501
|
Ghedin E, Laplante J, DePasse J, Wentworth DE, Santos RP, Lepow ML, Porter J, Stellrecht K, Lin X, Operario D, Griesemer S, Fitch A, Halpin RA, Stockwell TB, Spiro DJ, Holmes EC, St George K. Deep sequencing reveals mixed infection with 2009 pandemic influenza A (H1N1) virus strains and the emergence of oseltamivir resistance. J Infect Dis 2011; 203:168-74. [PMID: 21288815 DOI: 10.1093/infdis/jiq040] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mixed infections with seasonal influenza A virus strains are a common occurrence and an important source of genetic diversity. Prolonged viral shedding, as observed in immunocompromised individuals, can lead to mutational accumulation over extended periods. Recently, drug resistance was reported in immunosuppressed patients infected with the 2009 pandemic influenza A (H1N1) virus within a few days after oseltamivir treatment was initiated. To better understand the evolution and emergence of drug resistance in these circumstances, we used a deep sequencing approach to survey the viral population from an immunosuppressed patient infected with H1N1/2009 influenza and treated with neuraminidase inhibitors. This patient harbored 3 genetic variants from 2 phylogenetically distinct viral clades of pandemic H1N1/2009, strongly suggestive of mixed infection. Strikingly, one of these variants also developed drug resistance de novo in response to oseltamivir treatment. Immunocompromised individuals may, therefore, constitute an important source of genetic and phenotypic diversity, both through mixed infection and de novo mutation.
Collapse
Affiliation(s)
- Elodie Ghedin
- Center for Vaccine Research, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
502
|
Hajimorad MR, Wen RH, Eggenberger AL, Hill JH, Maroof MAS. Experimental adaptation of an RNA virus mimics natural evolution. J Virol 2011; 85:2557-64. [PMID: 21191023 PMCID: PMC3067964 DOI: 10.1128/jvi.01935-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 12/21/2010] [Indexed: 11/20/2022] Open
Abstract
Identification of virulence determinants of viruses is of critical importance in virology. In search of such determinants, virologists traditionally utilize comparative genomics between a virulent and an avirulent virus strain and construct chimeras to map their locations. Subsequent comparison reveals sequence differences, and through analyses of site-directed mutants, key residues are identified. In the absence of a naturally occurring virulent strain, an avirulent strain can be functionally converted to a virulent variant via an experimental evolutionary approach. However, the concern remains whether experimentally evolved virulence determinants mimic those that have evolved naturally. To provide a direct comparison, we exploited a plant RNA virus, soybean mosaic virus (SMV), and its natural host, soybean. Through a serial in vivo passage experiment, the molecularly cloned genome of an avirulent SMV strain was converted to virulent variants on functionally immune soybean genotypes harboring resistance factor(s) from the complex Rsv1 locus. Several of the experimentally evolved virulence determinants were identical to those discovered through a comparative genomic approach with a naturally evolved virulent strain. Thus, our observations validate an experimental evolutionary approach to identify relevant virulence determinants of an RNA virus.
Collapse
Affiliation(s)
- M R Hajimorad
- Department of Entomology and Plant Pathology, The University of Tennessee, 205 Ellington Plant Sciences Bldg., Knoxville, TN 37996, USA.
| | | | | | | | | |
Collapse
|
503
|
Schmitz J. [RNA interference test for discovery of new targets]. PHARMAZIE IN UNSERER ZEIT 2011; 40:155-158. [PMID: 21630544 DOI: 10.1002/pauz.201100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Jens Schmitz
- Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, 97074 Würzburg.
| |
Collapse
|
504
|
Dong CZ. [Advances on genomic evolution of influenza virus]. YI CHUAN = HEREDITAS 2011; 33:189-197. [PMID: 21402525 DOI: 10.3724/sp.j.1005.2011.00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Four influenza virus pandemics occurred since the beginning of the 20th century. In 1918, 1957, 1968 and 2009, this disease threatened human health and social living greatly. The progress in genomic evolution of influenza virus promoted exploring pathogenic mechanism, surveilling epidemic, preparing influenza vaccine and developing anti-virus drugs. Here, we reviewed the progress in genomic evolution of influenza virus that included evolution mechanism, antigenic evolution, and anti-drug.
