501
|
Methane, arsenic, selenium and the origins of the DMSO reductase family. Sci Rep 2020; 10:10946. [PMID: 32616801 PMCID: PMC7331816 DOI: 10.1038/s41598-020-67892-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
Mononuclear molybdoenzymes of the dimethyl sulfoxide reductase (DMSOR) family catalyze a number of reactions essential to the carbon, nitrogen, sulfur, arsenic, and selenium biogeochemical cycles. These enzymes are also ancient, with many lineages likely predating the divergence of the last universal common ancestor into the Bacteria and Archaea domains. We have constructed rooted phylogenies for over 1,550 representatives of the DMSOR family using maximum likelihood methods to investigate the evolution of the arsenic biogeochemical cycle. The phylogenetic analysis provides compelling evidence that formylmethanofuran dehydrogenase B subunits, which catalyze the reduction of CO2 to formate during hydrogenotrophic methanogenesis, constitutes the most ancient lineage. Our analysis also provides robust support for selenocysteine as the ancestral ligand for the Mo/W atom. Finally, we demonstrate that anaerobic arsenite oxidase and respiratory arsenate reductase catalytic subunits represent a more ancient lineage of DMSORs compared to aerobic arsenite oxidase catalytic subunits, which evolved from the assimilatory nitrate reductase lineage. This provides substantial support for an active arsenic biogeochemical cycle on the anoxic Archean Earth. Our work emphasizes that the use of chalcophilic elements as substrates as well as the Mo/W ligand in DMSORs has indelibly shaped the diversification of these enzymes through deep time.
Collapse
|
502
|
Guo Z, Wang L, Qiao S, Deng R, Zhang G. Genetic characterization and recombination analysis of atypical porcine pestivirus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104259. [PMID: 32087344 DOI: 10.1016/j.meegid.2020.104259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Atypical porcine pestivirus (APPV) is recognised as the etiology of congenital tremor (CT) Type A-II and poses a challenge to pig production. Here, we described a CT case in piglets caused by APPV infection in central China in 2017. Interestingly, different from a previous report, more CT litters were observed in the second and third parity sows compared to the first and fourth parity. Evolutionary analysis and recombination evaluation were conducted for the isolate and 61 APPV genomes were available in GenBank. Phylogenetic analysis revealed a high level of genetic variation of APPV and the coexistence of three clades (Clades I-III) in China. The isolate was clustered into Clade I, which seemed to be prevalent worldwide and displayed higher genetic variability (Subgroups 1-4) compared with Clade II and Clade III, both of which were only reported in China. Notably, three putative recombinants were identified and characterized in APPV. The recombination events occurred in inter-clades (Clade II and III) or intra-clades (Clade I). To the best of our knowledge, this study presents the first evidence of homologous recombination within Pestivirus K. These results provide new clinical presentations of APPV infection and may be helpful in better understanding the large amount of genetic variations in this genus.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Leyi Wang
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
503
|
Roodgar M, Babveyh A, Nguyen LH, Zhou W, Sinha R, Lee H, Hanks JB, Avula M, Jiang L, Jian R, Lee H, Song G, Chaib H, Weissman IL, Batzoglou S, Holmes S, Smith DG, Mankowski JL, Prost S, Snyder MP. Chromosome-level de novo assembly of the pig-tailed macaque genome using linked-read sequencing and HiC proximity scaffolding. Gigascience 2020; 9:giaa069. [PMID: 32649757 PMCID: PMC7350979 DOI: 10.1093/gigascience/giaa069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/27/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Macaque species share >93% genome homology with humans and develop many disease phenotypes similar to those of humans, making them valuable animal models for the study of human diseases (e.g., HIV and neurodegenerative diseases). However, the quality of genome assembly and annotation for several macaque species lags behind the human genome effort. RESULTS To close this gap and enhance functional genomics approaches, we used a combination of de novo linked-read assembly and scaffolding using proximity ligation assay (HiC) to assemble the pig-tailed macaque (Macaca nemestrina) genome. This combinatorial method yielded large scaffolds at chromosome level with a scaffold N50 of 127.5 Mb; the 23 largest scaffolds covered 90% of the entire genome. This assembly revealed large-scale rearrangements between pig-tailed macaque chromosomes 7, 12, and 13 and human chromosomes 2, 14, and 15. We subsequently annotated the genome using transcriptome and proteomics data from personalized induced pluripotent stem cells derived from the same animal. Reconstruction of the evolutionary tree using whole-genome annotation and orthologous comparisons among 3 macaque species, human, and mouse genomes revealed extensive homology between human and pig-tailed macaques with regards to both pluripotent stem cell genes and innate immune gene pathways. Our results confirm that rhesus and cynomolgus macaques exhibit a closer evolutionary distance to each other than either species exhibits to humans or pig-tailed macaques. CONCLUSIONS These findings demonstrate that pig-tailed macaques can serve as an excellent animal model for the study of many human diseases particularly with regards to pluripotency and innate immune pathways.
Collapse
Affiliation(s)
- Morteza Roodgar
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, 265 Campus Dr., Stanford University, Stanford, CA 94305, USA
| | - Afshin Babveyh
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
| | - Lan H Nguyen
- Institute for computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Wenyu Zhou
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, 3165 Porter Dr. Palo Alto, CA 94305, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, 265 Campus Dr., Stanford University, Stanford, CA 94305, USA
| | - Hayan Lee
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
| | - John B Hanks
- Stanford Research Computing Center, Stanford University, Stanford, CA 94305, USA
| | - Mohan Avula
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
| | - Lihua Jiang
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
| | - Ruiqi Jian
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
| | - Hoyong Lee
- School of Computer Science and Engineering, Pusan National University, Busan 46241, South Korea
| | - Giltae Song
- School of Computer Science and Engineering, Pusan National University, Busan 46241, South Korea
| | - Hassan Chaib
- Stanford Center for Genomics and Personalized Medicine, Stanford University, 3165 Porter Dr. Palo Alto, CA 94305, USA
| | - Irv L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, 265 Campus Dr., Stanford University, Stanford, CA 94305, USA
| | - Serafim Batzoglou
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - David G Smith
- California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stefan Prost
- LOEWE-Centre for Translational Biodiversity Genomics, Senckenberg 25, 60325 Frankfurt am Main, Germany
- South African National Biodiversity Institute, National Zoological Garden, Pretoria, 0184, South Africa
| | - Michael P Snyder
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, 3165 Porter Dr. Palo Alto, CA 94305, USA
| |
Collapse
|
504
|
Genome-Wide Analysis Reveals Genetic Potential for Aromatic Compounds Biodegradation of Sphingopyxis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5849123. [PMID: 32596333 PMCID: PMC7273453 DOI: 10.1155/2020/5849123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Members of genus Sphingopyxis are frequently found in diverse eco-environments worldwide and have been traditionally considered to play vital roles in the degradation of aromatic compounds. Over recent decades, many aromatic-degrading Sphingopyxis strains have been isolated and recorded, but little is known about their genetic nature related to aromatic compounds biodegradation. In this study, bacterial genomes of 19 Sphingopyxis strains were used for comparative analyses. Phylogeny showed an ambiguous relatedness between bacterial strains and their habitat specificity, while clustering based on Cluster of Orthologous Groups suggested the potential link of functional profile with substrate-specific traits. Pan-genome analysis revealed that 19 individuals were predicted to share 1,066 orthologous genes, indicating a high genetic homogeneity among Sphingopyxis strains. Notably, KEGG Automatic Annotation Server results suggested that most genes pertaining aromatic compounds biodegradation were predicted to be involved in benzoate, phenylalanine, and aminobenzoate metabolism. Among them, β-ketoadipate biodegradation might be the main pathway in Sphingopyxis strains. Further inspection showed that a number of mobile genetic elements varied in Sphingopyxis genomes, and plasmid-mediated gene transfer coupled with prophage- and transposon-mediated rearrangements might play prominent roles in the evolution of bacterial genomes. Collectively, our findings presented that Sphingopyxis isolates might be the promising candidates for biodegradation of aromatic compounds in pollution sites.
Collapse
|
505
|
Zheng Z, Monteil VM, Maurer-Stroh S, Yew CW, Leong C, Mohd-Ismail NK, Cheyyatraivendran Arularasu S, Chow VTK, Lin RTP, Mirazimi A, Hong W, Tan YJ. Monoclonal antibodies for the S2 subunit of spike of SARS-CoV-1 cross-react with the newly-emerged SARS-CoV-2. Euro Surveill 2020. [PMID: 32700671 DOI: 10.1101/2020.03.06.980037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
BackgroundA novel coronavirus, SARS-CoV-2, which emerged at the end of 2019 and causes COVID-19, has resulted in worldwide human infections. While genetically distinct, SARS-CoV-1, the aetiological agent responsible for an outbreak of severe acute respiratory syndrome (SARS) in 2002-2003, utilises the same host cell receptor as SARS-CoV-2 for entry: angiotensin-converting enzyme 2 (ACE2). Parts of the SARS-CoV-1 spike glycoprotein (S protein), which interacts with ACE2, appear conserved in SARS-CoV-2.AimThe cross-reactivity with SARS-CoV-2 of monoclonal antibodies (mAbs) previously generated against the S protein of SARS-CoV-1 was assessed.MethodsThe SARS-CoV-2 S protein sequence was aligned to those of SARS-CoV-1, Middle East respiratory syndrome (MERS) and common-cold coronaviruses. Abilities of mAbs generated against SARS-CoV-1 S protein to bind SARS-CoV-2 or its S protein were tested with SARS-CoV-2 infected cells as well as cells expressing either the full length protein or a fragment of its S2 subunit. Quantitative ELISA was also performed to compare binding of mAbs to recombinant S protein.ResultsAn immunogenic domain in the S2 subunit of SARS-CoV-1 S protein is highly conserved in SARS-CoV-2 but not in MERS and human common-cold coronaviruses. Four murine mAbs raised against this immunogenic fragment could recognise SARS-CoV-2 S protein expressed in mammalian cell lines. In particular, mAb 1A9 was demonstrated to detect S protein in SARS-CoV-2-infected cells and is suitable for use in a sandwich ELISA format.ConclusionThe cross-reactive mAbs may serve as useful tools for SARS-CoV-2 research and for the development of diagnostic assays for COVID-19.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Infectious Diseases programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
- Immunology programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Vanessa Marthe Monteil
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
- Public Health Agency of Sweden, Stockholm, Sweden
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Biological Sciences (DBS), National University of Singapore, Singapore
- National Public Health Laboratory (NPHL), National Centre for Infectious Diseases (NCID), Singapore
| | - Chow Wenn Yew
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| | - Carol Leong
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| | - Nur Khairiah Mohd-Ismail
- Infectious Diseases programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
- Immunology programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Suganya Cheyyatraivendran Arularasu
- Infectious Diseases programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
- Immunology programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Vincent Tak Kwong Chow
- Infectious Diseases programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Raymond Tzer Pin Lin
- National Public Health Laboratory (NPHL), National Centre for Infectious Diseases (NCID), Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Ali Mirazimi
- National Veterinary Institute, Uppsala, Sweden
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
- Public Health Agency of Sweden, Stockholm, Sweden
| | - Wanjin Hong
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| | - Yee-Joo Tan
- Infectious Diseases programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
- Immunology programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| |
Collapse
|
506
|
Julião MHM, Silva SR, Ferro JA, Varani AM. A Genomic and Transcriptomic Overview of MATE, ABC, and MFS Transporters in Citrus sinensis Interaction with Xanthomonas citri subsp. citri. PLANTS (BASEL, SWITZERLAND) 2020; 9:E794. [PMID: 32630416 PMCID: PMC7356318 DOI: 10.3390/plants9060794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
The multi-antimicrobial extrusion (MATE), ATP-binding cassette (ABC), and major facilitator superfamily (MFS) are the main plant transporters families, playing an essential role in the membrane-trafficking network and plant-defense mechanism. The citrus canker type A (CC), is a devastating disease caused by Xanthomonas citri subsp. citri (Xac), affecting all citrus species. In this work, we performed an in silico analysis of genes and transcripts from MATE, ABC, and MFS families to infer the role of membrane transporters in Citrus-Xac interaction. Using as reference, the available Citrus sinensis genome and the citrus reference transcriptome from CitrusKB database, 67 MATE, 91 MFS, and 143 ABC genes and 82 MATE, 139 MFS, and 226 ABC transcripts were identified and classified into subfamilies. Duplications, alternative-splicing, and potentially non-transcribed transporters' genes were revealed. Interestingly, MATE I and ABC G subfamilies appear differently regulated during Xac infection. Furthermore, Citrus spp. showing distinct levels of CC susceptibility exhibited different sets of transporters transcripts, supporting dissimilar molecular patterns of membrane transporters in Citrus-Xac interaction. According to our findings, 4 MATE, 10 ABC, and 3 MFS are potentially related to plant-defense mechanisms. Overall, this work provides an extensive analysis of MATE, ABC, and MFS transporters' in Citrus-Xac interaction, bringing new insights on membrane transporters in plant-pathogen interactions.
