identification of Protein-Ligand Binding Sites by Sequence Information and Ensemble Classifier. J Chem Inf Model 2017; 57:3149-3161. [PMID: 29125297 DOI: 10.1021/acs.jcim.7b00307] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Identifying protein-ligand binding sites is an important process in drug discovery and structure-based drug design. Detecting protein-ligand binding sites is expensive and time-consuming by traditional experimental methods. Hence, computational approaches provide many effective strategies to deal with this issue. Recently, lots of computational methods are based on structure information on proteins. However, these methods are limited in the common scenario, where both the sequence of protein target is known and sufficient 3D structure information is available. Studies indicate that sequence-based computational approaches for predicting protein-ligand binding sites are more practical. In this paper, we employ a novel computational model of protein-ligand binding sites prediction, using protein sequence. We apply the Discrete Cosine Transform (DCT) to extract feature from Position-Specific Score Matrix (PSSM). In order to improve the accuracy, Predicted Relative Solvent Accessibility (PRSA) information is also utilized. The predictor of protein-ligand binding sites is built by employing the ensemble weighted sparse representation model with random under-sampling. To evaluate our method, we conduct several comprehensive tests (12 types of ligands testing sets) for predicting protein-ligand binding sites. Results show that our method achieves better Matthew's correlation coefficient (MCC) than other outstanding methods on independent test sets of ATP (0.506), ADP (0.511), AMP (0.393), GDP (0.579), GTP (0.641), Mg2+ (0.317), Fe3+ (0.490) and HEME (0.640). Our proposed method outperforms earlier predictors (the performance of MCC) in 8 of the 12 ligands types.
Collapse
Affiliation(s)
- Yijie Ding
- School of Computer Science and Technology, Tianjin University , No. 135, Yaguan Road, Tianjin Haihe Education Park, Tianjin 300350, China
| | - Jijun Tang
- School of Computer Science and Technology, Tianjin University , No. 135, Yaguan Road, Tianjin Haihe Education Park, Tianjin 300350, China.,Department of Computer Science and Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Fei Guo
- School of Computer Science and Technology, Tianjin University , No. 135, Yaguan Road, Tianjin Haihe Education Park, Tianjin 300350, China
| |
Collapse
|
546
|
Sathapondecha P, Panyim S, Udomkit A. An essential role of Rieske domain oxygenase Neverland in the molting cycle of black tiger shrimp, Penaeus monodon. Comp Biochem Physiol A Mol Integr Physiol 2017; 213:11-19. [PMID: 28842223 DOI: 10.1016/j.cbpa.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 11/26/2022]
|
547
|
A Highly Promiscuous Integron, Plasmids, Extended Spectrum Beta Lactamases and Efflux Pumps as Factors Governing Multidrug Resistance in a Highly Drug Resistant Vibrio fluvialis Isolate BD146 from Kolkata, India. Indian J Microbiol 2017; 58:60-67. [PMID: 29434398 DOI: 10.1007/s12088-017-0687-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022] Open
Abstract
In an earlier study from this laboratory, Vibrio fluvialis BD146, a clinical isolate from Kolkata, India, 2002, was found to be resistant to all the fourteen antibiotics tested. It harboured a high copy number plasmid pBD146 and a low copy number plasmid. In the present study, a more detailed analysis was carried out to unravel different resistance mechanisms in this isolate. Sequencing showed that variable region of class 1 integron located on low copy number plasmid harbored arr3-cmlA-blaOXA10-aadA1 gene cassettes. Analysis for extended spectrum beta lactamases (ESBLs) revealed that BD146 was ESBL positive. Efflux pumps were involved in the drug resistance phenotype for chloramphenicol, kanamycin, streptomycin and tetracycline. Sequence analysis of pBD146 revealed the presence of genes encoding BDint an integrase with a unique sequence having little similarity to other known integrases, toxin-antitoxin (parE/parD), a replicase, trimethoprim resistance (dfrVI) and quinolone resistance (qnrVC5). Presence of cmlA, putative novel integrase and toxin-antitoxin system in V. fluvialis has been documented for the first time in this report. pBD146 showed 99% sequence similarity with pVN84 from V. cholerae O1 of Vietnam, 2004 and a plasmid from V. parahaemolyticus v110 of Hong Kong, 2010. Conjugation experiments proved the ability of pBD146 and the low copy number plasmid, to get transferred to another host imparting their antibiotic resistance traits to the transconjugants. Therefore, present study has indicated that plasmids played an important role for dissemination of drug resistance.