Collapse
|
505
|
Hensley SE, Das SR, Gibbs JS, Bailey AL, Schmidt LM, Bennink JR, Yewdell JW. Influenza A virus hemagglutinin antibody escape promotes neuraminidase antigenic variation and drug resistance. PLoS One 2011; 6:e15190. [PMID: 21364978 PMCID: PMC3043005 DOI: 10.1371/journal.pone.0015190] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/30/2010] [Indexed: 12/23/2022] Open
Abstract
Drugs inhibiting the influenza A virus (IAV) neuraminidase (NA) are the cornerstone of anti-IAV chemotherapy and prophylaxis in man. Drug-resistant mutations in NA arise frequently in human isolates, limiting the therapeutic application of NA inhibitors. Here, we show that antibody-driven antigenic variation in one domain of the H1 hemagglutinin Sa site leads to compensatory mutations in NA, resulting in NA antigenic variation and acquisition of drug resistance. These findings indicate that influenza A virus resistance to NA inhibitors can potentially arise from antibody driven HA escape, confounding analysis of influenza NA evolution in nature.
Collapse
Affiliation(s)
- Scott E. Hensley
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Suman R. Das
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - James S. Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Adam L. Bailey
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Loren M. Schmidt
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Jack R. Bennink
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
506
|
Kryazhimskiy S, Dushoff J, Bazykin GA, Plotkin JB. Prevalence of epistasis in the evolution of influenza A surface proteins. PLoS Genet 2011; 7:e1001301. [PMID: 21390205 PMCID: PMC3040651 DOI: 10.1371/journal.pgen.1001301] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/07/2011] [Indexed: 12/14/2022] Open
Abstract
The surface proteins of human influenza A viruses experience positive selection to escape both human immunity and, more recently, antiviral drug treatments. In bacteria and viruses, immune-escape and drug-resistant phenotypes often appear through a combination of several mutations that have epistatic effects on pathogen fitness. However, the extent and structure of epistasis in influenza viral proteins have not been systematically investigated. Here, we develop a novel statistical method to detect positive epistasis between pairs of sites in a protein, based on the observed temporal patterns of sequence evolution. The method rests on the simple idea that a substitution at one site should rapidly follow a substitution at another site if the sites are positively epistatic. We apply this method to the surface proteins hemagglutinin and neuraminidase of influenza A virus subtypes H3N2 and H1N1. Compared to a non-epistatic null distribution, we detect substantial amounts of epistasis and determine the identities of putatively epistatic pairs of sites. In particular, using sequence data alone, our method identifies epistatic interactions between specific sites in neuraminidase that have recently been demonstrated, in vitro, to confer resistance to the drug oseltamivir; these epistatic interactions are responsible for widespread drug resistance among H1N1 viruses circulating today. This experimental validation demonstrates the predictive power of our method to identify epistatic sites of importance for viral adaptation and public health. We conclude that epistasis plays a large role in shaping the molecular evolution of influenza viruses. In particular, sites with , which would normally not be identified as positively selected, can facilitate viral adaptation through epistatic interactions with their partner sites. The knowledge of specific interactions among sites in influenza proteins may help us to predict the course of antigenic evolution and, consequently, to select more appropriate vaccines and drugs. Epistasis describes non-additive interactions among genetic sites: the consequence of a mutation at one site may depend on the status of the genome at other sites. In an extreme case, a mutation may have no effect if it arises on one genetic background, but a strong effect on another background. Epistatic mutations in viruses and bacteria that live under severe conditions, such as antibiotic treatments or immune pressure, often allow pathogens to develop drug resistance or escape the immune system. In this paper we develop a new phylogenetic method for detecting epistasis, and we apply this method to the surface proteins of the influenza A virus, which are important targets of the immune system and drug treatments. The authors identify and characterize hundreds of epistatic mutations in these proteins. Among those identified, we find the specific epistatic mutations that were recently shown, experimentally, to confer resistance to the drug Tamiflu. The results of this study may help to predict the course of influenza's antigenic evolution and to select more appropriate vaccines and drugs.