Collapse
Affiliation(s)
| | | | | | - Alessandro M. Varani
- Department of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil; (M.H.M.J.); (S.R.S.); (J.A.F.)
| |
Collapse
|
507
|
Sun S, White RR, Fischer KE, Zhang Z, Austad SN, Vijg J. Inducible aging in Hydra oligactis implicates sexual reproduction, loss of stem cells, and genome maintenance as major pathways. GeroScience 2020; 42:1119-1132. [PMID: 32578072 DOI: 10.1007/s11357-020-00214-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Freshwater polyps of the genus Hydra do not age. However, temperature stress induces aging and a shift from reproduction by asexual budding to sexual gamete production in a cold-sensitive (CS) strain of H. oligactis. We sequenced the transcriptome of a male CS strain before and after this life history shift and compared changes in gene expression relative to those seen in a cold-resistant (CR) strain that does not undergo a life history shift in response to altered temperature. We found that the switch from non-aging asexual reproduction to aging and sexual reproduction involves upregulation of genes not only involved in gametogenesis but also genes involved in cellular senescence, apoptosis, and DNA repair accompanied by a downregulation of genes involved in stem cell maintenance. These results suggest that aging is a byproduct of sexual reproduction-associated cellular reprogramming and underscore the power of these H. oligactis strains to identify intrinsic mechanisms of aging.
Collapse
Affiliation(s)
- Shixiang Sun
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ryan R White
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Kathleen E Fischer
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Zhengdong Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA. .,Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
508
|
Yin C, Xiong W, Qiu H, Peng W, Deng Z, Lin S, Liang R. Characterization of the Phenanthrene-Degrading Sphingobium yanoikuyae SJTF8 in Heavy Metal Co-Existing Liquid Medium and Analysis of Its Metabolic Pathway. Microorganisms 2020; 8:E946. [PMID: 32586023 PMCID: PMC7355620 DOI: 10.3390/microorganisms8060946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/27/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common organic pollutants with great carcinogenic threaten, and metal/PAH-contaminated environments represent one of the most difficult remedial challenges. In this work, Sphingobium yanoikuyae SJTF8 was isolated and identified with great and stable PAH-degrading efficiency even under stress conditions. It could utilize typical PAHs (naphthalene, phenanthrene, and anthracene) and heterocyclic and halogenated aromatic compounds (dibenzothiophene and 9-bromophenanthrene) as the sole carbon source. It could degrade over 98% of 500 mg/L phenanthrene in 4 days, and the cis-3,4-dihydrophenanthrene-3,4-diol was the first-step intermediate. Notably, strain SJTF8 showed great tolerance to heavy metals and acidic pH. Supplements of 0.30 mM of Cu2+, 1.15 mM of Zn2+, and 0.01 mM of Cd2+ had little effect on its cell growth and phenanthrene degradation; phenanthrene of 250 mg/L could still be degraded completely in 48 h. Further, the whole genome sequence of S. yanoikuyae SJTF8 was obtained, and three plasmids were found. The potential genes participating in stress-tolerance and PAH-degradation were annotated and were found mostly distributed in plasmids 1 and 2. Elimination of plasmid 2 resulted in the loss of the PAH-degradation ability. On the basis of genome mining results, the possible degrading pathway and the metabolites of S. yanoikuyae SJTF8 to phenanthrene were predicted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (C.Y.); (W.X.); (H.Q.); (W.P.); (Z.D.); (S.L.)
| |
Collapse
|
509
|
Aylward FO, Santoro AE. Heterotrophic Thaumarchaea with Small Genomes Are Widespread in the Dark Ocean. mSystems 2020; 5:e00415-20. [PMID: 32546674 PMCID: PMC7300363 DOI: 10.1128/msystems.00415-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023] Open
Abstract
The Thaumarchaeota is a diverse archaeal phylum comprising numerous lineages that play key roles in global biogeochemical cycling, particularly in the ocean. To date, all genomically characterized marine thaumarchaea are reported to be chemolithoautotrophic ammonia oxidizers. In this study, we report a group of putatively heterotrophic marine thaumarchaea (HMT) with small genome sizes that is globally abundant in the mesopelagic, apparently lacking the ability to oxidize ammonia. We assembled five HMT genomes from metagenomic data and show that they form a deeply branching sister lineage to the ammonia-oxidizing archaea (AOA). We identify this group in metagenomes from mesopelagic waters in all major ocean basins, with abundances reaching up to 6% of that of AOA. Surprisingly, we predict the HMT have small genomes of ∼1 Mbp, and our ancestral state reconstruction indicates this lineage has undergone substantial genome reduction compared to other related archaea. The genomic repertoire of HMT indicates a versatile metabolism for aerobic chemoorganoheterotrophy that includes a divergent form III-a RuBisCO, a 2M respiratory complex I that has been hypothesized to increase energetic efficiency, and a three-subunit heme-copper oxidase complex IV that is absent from AOA. We also identify 21 pyrroloquinoline quinone (PQQ)-dependent dehydrogenases that are predicted to supply reducing equivalents to the electron transport chain and are among the most highly expressed HMT genes, suggesting these enzymes play an important role in the physiology of this group. Our results suggest that heterotrophic members of the Thaumarchaeota are widespread in the ocean and potentially play key roles in global chemical transformations.IMPORTANCE It has been known for many years that marine Thaumarchaeota are abundant constituents of dark ocean microbial communities, where their ability to couple ammonia oxidation and carbon fixation plays a critical role in nutrient dynamics. In this study, we describe an abundant group of putatively heterotrophic marine Thaumarchaeota (HMT) in the ocean with physiology distinct from those of their ammonia-oxidizing relatives. HMT lack the ability to oxidize ammonia and fix carbon via the 3-hydroxypropionate/4-hydroxybutyrate pathway but instead encode a form III-a RuBisCO and diverse PQQ-dependent dehydrogenases that are likely used to conserve energy in the dark ocean. Our work expands the scope of known diversity of Thaumarchaeota in the ocean and provides important insight into a widespread marine lineage.
Collapse
Affiliation(s)
- Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
510
|
Touchon M, Perrin A, de Sousa JAM, Vangchhia B, Burn S, O’Brien CL, Denamur E, Gordon D, Rocha EPC. Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. PLoS Genet 2020; 16:e1008866. [PMID: 32530914 PMCID: PMC7314097 DOI: 10.1371/journal.pgen.1008866] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/24/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli is mostly a commensal of birds and mammals, including humans, where it can act as an opportunistic pathogen. It is also found in water and sediments. We investigated the phylogeny, genetic diversification, and habitat-association of 1,294 isolates representative of the phylogenetic diversity of more than 5,000 isolates from the Australian continent. Since many previous studies focused on clinical isolates, we investigated mostly other isolates originating from humans, poultry, wild animals and water. These strains represent the species genetic diversity and reveal widespread associations between phylogroups and isolation sources. The analysis of strains from the same sequence types revealed very rapid change of gene repertoires in the very early stages of divergence, driven by the acquisition of many different types of mobile genetic elements. These elements also lead to rapid variations in genome size, even if few of their genes rise to high frequency in the species. Variations in genome size are associated with phylogroup and isolation sources, but the latter determine the number of MGEs, a marker of recent transfer, suggesting that gene flow reinforces the association of certain genetic backgrounds with specific habitats. After a while, the divergence of gene repertoires becomes linear with phylogenetic distance, presumably reflecting the continuous turnover of mobile element and the occasional acquisition of adaptive genes. Surprisingly, the phylogroups with smallest genomes have the highest rates of gene repertoire diversification and fewer but more diverse mobile genetic elements. This suggests that smaller genomes are associated with higher, not lower, turnover of genetic information. Many of these genomes are from freshwater isolates and have peculiar traits, including a specific capsule, suggesting adaptation to this environment. Altogether, these data contribute to explain why epidemiological clones tend to emerge from specific phylogenetic groups in the presence of pervasive horizontal gene transfer across the species. Previous large scale studies on the evolution of E. coli focused on clinical isolates emphasizing virulence and antibiotic resistance in medically important lineages. Yet, most E. coli strains are either human commensals or not associated with humans at all. Here, we analyzed a large collection of non-clinical isolates of the species to assess the mechanisms of gene repertoire diversification in the light of isolation sources and phylogeny. We show that gene repertoires evolve so rapidly by the high turnover of mobile genetic elements that epidemiologically indistinguishable strains can be phenotypically extremely heterogeneous, illustrating the velocity of bacterial adaptation and the importance of accounting for the information on the whole genome at the epidemiological scale. Phylogeny and habitat shape the genetic diversification of E. coli to similar extents. Surprisingly, freshwater strains seem specifically adapted to this environment, breaking the paradigm that E. coli environmental isolates are systematically fecal contaminations. As a consequence, the evolution of this species is also shaped by environmental habitats, and it may diversify by acquiring genes and mobile elements from environmental bacteria (and not just from gut bacteria). This may facilitate the acquisition of virulence factors and antibiotic resistance in the strains that become pathogenic.