Collapse
|
548
|
The Staphylococcus aureus extracellular matrix protein (Emp) has a fibrous structure and binds to different extracellular matrices. Sci Rep 2017; 7:13665. [PMID: 29057978 PMCID: PMC5651841 DOI: 10.1038/s41598-017-14168-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/06/2017] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix protein Emp of Staphylococcus aureus is a secreted adhesin that mediates interactions between the bacterial surface and extracellular host structures. However, its structure and role in staphylococcal pathogenesis remain unknown. Using multidisciplinary approaches, including circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy, transmission electron (TEM) and immunogold transmission electron microscopy, functional ELISA assays and in silico techniques, we characterized the Emp protein. We demonstrated that Emp and its truncated forms bind to suprastructures in human skin, cartilage or bone, among which binding activity seems to be higher for skin compounds. The binding domain is located in the C-terminal part of the protein. CD spectroscopy revealed high contents of β-sheets (39.58%) and natively disordered structures (41.2%), and TEM suggested a fibrous structure consisting of Emp polymers. The N-terminus seems to be essential for polymerization. Due to the uncommonly high histidine content, we suggest that Emp represents a novel type of histidine-rich protein sharing structural similarities to leucine-rich repeats proteins as predicted by the I-TASSER algorithm. These new findings suggest a role of Emp in infections of deeper tissue and open new possibilities for the development of novel therapeutic strategies.
Collapse
|
549
|
Xu HT, Hassounah SA, Colby-Germinario SP, Oliveira M, Fogarty C, Quan Y, Han Y, Golubkov O, Ibanescu I, Brenner B, Stranix BR, Wainberg MA. Purification of Zika virus RNA-dependent RNA polymerase and its use to identify small-molecule Zika inhibitors. J Antimicrob Chemother 2017; 72:727-734. [PMID: 28069884 DOI: 10.1093/jac/dkw514] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
Background The viral RNA-dependent RNA polymerase (RdRp) enzymes of the Flaviviridae family are essential for viral replication and are logically important targets for development of antiviral therapeutic agents. Zika virus (ZIKV) is a rapidly re-emerging human pathogen for which no vaccine or antiviral agent is currently available. Methods To facilitate development of ZIKV RdRp inhibitors, we have established an RdRp assay using purified recombinant ZIKV NS5 polymerase. Results We have shown that both the hepatitis C virus (HCV) nucleoside inhibitor sofosbuvir triphosphate and a pyridoxine-derived non-nucleoside small-molecule inhibitor, DMB213, can act against ZIKV RdRp activity at IC 50 s of 7.3 and 5.2 μM, respectively, in RNA synthesis reactions catalysed by recombinant ZIKV NS5 polymerase. Cell-based assays confirmed the anti-ZIKV activity of sofosbuvir and DMB213 with 50% effective concentrations (EC 50 s) of 8.3 and 4.6 μM, respectively. Control studies showed that DMB213 did not inhibit recombinant HIV-1 reverse transcriptase and showed only very weak inhibition of HIV-1 integrase strand-transfer activity. The S604T substitution in motif B of the ZIKV RdRp, which corresponds to the S282T substitution in motif B of HCV RdRp, which confers resistance to nucleotide inhibitors, also conferred resistance to sofosbuvir triphosphate, but not to DMB213. Enzyme assays showed that DMB213 appears to be competitive with natural nucleoside triphosphate (NTP) substrates. Conclusions Recombinant ZIKV RdRp assays can be useful tools for the screening of both nucleos(t)ide compounds and non-nucleotide metal ion-chelating agents that interfere with ZIKV replication.
Collapse
Affiliation(s)
- Hong-Tao Xu
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Said A Hassounah
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Susan P Colby-Germinario
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Maureen Oliveira
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Clare Fogarty
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Yudong Quan
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Yingshan Han
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Olga Golubkov
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Ilinca Ibanescu
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Bluma Brenner
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | | | - Mark A Wainberg
- Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
550
|
de Farias ST, Dos Santos Junior AP, Rêgo TG, José MV. Origin and Evolution of RNA-Dependent RNA Polymerase. Front Genet 2017; 8:125. [PMID: 28979293 PMCID: PMC5611760 DOI: 10.3389/fgene.2017.00125] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/04/2017] [Indexed: 01/09/2023] Open
Abstract
RNA-dependent RNA polymerases (RdRp) are very ancient enzymes and are essential for all viruses with RNA genomes. We reconstruct the origin and evolution of this polymerase since the initial stages of the origin of life. The origin of the RdRp was traced back from tRNA ancestors. At the origin of the RdRp the most ancient part of the protein is the cofactor-binding site that had the capacity of binding to simple molecules as magnesium, calcium, and ribonucleotides. Our results suggest that RdRp originated from junctions of proto-tRNAs that worked as the first genes at the emergence of the primitive translation system, where the RNA was the informational molecule. The initial domain, worked as a building block for the emergence of the fingers and thumb domains. From the ancestral RdRp, we could establish the evolutionary stages of viral evolution from a rooted ancestor to modern viruses. It was observed that the selective pressure under the RdRp was the organization and functioning of the genome, where RNA double-stranded and RNA single-stranded virus formed a separate group. We propose an evolutionary route to the polymerases and the results suggest an ancient scenario for the origin of RNA viruses.
Collapse
Affiliation(s)
- Savio T de Farias
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da ParaíbaJoão Pessoa, Brazil
| | - Ariosvaldo P Dos Santos Junior
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da ParaíbaJoão Pessoa, Brazil
| | - Thais G Rêgo
- Departamento de Informática, Universidade Federal da ParaíbaJoão Pessoa, Brazil
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| |
Collapse
|