Collapse
Affiliation(s)
- Sergey Kryazhimskiy
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Georgii A. Bazykin
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia
| | - Joshua B. Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Program in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
507
|
Oligonucleotide motifs that disappear during the evolution of influenza virus in humans increase alpha interferon secretion by plasmacytoid dendritic cells. J Virol 2011; 85:3893-904. [PMID: 21307198 DOI: 10.1128/jvi.01908-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CpG motifs in an A/U context have been preferentially eliminated from classical H1N1 influenza virus genomes during virus evolution in humans. The hypothesis of the current work is that CpG motifs in a uracil context represent sequence patterns with the capacity to induce an immune response, and the avoidance of this immunostimulatory signal is the reason for the observed preferential decline. To analyze the immunogenicity of these domains, we used plasmacytoid dendritic cells (pDCs). pDCs express pattern recognition receptors, including Toll-like receptor 7 (TLR7), which recognizes guanosine- and uridine-rich viral single-stranded RNA (ssRNA), including influenza virus ssRNA. The signaling through TLR7 results in the induction of inflammatory cytokines and type I interferon (IFN-I), an essential process for the induction of specific adaptive immune responses and for mounting a robust antiviral response mediated by IFN-α. Secretion of IFN-α is also linked to the activation of other immune cells, potentially amplifying the effect of an initial IFN-α secretion. We therefore also examined the role of IFN-α-driven activation of NK cells as another source of selective pressure on the viral genome. We found direct evidence that CpG RNA motifs in a U-rich context control pDC activation and IFN-α-driven activation of NK cells, likely through TLR7. These data provide a potential explanation for the loss of CpG motifs from avian influenza viruses as they adapt to mammalian hosts. The selective decrease of CpG motifs surrounded by U/A may be a viral strategy to avoid immune recognition, a strategy likely shared by highly expressed human immune genes.
Collapse
|
508
|
A generic system for the expression and purification of soluble and stable influenza neuraminidase. PLoS One 2011; 6:e16284. [PMID: 21326879 PMCID: PMC3034727 DOI: 10.1371/journal.pone.0016284] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 12/22/2010] [Indexed: 11/25/2022] Open
Abstract
The influenza surface glycoprotein neuraminidase (NA) is essential for the efficient spread of the virus. Antiviral drugs such as Tamiflu (oseltamivir) and Relenza (zanamivir) that inhibit NA enzyme activity have been shown to be effective in the treatment of influenza infections. The recent ‘swine flu’ pandemic and world-wide emergence of Tamiflu-resistant seasonal human influenza A(H1N1) H274Y have highlighted the need for the ongoing development of new anti-virals, efficient production of vaccine proteins and novel diagnostic tools. Each of these goals could benefit from the production of large quantities of highly pure and stable NA. This publication describes a generic expression system for NAs in a baculovirus Expression Vector System (BEVS) that is capable of expressing milligram amounts of recombinant NA. To construct NAs with increased stability, the natural influenza NA stalk was replaced by two different artificial tetramerization domains that drive the formation of catalytically active NA homotetramers: GCN4-pLI from yeast or the Tetrabrachion tetramerization domain from Staphylothermus marinus. Both recombinant NAs are secreted as FLAG-tagged proteins to allow for rapid and simple purification. The Tetrabrachion-based NA showed good solubility, increased stability and biochemical properties closer to the original viral NA than the GCN4-pLI based construct. The expressed quantities and high quality of the purified recombinant NA suggest that this expression system is capable of producing recombinant NA for a broad range of applications including high-throughput drug screening, protein crystallisation, or vaccine development.
Collapse
|
509
|
Epistasis increases the rate of conditionally neutral substitution in an adapting population. Genetics 2011; 187:1139-52. [PMID: 21288876 DOI: 10.1534/genetics.110.125997] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kimura observed that the rate of neutral substitution should equal the neutral mutation rate. This classic result is central to our understanding of molecular evolution, and it continues to influence phylogenetics, genomics, and the interpretation of evolution experiments. By demonstrating that neutral mutations substitute at a rate independent of population size and selection at linked sites, Kimura provided an influential justification for the idea of a molecular clock and emphasized the importance of genetic drift in shaping molecular evolution. But when epistasis among sites is common, as numerous empirical studies suggest, do neutral mutations substitute according to Kimura's expectation? Here we study simulated, asexual populations of RNA molecules, and we observe that conditionally neutral mutations--i.e., mutations that do not alter the fitness of the individual in which they arise, but that may alter the fitness effects of subsequent mutations--substitute much more often than expected while a population is adapting. We quantify these effects using a simple population-genetic model that elucidates how the substitution rate at conditionally neutral sites depends on the population size, mutation rate, strength of selection, and prevalence of epistasis. We discuss the implications of these results for our understanding of the molecular clock, and for the interpretation of molecular variation in laboratory and natural populations.