Collapse
Affiliation(s)
- Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28 rue Dr Roux, Paris, 75015, France
- * E-mail:
| | - Amandine Perrin
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28 rue Dr Roux, Paris, 75015, France
- Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Jorge André Moura de Sousa
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28 rue Dr Roux, Paris, 75015, France
| | - Belinda Vangchhia
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| | - Samantha Burn
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Claire L. O’Brien
- School of Medicine, University of Wollongong, Northfields Ave Wollongong, Australia
| | - Erick Denamur
- Université de Paris, IAME, UMR 1137, INSERM, Paris, 75018, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, 75018, Paris, France
| | - David Gordon
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Eduardo PC Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28 rue Dr Roux, Paris, 75015, France
| |
Collapse
|
511
|
Shao L, Ning H. The complete chloroplast genome of Cymbidium serratum (Orchidaceae): a rare and Endangered species endemic to Southwest China. Mitochondrial DNA B Resour 2020; 5:2429-2431. [PMID: 33457815 PMCID: PMC7782322 DOI: 10.1080/23802359.2020.1775514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 11/01/2022] Open
Abstract
Cymbidium serratum is a dominant species in the large orchid family with beautiful flowers, thick petals, and long flowering periods, and has a long history of cultivation in Southwest China. However, its wild resources have been threatened with extinction due to environmental degradation and artificial exploitation. In this study, the complete chloroplast genome of C. serratum was obtained through Illumina sequencing. The size of chloroplast genome of C. serratum is 149,998 bp, including large single-copy (LSC) and small single-copy (SSC) regions over 84,854 bp and 13,926 bp, respectively, and two inverted repeats (IRs) of 25,609 bp. The total GC content was 37.11%. The chloroplast genome contains 129 genes, including 83 protein-coding genes, 8 rRNA genes, and 38 tRNA genes. The maximum-likelihood phylogenetic tree indicated that C. serratum is a sister species with the clade composed of C. faberi and C. goeringii. The complete chloroplast genome of C. serratum will contribute to protecting this highly endangered species, and provide genetic information about genetic diversity and sustainable use.
Collapse
Affiliation(s)
- Lei Shao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Huijuan Ning
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
512
|
Zhu Q, Cai L, Li H, Zhang Y, Su W, Zhou Q. The complete chloroplast genome sequence of the Canna edulis Ker Gawl. (Cannaceae). Mitochondrial DNA B Resour 2020; 5:2427-2428. [PMID: 33457814 PMCID: PMC7782134 DOI: 10.1080/23802359.2020.1775512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Canna edulis Ker Gawl. is an essential traditional tuber crop used for fresh consumption and to isolate starch in some tropical and semitropical regions. The complete chloroplast genome sequence of C. edulis has been determined in this study. The total genome size is 164,650 bp in length and contains a pair of inverted repeats (IRs) of 27,278 bp, which were separated by large single-copy (LSC) and small single-copy (SSC) of 91,421 bp and 18,673 bp, respectively. A total of 131 genes were predicted including 86 protein-coding genes, 8 rRNA genes and 37 tRNA genes. Further, maximum-likelihood phylogenetic analysis revealed that C. edulis belongs to Cannaceae in Zingiberales. The chloroplast genome of C. edulis is first complete genome sequence in Cannaceae and would play a significant role in the development of molecular markers in plant phylogenetic and population genetic studies.
Collapse
Affiliation(s)
- Qianglong Zhu
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Lijuan Cai
- Nanchang Business college, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Huiying Li
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Yu Zhang
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Wenzhen Su
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Qinghong Zhou
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, P.R. China
| |
Collapse
|
513
|
Robins WP, Mekalanos JJ. Protein covariance networks reveal interactions important to the emergence of SARS coronaviruses as human pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32577639 DOI: 10.1101/2020.06.05.136887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SARS-CoV-2 is one of three recognized coronaviruses (CoVs) that have caused epidemics or pandemics in the 21 st century and that have likely emerged from animal reservoirs based on genomic similarities to bat and other animal viruses. Here we report the analysis of conserved interactions between amino acid residues in proteins encoded by SARS-CoV-related viruses. We identified pairs and networks of residue variants that exhibited statistically high frequencies of covariance with each other. While these interactions are likely key to both protein structure and other protein-protein interactions, we have also found that they can be used to provide a new computational approach (CoVariance-based Phylogeny Analysis) for understanding viral evolution and adaptation. Our data provide evidence that the evolutionary processes that converted a bat virus into human pathogen occurred through recombination with other viruses in combination with new adaptive mutations important for entry into human cells.
Collapse
|
514
|
Messina F, Giombini E, Agrati C, Vairo F, Ascoli Bartoli T, Al Moghazi S, Piacentini M, Locatelli F, Kobinger G, Maeurer M, Zumla A, Capobianchi MR, Lauria FN, Ippolito G. COVID-19: viral-host interactome analyzed by network based-approach model to study pathogenesis of SARS-CoV-2 infection. J Transl Med 2020; 18:233. [PMID: 32522207 PMCID: PMC7286221 DOI: 10.1186/s12967-020-02405-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background Epidemiological, virological and pathogenetic characteristics of SARS-CoV-2 infection are under evaluation. A better understanding of the pathophysiology associated with COVID-19 is crucial to improve treatment modalities and to develop effective prevention strategies. Transcriptomic and proteomic data on the host response against SARS-CoV-2 still have anecdotic character; currently available data from other coronavirus infections are therefore a key source of information. Methods We investigated selected molecular aspects of three human coronavirus (HCoV) infections, namely SARS-CoV, MERS-CoV and HCoV-229E, through a network based-approach. A functional analysis of HCoV–host interactome was carried out in order to provide a theoretic host–pathogen interaction model for HCoV infections and in order to translate the results in prediction for SARS-CoV-2 pathogenesis. The 3D model of S-glycoprotein of SARS-CoV-2 was compared to the structure of the corresponding SARS-CoV, HCoV-229E and MERS-CoV S-glycoprotein. SARS-CoV, MERS-CoV, HCoV-229E and the host interactome were inferred through published protein–protein interactions (PPI) as well as gene co-expression, triggered by HCoV S-glycoprotein in host cells. Results Although the amino acid sequences of the S-glycoprotein were found to be different between the various HCoV, the structures showed high similarity, but the best 3D structural overlap shared by SARS-CoV and SARS-CoV-2, consistent with the shared ACE2 predicted receptor. The host interactome, linked to the S-glycoprotein of SARS-CoV and MERS-CoV, mainly highlighted innate immunity pathway components, such as Toll Like receptors, cytokines and chemokines. Conclusions In this paper, we developed a network-based model with the aim to define molecular aspects of pathogenic phenotypes in HCoV infections. The resulting pattern may facilitate the process of structure-guided pharmaceutical and diagnostic research with the prospect to identify potential new biological targets.
Collapse
Affiliation(s)
- Francesco Messina
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Emanuela Giombini
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Chiara Agrati
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Francesco Vairo
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | | | - Samir Al Moghazi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Mauro Piacentini
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesu, Rome, Italy
| | - Gary Kobinger
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Quebec, QC, Canada
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,I. Medizinische Klinik Johannes Gutenberg-Universität, University of Mainz, Mainz, Germany
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, University College London, London, UK.,National Institute for Health Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Maria R Capobianchi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy.
| | | | - Giuseppe Ippolito
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | | |
Collapse
|
515
|
Zhang QL, Li HW, Dong ZX, Yang XJ, Lin LB, Chen JY, Yuan ML. Comparative transcriptomic analysis of fireflies (Coleoptera: Lampyridae) to explore the molecular adaptations to fresh water. Mol Ecol 2020; 29:2676-2691. [PMID: 32512643 DOI: 10.1111/mec.15504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Aquatic insects are well adapted to freshwater environments, but the molecular basis of these adaptations remains largely unknown. Most firefly species (Coleoptera: Lampyridae) are terrestrial, but the larvae of several species are aquatic. Here, larval and adult transcriptomes from Aquatica leii (freshwater) and Lychnuris praetexta (terrestrial) were generated to test whether the genes associated with metabolic efficiency and morphology have undergone adaptive evolution to fresh water. The aquatic fireflies had a significantly lower ratio of nonsynonymous to synonymous substitutions than the terrestrial insects, indicating a genomewide evolutionary constraint in the aquatic fireflies. We identified 341 fast-evolving genes and 116 positively selected genes in the aquatic fireflies. Of these, 76 genes exhibiting both fast evolution and positive selection were primarily involved in ATP production, energy metabolism and the hypoxia response. We identified 7,271 differentially expressed genes (DEGs) in A. leii (adults versus larvae) and 8,309 DEGs in L. praetexta (adults versus larvae). DEGs specific to the aquatic firefly (n = 1,445) were screened via interspecific comparisons (A. leii versus L. praetexta) and were significantly enriched for genes involved in metabolic efficiency (e.g., ATP production, hypoxia, and immune responses) and certain aspects of morphology (e.g., cuticle chitin, tracheal and compound eye morphology). These results indicate that sequence and expression-level changes in genes associated with both metabolic efficiency and morphological attributes related to the freshwater lifestyle contributed to freshwater adaptation in fireflies. This study provides new insights into the molecular mechanisms of aquatic adaptation in insects.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hong-Wei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiao-Jie Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jun-Yuan Chen
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
516
|
Zhou H, Chen X, Hu T, Li J, Song H, Liu Y, Wang P, Liu D, Yang J, Holmes EC, Hughes AC, Bi Y, Shi W. A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Curr Biol 2020; 30:2196-2203.e3. [PMID: 32416074 PMCID: PMC7211627 DOI: 10.1016/j.cub.2020.05.023] [Citation(s) in RCA: 387] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/10/2023]
Abstract
The unprecedented pandemic of pneumonia caused by a novel coronavirus, SARS-CoV-2, in China and beyond has had major public health impacts on a global scale [1, 2]. Although bats are regarded as the most likely natural hosts for SARS-CoV-2 [3], the origins of the virus remain unclear. Here, we report a novel bat-derived coronavirus, denoted RmYN02, identified from a metagenomic analysis of samples from 227 bats collected from Yunnan Province in China between May and October 2019. Notably, RmYN02 shares 93.3% nucleotide identity with SARS-CoV-2 at the scale of the complete virus genome and 97.2% identity in the 1ab gene, in which it is the closest relative of SARS-CoV-2 reported to date. In contrast, RmYN02 showed low sequence identity (61.3%) to SARS-CoV-2 in the receptor-binding domain (RBD) and might not bind to angiotensin-converting enzyme 2 (ACE2). Critically, and in a similar manner to SARS-CoV-2, RmYN02 was characterized by the insertion of multiple amino acids at the junction site of the S1 and S2 subunits of the spike (S) protein. This provides strong evidence that such insertion events can occur naturally in animal betacoronaviruses.