Collapse
|
510
|
Memoli MJ, Davis AS, Proudfoot K, Chertow DS, Hrabal RJ, Bristol T, Taubenberger JK. Multidrug-resistant 2009 pandemic influenza A(H1N1) viruses maintain fitness and transmissibility in ferrets. J Infect Dis 2011; 203:348-57. [PMID: 21208927 PMCID: PMC3071106 DOI: 10.1093/infdis/jiq067] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/27/2010] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The 2009 influenza A(H1N1) pandemic called attention to the limited influenza treatment options available, especially in individuals at high risk of severe disease. Neuraminidase inhibitor-resistant seasonal H1N1 viruses have demonstrated the ability to transmit well despite early data indicating that resistance reduces viral fitness. 2009 H1N1 pandemic viruses have sporadically appeared containing resistance to neuraminidase inhibitors and the adamantanes, but the ability of these viruses to replicate, transmit, and cause disease in mammalian hosts has not been fully characterized. METHODS Two pretreatment wild-type viruses and 2 posttreatment multidrug-resistant viruses containing the neuraminidase H275Y mutation collected from immunocompromised patients infected with pandemic influenza H1N1 were tested for viral fitness, pathogenicity, and transmissibility in ferrets. RESULTS The pretreatment wild-type viruses and posttreatment resistant viruses containing the H275Y mutation all demonstrated significant pathogenicity and equivalent viral fitness and transmissibility. CONCLUSIONS The admantane-resistant 2009 pandemic influenza A(H1N1) virus can develop the H275Y change in the neuraminidase gene conferring resistance to both oseltamivir and peramivir without any loss in fitness, transmissibility, or pathogenicity. This suggests that the dissemination of widespread multidrug resistance similar to neuraminidase inhibitor resistance in seasonal H1N1 is a significant threat.
Collapse
Affiliation(s)
- Matthew J Memoli
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
511
|
Inoue M, Barkham T, Leo YS, Chan KP, Chow A, Wong CW, Tze Chuen Lee R, Maurer-Stroh S, Lin R, Lin C. Emergence of oseltamivir-resistant pandemic (H1N1) 2009 virus within 48 hours. Emerg Infect Dis 2011; 16:1633-6. [PMID: 20875299 PMCID: PMC3294403 DOI: 10.3201/eid1610.100688] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An oseltamivir-resistant influenza A pandemic (H1N1) 2009 virus evolved and emerged from zero to 52% of detectable virus within 48 hours of a patient’s exposure to oseltamivir. Phylogenetic analysis and data gathered by pyrosequencing and cloning directly on clinical samples suggest that the mutant emerged de novo.
Collapse
|
512
|
Sun J, Miller JM, Beig A, Rozen L, Amidon GL, Dahan A. Mechanistic enhancement of the intestinal absorption of drugs containing the polar guanidino functionality. Expert Opin Drug Metab Toxicol 2011; 7:313-23. [DOI: 10.1517/17425255.2011.550875] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
513
|
Tisoncik JR, Guo Y, Cordero KS, Yu J, Wang J, Cao Y, Rong L. Identification of critical residues of influenza neuraminidase in viral particle release. Virol J 2011; 8:14. [PMID: 21232128 PMCID: PMC3033838 DOI: 10.1186/1743-422x-8-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/13/2011] [Indexed: 12/14/2022] Open
Abstract
Background Influenza neuraminidase (NA) is essential for virus release from its host cells and it is one of the targets for structure-based antiviral drug design. Results In this report, we established a pseudoviral particle release assay to study NA function, which is based on lentiviral particles pseudotyped with influenza glycoproteins HA and NA as a surrogate system. Through an extensive molecular analysis, we sought to characterize important residues governing NA function. We identified five residues of NA, 234, 241, 257, 286 and 345, four of which (except 345) map away from the active site of NA when projected onto the three-dimensional structure of avian influenza H5N1 NA, and substitutions of these residues adversely affected the NA-mediated viral particle release, suggesting that these residues are critical for NA enzymatic activity. Conclusion Through extensive chimeric and mutational analyses, we have identified several residues, which map away from the active site and are critical for NA function. These findings provide new insights into NA-mediated pseudoviral particle release and may have important implications in drug design and therapeutics against influenza infection.
Collapse
Affiliation(s)
- Jennifer R Tisoncik
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
514
|
|
515
|
Orozovic G, Orozovic K, Lennerstrand J, Olsen B. Detection of resistance mutations to antivirals oseltamivir and zanamivir in avian influenza A viruses isolated from wild birds. PLoS One 2011; 6:e16028. [PMID: 21253602 PMCID: PMC3017088 DOI: 10.1371/journal.pone.0016028] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 12/09/2010] [Indexed: 12/15/2022] Open
Abstract
The neuraminidase (NA) inhibitors oseltamivir and zanamivir are the first-line of defense against potentially fatal variants of influenza A pandemic strains. However, if resistant virus strains start to arise easily or at a high frequency, a new anti-influenza strategy will be necessary. This study aimed to investigate if and to what extent NA inhibitor–resistant mutants exist in the wild population of influenza A viruses that inhabit wild birds. NA sequences of all NA subtypes available from 5490 avian, 379 swine and 122 environmental isolates were extracted from NCBI databases. In addition, a dataset containing 230 virus isolates from mallard collected at Ottenby Bird Observatory (Öland, Sweden) was analyzed. Isolated NA RNA fragments from Ottenby were transformed to cDNA by RT-PCR, which was followed by sequencing. The analysis of genotypic profiles for NAs from both data sets in regard to antiviral resistance mutations was performed using bioinformatics tools. All 6221 sequences were scanned for oseltamivir- (I117V, E119V, D198N, I222V, H274Y, R292K, N294S and I314V) and zanamivir-related mutations (V116A, R118K, E119G/A/D, Q136K, D151E, R152K, R224K, E276D, R292K and R371K). Of the sequences from the avian NCBI dataset, 132 (2.4%) carried at least one, or in two cases even two and three, NA inhibitor resistance mutations. Swine and environmental isolates from the same data set had 18 (4.75%) and one (0.82%) mutant, respectively, with at least one mutation. The Ottenby sequences carried at least one mutation in 15 cases (6.52%). Therefore, resistant strains were more frequently found in Ottenby samples than in NCBI data sets. However, it is still uncertain if these mutations are the result of natural variations in the viruses or if they are induced by the selective pressure of xenobiotics (e.g., oseltamivir, zanamivir).
Collapse
Affiliation(s)
- Goran Orozovic
- Section for Zoonotic Ecology and Epidemiology, Linneaus University, Kalmar, Sweden.
| | | | | | | |
Collapse
|
516
|
Tscherne DM, García-Sastre A. Virulence determinants of pandemic influenza viruses. J Clin Invest 2011; 121:6-13. [PMID: 21206092 DOI: 10.1172/jci44947] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Influenza A viruses cause recurrent, seasonal epidemics and occasional global pandemics with devastating levels of morbidity and mortality. The ability of influenza A viruses to adapt to various hosts and undergo reassortment events ensures constant generation of new strains with unpredictable degrees of pathogenicity, transmissibility, and pandemic potential. Currently, the combination of factors that drives the emergence of pandemic influenza is unclear, making it impossible to foresee the details of a future outbreak. Identification and characterization of influenza A virus virulence determinants may provide insight into genotypic signatures of pathogenicity as well as a more thorough understanding of the factors that give rise to pandemics.