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Xing Chen
- Landscape Ecology Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Tao Hu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanran Liu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Peihan Wang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Di Liu
- Computational Virology Group, Center for Bacteria and Virus Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jing Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alice C Hughes
- Landscape Ecology Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China.
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China; The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Ji'nan 250014, China.
| |
Collapse
|
517
|
Phylogenetic relationships and chloroplast capture in the Amelanchier-Malacomeles-Peraphyllum clade (Maleae, Rosaceae): Evidence from chloroplast genome and nuclear ribosomal DNA data using genome skimming. Mol Phylogenet Evol 2020; 147:106784. [DOI: 10.1016/j.ympev.2020.106784] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/07/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
|
518
|
Duan DY, Tang JM, Chen Z, Liu GH, Cheng TY. Mitochondrial genome of Amblyomma javanense: a hard tick parasite of the endangered Malayan pangolin (Manis javanica). MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:229-235. [PMID: 31433511 DOI: 10.1111/mve.12403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Amblyomma javanense is an important ectoparasite of Manis javanica, although the population genetics, molecular biology and systematics of A. javanense remain poorly understood. In the present study, the mitochondrial genome of A. javanense was sequenced using the Illumina HiSeq sequencing platform (Illumina, San Diego, CA, U.S.A.) and compared with the genomes of two closely related species: Amblyomma fimbriatum and Amblyomma americanum. The intraspecies and interspecies relationships of A. javanense and another 21 selected species were investigated by constructing a maximum-likelihood tree and a neighbour-joining tree. The mitochondrial genome of A. javanense was 14 780 bp in length and contained 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and two control regions. The results of the comparisons indicate that there is great similarity among these three species, and both trees indicate that A. javanense is a member of the Amblyomminae. The study of A. javanense of pangolins also indicates the premise and foundation of the relationship between the parasite and other species.
Collapse
Affiliation(s)
- D-Y Duan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - J-M Tang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Z Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - G-H Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - T-Y Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
519
|
Li H, Ma D, Li J, Wei M, Zheng H, Zhu X. Illumina sequencing of complete chloroplast genome of Avicennia marina, a pioneer mangrove species. MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:2131-2132. [PMID: 33366945 PMCID: PMC7510616 DOI: 10.1080/23802359.2020.1768927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/09/2020] [Indexed: 10/25/2022]
Abstract
Mangrove tree Avicenna marina has great ecological significance in maintaining coastal ecosystem, but its unique potential for gene functions and genetic diversity underlying ecological adaptation remains investigation. In this study, the chloroplast genome of A. marina was first characterized by sequencing chloroplast DNA with Illumina technology. The A. marina genome was 147,909 bp in size with a typical quadripartite structure, which was deposited in GenBank under the accession number MT108381.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dongna Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Mingyue Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hailei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xueyi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
520
|
Wu Z, Luo H, Yu L, Lee WH, Li L, Mak YL, Lin S, Lam PKS. Characterizing ciguatoxin (CTX)- and Non-CTX-producing strains of Gambierdiscus balechii using comparative transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137184. [PMID: 32084685 DOI: 10.1016/j.scitotenv.2020.137184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Gambierdiscus spp. can produce the polyketide compound, ciguatoxin (CTX), and are hence responsible for ciguatera fish poisoning (CFP). Studying the molecular mechanism that regulates CTX production is crucial for understanding the environmental trigger of CTX as well as for better informing fishery management. Commonly, polyketide synthases are important for polyketide synthesis; however, no gene has been confirmatively assigned to CTX production. Here, suppression subtractive hybridization (SSH) and transcriptome sequencing (RNA-Seq) were used to compare a CTX-producing strain with a non-CTX-producing strain. Using both methods, a total of 52 polyketide synthase (PKS) genes were identified to be up-regulated in the CTX-producing G. balechii, including transcripts encoding single-domain PKSs as well as transcripts encoding multi-domain PKSs. Using reverse transcription quantitative PCR, the expression of these genes in the CTX-producing strain and in nitrogen-limited cultures of the strain was further documented. These data suggest that PKSs are likely involved in polyketide synthesis and potentially in CTX synthesis in this dinoflagellate species. Our study provides the candidate biomarkers for the detection of CTXs or CFP in waters or any other organisms as well as a valuable genomic resource for the research on Gambierdiscus and other dinoflagellates.
Collapse
Affiliation(s)
- Zhen Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hao Luo
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Wai Hin Lee
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Yim Ling Mak
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; Department of Marine Sciences, University of Connecticut, Groton, CT, USA.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
521
|
Gasparrini AJ, Markley JL, Kumar H, Wang B, Fang L, Irum S, Symister CT, Wallace M, Burnham CAD, Andleeb S, Tolia NH, Wencewicz TA, Dantas G. Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance. Commun Biol 2020; 3:241. [PMID: 32415166 PMCID: PMC7229144 DOI: 10.1038/s42003-020-0966-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
Tetracycline resistance by antibiotic inactivation was first identified in commensal organisms but has since been reported in environmental and pathogenic microbes. Here, we identify and characterize an expanded pool of tet(X)-like genes in environmental and human commensal metagenomes via inactivation by antibiotic selection of metagenomic libraries. These genes formed two distinct clades according to habitat of origin, and resistance phenotypes were similarly correlated. Each gene isolated from the human gut encodes resistance to all tetracyclines tested, including eravacycline and omadacycline. We report a biochemical and structural characterization of one enzyme, Tet(X7). Further, we identify Tet(X7) in a clinical Pseudomonas aeruginosa isolate and demonstrate its contribution to tetracycline resistance. Lastly, we show anhydrotetracycline and semi-synthetic analogues inhibit Tet(X7) to prevent enzymatic tetracycline degradation and increase tetracycline efficacy against strains expressing tet(X7). This work improves our understanding of resistance by tetracycline-inactivation and provides the foundation for an inhibition-based strategy for countering resistance.
Collapse
Affiliation(s)
- Andrew J Gasparrini
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jana L Markley
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Hirdesh Kumar
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Luting Fang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Sidra Irum
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Chanez T Symister
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Meghan Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Carey-Ann D Burnham
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Saadia Andleeb
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Niraj H Tolia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | - Gautam Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Biomedical Engineering, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
522
|
Sorokin DY, Merkel AY, Messina E, Yakimov MM, Itoh T, Mesbah NM, Wiegel J, Oren A. Reclassification of the genus Natronolimnobius: proposal of two new genera, Natronolimnohabitans gen. nov. to accommodate Natronolimnobius innermongolicus and Natrarchaeobaculum gen. nov. to accommodate Natronolimnobius aegyptiacus and Natronolimnobius sulfurireducens. Int J Syst Evol Microbiol 2020; 70:3399-3405. [DOI: 10.1099/ijsem.0.004186] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The genus
Natronolimnobius
, currently including four species, is a member of the order
Natrialbales
, class Halobacteria, and consists of obligately alkaliphilic and extremely halophilic members found exclusively in highly alkaline hypersaline soda lakes. The species were classified into this genus mostly based on phylogenetic analysis of the 16S rRNA gene. However, a more advanced phylogenomic reconstruction based on 122 conserved single-copy archaeal protein markers clearly indicates a polyphyletic origin of the species included into this genus, thus warranting its reclassification into three separate genera. We therefore propose to transfer Nlb. innermongolicus (type strain N-1311) to a new genus Natronolimnohabitans as Nlh. innermongolicus comb. nov. and to transfer Nlb. aegyptiacus (type strain JW/NM-HA 15) and Nlb. sulfurireducens (type strain AArc1) to a new genus Natrarchaeobaculum as Nbl. aegyptiacum comb. nov. and Nbl. sulfurireducens comb. nov. The phylogenomic differentiation of these four species is also supported by the ANI/AAI distances and unique phenotypes. The most important physiological differences includes a previously unreported ability for cellulose and xylan utilization in Nlb. baerhuensis, thermophily in Nbl. aegyptiacus and anaerobic sulfur respiration in Nbl. sulfurireducens. We further present an emended description of
Natronolimnobius baerhuensis
.
Collapse
Affiliation(s)
- Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, TU Delft, The Netherlands
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Takashi Itoh
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Noha M. Mesbah
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Juergen Wiegel
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| |
Collapse
|
523
|
Tsukimi T, Watabe T, Tanaka K, Sato MP, Suzuki H, Tomita M, Fukuda S. Draft Genome Sequences of Bifidobacterium animalis Consecutively Isolated from Healthy Japanese Individuals. J Genomics 2020; 8:37-42. [PMID: 32328204 PMCID: PMC7171383 DOI: 10.7150/jgen.38516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/20/2019] [Indexed: 11/05/2022] Open
Abstract
Bifidobacterium species are well recognized as probiotics and colonized in various parts of the human body. Here, we report the draft genome sequences of Bifidobacterium animalis isolated from two healthy Japanese volunteers, one of which was sampled twice before and after a 10-year interval. A core genome phylogeny analysis indicated that the strains isolated from the same volunteer were closely related. This paper is the first report of multiple draft genome sequences of B. animalis independently isolated from the same individual and provides insight into the probiotic potential of a member of this species.
Collapse
Affiliation(s)
- Tomoya Tsukimi
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Tsubasa Watabe
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Kazuki Tanaka
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Mitsuhiko P Sato
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka 812-8582, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.,Faculty of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan.,Faculty of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan.,Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki, Kanagawa 210-0821, Japan.,Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Metabologenomics, Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| |
Collapse
|
524
|
Sun X, Yu D, Xie Z, Dong J, Ding Y, Yao H, Greenslade P. Phylomitogenomic analyses on collembolan higher taxa with enhanced taxon sampling and discussion on method selection. PLoS One 2020; 15:e0230827. [PMID: 32282807 PMCID: PMC7153868 DOI: 10.1371/journal.pone.0230827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Collembola are a basal group of Hexapoda renowned for both unique morphological characters and significant ecological roles. However, a robust and plausible phylogenetic relationship between its deeply divergent lineages has yet to be achieved. We carried out a mitophylogenomic study based on a so far the most comprehensive mitochondrial genome dataset. Our data matrix contained mitogenomes of 31 species from almost all major families of all four orders, with 16 mitogenomes newly sequenced and annotated. We compared the linear arrangements of genes along mitochondria across species. Then we conducted 13 analyses each under a different combination of character coding, partitioning scheme and heterotachy models, and assessed their performance in phylogenetic inference. Several hypothetical tree topologies were also tested. Mitogenomic structure comparison revealed that most species share the same gene order of putative ancestral pancrustacean pattern, while seven species from Onychiuridae, Poduridae and Symphypleona bear different levels of gene rearrangements, indicating phylogenetic signals. Tomoceroidea was robustly recovered for the first time in the presence of all its families and subfamilies. Monophyly of Onychiuroidea was supported using unpartitioned models alleviating LBA. Paronellidae was revealed polyphyletic with two subfamilies inserted independently into Entomobryidae. Although Entomobryomorpha has not been well supported, more than half of the analyses obtained convincing topologies by placing Tomoceroidea within or near remaining Entomobryomorpha. The relationship between elongate-shaped and spherical-shaped collembolans still remained ambiguous, but Neelipleona tend to occupy the basal position in most trees. This study showed that mitochondrial genomes could provide important information for reconstructing the relationships among Collembola when suitable analytical approaches are implemented. Of all the data refining and model selecting schemes used in this study, the combination of nucleotide sequences, partitioning model and exclusion of third codon positions performed better in generating more reliable tree topology and higher node supports than others.
Collapse
Affiliation(s)
- Xin Sun
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Daoyuan Yu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- * E-mail: ,
| | - Zhijing Xie
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Dong
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yinhuan Ding
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Yao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Penelope Greenslade
- Environmental Management, School of Applied and Biomedical Science, Federation University, Ballarat, Victoria, Australia
- Division of Biology, Australian National University, Australian Capital Territory, Australia
| |
Collapse
|
525
|
Comparative genomic analysis of Erwinia amylovora reveals novel insights in phylogenetic arrangement, plasmid diversity, and streptomycin resistance. Genomics 2020; 112:3762-3772. [PMID: 32259573 DOI: 10.1016/j.ygeno.2020.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 01/06/2023]
Abstract
Erwinia amylovora is a destructive pathogen of Rosaceous plants and an economic concern worldwide. Herein, we report 93 new E. amylovora genomes from North America, Europe, the Mediterranean, and New Zealand. This new genomic information demonstrates the existence of three primary clades of Amygdaloideae (apple and pear) infecting E. amylovora and suggests all three independently originate from North America. The comprehensive sequencing also identified and confirmed the presence of 7 novel plasmids ranging in size from 2.9 to 34.7 kbp. While the function of the novel plasmids is unknown, the plasmids pEAR27, pEAR28, and pEAR35 encoded for type IV secretion systems. The strA-strB gene pair and the K43R point mutation at codon 43 of the rpsL gene have been previously documented to confer streptomycin resistance. Of the sequenced isolates, rpsL-based streptomycin resistance was more common and was found with the highest frequency in the Western North American clade.
Collapse
|
526
|
Levy Karin E, Mirdita M, Söding J. MetaEuk-sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. MICROBIOME 2020; 8:48. [PMID: 32245390 PMCID: PMC7126354 DOI: 10.1186/s40168-020-00808-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/14/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Metagenomics is revolutionizing the study of microorganisms and their involvement in biological, biomedical, and geochemical processes, allowing us to investigate by direct sequencing a tremendous diversity of organisms without the need for prior cultivation. Unicellular eukaryotes play essential roles in most microbial communities as chief predators, decomposers, phototrophs, bacterial hosts, symbionts, and parasites to plants and animals. Investigating their roles is therefore of great interest to ecology, biotechnology, human health, and evolution. However, the generally lower sequencing coverage, their more complex gene and genome architectures, and a lack of eukaryote-specific experimental and computational procedures have kept them on the sidelines of metagenomics. RESULTS MetaEuk is a toolkit for high-throughput, reference-based discovery, and annotation of protein-coding genes in eukaryotic metagenomic contigs. It performs fast searches with 6-frame-translated fragments covering all possible exons and optimally combines matches into multi-exon proteins. We used a benchmark of seven diverse, annotated genomes to show that MetaEuk is highly sensitive even under conditions of low sequence similarity to the reference database. To demonstrate MetaEuk's power to discover novel eukaryotic proteins in large-scale metagenomic data, we assembled contigs from 912 samples of the Tara Oceans project. MetaEuk predicted >12,000,000 protein-coding genes in 8 days on ten 16-core servers. Most of the discovered proteins are highly diverged from known proteins and originate from very sparsely sampled eukaryotic supergroups. CONCLUSION The open-source (GPLv3) MetaEuk software (https://github.com/soedinglab/metaeuk) enables large-scale eukaryotic metagenomics through reference-based, sensitive taxonomic and functional annotation. Video abstract.
Collapse
Affiliation(s)
- Eli Levy Karin
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| | - Milot Mirdita
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Johannes Söding
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
527
|
Lai JX, Lin FR, Huang P, Li CH, Zheng YQ. Characterization of the complete chloroplast genome of Liquidambar acalycina Chang. Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1749152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Jiu-Xin Lai
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Fu-Rong Lin
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Chang-Hong Li
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yong-Qi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
528
|
Xia X, Yu X, Fu Q, Zheng Y, Zhang C. Complete chloroplast genome sequence of the three-flowered maple, Acer triflorum (Sapindaceae). Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1751000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Xinhe Xia
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xuedan Yu
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Qidi Fu
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Chuanhong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
529
|
Singh SK, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L. Revisiting the ORCA gene cluster that regulates terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110408. [PMID: 32081258 DOI: 10.1016/j.plantsci.2020.110408] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Transcription factor (TF) gene clusters in plants, such as tomato, potato, petunia, tobacco, and almond, have been characterized for their roles in the biosynthesis of diverse array of specialized metabolites. In Catharanthus roseus, three AP2/ERF TFs, ORCA3, ORCA4, and ORCA5, have been shown to be present on the same genomic scaffold, forming a cluster that regulates the biosynthesis of pharmaceutically important terpenoid indole alkaloids (TIAs). Our analysis of the recently updated C. roseus genome sequence revealed that the ORCA cluster comprises two additional AP2/ERFs, the previously characterized ORCA2 and a newly identified member designated as ORCA6. Transcriptomic analysis revealed that the ORCAs are highly expressed in stems, followed by leaves, roots and flowers. Expression of ORCAs was differentially induced in response to methyl-jasmonate and ethylene treatment. In addition, ORCA6 activated the strictosidine synthase (STR) promoter in tobacco cells. Activation of the STR promoter was significantly higher when ORCA2 or ORCA6 was coexpressed with the mitogen-activated protein kinase kinase, CrMPKK1. Furthermore, transient overexpression of ORCA6 in C. roseus flower petals activated TIA pathway gene expression and TIA accumulation. The results described here advance our understanding of regulation of TIA pathway by the ORCA gene cluster and the evolution for plant ERF gene clusters.
Collapse
Affiliation(s)
- Sanjay Kumar Singh
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA
| | - Barunava Patra
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA
| | - Priyanka Paul
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA
| | - Yongliang Liu
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA.
| | - Ling Yuan
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
530
|
Okada P, Buathong R, Phuygun S, Thanadachakul T, Parnmen S, Wongboot W, Waicharoen S, Wacharapluesadee S, Uttayamakul S, Vachiraphan A, Chittaganpitch M, Mekha N, Janejai N, Iamsirithaworn S, Lee RT, Maurer-Stroh S. Early transmission patterns of coronavirus disease 2019 (COVID-19) in travellers from Wuhan to Thailand, January 2020. ACTA ACUST UNITED AC 2020; 25. [PMID: 32127124 PMCID: PMC7055038 DOI: 10.2807/1560-7917.es.2020.25.8.2000097] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report two cases of coronavirus disease 2019 (COVID-19) in travellers from Wuhan, China to Thailand. Both were independent introductions on separate flights, discovered with thermoscanners and confirmed with RT-PCR and genome sequencing. Both cases do not seem directly linked to the Huanan Seafood Market in Hubei but the viral genomes are identical to four other sequences from Wuhan, suggesting early spread within the city already in the first week of January.
Collapse
Affiliation(s)
- Pilailuk Okada
- Department of Medical Sciences, Ministry of Public Health, Thailand
| | - Rome Buathong
- Department of Disease Control, Ministry of Public Health, Thailand
| | | | | | | | - Warawan Wongboot
- Department of Medical Sciences, Ministry of Public Health, Thailand
| | | | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre, Chulalongkorn University, Thailand
| | | | | | | | - Nanthawan Mekha
- Department of Medical Sciences, Ministry of Public Health, Thailand
| | - Noppavan Janejai
- Department of Medical Sciences, Ministry of Public Health, Thailand
| | | | - Raphael Tc Lee
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore
| | - Sebastian Maurer-Stroh
- Department of Biological Sciences, National University of Singapore, Singapore.,Bioinformatics Institute, Agency for Science Technology and Research, Singapore
| |
Collapse
|
531
|
Dong X, Hu T, Liu Q, Li C, Sun Y, Wang Y, Shi W, Zhao Q, Huang J. A Novel Hepe-Like Virus from Farmed Giant Freshwater Prawn Macrobrachium rosenbergii. Viruses 2020; 12:v12030323. [PMID: 32192159 PMCID: PMC7150978 DOI: 10.3390/v12030323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/27/2022] Open
Abstract
The family Hepeviridae includes several positive-stranded RNA viruses, which infect a wide range of mammalian species, chicken, and trout. However, few hepatitis E viruses (HEVs) have been characterized from invertebrates. In this study, a hepevirus, tentatively named Crustacea hepe-like virus 1 (CHEV1), from the economically important crustacean, the giant freshwater prawn Macrobrachium rosenbergii, was characterized. The complete genome consisted of 7750 nucleotides and had a similar structure to known hepatitis E virus genomes. Phylogenetic analyses suggested it might be a novel hepe-like virus within the family Hepeviridae. To our knowledge, this is the first hepe-like virus characterized from crustaceans.
Collapse
Affiliation(s)
- Xuan Dong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (X.D.); (C.L.); (Y.W.)
| | - Tao Hu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China;
| | - Qingyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; (Q.L.); (Y.S.)
| | - Chen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (X.D.); (C.L.); (Y.W.)
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; (Q.L.); (Y.S.)
| | - Yiting Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (X.D.); (C.L.); (Y.W.)
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China;
- Correspondence: (W.S.); (Q.Z.); (J.H.)
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; (Q.L.); (Y.S.)
- Correspondence: (W.S.); (Q.Z.); (J.H.)
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China; (X.D.); (C.L.); (Y.W.)