Collapse
Affiliation(s)
- Donna M Tscherne
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
517
|
Brookes DW, Miah S, Lackenby A, Hartgroves L, Barclay WS. Pandemic H1N1 2009 influenza virus with the H275Y oseltamivir resistance neuraminidase mutation shows a small compromise in enzyme activity and viral fitness. J Antimicrob Chemother 2010; 66:466-70. [PMID: 21172786 PMCID: PMC3037153 DOI: 10.1093/jac/dkq486] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Resistance to the neuraminidase inhibitor oseltamivir can be conferred by a well-characterized mutation in the neuraminidase gene, H275Y. In human H1N1 viruses that circulated in the first years of the 21st century, this mutation carried a fitness cost and resistant viruses were rare. During the 2007-08 influenza season, oseltamivir-resistant viruses of H1N1 phenotype emerged and predominated. March 2009 saw the emergence of a novel H1N1 influenza pandemic. We examined whether the H275Y mutation affected neuraminidase enzyme activity or replication of the pandemic influenza virus. METHODS Using reverse genetics we engineered the H275Y mutation into the neuraminidase of a 2009 pandemic H1N1 virus and assessed the ability of this enzyme to desialylate mono- and multivalent substrates. The growth kinetics of wild-type and mutant viruses were assessed in Madin-Darby canine kidney (MDCK) and fully differentiated human airway epithelial (HAE) cells. RESULTS The presence of H275Y was associated with a 1.3-fold decrease in the affinity of the neuraminidase for a monovalent substrate and a 4-fold compromise in desialylation of multivalent substrate. This was associated with a fitness cost to viral replication in vitro, which only became apparent during competitive replication in the mucus-rich HAE culture system. CONCLUSIONS The neuraminidase protein of pandemic influenza isolates tolerates the H275Y mutation and this mutation confers resistance to oseltamivir. However, unlike seasonal H1N1 viruses isolated since 2007, the mutation is not associated with any fitness advantage and thus is unlikely to predominate without further antigenic drift, compensating mutations or intense selection pressure.
Collapse
Affiliation(s)
- Daniel W Brookes
- Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | | | | | | | | |
Collapse
|
518
|
Yang JR, Huang YP, Lin YC, Su CH, Kuo CY, Hsu LC, Wu HS, Liu MT. Early findings of oseltamivir-resistant pandemic (H1N1) 2009 influenza A viruses in Taiwan. Antiviral Res 2010; 88:256-62. [DOI: 10.1016/j.antiviral.2010.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 11/29/2022]
|
519
|
T-705 (favipiravir) inhibition of arenavirus replication in cell culture. Antimicrob Agents Chemother 2010; 55:782-7. [PMID: 21115797 DOI: 10.1128/aac.01219-10] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A number of New World arenaviruses (Junín [JUNV], Machupo [MACV], and Guanarito [GTOV] viruses) can cause human disease ranging from mild febrile illness to a severe and often fatal hemorrhagic fever syndrome. These highly pathogenic viruses and the Old World Lassa fever virus pose a significant threat to public health and national security. The only licensed antiviral agent with activity against these viruses, ribavirin, has had mixed success in treating severe arenaviral disease and is associated with significant toxicities. A novel pyrazine derivative currently in clinical trials for the treatment of influenza virus infections, T-705 (favipiravir), has demonstrated broad-spectrum activity against a number of RNA viruses, including arenaviruses. T-705 has also been shown to be effective against Pichinde arenavirus infection in a hamster model. Here, we demonstrate the robust antiviral activity of T-705 against authentic highly pathogenic arenaviruses in cell culture. We show that T-705 disrupts an early or intermediate stage in viral replication, distinct from absorption or release, and that its antiviral activity in cell culture is reversed by the addition of purine bases and nucleosides, but not with pyrimidines. Specific inhibition of viral replication/transcription by T-705 was demonstrated using a lymphocytic choriomeningitis arenavirus replicon system. Our findings indicate that T-705 acts to inhibit arenavirus replication/transcription and may directly target the viral RNA-dependent RNA polymerase.
Collapse
|
520
|
Abstract
Human infections with avian influenza A (H5N1) are relatively rare but are associated with high mortality. As of July 5, 2010 there had been 500 cases and 296 fatalities. The influenza virus readily undergoes mutation and reassortment, and there are concerns that an H5N1 variant could be responsible for a future pandemic. The influenza neuraminidase inhibitors zanamivir and oseltamivir are approved for the treatment and prophylaxis of influenza. Oseltamivir is being used to treat H5N1 infections and the case has been made for a role for zanamivir; however, there are no case reports for the latter. Zanamivir is a potent inhibitor of H5N1, attains high lung concentrations immediately on administration, distributes into plasma at antiviral concentrations, has a low propensity for generating resistant virus, and retains activity against H275Y oseltamivir-resistant virus. There have been several reports of oseltamivir-resistant H5N1 arising during treatment with oseltamivir, and zanamivir retains effectiveness (in vitro or in vivo) against these isolates. Compassionate use of intravenous zanamivir for the treatment of seriously ill patients, including those with H275Y H1N1 infections, has also shown promising results. It is concluded that there is a role for zanamivir in treating H5N1 infections either as the approved, inhaled formulation in patients capable of using the Diskhaler, or as the intravenous formulation if compassionate use is warranted. The relatively small number of patients with these infections remains an obstacle to completion of clinical trials. Evidence is therefore likely to be based on carefully documented case reports, ideally in patients treated early in the course of the infection.