- Correspondence: (W.S.); (Q.Z.); (J.H.)
| |
Collapse
|
532
|
Zhao Y, Sun F, Li L, Chen T, Cao S, Ding G, Cong F, Liu J, Qin L, Liu S, Xiao Y. Evolution and Pathogenicity of the H1 and H3 Subtypes of Swine Influenza Virus in Mice between 2016 and 2019 in China. Viruses 2020; 12:v12030298. [PMID: 32182849 PMCID: PMC7150921 DOI: 10.3390/v12030298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 02/08/2023] Open
Abstract
Pigs are considered a “mixing vessel” that can produce new influenza strains through genetic reassortments, which pose a threat to public health and cause economic losses worldwide. The timely surveillance of the epidemiology of the swine influenza virus is of importance for prophylactic action. In this study, 15 H1N1, one H1N2, and four H3N2 strains were isolated from a total of 4080 nasal swabs which were collected from 20 pig farms in three provinces in China between 2016 and 2019. All the isolates were clustered into four genotypes. A new genotype represented by the H1N2 strain was found, whose fragments came from the triple reassortant H1N2 lineage, classical swine influenza virus (cs-H1N1) lineage, and 2009 H1N1 pandemic virus lineage. A/Sw/HB/HG394/2018(H1N1), which was clustered into the cs-H1N1 lineage, showed a close relationship with the 1918 pandemic virus. Mutations determining the host range specificity were found in the hemagglutinin of all isolates, which indicated that all the isolates had the potential for interspecies transmission. To examine pathogenicity, eight isolates were inoculated into 6-week-old female BALB/c mice. The isolates replicated differently, producing different viral loadings in the mice; A/Swine/HB/HG394/2018(H1N1) replicated the most efficiently. This suggested that the cs-H1N1 reappeared, and more attention should be given to the new pandemic to pigs. These results indicated that new reassortments between the different strains occurred, which may increase potential risks to human health. Continuing surveillance is imperative to monitor swine influenza A virus evolution.
Collapse
Affiliation(s)
- Yuzhong Zhao
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Fachao Sun
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Li Li
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Ting Chen
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao 266100, China; (T.C.); (L.Q.)
| | - Shengliang Cao
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Guofei Ding
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Fangyuan Cong
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Jiaqi Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Liting Qin
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao 266100, China; (T.C.); (L.Q.)
| | - Sidang Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Yihong Xiao
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (Y.Z.); (F.S.); (L.L.); (S.C.); (G.D.); (F.C.); (J.L.); (S.L.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
533
|
Xiong W, Yin C, Wang Y, Lin S, Deng Z, Liang R. Characterization of an efficient estrogen-degrading bacterium Stenotrophomonas maltophilia SJTH1 in saline-, alkaline-, heavy metal-contained environments or solid soil and identification of four 17β-estradiol-oxidizing dehydrogenases. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121616. [PMID: 31780289 DOI: 10.1016/j.jhazmat.2019.121616] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 05/26/2023]
Abstract
The efficient bioremediation of estrogen contamination in complex environments is of great concern. Here the strain Stenotrophomonas maltophilia SJTH1 was found with great and stable estrogen-degradation efficiency even under stress environments. The strain could utilize 17β-estradiol (E2) as a carbon source and degrade 90% of 10 mg/L E2 in a week; estrone (E1) was the first degrading intermediate of E2. Notably, diverse pH conditions (3.0-11.0) and supplements of 4% salinity, 6.25 mg/L of heavy metal (Cd2+ or Cu2+), or 1 CMC of surfactant (Tween 80/ Triton X-100) had little effect on its cell growth and estrogen degradation. The addition of low concentrations of copper and Tween 80 even promoted its E2 degradation. Bioaugmentation of strain SJTH1 into solid clay soil achieved over 80% removal of E2 contamination (10 mg/kg) within two weeks. Further, the whole genome sequence of S. maltophilia SJTH1 was obtained, and a series of potential genes participating in stress-tolerance and estrogen-degradation were predicted. Four dehydrogenases similar to 17β-hydroxysteroid dehydrogenases (17β-HSDs) were found to be induced by E2, and the four heterogenous-expressed enzymes could oxidize E2 into E1 efficiently. This work could promote bioremediation appliance potential with microorganisms and biodegradation mechanism study of estrogens in complex real environments.
Collapse
Affiliation(s)
- Weiliang Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chong Yin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanqiu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
534
|
High resolution metagenomic characterization of complex infectomes in paediatric acute respiratory infection. Sci Rep 2020; 10:3963. [PMID: 32127629 PMCID: PMC7054269 DOI: 10.1038/s41598-020-60992-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/19/2020] [Indexed: 12/19/2022] Open
Abstract
The diversity of pathogens associated with acute respiratory infection (ARI) makes diagnosis challenging. Traditional pathogen screening tests have a limited detection range and provide little additional information. We used total RNA sequencing (“meta-transcriptomics”) to reveal the full spectrum of microbes associated with paediatric ARI. Throat swabs were collected from 48 paediatric ARI patients and 7 healthy controls. Samples were subjected to meta-transcriptomics to determine the presence and abundance of viral, bacterial, and eukaryotic pathogens, and to reveal mixed infections, pathogen genotypes/subtypes, evolutionary origins, epidemiological history, and antimicrobial resistance. We identified 11 RNA viruses, 4 DNA viruses, 4 species of bacteria, and 1 fungus. While most are known to cause ARIs, others, such as echovirus 6, are rarely associated with respiratory disease. Co-infection of viruses and bacteria and of multiple viruses were commonplace (9/48), with one patient harboring 5 different pathogens, and genome sequence data revealed large intra-species diversity. Expressed resistance against eight classes of antibiotic was detected, with those for MLS, Bla, Tet, Phe at relatively high abundance. In summary, we used a simple total RNA sequencing approach to reveal the complex polymicrobial infectome in ARI. This provided comprehensive and clinically informative information relevant to understanding respiratory disease.
Collapse
|
535
|
Khomyakova MA, Merkel AY, Kopitsyn DS, Bonch-Osmolovskaya EA, Slobodkin AI. Calorimonas adulescens gen. nov., sp. nov., an anaerobic thermophilic bacterium utilizing methoxylated benzoates. Int J Syst Evol Microbiol 2020; 70:2066-2071. [DOI: 10.1099/ijsem.0.004019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel anaerobic, thermophilic bacterium (strain A05 MBT) was isolated from Daginsky thermal springs (Sakhalin, Russia) on 2-methoxybenzoate as a substrate. Cells of the strain were motile long rods, 3.0–5.0 µm in length and 0.5–0.6 µm in diameter. The temperature range for growth was 47–68 °C, with an optimum at 60 °C. The pH range for growth was 4.5–8.0, with an optimum at pH 5.5–6.0. Strain A05 MBTdid not require NaCl for growth. The strain utilized methoxylated aromatic compounds (2-methoxybenzoate and 3,4-dimethoxybenzoate), a number of carbohydrates (glucose, fructose, mannose, trehalose, xylose, sucrose, galactose, ribose, maltose, raffinose, lactose, cellobiose and dextrin) and proteinaceous substrates (yeast extract, beef extract, peptone and tryptone). The end products of glucose fermentation were acetate, ethanol and CO2. The DNA G+C content of strain A05 MBTwas 40.2 mol% (whole-genome analysis). 16S rRNA gene sequence analysis revealed that strain A05MBTbelongs to the orderThermoanaerobacterales(phylumFirmicutes). The closest relative of strain A05 MBTwasCaloribacterium cisternae(94.3 % 16S rRNA gene sequence similarity). Based on the phenotypic, genotypic and phylogenetic characteristics of the isolate, strain A05 MBTis considered to represent a novel species of a new genus, for which the nameCalorimonas adulescensgen. nov., sp. nov. is proposed. The type strain ofCalorimonas adulescensis A05 MBT(=KCTC 15839T=VKM B-3388T).
Collapse
Affiliation(s)
- M. A. Khomyakova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Russia
| | - A. Y. Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Russia
| | - D. S. Kopitsyn
- Gubkin University, Leninskiy Prospect, 65/1, 119991, Moscow, Russia
| | - E. A. Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Russia
| | - A. I. Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Russia
| |
Collapse
|
536
|
Mendes CI, Lizarazo E, Machado MP, Silva DN, Tami A, Ramirez M, Couto N, Rossen JWA, Carriço JA. DEN-IM: dengue virus genotyping from amplicon and shotgun metagenomic sequencing. Microb Genom 2020; 6:e000328. [PMID: 32134380 PMCID: PMC7200064 DOI: 10.1099/mgen.0.000328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/23/2019] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) represents a public health threat and economic burden in affected countries. The availability of genomic data is key to understanding viral evolution and dynamics, supporting improved control strategies. Currently, the use of high-throughput sequencing (HTS) technologies, which can be applied both directly to patient samples (shotgun metagenomics) and to PCR-amplified viral sequences (amplicon sequencing), is potentially the most informative approach to monitor viral dissemination and genetic diversity by providing, in a single methodological step, identification and characterization of the whole viral genome at the nucleotide level. Despite many advantages, these technologies require bioinformatics expertise and appropriate infrastructure for the analysis and interpretation of the resulting data. In addition, the many software solutions available can hamper the reproducibility and comparison of results. Here we present DEN-IM, a one-stop, user-friendly, containerized and reproducible workflow for the analysis of DENV short-read sequencing data from both amplicon and shotgun metagenomics approaches. It is able to infer the DENV coding sequence (CDS), identify the serotype and genotype, and generate a phylogenetic tree. It can easily be run on any UNIX-like system, from local machines to high-performance computing clusters, performing a comprehensive analysis without the requirement for extensive bioinformatics expertise. Using DEN-IM, we successfully analysed two types of DENV datasets. The first comprised 25 shotgun metagenomic sequencing samples from patients with variable serotypes and genotypes, including an in vitro spiked sample containing the four known serotypes. The second consisted of 106 paired-end and 76 single-end amplicon sequences of DENV 3 genotype III and DENV 1 genotype I, respectively, where DEN-IM allowed detection of the intra-genotype diversity. The DEN-IM workflow, parameters and execution configuration files, and documentation are freely available at https://github.com/B-UMMI/DEN-IM).
Collapse
Affiliation(s)
- Catarina I. Mendes
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Erley Lizarazo
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Miguel P. Machado
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo N. Silva
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Adriana Tami
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Mário Ramirez
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Natacha Couto
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - John W. A. Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - João A. Carriço
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
537
|
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395:565-574. [PMID: 32007145 PMCID: PMC7159086 DOI: 10.1016/s0140-6736(20)30251-8] [Citation(s) in RCA: 7556] [Impact Index Per Article: 1511.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/02/2022]
Abstract
BACKGROUND In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed. METHODS We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus. FINDINGS The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues. INTERPRETATION 2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation. FUNDING National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.
Collapse
Affiliation(s)
- Roujian Lu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiang Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Peihua Niu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bo Yang
- Division for Viral Disease Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Honglong Wu
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Wenling Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Na Zhu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuhai Bi
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Xuejun Ma
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Faxian Zhan
- Division for Viral Disease Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Liang Wang
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Tao Hu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Zhenhong Hu
- Central Theater, People's Liberation Army General Hospital, Wuhan, China
| | - Weimin Zhou
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Medical Virology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yao Meng
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ji Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Lin
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Jianying Yuan
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Zhihao Xie
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Jinmin Ma
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dayan Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbo Xu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - George F Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weijun Chen
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China; The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Central Theater, People's Liberation Army General Hospital, Wuhan, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
538
|
Mao Y, Hou S, Shi J, Economo EP. TREEasy: An automated workflow to infer gene trees, species trees, and phylogenetic networks from multilocus data. Mol Ecol Resour 2020; 20. [PMID: 32073732 DOI: 10.1111/1755-0998.13149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Abstract
Multilocus genomic data sets can be used to infer a rich set of information about the evolutionary history of a lineage, including gene trees, species trees, and phylogenetic networks. However, user-friendly tools to run such integrated analyses are lacking, and workflows often require tedious reformatting and handling time to shepherd data through a series of individual programs. Here, we present a tool written in Python-TREEasy-that performs automated sequence alignment (with MAFFT), gene tree inference (with IQ-Tree), species inference from concatenated data (with IQ-Tree and RaxML-NG), species tree inference from gene trees (with ASTRAL, MP-EST, and STELLS2), and phylogenetic network inference (with SNaQ and PhyloNet). The tool only requires FASTA files and nine parameters as inputs. The tool can be run as command line or through a Graphical User Interface (GUI). As examples, we reproduced a recent analysis of staghorn coral evolution, and performed a new analysis on the evolution of the "WGD clade" of yeast. The latter revealed novel patterns that were not identified by previous analyses. TREEasy represents a reliable and simple tool to accelerate research in systematic biology (https://github.com/MaoYafei/TREEasy).
Collapse
Affiliation(s)
- Yafei Mao
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Siqing Hou
- Cognitive Neurorobotics Research Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Junfeng Shi
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
539
|
Ratnikova NM, Slobodkin AI, Merkel AY, Kopitsyn DS, Kevbrin VV, Bonch-Osmolovskaya EA, Slobodkina GB. Sulfurimonas crateris sp. nov., a facultative anaerobic sulfur-oxidizing chemolithoautotrophic bacterium isolated from a terrestrial mud volcano. Int J Syst Evol Microbiol 2020; 70:487-492. [PMID: 31639074 DOI: 10.1099/ijsem.0.003779] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel mesophilic facultative anaerobic bacterium, strain SN118T, was isolated from a terrestrial mud volcano in Taman Peninsula, Russia. The cells were Gram-negative, motile, short, straight or curved rods with a single polar flagellum. Growth was observed at 5-40 °C (optimum, 30 °C) and pH 5.5-9.5 (optimum, pH 8.0). Growth of strain SN118T was observed in NaCl concentrations ranging from 0.5 to 8.0 % (w/v) with an optimum at 2.0-3.0 % (w/v). The isolate grew chemolithoautotrophically with sulfide, elemental sulfur or thiosulfate as electron donor, oxygen, nitrate or nitrite as an electron acceptor and CO2/HCO3 - as a carbon source. Molecular hydrogen or organic substances did not support growth. Nitrate was reduced to N2. The dominant fatty acids were C16 : 1ω7c, C16 : 0 and C18 : 1ω7c. The total size of the genome of the novel isolate was 2 209 279 bp and the genomic DNA G+C content was 38.8 mol%. Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolate belonged to the genus Sulfurimonas and was most closely related to Sulfurimonas denitrificans DSM 1251T (96.74 %). Based on its physiological properties and results from phylogenetic analyses, including average nucleotide identity and in silico DNA-DNA hybridization values, the isolate is considered to represent a novel species of the genus Sulfurimonas, for which the name Sulfurimonas crateris sp. nov. is proposed. The type strain is SN118T (=DSM 109248T=VKM B-3378T).
Collapse
Affiliation(s)
- N M Ratnikova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | - A I Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | - A Y Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | - D S Kopitsyn
- Gubkin University, Leninsky Prospect, 65/1, 119991, Moscow, Russia
| | - V V Kevbrin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | - E A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | - G B Slobodkina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| |
Collapse
|
540
|
Zhang Y, Li Q, Xu L, Qiao X, Liu C, Zhang S. Comparative analysis of the P-type ATPase gene family in seven Rosaceae species and an expression analysis in pear (Pyrus bretschneideri Rehd.). Genomics 2020; 112:2550-2563. [PMID: 32057915 DOI: 10.1016/j.ygeno.2020.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
P-type ATPases are integral membrane transporters that play important roles in transmembrane transport in plants. However, a comprehensive analysis of the P-type ATPase gene family has not been conducted in Chinese white pear (Pyrus bretschneideri) or other Rosaceae species. Here, we identified 419 P-type ATPase genes from seven Rosaceae species (Pyrus bretschneideri, Malus domestica, Prunus persica, Fragaria vesca, Prunus mume, Pyrus communis and Pyrus betulifolia). Structural and phylogenetic analyses revealed that P-type ATPase genes can be divided into five subfamilies. Different subfamilies have different conserved motifs and cis-acting elements, which may lead to functional divergence within one gene family. Dispersed duplication and whole-genome duplication may play critical roles in the expansion of the P-type ATPase family. Purifying selection was the primary force driving the evolution of P-type ATPase family genes. Based on the dynamic transcriptome analysis and transient transformation of Chinese white pear fruit, Pbr029767.1 in the P3A subfamily were found to be associated with malate accumulation during pear fruit development. Using a co-expression network, we identified several transcription factors that may have regulatory relationships with the P-type ATPase gene family. Overall, this study lays a solid foundation for understanding the evolution and functions of P-type ATPase genes in Chinese white pear and six other Rosaceae species.
Collapse
Affiliation(s)
- Yuxin Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qionghou Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Linlin Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunxin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
541
|
Hanafy RA, Lanjekar VB, Dhakephalkar PK, Callaghan TM, Dagar SS, Griffith GW, Elshahed MS, Youssef NH. Seven new Neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum. Mycologia 2020; 112:1212-1239. [PMID: 32057282 DOI: 10.1080/00275514.2019.1696619] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We isolated and characterized 65 anaerobic gut fungal (AGF; Neocallimastigomycota) strains from fecal samples of five wild (W, axis deer, white-tailed deer, Boer goat, mouflon, and Nilgiri tahr), one zoo-housed (Z, zebra), and three domesticated (D, horse, sheep, and goat) herbivores in the US states of Texas (TX) and Oklahoma (OK), Wales (WA), and the Indian states of Kerala (KE) and Haryana (HA). Phylogenetic assessment using the D1-D2 regions of the large subunit (28S) rDNA and internal transcribed spacer 1 (ITS1) identified seven monophyletic clades that are distinct from all currently recognized AGF genera. All strains displayed monocentric thalli and produced exclusively or predominantly monoflagellate zoospores, with the exception of axis deer strains, which produced polyflagellate zoospores. Analysis of amplicon-based AGF diversity surveys indicated that zebra and horse strains are representatives of uncultured AL1 group, whereas domesticated goat and sheep strains are representatives of uncultured AL5 group, previously encountered in fecal and rumen samples of multiple herbivores. The other five lineages, all of which were isolated from wild herbivores, have not been previously encountered in such surveys. Our results significantly expand the genus-level diversity within the Neocallimastigomycota and strongly suggest that wild herbivores represent a yet-untapped reservoir of AGF diversity. We propose seven novel genera and eight novel Neocallimastigomycota species to comprise these strains, for which we propose the names Agriosomyces longus (mouflon and wild Boer goat), Aklioshbomyces papillarum (white-tailed deer), Capellomyces foraminis (wild Boar goat), and C. elongatus (domesticated goat), Ghazallomyces constrictus (axis deer), Joblinomyces apicalis (domesticated goat and sheep), Khoyollomyces ramosus (zebra-horse), and Tahromyces munnarensis (Nilgiri tahr).
Collapse
Affiliation(s)
- Radwa A Hanafy
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma, 74074
| | | | | | - Tony M Callaghan
- Institute of Biological, Environmental, and Rural Sciences (IBERS), Aberystwyth University , Aberystwyth, Wales, UK
| | - Sumit S Dagar
- Bioenergy Group, Agharkar Research Institute, Pune, India
| | - Gareth W Griffith
- Institute of Biological, Environmental, and Rural Sciences (IBERS), Aberystwyth University , Aberystwyth, Wales, UK
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma, 74074
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma, 74074
| |
Collapse
|
542
|
Ou X, Liu G, Wu LH. The complete chloroplast genome of Hemerocallis citrina (Asphodelaceae), an ornamental and medicinal plant. MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:1109-1110. [PMID: 33366896 PMCID: PMC7748551 DOI: 10.1080/23802359.2020.1726227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Hemerocallis citrina (Asphodelaceae) has been wildly cultivated as ornamental and medicinal plant. Here, we reported the first chloroplast genome sequence of H. citrina. The chloroplast genome size is 156,088 bp with GC content of 37.3%, including a large single-copy (LSC) of 84,843 bp, a small single-copy (SSC) of 18,507 bp, and a pair of 26,369 bp IR(inverted repeat) regions. A total of 133 genes were annotated including 87 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. The phylogenetic analysis revealed that H. citrina belongs to the Hemerocallis genus in Asphodelaceae family.
Collapse
Affiliation(s)
- Xiaobin Ou
- College of Life Sciences & Technology, Longdong University, Gansu, China
| | - Ge Liu
- Nanjing University of Aeronautics and Astronautics University, Nanjing, China
| | - Li-Hong Wu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
543
|
Hämälä T, Guiltinan MJ, Marden JH, Maximova SN, dePamphilis CW, Tiffin P. Gene Expression Modularity Reveals Footprints of Polygenic Adaptation in Theobroma cacao. Mol Biol Evol 2020; 37:110-123. [PMID: 31501906 DOI: 10.1093/molbev/msz206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Separating footprints of adaptation from demography is challenging. When selection has acted on a single locus with major effect, this issue can be alleviated through signatures left by selective sweeps. However, as adaptation is often driven by small allele frequency shifts at many loci, studies focusing on single genes are able to identify only a small portion of genomic variants responsible for adaptation. In face of this challenge, we utilize coexpression information to search for signals of polygenetic adaptation in Theobroma cacao, a tropical tree species that is the source of chocolate. Using transcriptomics and a weighted correlation network analysis, we group genes with similar expression patterns into functional modules. We then ask whether modules enriched for specific biological processes exhibit cumulative effects of differential selection in the form of high FST and dXY between populations. Indeed, modules putatively involved in protein modification, flowering, and water transport show signs of polygenic adaptation even though individual genes that are members of those groups do not bear strong signatures of selection. Modeling of demography, background selection, and the effects of genomic features reveal that these patterns are unlikely to arise by chance. We also find that specific modules are enriched for signals of strong or relaxed purifying selection, with one module bearing signs of adaptive differentiation and an excess of deleterious mutations. Our results provide insight into polygenic adaptation and contribute to understanding of population structure, demographic history, and genome evolution in T. cacao.