Collapse
Affiliation(s)
- Phillip Andrew Reece
- Department of Pharmacology, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
521
|
Genetic and phylogenetic analyses of influenza A H1N1pdm virus in Buenos Aires, Argentina. J Virol 2010; 85:1058-66. [PMID: 21047959 DOI: 10.1128/jvi.00936-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An influenza pandemic caused by swine-origin influenza virus A/H1N1 (H1N1pdm) spread worldwide in 2009, with 12,080 confirmed cases and 626 deaths occurring in Argentina. A total of 330 H1N1pdm viruses were detected from May to August 2009, and phylogenetic and genetic analyses of 21 complete genome sequences from both mild and fatal cases were achieved with reference to concatenated whole genomes. In addition, the analysis of another 16 hemagglutinin (HA), neuraminidase (NA), and matrix (M) gene sequences of Argentinean isolates was performed. The microevolution timeline was assessed and resistance monitoring of an NA fragment from 228 samples throughout the 2009 pandemic peak was performed by sequencing and pyrosequencing. We also assessed the viral growth kinetics for samples with replacements at the genomic level or special clinical features. In this study, we found by Bayesian inference that the Argentinean complete genome sequences clustered with globally distributed clade 7 sequences. The HA sequences were related to samples from the northern hemisphere autumn-winter from September to December 2009. The NA of Argentinean sequences belonged to the New York group. The N-4 fragment as well as the hierarchical clustering of samples showed that a consensus sequence prevailed in time but also that different variants, including five H275Y oseltamivir-resistant strains, arose from May to August 2009. Fatal and oseltamivir-resistant isolates had impaired growth and a small plaque phenotype compared to oseltamivir-sensitive and consensus strains. Although these strains might not be fit enough to spread in the entire population, molecular surveillance proved to be essential to monitor resistance and viral dynamics in our country.
Collapse
|
522
|
Turner SJ, Doherty PC, Kelso A. Q&A: H1N1 pandemic influenza--what's new? BMC Biol 2010; 8:130. [PMID: 20937163 PMCID: PMC2958896 DOI: 10.1186/1741-7007-8-130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/05/2010] [Indexed: 11/16/2022] Open
Affiliation(s)
- Stephen J Turner
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
523
|
Oseltamivir-resistant variants of the 2009 pandemic H1N1 influenza A virus are not attenuated in the guinea pig and ferret transmission models. J Virol 2010; 84:11219-26. [PMID: 20739532 DOI: 10.1128/jvi.01424-10] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oseltamivir is routinely used worldwide for the treatment of severe influenza A virus infection, and should drug-resistant pandemic 2009 H1N1 viruses become widespread, this potent defense strategy might fail. Oseltamivir-resistant variants of the pandemic 2009 H1N1 influenza A virus have been detected in a substantial number of patients, but to date, the mutant viruses have not moved into circulation in the general population. It is not known whether the resistance mutations in viral neuraminidase (NA) reduce viral fitness. We addressed this question by studying transmission of oseltamivir-resistant mutants derived from two different isolates of the pandemic H1N1 virus in both the guinea pig and ferret transmission models. In vitro, the virus readily acquired a single histidine-to-tyrosine mutation at position 275 (H275Y) in viral neuraminidase when serially passaged in cell culture with increasing concentrations of oseltamivir. This mutation conferred a high degree of resistance to oseltamivir but not zanamivir. Unexpectedly, in guinea pigs and ferrets, the fitness of viruses with the H275Y point mutation was not detectably impaired, and both wild-type and mutant viruses were transmitted equally well from animals that were initially inoculated with 1:1 virus mixtures to naïve contacts. In contrast, a reassortant virus containing an oseltamivir-resistant seasonal NA in the pandemic H1N1 background showed decreased transmission efficiency and fitness in the guinea pig model. Our data suggest that the currently circulating pandemic 2009 H1N1 virus has a high potential to acquire drug resistance without losing fitness.
Collapse
|
524
|
News in brief. Nat Med 2010. [DOI: 10.1038/nm0710-734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
525
|
Affiliation(s)
- Edward C Holmes
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|