Collapse
Affiliation(s)
- Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN
| | - Mark J Guiltinan
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - James H Marden
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA.,Department of Biology, The Pennsylvania State University, University Park, PA
| | - Siela N Maximova
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Claude W dePamphilis
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA.,Department of Biology, The Pennsylvania State University, University Park, PA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN
| |
Collapse
|
544
|
Melnikov S, Kwok HS, Manakongtreecheep K, van den Elzen A, Thoreen CC, Söll D. Archaeal Ribosomal Proteins Possess Nuclear Localization Signal-Type Motifs: Implications for the Origin of the Cell Nucleus. Mol Biol Evol 2020; 37:124-133. [PMID: 31501901 DOI: 10.1093/molbev/msz207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic cells are divided into the nucleus and the cytosol, and, to enter the nucleus, proteins typically possess short signal sequences, known as nuclear localization signals (NLSs). Although NLSs have long been considered as features unique to eukaryotic proteins, we show here that similar or identical protein segments are present in ribosomal proteins from the Archaea. Specifically, the ribosomal proteins uL3, uL15, uL18, and uS12 possess NLS-type motifs that are conserved across all major branches of the Archaea, including the most ancient groups Microarchaeota and Diapherotrites, pointing to the ancient origin of NLS-type motifs in the Archaea. Furthermore, by using fluorescence microscopy, we show that the archaeal NLS-type motifs can functionally substitute eukaryotic NLSs and direct the transport of ribosomal proteins into the nuclei of human cells. Collectively, these findings illustrate that the origin of NLSs preceded the origin of the cell nucleus, suggesting that the initial function of NLSs was not related to intracellular trafficking, but possibly was to improve recognition of nucleic acids by cellular proteins. Overall, our study reveals rare evolutionary intermediates among archaeal cells that can help elucidate the sequence of events that led to the origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Sergey Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Hui-Si Kwok
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | | | | | - Carson C Thoreen
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Department of Chemistry, Yale University, New Haven, CT
| |
Collapse
|
545
|
Vershinina AO, Kapp JD, Baryshnikov GF, Shapiro B. The case of an arctic wild ass highlights the utility of ancient DNA for validating problematic identifications in museum collections. Mol Ecol Resour 2020; 20:1182-1190. [DOI: 10.1111/1755-0998.13130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Alisa O. Vershinina
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz CA USA
| | - Joshua D. Kapp
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz CA USA
| | - Gennady F. Baryshnikov
- Laboratory of Theriology Zoological Institute of the Russian Academy of Sciences St. Petersburg Russia
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz CA USA
- Howard Hughes Medical InstituteUniversity of California Santa Cruz Santa Cruz CA USA
| |
Collapse
|
546
|
Guo Z, Chen XX, Ruan H, Qiao S, Deng R, Zhang G. Isolation of Three Novel Senecavirus A Strains and Recombination Analysis Among Senecaviruses in China. Front Vet Sci 2020; 7:2. [PMID: 32047757 PMCID: PMC6996486 DOI: 10.3389/fvets.2020.00002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/02/2020] [Indexed: 11/22/2022] Open
Abstract
Senecavirus A (SVA), an emerging swine picornavirus of swine, is one of the causative agents of vesicular disease which is clinically indistinguishable from foot-and-mouth disease in pigs. Here, 3 cases of vesicular disease were reported which was caused by SVA in November 2018 in Henan, China. Three new SVA strains were identified and conducted a genetically evolutionary analysis. The isolates shared 98.1–99.0% genomic pairwise identity to each other and had the highest similarity, of 98.3–98.7%, with the American strain KS15-01, respectively. Phylogenetic analysis indicated that the Chinese prevalent strains could be clearly divided into cluster 1, cluster 2, and cluster 3. Furthermore, one isolate (HeNNY-1/2018) and two previously reported strains (HB-CH-2016 and SVA/CHN/10/2017) were identified as recombinants using several algorithms. It revealed that the recombination among SVA strains has occurred in China since 2016 or earlier. The findings of studies updated the prevalent status of SVA in China. Besides, the genetic evolution and recombinant events of SVA should be attracted more attentions in the future.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Haiyu Ruan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
547
|
Kan SL, Shen TT, Gong P, Ran JH, Wang XQ. The complete mitochondrial genome of Taxus cuspidata (Taxaceae): eight protein-coding genes have transferred to the nuclear genome. BMC Evol Biol 2020; 20:10. [PMID: 31959109 PMCID: PMC6971862 DOI: 10.1186/s12862-020-1582-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/13/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Gymnosperms represent five of the six lineages of seed plants. However, most sequenced plant mitochondrial genomes (mitogenomes) have been generated for angiosperms, whereas mitogenomic sequences have been generated for only six gymnosperms. In particular, complete mitogenomes are available for all major seed plant lineages except Conifer II (non-Pinaceae conifers or Cupressophyta), an important lineage including six families, which impedes a comprehensive understanding of the mitogenomic diversity and evolution in gymnosperms. RESULTS Here, we report the complete mitogenome of Taxus cuspidata in Conifer II. In comparison with previously released gymnosperm mitogenomes, we found that the mitogenomes of Taxus and Welwitschia have lost many genes individually, whereas all genes were identified in the mitogenomes of Cycas, Ginkgo and Pinaceae. Multiple tRNA genes and introns also have been lost in some lineages of gymnosperms, similar to the pattern observed in angiosperms. In general, gene clusters could be less conserved in gymnosperms than in angiosperms. Moreover, fewer RNA editing sites were identified in the Taxus and Welwitschia mitogenomes than in other mitogenomes, which could be correlated with fewer introns and frequent gene losses in these two species. CONCLUSIONS We have sequenced the Taxus cuspidata mitogenome, and compared it with mitogenomes from the other four gymnosperm lineages. The results revealed the diversity in size, structure, gene and intron contents, foreign sequences, and mutation rates of gymnosperm mitogenomes, which are different from angiosperm mitogenomes.
Collapse
Affiliation(s)
- Sheng-Long Kan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Ting Shen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ping Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
548
|
VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning. PLoS Comput Biol 2020; 16:e1007511. [PMID: 31929521 PMCID: PMC7015433 DOI: 10.1371/journal.pcbi.1007511] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 02/12/2020] [Accepted: 10/25/2019] [Indexed: 01/30/2023] Open
Abstract
Antimicrobial resistance (AMR) is an increasing threat to public health. Current methods of determining AMR rely on inefficient phenotypic approaches, and there remains incomplete understanding of AMR mechanisms for many pathogen-antimicrobial combinations. Given the rapid, ongoing increase in availability of high-density genomic data for a diverse array of bacteria, development of algorithms that could utilize genomic information to predict phenotype could both be useful clinically and assist with discovery of heretofore unrecognized AMR pathways. To facilitate understanding of the connections between DNA variation and phenotypic AMR, we developed a new bioinformatics tool, variant mapping and prediction of antibiotic resistance (VAMPr), to (1) derive gene ortholog-based sequence features for protein variants; (2) interrogate these explainable gene-level variants for their known or novel associations with AMR; and (3) build accurate models to predict AMR based on whole genome sequencing data. We curated the publicly available sequencing data for 3,393 bacterial isolates from 9 species that contained AMR phenotypes for 29 antibiotics. We detected 14,615 variant genotypes and built 93 association and prediction models. The association models confirmed known genetic antibiotic resistance mechanisms, such as blaKPC and carbapenem resistance consistent with the accurate nature of our approach. The prediction models achieved high accuracies (mean accuracy of 91.1% for all antibiotic-pathogen combinations) internally through nested cross validation and were also validated using external clinical datasets. The VAMPr variant detection method, association and prediction models will be valuable tools for AMR research for basic scientists with potential for clinical applicability. Antimicrobial resistance (AMR) is a global health threat. The current method to determine AMR is inefficient and complete understanding of the mechanisms of AMR is lacking. With the increased feasibility of sequencing bacterial genomes, it is now easier, faster and cheaper to have genomic insights into AMR. In this manuscript, we propose a novel bioinformatic tool for variant mapping and prediction of antibiotic resistance (VAMPr). We curated 3,393 bacterial genomes from 9 bacterial species that contained AMR phenotypes for 29 antibiotics. We used protein orthology and detected 14,615 variants. Combined with AMR phenotypes, we built 93 association and prediction models. The association model confirms known genetic AMR mechanisms, and the prediction models achieved high accuracies. Together, our work will be valuable for AMR research for basic scientists with the potential for clinical applicability.
Collapse
|
549
|
Wang C, Wang X, Tseringand T, Song Y, Zhu R. The plastid genome of Herpetospermum pedunculosum (Cucurbitaceae), an endangered traditional Tibetan medicinal herbs. MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:495-497. [PMID: 33366618 PMCID: PMC7748728 DOI: 10.1080/23802359.2019.1703603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Herpetospermum pedunculosum (Ser.) C. B. Clarke is an important traditional Tibetan medicinal plants in the genus of Herpetospermum, Cucurbitaceae. To better determine its phylogenetic location with respect to the other Cucurbitaceae species, the complete plastome of H. pedunculosum will be reported, which is the first species with plastid genome sequence in the genus of Herpetospermum. Its whole genome is 156,531 bp in length, consisting of a pair of inverted repeats (IRs) of 26,147 bp, one large single-copy (LSC) region of 85,878 bp, and one small single-copy (SSC) region of 18,359 bp. There are 128 genes, including 83 protein-coding genes, 36 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes in the plastome. Phylogenetic analysis based on 13 complete plastomes of Cucurbitaceae species showed sisterhood of H. pedunculosum and a clade containing Trichosanthes kirilowii and Hodgsonia macrocarpa, suggesting the close relationship between tribe Schizopeponeae and tribe Sicyoeae in the family Cucurbitaceae.
Collapse
Affiliation(s)
- Chengwang Wang
- School of Life Science, Nanchang University, Jiangxi, China
| | - Xilong Wang
- Tibet Plateau Institute of Biology, Xizang, China
| | - Tamdrin Tseringand
- The Technological Developmnet Exchange Service Center of Linzhi, Xizang, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
| | - Rongjie Zhu
- Institute of Vegetable Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Xizang, China
| |
Collapse
|
550
|
Cao T, Zhu Q, Chen X, Wang P, Shan N, Zhou Q, Huang Y. The complete chloroplast genome sequence of the Dioscorea persimilis Prain et Burkill (Dioscoreaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:451-452. [PMID: 33366597 PMCID: PMC7748837 DOI: 10.1080/23802359.2019.1704645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dioscorea persimilis belongs to Dioscorea genus, which is considered as one of the most popular food and traditional folk medicine in China. The complete chloroplast genome of D. persimilis was determined in this study. The total genome size was 153,219 bp in length, containing a pair of inverted repeats (IRs) of 25,477 bp, which were separated by large single copy (LSC) and small single copy (SSC) of 83,448 bp and 18,817 bp, respectively. The GC content is 37.01%. A total of 129 genes were predicted including 84 protein-coding genes, eight rRNA genes and 37 tRNA genes. Phylogenetic tree analysis of 24 species in the genus Dioscorea indicated that D. persimilis was closer to Chinese yam, but has remote phylogenetic relationship with Guinea yam.
Collapse
Affiliation(s)
- Tianxu Cao
- Ministry of Education of the P.R. China, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China.,College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Qianglong Zhu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Xin Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Putao Wang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Nan Shan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Qionghong Zhou
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yingjin Huang
- Ministry of Education of the P.R. China, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China.,College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|